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Abstract

The fitting of Markov arrival processes (MAPs) with the expectation-maximization (EM) algorithm is a
computationally demanding task. There are attempts in the literature to reduce the computational com-
plexity by introducing special MAP structures instead of the general representation. Another possibility
to improve the efficiency of MAP fitting is to reformulate the inherently serial classical EM algorithm to
exploit modern, massively parallel hardware architectures.

In this paper we present three different EM-based fitting procedures that can take advantage of the
parallel hardware (like Graphics Processing Units, GPUs) and apply a special MAP structure, the Erlang
distributed - continuous-time hidden Markov chain (ER-CHMM) structure for reducing the computational
complexity.

All the proposed parallel algorithms have their strengths: the first one traverses the samples only once
per iteration, the second one is memory efficient (far more than the classical serial algorithm), and the third
one has exceptionally low execution times.

These procedures are compared with the standard serial forward-backward procedure for performance
comparison. The new algorithms are orders of magnitudes faster than the standard serial procedure, while
(depending on the variant) using less memory.
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1. Introduction

Markov arrival processes (MAPs) are being used for modeling correlated workload for traffic, performance
and reliability analysis in several fields for many decades [8]. However, for the successful application of MAP-
based models, efficient fitting procedures are needed to approximate the real traffic behavior as accurately
as possible.

The MAP fitting approaches published so far can be divided into matching, distance minimization, and
combined methods, where inter-arrival time fitting and correlation structure fitting are performed with
different approaches. The matching algorithms aim to match certain statistical quantities of the traffic such
as moments and auto-correlation. Fitting methods belonging to the second group aim to minimize a measure
of distance between samples and the model. In case of MAP traffic models, the dominant distance measure
is the likelihood, and the dominant optimization procedure is the expectation maximization (EM) method
aiming to maximize the likelihood.

Explicit results for MAP matching methods exist only for the second-order case [2]. For larger models,
a combined two-step procedure for the MAP fitting problem has been developed, e.g., in [4]. In the first
step a phase-type (PH) distribution is created to fit the marginal distribution, and in the second step, a
lag-k auto-correlation fitting is performed to capture the correlated nature of the traffic. Another two-step
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matching approach is proposed in [7], where an acyclic PH distribution is extended into a MAP by adding
correlations based on the lag-1 joint moments of the inter-arrival times. The first, PH fitting step can be
improved by representation transformation (see [6, 13]), to make the PH representation more appropriate
for correlation fitting. However, the common flaw of these two-step algorithms is that they are not able
to take long-range correlations into account and that the underlying optimization problems are not easy to
solve even with most recent optimization software.

An EM procedure to perform MAP fitting of a general structure is presented in [5]. That procedure
requires a massive computational effort, and consequently, it is applicable only to fit small data traces
consisting of a few thousand observations. To address the issue an EM procedure based on the aggregation
of the inter-arrival times is presented in [11]. Similarly, [17] extends the EM algorithm for fitting MAPs
to group data. To reduce the computational demand of EM-based MAP fitting algorithms a special MAP
structure was introduced in [16] called Erlang distributed – continuous-time hidden Markov chain (ER-
CHMM). A generalization of the ER-CHMM structure was given in [9], which relaxed some structural
restriction of the ER-CHMM structure, but increased the number of the model parameters. Using the
generalized ER-CHMM structure slightly higher likelihood values can occasionally be achieved, on the cost
of increased numerical complexity.

In the survey [10], various MAP fitting approaches have been compared, and the EM-based algorithms
have been found to be more beneficial than the matching ones (including the combined methods) from
many aspects. The reason is that the EM method considers all information carried by the samples, while
the matching methods consider only the statistical parameters which are matched.

While EM algorithms for fitting PH distributions can easily take advantage of the parallel hardware
since the samples are independent, all EM-based procedures for MAP fitting published so far are inherently
serial algorithms due to the dependent nature of the samples.

There are a few EM algorithms published in the literature for hidden Markov model (HMM) fitting,
that is also based on dependent samples [12, 15, 20]. In all these papers, similar to ours, formalizing the
problem with matrices was the key idea enabling the parallel implementation. [20, eq. (30)] provides an
important relation for the iterative, parallel computation of the performance indexes for the HMM problem
with continuous observations, but this idea has not been put forward to an efficient parallel implementation
in [20]. [12] and [15] proposed parallel solutions, without using [20, eq. (30)], for a simpler HMM setting
with discrete observations. These HMM models differ from the MAP fitting problem in the meaning of the
parameters to estimate, but their computational approaches are similar to ours. Our contribution is that we
adapt the principal relation [20, eq. (30)] for the MAP fitting problem, based on which we develop parallel
algorithms organized similarly to the ones in [12, 15]. Mixing the elements of these algorithms in different
ways we arrive to three different algorithm variants, which covers the practically relevant spectrum of the
computation time – memory requirement trade-off. Having these algorithms defined and implemented in a
unified manner enabled their fair performance comparison.

The rest of the paper is organized as follows. In Section 2 a short introduction on MAPs and the basic
EM algorithm is provided. Possible implementations of the EM algorithm, including the parallel ones,
are investigated in Section 3. Section 4 provides more implementation details on how to cope with the
numerical problems and a detailed study on the memory requirement is also given. Section 5 demonstrates
the efficiency of our parallel implementation on some numerical examples and concludes the paper.

