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ABSTRACT

The paper considers simple queueing systems with multiple
MAP servers, where the incoming customers can be freely
assigned with service unit in case of more than one avail-
able free servers. In case of a well defined service policy the
analysis of such queueing systems is a standard matrix an-
alytic procedure, but the optimal control of those queues is
rather complex. We do not directly optimize the service pol-
icy, but consider the number of all service policies in case of
small models and evaluate their main performance parame-
ter, which is the mean system time (waiting time + service
time) in this work. As results we report some surprising
optimal policies for small M/MAP(k)/n queues.

Keywords: M/MAP/n queue, control of queue, numerical
optimization.

1. INTRODUCTION

Queueing systems with multiple servers allow a degree of
freedom to assign incoming customers with one of the idle
servers when there is more than one. When the service units
have completely memoryless behaviour, then the assignment
of the incoming customer with an idle server does not af-
fect the queueing behaviour, but when the servers are not
memoryless, the overall queueing performance is subject to
optimal server selection.

We focus on the analysis of M/MAP(k)/n queues, where
customers arrive to a queuing system according to a Pois-
son process with rate A, the queueing system is composed
by n server units and an infinite buffer. The service units
are identical and their service times are characterized by a
Markov arrival process of order k& (MAP(k)) [1]. In case
of n service units, a customer arriving to the queue with
m < n — 1 customers in the system finds n — m > 1 free
servers and the system assigns the customer with one of the
idle servers freely. In this work we assume that the system
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knows the phase of the free service units and makes its choice
based on that.

Generalization of this model to more complex queues, e.g.,
to the MAP/M AP(k)/n queue, is straightforward and pre-
serves the strange optimal behaviour as the one obtained for
M/MAP(2)/2 queues.

2. THE MATRIX ANALYTIC MODEL OF

THE M/MAP(K)/N QUEUE

The number of customers in a M/MAP(k)/n queue and the
phase of the service processes can be characterized by a con-
tinuous time Markov chain and due to the fact that cus-
tomers arrive and depart one by one this Markov chain has
a quasi birth death (QBD) structure [1]. The backward, the
local and the forward matrices (denoted by B, L and F re-
spectively) of this QBD are level independent in case of more
than n customers in the system. Consequently, the QBD can
be solved using the matrix geometric stationary behaviour
of the level independent part [1]. In the next subsection we
specialize this solution for the M/MAP(2)/2 queue.

21 TheM/MAP(2)/2 queue

The M/MAP(2)/2 model translates to a quasi birth-death
(@BD) process, which is the multi-phase extension of the
M/M/1 model. The state space is partitioned into so-called
levels according to the number of customers in the system,
which implies the block tri-diagonal form of the infinitesimal
generator
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and

P =diag(1/2,p,1 —p,1/2). (2)

According to matrix P, at a customer arrival to the empty
system the customer is directed to the server in phase 1 with
probability p and to the server in phase 2 with probability
1 — p if the servers are in different phases and if idle servers
are in the same phase the service units are chosen evenly.

The steady state solution of the system is partitioned ac-
cording to the levels as
71':(71'0, T, T2, ) (3)
Due to the level independent behaviour of (1) for i > 2 we
have
mi=mR T i>2 (4a)

Where R is the minimal non-negative solution of the
quadratic matrix equation [1]

0=F + RL + BR”.

Based on (1) and matrix R, the irregular part of the steady
state distribution is the solution of the linear system
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with normalization condition

1 = @l + ml + m(A-R)'1 . ()

Using the steady state distribution (4), the mean number of
customers in the system can be expressed as

E(N)=) iml=ml+) imR’1
1=0 1=2
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and the mean system time as
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3. CASE STUDIES

In this section we examine some small M/MAP (k)/n queues
and obtain numerical results for their optimal control.

31 M/MAP(2)/2 systems

The the M/MAP(2)/2 queue is the simplest meaningful
M/MAP(k)/n queue, in which there are two servers with
the same order 2 MAP service units characterized by
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and the customers arrive according to a Poisson process with
intensity A = 1.5. In this queue there is one simple question
to be answered: If both servers are idle, one of them is in
phase 1 and the other one is in phase 2, which server has
to process the next arriving customer to have a minimal

average system time? In other words what is the optimal
value of p in (2)? The first intuitive answer to choose the
server which can serve the customer faster. This means that
we compare the mean service time starting from phase 1 and
phase 2, i.e., (1,0)(=Do) "1 and (0,1)(=Do)~'1, and if the
first expression is smaller, we choose the server in phase 1
(p = 1), otherwise the one in phase 2 (p = 0). This greedy
decision can be motivated by the fact that we would like to
serve the customer as fast as possible to have an idle queue as
soon as possible. The numerical results, however, show that
the opposite choice is the optimal, as can be seen in Figure
1(a), i.e., it is better to choose the server which serves the
customer slower.