2. Background information

2.1. Markov arrival processes

A Markov arrival process (MAP, [14]) is a point process where the arrivals are modulated by a finite state
background continuous-time Markov chain (CTMC) with N states and generator matrix D (assumed to be
irreducible in this paper). A set of the state transitions, with rates specified by matrix D1, are accompanied
by an arrival event, while other state transitions described by matrix D0 are just internal transitions of the
background process, not accompanied by an arrival (see Figure 1). Hence, we have that D = D0 +D1 and
(D0 + D1)1 = 0. Let the stationary state distribution vector at arrival instants be denoted by α. It can
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Figure 1: The structure of a general MAP.

be obtained from solving α(−D0)−1D1 = α, α1 = 1 with 1 being a column vector of ones. The density
function of the stationary inter-arrival time f(x) and its nth moment E(Xn) can be expressed by

f(x) = αeD0xD11, (1)

E(Xn) = n!α(−D0)−n1, (2)

while the joint density function of inter-arrival times x1, x2, . . . , xT is given by

f(x1, x2, . . . xT ) = αeD0x1D1e
D0x2D1 . . . e

D0xTD11 = α

T∏
u=1

A[u]1, (3)

where A[u] = eD0xuD1.
The D0,D1 matrix representation of a MAP is not unique [18], which has important practical conse-

quences on distance minimizing procedures. Most of them, including the EM-based ones, might go back
and forth between MAP representations that are almost identical with respect to the underlying MAP but
have very different matrix representations. To avoid this problem and to reduce computational complexity
structurally restricted subclasses of MAPs are used.

2.2. The ER-CHMM structure

ER-CHMM is a structurally restricted subclass of MAPs, introduced in [16]. In this arrival process, the
inter-arrival times are Erlang distributed (ER) and are modulated by a discrete time hidden Markov chain
(HMM, hence the name of the structure). An important qualitative property of this structural restriction
is that given the state of the modulating Markov chain, the inter-arrival time and the next state of the
modulating Markov chain are independent random variables, which is not the case with general MAPs.
Despite this independence, the inter-arrival times generated by the ER-CHMM structure are still correlated
(in general).

The ER-CHMM structure is specified by the parameters r = {ri} , λ = {λi} ,Π = {pi,j} for i, j = 1, ..., R,
where R is the number of Erlang branches, ri and λi are the order and the rate of the Erlang distribution
in branch i. Hence, the density of the inter-arrival times generated by branch i is

fi(x) =
(λix)ri−1

(ri − 1)!
λie
−λix. (4)

The process determining the branch providing the consecutive inter-arrival times, {Yu, u ≥ 1}, is a discrete
time Markov chain (DTMC) with R states and transition probability matrix Π, thus its i, j element, pi,j =
limu→∞ P (Yu = j|Yu−1 = i), is the probability that after generating an arrival by branch i the next arrival
is generated by branch j (see Figure 2).

From the {r, λ,Π} parameters it is easy to obtain the {D0,D1} representation. If the initial vector and
the transient generator of an order-r Erlang distribution with parameter λ are given by

β(r) =
[
1 0 . . . 0

]
1×r , B(r, λ) =


−λ λ 0 . . .
0 −λ λ . . .

0 0
. . .

. . .

0 0 0 −λ


r×r

,
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Figure 2: The r = {3, 2, 1} ER-CHMM structure.

the matrices D0 and D1 can be expressed by

D0 =

B(r1, λ1)
. . .

B(rR, λR)

 ,D1 =

 −B(r1, λ1)1 · p1,1 · β(r1) . . . −B(r1, λ1)1 · p1,R · β(rR)
...

. . .
...

−B(rR, λR)1 · pR,1 · β(r1) . . . −B(rR, λR)1 · pR,R · β(rR)

 .
(5)

From a computational point of view, the most beneficial feature of the ER-CHMM structure is that the
computation of matrices A[u], the key element of the joint density function, is significantly simpler with
the ER-CHMM structure than in case of general MAPs, due to the conditional independence of the inter-
arrival time and the next state of the modulating Markov chain, which is provided by the the ER-CHMM
structure. As a consequence, the computation of matrices A[u] does not rely on the computationally heavy
matrix-exponential function, but simplifies to a scalar product of pi,j and fi(xu) as it is demonstrated by
the relevant elements of A[u] in the following example. If r = [3, 1], the D0,D1 and A[u] are

D0 =


−λ1 λ1 0 0

0 −λ1 λ1 0
0 0 −λ1 0
0 0 0 −λ2

 , D1 =


0 0 0 0
0 0 0 0

p1,1λ1 0 0 p1,2λ1

p2,1λ2 0 0 p2,2λ2

 ,

A[u] = eD0xuD1 =


p1,1f1(xu) 0 0 p1,2f1(xu)
• 0 0 •
• 0 0 •

p2,1f2(xu) 0 0 p2,2f2(xu)

 ,
where • indicate matrix entries which are irrelevant because after an arrival event the phase is either 1 or
4 due to the zero columns. This fact allows for dimension reduction as well, that we utilize in the sequel:
instead of relying on size N matrices A[u], we are going to use size R matrices P [u], defined as

P [u] =

 p1,1f1(xu) . . . p1,Rf1(xu)
...

. . .
...

pR,1fR(xu) . . . pR,RfR(xu)

 . (6)

Using these size R matrices the joint density function is

f(x1, x2, . . . xT ) = π
T∏
u=1

P [u]1, (7)

where π is the stationary distribution of Π, hence πΠ = π, π1 = 1. Observe that, since R ≤ N holds, (7)
involves smaller matrices and lacks matrix-exponential functions compared to (3).

2.3. The EM algorithm for MAP fitting with the ER-CHMM structure

Given matrices D0 and D1, the likelihood of the observations x = {x1, x2, . . . , xT } can be expressed by

L(x,D0,D1) = αeD0x1D1e
D0x2D1 · · · eD0xTD11 = α

T∏
u=1

A[u]1. (8)

4



The aim of the EM algorithm is to find the matrices D0 and D1 of size N that maximize the likelihood of
the observations, thus

D0,D1 = arg maxL(x,D0,D1). (9)

In case of the ER-CHMM structure with r the same likelihood optimization problem can be formulated as

λ,Π = arg maxL(x, λ,Π), with L(x, λ,Π) = π

T∏
u=1

P [u]1. (10)

Both [16] and [9] arrived to the interesting conclusion that the structurally restricted ER-CHMM-based
EM algorithm, while being significantly faster than the EM algorithm operating on the full (dense) MAP
class, often achieves significantly higher likelihood values. The reason is that in case of full MAPs the
likelihood function has a large number of local optima due to the high degree of freedom, making the
optimization more difficult and more dependent on the initial guess.

Our goal in this paper is to develop a parallel implementation of the EM algorithm for the ER-CHMM
class to enable the fitting of large data traces of practical size. We note, however, that the concepts
introduced in this paper for the parallel implementation are general enough to be adopted for any MAP
with or without structural restrictions. That is why we occasionally indicate both the D0,D1 and the
{r, λ,Π} based description in the sequel. As the main focus of the paper is the implementation of the
EM algorithm, here we only summarize the main steps of the method without detailed explanation. For a
complete description of the algorithm we refer to [16] and [9].

Two sets of vectors, called forward and backward likelihood vectors, a[u] = {ai[u], i = 1, . . . , R}, u =
0, . . . , T and b[u] = {bi[u], i = 1, . . . , R}, u = 1, . . . , T + 1, play important role in the procedure. Row
vectors a[u] and column vectors b[u] have probabilistic interpretations: ai[u] is the density that the state of
the background DTMC Yu is i and inter-arrival times x1, . . . , xu are observed, while bj [u] is the density of
observing inter-arrival times xu, . . . , xT if the state of Yu was j initially. They are defined recursively by

ai[u] =

{
πi, for u = 0,∑R
j=1 aj [u− 1]fj(xu)pj,i, for 1 ≤ u ≤ T ,

bj [u] =

{∑R
i=1 fj(xu)pj,ibi[u+ 1], for 1 ≤ u ≤ T ,

1, for u = T + 1.

(11)

We note that similar recursions can be defined in case of full MAPs, too, see eq. (13) and (14) in [16].
With the above introduced notations the likelihood can be expressed as

L(x, λ,Π) = a[T ]1 = πb[1].

According to the EM algorithm the estimates for parameters λ and Π are obtained by

λ′i =

∑T
u=1 riai[u−1]bi[u]∑T
u=1 xuai[u−1]bi[u]

, (12)

p′i,j =

∑T−1
u=1 ai[u−1]fi(xu)pi,jbj [u+1]∑T−1

u=1 ai[u−1]bi[u]
. (13)

The estimates of the initial branch probabilities π = {πi, i = 1, . . . , R} can either be obtained as the
stationary solution of Π, or they can be derived from the likelihood vectors as

π′i =

∑T
u=1 ai[u−1]bi[u]

T · a[T ]1
. (14)
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The EM algorithm consists of the alternating computation of vectors a[u] and b[u] according to (11) (also
referred to as the E-step) and the new estimates according to (12), (13) and (14) (referred to as the M-step).
When the relative change of the log-likelihood over subsequent iterations is smaller than a pre-defined value,
the algorithm stops.

In this paper, we assume that the ri, i = 1, . . . , R parameters, the orders of the Erlang branches, are
fixed and are not the subject of optimization. Some heuristics to find the right branch orders are provided
in [9].

3. The algorithms

3.1. The basic forward-backward algorithm

The standard, naive implementation of the EM algorithm is serial. Computing and saving the likelihood
vectors a[u] and b[u] for u = 1, . . . , T based on (11) implies 2T vector-matrix multiplication operations
of size R and saving 2T vectors of size R in the memory. Having the likelihood vectors a[u] and b[u] for
u = 1, . . . , T , the λ′i, p

′
i,j , and π′i estimates (R2 + 2R parameters) can be computed based on (12), (13) and

(14) that needs O(T ) scalar multiplications for all parameters.
There are some straightforward, albeit limited possibilities to make this essentially serial computation

parallel. Vectors a[u], for u = 1, . . . , T , and vectors b[u], for u = T, . . . , 1, can be obtained simultaneously, by
two execution threads. The recursive definition of these vectors does not allow a higher level of parallelism.
Updating the estimates in the M-step, i.e., computing (12), (13) and (14), can also benefit from parallel
hardware, λ′i and π′i can be computed simultaneously for i = 1, . . . , R by 2R execution threads, and p′i,j for

i, j = 1, . . . , R by R2 execution threads.
In the subsequent sections, several options are considered to transform this algorithm to a massively

parallel one with different number of passes through the data set.

3.2. The parallel implementation with one pass

We start by reformulating the basic forward-backward algorithm with matrix notation, which is an
important step towards making the algorithm massively parallel.

By defining matrix ~P [u, v] for 1 ≤ u ≤ v ≤ T as

~P [u, v] = P [u]P [u+ 1] . . .P [v] =

v∏
z=u

 f1(xz)p1,1 . . . f1(xz)p1,R

...
. . .