This counter-intuitive result can be interpreted in the follow-
ing way. If we use the faster server for the first customer,
the probability of finishing the service before a new arrival
is high, as the mean service time of the faster state is signifi-
cantly smaller than the mean inter-arrival time of a new cus-
tomer. Upon service there is a chance that the server moves
to the slower state, leaving the system with two servers in
the phase with higher service time. In this state there is a
higher chance that more than 2 consecutive customers ar-
rive before the first customer can be served, which leads to
a higher average system time. In other words assigning the
customer with the faster server leads to a more deteriorated
state after service completion. While assigning the customer
with the server in the slower phase, there is a chance that
the server will move to the faster state upon service, thus the
state of the system improves. One can think of this effect as
the repair of the server at the cost of a slower service.

The presented behaviour is quite typical. Our investigations
show that choosing the server with higher service time (with
probability 1) is optimal regardless of other characteristics
of the servers and the intensity of arrivals. For example
the MAP characterized by Do and D has a positive lag-1
1/20 0
095 5) results
in a MAP with negative lag-1 correlation, whose associated
system time is depicted in Figure 1(b).

correlation. Replacing D; with D} = (

3.2 M/MAP(3)/2 queue

In our second example we also have two servers, but the
service time is a MAP(3) with

-1 0 0 0 1 0
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In this case, just like in the previous example, we can make
decision only if both servers are idle and their phases are
different. However, while for MAP(2) this meant the de-
termination of a single priority relation, here we have three
relations (priority between phase 1 and 2, 1 and 3, 2 and
3). Our numerical experiments suggests that it is sufficient
to consider only strict (the server in the phase with higher
priority serves the new customer with a probability of 1)
and transitive priority relations (if phase 1 has priority over
phase 2 and phase 2 has priority over phase 3, then 1 has
priority over phase 3). Applying this assumption we have
6 possible service policies and by evaluating all of them we
can determine the best service policy for any M/MAP(3)/2
queue. We denote the priority of the server in phase i by
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Figure 1: Mean system time of M/MAP(2)/2 queue
as a function of p

pri, where pr; > pr; if we choose the server in phase i over
the one in phase j.

First, let 1 = 100, r2 = 10 and A = 1.5. In this case
the results are in accordance with the observations ob-
tained for M/MAP(2)/2 queue. The best priority scenario
is pr1 > prs > pra. The reasoning is the same as before.
By using the server in the slowest phase, we guarantee that
its next service time will be faster (probabilistically), i.e.
we improve the state of the system. While choosing the
server in phase 2 and phase 3 both worsens the state of the
system, the deterioration is greater when the server transi-
tions from phase 3 to phase 1. If r1 = 10, ro = 100, and
A = 1.5, however, the optimal priority scenario remains the
same (pr1 > prs > prz2) although the previous reasoning
would suggest that pri > pre > prs is better. In this case
we have to lower r1 to 2.2 to get pr1 > pr2 > prs for op-
timum. If we change the arrival rate the switching point
between the optimal scenarios also changes. For A = 1 the
switching point is around r1 = 2.4. These results imply that
the optimal priority scenario is determined by conflicting ef-
fects and the intuitive understanding of the optimal decision
is more complicated.

3.3 M/MAP(2)/n with morethan 2 servers

In this section we investigate the cases with higher num-
ber of MAP(2) servers. The numerical analysis is based on
the Markov chains built on the analogy of (1). In case of
more than 2 servers, at a customer arrival we need to choose
between the idle servers if more than one is available. We
identify an idle server by its phase that is held during the
idle period and we number the phases such that the server
in phase 1 is the “slower”. The number of all possible strict
and transitive priority cases increases exponentially with the
number of servers. To simplify the investigation we apply a
uniform probabilistic server selection shame. If upon a cus-
tomer arrival there is at least one idle server in phase 1 and
one in phase 2 we choose the one in phase 1 (the slower)
with probability p. We compare the uniform probabilistic
server selection shames for different p values.

We evaluated the cases when the arrival process is a Pois-
son process with parameter A = 1/10 and the service time
is characterized by the MAP(2) in (6). The results are de-
picted in Figure 2 and 3. Figure 2 indicates that for all
evaluated number of servers the best uniform probabilistic
policy is to choose the slowest server, which is the case at
p = 1. According to our investigations the correlation of the
MAP(2) service does not play a role in the optimal prob-
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Figure 2: The system time vs. p for several K values

Figure 3: The system time versus the number of
cores, for several p parameters

abilistic decision and the same conclusion holds. It can be
seen in Figure 3 that, as number of servers tends to in-
finity, the system time tends to a constant limiting value
independent of parameter p. According to the expectations
the limiting constant value is the mean service time of the
MAP(2), T = 100/101.

The evaluations of uniform probabilistic server selection
shames suggest that the conclusion obtained for the
M/MAP(2)/2 case might extend to M/MAP(2)/n queues
with more than 2 servers. In general, it can be interpreted
as follows. At any levels of system saturation (any number
of customers in the queue), it worth to choose the slower
server, because it results in a better system state for higher
levels of system saturation.
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