...
fR(xz)pR,1 . . . fR(xz)pR,R

 , (15)

and for u > v as ~P [u, v] = I, the forward and backward likelihood vectors can be expressed by

a[u] = π ~P [1, u], and b[u] = ~P [u, T ]1. (16)

We divide the T inter-arrival times into L partitions: inter-arrival times x1, . . . , xK are assigned to partition
1, xK+1, . . . , x2K to partition 2, and so on, where the number of inter-arrival times in the first L−1 partitions
is K = dT/Le and the size of last partition is T − (L− 1)K (which can be smaller than K). If u belongs to
the `th partition, that is, (`− 1)K + 1 ≤ u ≤ `K , then we have

a[u] = π

(
`−1∏
z=1

~P [(z − 1)K + 1, zK]

)
~P [(`− 1)K + 1, u], (17)

b[u] = ~P [u, `K]

(
L−1∏
z=`+1

~P [(z − 1)K + 1, zK]

)
~P [(L− 1)K + 1, T ]1. (18)
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The main observation that enables the parallel implementation is that matrices ~P [(z − 1)K + 1, zK] can
be calculated simultaneously for ` = 1, . . . , L. To simplify the notation we introduce the likelihood matrix
corresponding to partition ` as

U [`] = ~P [(`− 1)K + 1, `K], for ` = 1, . . . , L− 1, and U [L] = ~P [(L− 1)K + 1, T ].

The likelihood vectors corresponding to the inter-arrival times up to partition ` and from partition ` on
can be expressed from the likelihood matrices by

π` = a[`K] = π ~P [1, `K] = π
∏̀
u=1

U [u], and 1
` = b[`K + 1] = ~P [`K + 1, T ]1 =

L∏
u=`+1

U [u]1,

respectively. By this notation, for (` − 1)K + 1 ≤ u ≤ `K the likelihood vectors corresponding to each
inter-arrival time simplify to

a[u] = π`−1 ~P [(`− 1)K + 1, u], and b[u] = ~P [u, `K]1`+1, (19)

where ~P [(`− 1)K + 1, u] and ~P [u, `K] are likelihood matrices within partition `.
To compute λ′i, p

′
i,j and π′i in parallel we rewrite (12), (13), and (14) as

λ′i =

∑T
u=1 riai[u−1]bi[u]∑T
u=1 xuai[u−1]bi[u]

=
ri · S(1)

i

S
(2)
i

, (20)

p′i,j =

∑T−1
u=1 ai[u−1]fi(xu)pi,jbj [u+1]∑T−1

u=1 ai[u−1]bi[u]
=
S

(3)
i,j

S
(3)
i

. (21)

π′i =

∑T
u=1 ai[u−1]bi[u]

T · a[T ]1
=

1

T · a[T ]1
S

(1)
i . (22)

where S
(1)
i and S

(3)
i differs only in a single element

S
(1)
i = S

(3)
i + ai[T−1]bi[T ], (23)

and S
(3)
i can be obtained from S

(3)
i,j as

S
(3)
i =

R∑
j=1

S
(3)
i,j , (24)

by which we focus only on S
(2)
i and S

(3)
i,j . To make the parallel computation of S

(2)
i possible we separate
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these sums into parts corresponding to the partitions as

S
(2)
i =

L−1∑
`=1

K∑
u=1

ai[(`− 1)K + u− 1]x(`−1)K+ubi[(`− 1)K + u] (25)

+

T−(L−1)K∑
u=1

ai[(L− 1)K + u− 1]x(L−1)K+ubi[(L− 1)K + u]

=

L−1∑
`=1

π`−1
K∑
u=1

~P [(`− 1)K + 1, (`− 1)K + u− 1]eTi x(`−1)K+uei ~P [(`− 1)K + u, `K]︸ ︷︷ ︸
Ω̄

(2)
i [`,K]=Ω

(2)
i [`]

1
`+1

+ πL−1

T−(L−1)K∑
u=1

~P [(L− 1)K + 1, (L− 1)K + u− 1]eTi x(L−1)K+uei ~P [(L− 1)K + u, T ]︸ ︷︷ ︸
Ω̄

(2)
i [L,T−(L−1)K]=Ω

(2)
i [L]

1,

where

Ω̄
(2)
i [`, z] =

z∑
u=1

~P [(`− 1)K + 1, (`− 1)K + u− 1]eTi x(`−1)K+uei ~P [(`− 1)K + u, (`− 1)K + z]

and we made use of (19). The first (double) summation corresponds to partitions 1, . . . , L − 1 and the

second one to the last (Lth) partition, having potentially less than K elements. Matrices Ω̄
(2)
i [`, z] represent

the sum in partition ` up to term z, while we introduce the shorthand notation Ω
(2)
i [`] to denote the sum

over all terms of partition `. The main observation is that Ω
(2)
i [`] can be computed simultaneously for each

partition.

Similarly, for S
(3)
i,j , we have

S
(3)
i,j =

L−1∑
`=1

K∑
u=1

ai[(`− 1)K + u− 1]P [(`− 1)K + u]i,jbj [(`− 1)K + u+ 1] (26)

+

T−(L−1)K−1∑
u=1

ai[(L− 1)K + u− 1]P [(L− 1)K + u]i,jbj [(L− 1)K + u+ 1]

=

L−1∑
`=1

π`−1
K∑
u=1

~P [(`− 1)K + 1, (`− 1)K + u− 1]eTi eiP [(`− 1)K + u]eTj ej ~P [(`− 1)K + u+ 1, `K]︸ ︷︷ ︸
Ω̄

(3)
i,j [`,K]=Ω

(3)
i,j [`]

1
`+1

+ πL−1

T−(L−1)K−1∑
u=1

~P [(L− 1)K + 1, (L− 1)K + u− 1]eTi eiP [(L− 1)K + u]eTj ej ~P [(L− 1)K + u+ 1, T ]︸ ︷︷ ︸
Ω̄

(3)
i,j [L,T−(L−1)K−1]=Ω

(3)
i,j [L]

1,

where

Ω̄
(3)
i,j [`, z] =

z∑
u=1

~P [(`− 1)K + 1, (`− 1)K + u− 1]eTi eiP [(`− 1)K + u]eTj ej ~P [(`− 1)K + u+ 1, (`− 1)K + z].

The next theorem provides an efficient way to compute matrices Ω
(2)
i [`] and Ω

(3)
i,j [`] by forward-only re-

cursions. Similar recursive computation of cumulated measures is used in [20] for hidden Markov chain
fitting.
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Theorem 1. For 0 < z ≤ K and ` < L, as well as for 0 < z ≤ T − (L− 1)K and ` = L, matrices Ω̄
(2)
i [`, z]

and Ω̄
(3)
i,j [`, z], satisfy the recursive relations

Ω̄
(2)
i [`, z] = Ω̄

(2)
i [`, z − 1]P [(`− 1)K + z] + ~P [(`− 1)K + 1, (`− 1)K + z − 1]eTi xzeiP [(`− 1)K + z]

and

Ω̄
(3)
i,j [`, z] = Ω̄

(3)
i,j [`, z − 1]P [(`− 1)K + z] + ~P [(`− 1)K + 1, (`− 1)K + z − 1]eTi eiP [(`− 1)K + z]eTj ej

with initial value Ω̄
(2)
i [`, 0] = 0 and Ω̄

(3)
i,j [`, 0] = 0.

Proof. Starting with the definition of matrix Ω̄
(2)
i [`, z] and separating the last term of the sum as

Ω̄
(2)
i [`, z] =

z∑
u=1

~P [(`− 1)K + 1, (`− 1)K + u− 1]eTi x(`−1)K+uei ~P [(`− 1)K + u, (`− 1)K + z]

=

z−1∑
u=1

~P [(`− 1)K + 1, (`− 1)K + u− 1]eTi x(`−1)K+uei ~P [(`− 1)K + u, (`− 1)K + z − 1]

+ ~P [(`− 1)K + 1, (`− 1)K + z − 1]eTi x(`−1)K+zeiP [(`− 1)K + z]

= Ω̄
(2)
i [`, z − 1]P [(`− 1)K + z] + ~P [(`− 1)K + 1, (`− 1)K + z − 1]eTi xzeiP [(`− 1)K + z]

proves the recursive relation for matrices Ω̄
(2)
i [`, z]. The relation for matrices Ω̄

(3)
i,j [`, z] can be proven

similarly.

With these notations, the algorithm that takes a single pass through the data set consists of the following
two phases:

1. The parallel computation of matrices U [`], Ω
(2)
i [`] and Ω

(3)
i,j [`] for ` = 1, . . . , L such that each partition

is computed by a different parallel thread.

Algorithm 1 Pseudo-code for partition ` (` < L) in the 1-pass method

1: procedure process partition `(xu, u = (`− 1)K + 1, . . . , `K, r, λ,Π)
2: U = I
3: ∀i: Ω

(2)
i = 0

4: ∀i, j: Ω
(3)
i,j = 0

5: for z = 1 to K do
6: M = P [(`− 1)K + z]

7: ∀i: Ω
(2)
i = Ω

(2)
i M + Ux(`−1)K+ze

T
i eiM

8: ∀i, j: Ω
(3)
i,j = Ω

(3)
i,j M + UeTi eiMeTj ej

9: U = Normalize(UM)
10: end for
11: return U , Ω

(2)
i , Ω

(3)
i,j

12: end procedure

Algorithm 1 provides the formal description of the steps for ` < L. For partition L the procedure

differs only by the range of the for loop (z goes from 1 to T − (L− 1)K) and by the fact that Ω
(3)
i,j is

summed only up to T − 1. Operation Normalize() in line 9 applies a special scaling on the matrix to
improve the numerical behavior, as detailed in Section 4.1.

2. The serial computation of the forward and backward likelihood vectors π` and 1
`, for ` = 1, . . . , L,

recursively according to

π` =

{
π, if ` = 0,

π`−1U [`], if ` ≥ 1,
, and 1

` =

{
1, if ` = L+ 1,

π`−1U [`], if ` ≥ 1,
(27)
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and the sums S
(2)
i and S

(3)
i,j for i, j = 1, . . . , R according to

S
(2)
i =

L∑
`=1

π`−1Ω
(2)
i [`]1`+1, S

(3)
i,j =

L∑
`=1

π`−1Ω
(3)
i,j [`]1`+1, (28)

from which λ′i, p
′
i,j and π′i are obtained by (20), (21), and (22).

For emphasizing the special step due to the fact that Ω
(3)
i,j is summed only up to T − 1, we note that

in order to compute S
(1)
i from S

(3)
i it is necessary to compute vectors a[T−1] and b[T ], that can be

obtained from πL−1 and 1
L with negligible extra cost.

The computational bottleneck of the procedure is that matrices Ω
(3)
i,j must be computed for all partitions,

which means that the memory complexity is O(LR4) and the computational complexity is O(KR5) in each
thread due to the matrix-matrix multiplications in line 8 of Algorithm 1. A more detailed complexity
analysis is provided later in Section 4.2. This algorithm, described formally in Algorithm 2, will be referred
to as P-1 in the sequel.

Algorithm 2 Pseudo-code of algorithm P-1

1: procedure EM-fitting by P-1(xu, u = 1, . . . , T, r)
2: λ,Π = random initial guess
3: while relative change of log-likelihood > ε do
4: parallel for ` = 1 to L do

5: Compute matrices U [`], Ω
(2)
i [`] and Ω

(3)
i,j [`] by Algorithm 1

6: end parallel for
7: for ` = 1 to L do
8: Compute vectors π` and 1

` for ` = 1, . . . , L based on (27)
9: end for

10: Compute sums S
(1)
i , S

(2)
i , S

(3)
i and S

(3)
i,j for i, j = 1, . . . , R based on (28), (23) and (24)

11: λ,Π = new estimates based on (12), (13) and (14)
12: Compute the log-likelihood
13: end while
14: return λ,Π
15: end procedure

3.3. The parallel implementation with two passes

The single pass algorithm in Section 3.2 goes through the inter-arrival times only once in each iteration.
If traversing the input twice does not have an overwhelming extra cost, it is possible to develop a variant of
the algorithm with different performance characteristics.

The main drawback of the single-pass algorithm is that the computation of matrices Ω
(2)
i and Ω

(3)
i,j

requires matrix-matrix multiplications and a significant amount of memory is required to store them for
every partition. The main improvement of the two-pass algorithm is that these matrices are replaced by
vectors during the second pass of the computation.

A single EM-iteration of the two-pass algorithm consists of the following phases:

1. The parallel computation of matrices U [`], for ` = 1, . . . , L, based on U [`] =
∏K
u=1 P [(` − 1)K + u],

such that each partition is computed by a different thread simultaneously. More precisely, U [`] is
computed according to Algorithm 3.

Algorithm 3 Pseudo-code for computing U [`] (` < L) in the two-pass method

1: procedure process partition `(xu, u = (`− 1)K + 1, . . . , `K, r, λ,Π)
2: U = I
3: for z = 1 to K do
4: U = Normalize(UP [(`− 1)K + z])
5: end for
6: return U
7: end procedure

10



2. The serial computation of the forward and backward likelihood vectors π` and 1
` for the partitions

` = 1, . . . , L recursively according to

π` =

{
π, if ` = 0,

π`−1U [`], if ` ≥ 1,
, and 1

` =

{
1, if ` = L+ 1,

U [`]1`+1, if ` ≤ L.
(29)

3. The parallel computation of vectors ω
(2)
i [`] = π`Ω

(2)
i [`] and ω

(3)
i,j [`] = π`Ω

(3)
i,j [`] for ` = 1, . . . , L such

that each partition is computed by a different thread. The details are provided in Algorithm 4.

Algorithm 4 Pseudo-code for computing ω
(2)
i [`] and ω

(3)
i,j [`] (` < L) in the two-pass method

1: procedure process partition `(xu, u = (`− 1)K + 1, . . . , `K, π`−1, r, λ,Π)
2: u = π`−1

3: ∀i: ω(2)
i = 0

4: ∀i, j: ω(3)
i,j = 0

5: for z = 1 to K do
6: M = P [(`− 1)K + z] (based on the stored or recomputed fi(x(`−1)K+z) values)

7: ∀i: ω(2)
i = ω

(2)
i M + uxzeTi eiM

8: ∀i, j: ω(3)
i,j = ω

(3)
i,j M + ueTi eiMeTj ej

9: u = Normalize(uM)
10: end for
11: return ω

(2)
i , ω

(3)
i,j .

12: end procedure

Again, for partition L the procedure differs by the range of the for loop and by the fact that ω
(3)
ij is

summed only up to T − 1.

4. The serial computation of the sums S
(2)
i and S

(3)
i,j for i, j = 1, . . . , R according to

S
(2)
i =

L∑
`=1

ω
(2)
i [`]1`+1, S

(3)
ij =

L∑
`=1

ω
(3)
ij [`]1`+1, (30)

from which λ′i, p
′
i,j and π′i are obtained by (20), (21), and (22).

With this method, a computational bottleneck of the single-pass algorithm has been eliminated. Instead

of matrices, only the vectors ω
(3)
i,j are stored and used during the second parallel pass of the computations (i.e.,

in phase 3), which means that the memory complexity is now O(LR3) and the computational complexity in
each thread is O(KR4) due to the vector-matrix multiplications in line 8 of Algorithm 4. A more detailed
complexity analysis is provided later in Section 4.2. This algorithm is referred to as P-2 in the sequel; the
corresponding pseudo-code is provided by Algorithm 5.
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Algorithm 5 Pseudo-code of algorithm P-2

1: procedure EM-fitting by P-2(xu, u = 1, . . . , T, r)
2: λ,Π = random initial guess
3: while relative change of log-likelihood > ε do
4: parallel for ` = 1 to L do
5: Compute matrices U [`] by Algorithm 3
6: end parallel for
7: for ` = 1 to L do
8: Compute vectors π` and 1

` for ` = 1, . . . , L based on (29)
9: end for

10: parallel for ` = 1 to L do

11: Compute vectors ω
(2)
i [`], ω

(3)
i,j [`] for i, j = 1, . . . , R by Algorithm 4

12: end parallel for

13: Compute sums S
(1)
i , S

(2)
i , S

(3)
i and S

(3)
i,j for i, j = 1, . . . , R based on (30), (23) and (24)

14: λ,Π = new estimates based on (12), (13) and (14)
15: Compute the log-likelihood
16: end while
17: return λ,Π
18: end procedure

The single-pass algorithm evaluates the branch densities fi(xu) (see (4)) only once for each inter-arrival
time (when creating matrix P in line 6 of Algorithm 1), while the two-pass algorithm needs these densities
twice. In the first pass (phase 1) these densities are needed to obtain the likelihood matrices U [`], and in
the second pass (phase 3) they are needed for the calculation of the ω vectors. Hence, to save computational
effort, it makes sense to compute the branch densities only once and store them in an auxiliary vector, which
comes at the expense of increased memory requirement of storing TR floating point numbers. The variant
of the algorithm which computes the branch densities only once and stores them is referred to as P-2-D

hereafter.

3.4. The parallel implementation with three passes

The single pass and the two-pass algorithms are similar in spirit to each other, in the sense that they

recursively compute partition based cumulated measures (matrix Ω
(2)
i [`] and Ω

(3)
i,j [`] in the one-pass algo-

rithm, and vector ω
(2)
i [`] and ω

(3)
i,j [`] in the two-pass algorithm). The algorithm introduced in this section

differs significantly. In fact, this algorithm is rather similar to the naive sequential method (Section 3.1),

which does not apply recursively computed partition based cumulated measures, but computes S
(2)
i [`] and

S
(3)
i,j [`] directly from the forward and backward likelihood vectors.

The phases of the algorithm are as follows:

1. The parallel computation of matrices U [`], for ` = 1, . . . , L, based on U [`] =
∏K
u=1 P [(` − 1)K + u],

such that each partition is computed by a different thread simultaneously. This phase is the same as
the first phase in the two-pass method.

2. The serial computation of the forward and backward likelihood vectors π` and 1
` for the partitions

` = 1, . . . , L according to recursions

π` =

{
π, if ` = 0,

π`−1U [`], if ` ≥ 1,
, and 1

` =

{
1, if ` = L+ 1,

U [`]1`+1, if ` ≤ L.
(31)

3. The parallel computation of the individual likelihood vectors a[u] and b[u] belonging to partition ` for
` = 1, . . . , L based on

a[u] = π` ~P [(`− 1)K + 1, u], and b[u] = ~P [u, `K]1`+1, (32)

such that each partition is computed by a different thread. Again, for the last partition L the procedure
differs a bit by the number of samples. More precisely a[u] for u = (`− 1)K + 1, . . . , `K is computed
as in Algorithm 6 and b[u] is computed in a similar manner with backward iteration.
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Algorithm 6 Pseudo-code for computing a[u] (` < L, u = (`− 1)K + 1, . . . , `K) in the three-pass method

1: procedure process partition `(xu, u = (`− 1)K + 1, . . . , `K, π`−1, r, λ,Π)
2: a[0] = π`−1

3: for z = 1 to K do
4: a[z] = Normalize(a[z − 1]P [(`− 1)K + z]) (based on the stored or recomputed fi(x(`−1)K+z) values)
5: end for
6: return a.
7: end procedure

4. The parallel computation of the partition related partial sums S
(2)
i [`] and S

(3)
i,j [`] according to

S
(2)
i [`] =

K∑
u=1

ai[(`− 1)K + u− 1]x(`−1)K+ubi[(`− 1)K + u]

S
(3)
i,j [`] =

K∑
u=1

ai[(`− 1)K + u− 1]P [(`− 1)K + u]i,jbj [(`− 1)K + u+ 1],

(33)

using the stored a[u], b[u] values.

5. The serial computation of the sums S
(2)
i and S

(3)
i,j according to

S
(2)
i =

L∑
`=1

S
(2)
i [`], and S

(3)
ij =

L∑
`=1

S
(3)
ij [`], (34)

from which λ′i, p
′
i,j and π′i are obtained by (20), (21), and (22).

The computational bottleneck of this procedure is phase 1, that consists of matrix-matrix multiplications
of size R, leading to O(KR3) for each parallel thread. However, the memory consumption has increased
significantly compared to the previously described P-1 and P-2 methods. Vectors a[u] and b[u] need to be
stored for each inter-arrival time, that gives 2TR floating point numbers. Note that the memory consumption
of neither P-1 nor P-2 is proportional to T in a direct way, they are proportional only to the number of
partitions L.

Algorithm 7 Pseudo-code of algorithm P-2

1: procedure EM-fitting by P-3(xu, u = 1, . . . , T, r)
2: λ,Π = random initial guess
3: while relative change of log-likelihood > ε do
4: parallel for ` = 1 to L do
5: Compute matrices U [`] by Algorithm 3
6: end parallel for
7: for ` = 1 to L do
8: Compute vectors π` and 1

` for ` = 1, . . . , L based on (31)
9: end for

10: parallel for ` = 1 to L do
11: Compute vectors a[u] and b[u] for u = (`− 1)K + 1, . . . , `K, by Algorithm 6
12: end parallel for
13: parallel for ` = 1 to L do

14: Compute partition sums S
(2)
i [`] and S

(3)
i,j [`] according to (33)

15: end parallel for

16: Compute sums S
(1)
i , S

(2)
i , S

(3)
i and S

(3)
i,j for i, j = 1, . . . , R based on (30), (23) and (24)

17: λ,Π = new estimates based on (12), (13) and (14)
18: Compute the log-likelihood
19: end while
20: return λ,Π
21: end procedure

This procedure consists of three parallel phases through the data set (phase 1, phase 3 and phase 4
are parallel), hence we refer to it as the 3-pass algorithm, denoted as P-3, and describe it in Algorithm
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7. In this procedure the branch densities need to be evaluated three times (in phases 1, 3 and 4), thus
the execution time can benefit from computing the branch densities once and storing them similar to the
two-pass algorithm. This variant of the algorithm, called P-3-D, has an even higher memory requirement.

4. Computational details and performance comparison

4.1. Avoiding of the numerical difficulties

It is widely known that computing the likelihood for a long sequence of observations is often affected by
numerical issues. The common ”trick” to overcome these issues is to compute the logarithm of the likelihood
instead. As long as the observations are independent, the log-likelihood can be easily obtained by simple
summation, as it was done in many EM algorithms for PH distributions, including [1] and [19].

Unfortunately, in case of MAPs, the likelihood function is obtained through matrix multiplications (see
(8) and (10)), whose logarithm cannot be obtained by a simple summation and we need to cope with the
arising numerical issues. Namely, due to the finite resolution of the machine representation of the floating
point numbers, the large number of matrix multiplications can cause underflow or overflow.

The EM algorithm for MAP fitting is a special case of this numerical phenomena; due to the definition
of the forward and backward likelihood vectors (11) exponential functions are multiplied a large number of
times (T ) which makes the occurrence of underflow or overflow almost sure. A common way to overcome
this numerical issue is to adopt an appropriate scaling technique. We adopt the scaling technique introduced
and successfully used for TMAP fitting in [3], for a similar EM-based, albeit serial, algorithm.

First of all, we note that all entries of the likelihood vectors and matrices are non-negative, and their
elements are only multiplied and added during the computation, which eliminates the problem of considering
numbers with a negative sign. In order to avoid underflow and overflow problems of floating point numbers,
we represent each matrix of size n×m by nm+ 1 values in the form of

A = Å · 2ȧ = {̊ai,j} · 2ȧ,

and we say that the representation is normalized when 0.5 < maxi,j åi,j ≤ 1 holds.
The multiplication with such a matrix representation is straightforward, since the i, j element of matrix

AB is computed as

(AB)ij =
∑
k

åi,k̊bk,j · 2ȧ+ḃ = c̊i,j · 2ċ.

If the representations of matrices A and B are normalized then the resulting c̊i,j =
∑
k åi,k̊bk,j , ċ = ȧ + ḃ

representation does not necessarily satisfy 0.5 < maxi,j c̊i,j ≤ 1, i.e., the results is not necessarily normalized.

The same applies for matrix summation. For computing matrix A+B, let ĉ = max(ȧ, ḃ) be the biggest
of the two exponents. We compute the (i, j) element of matrix A + B as

(A + B)ij =
(̊
ai,j · 2ȧ−ĉ + b̊i,j · 2ḃ−ĉ

)
· 2ĉ = c̊i,j · 2ċ.

Similar to the result of matrix multiplication the obtained representation is not necessarily normalized.
To obtain a normalized representation from any {̊ci,j} ·2ċ representation let cn = blog2(maxi,j c̊i,j)c then

the normalized representation is

c̊i,j ← c̊i,j2
−1−cn and ċ← ċ+ 1 + cn. (35)

This computational step is referred to as Normalize() in the description of the algorithms in Section 3. Since
n and m in the matrix dimension can be equal to one, the same scaling technique applies for vectors as well.

There is an other numerical pitfall in the algorithms, related to floating point summations involving terms
with different orders of magnitudes (for instance, in (12), (13), and (14) the sum of T values is computed).
The issue occurs when the sum becomes too large and does not change when further small values are added
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one-by-one, even if the sum of these small values is not negligible. The root of the problem is that when two
numbers x = x̊ · 2ẋ and y = ẙ · 2ẏ having different orders of magnitudes are added together, some precision
is lost. If x > y, the exponent of the sum z = x + y = z̊ · 2ż will be ż = ẋ, and the mantissa will be
z̊ = x̊ + ẙ · 2−(̊x−ẙ). Since the number of bits available to represent the mantissa z̊ is fixed, ẋ − ẏ precious
bits will be lost from ẙ.

To improve the accuracy of such numerically sensitive summations, we apply the following simple solution.
When a new number y is to be added to the sum x, the loss of precision is calculated as φ = | log2 x/y|.
When φ is greater than a predefined threshold, y is not added to x. Instead, a new accumulator variable is
created (initialized to zero) and the further terms (including y) are added to the newly created accumulator
variable, as long as the precision loss φ is below the threshold. In the end, all the accumulator variables are
summed up using the same technique.

4.2. Detailed comparison of the complexities

Table 1: The memory consumption of the algorithms measured in floating point values to store

Data serial FB P-1 P-2 P-3

parameters Π, r, λ, π R2 + 3R R2 + 3R R2 + 3R R2 + 3R
inter-arrival times xu T T T T

sums S
(3)
ij , S

(n)
i , n=1, 2, 3 R2 + 3R R2 + 3R R2 + 3R R2 + 3R

vectors π`, 1` 2LR(+2L) 2LR(+2L) 2LR(+2L)
matrices U [`] LR2(+L) LR2(+L) LR2(+L)

partial sums Ω
(2)
i [`]: LR3(+L) ω

(2)
i [`]: LR2(+L) S

(2)
i [`]: LR(+L)

partial sums Ω
(3)
i,j [`]: LR4(+L) ω

(3)
i,j [`]: LR3(+L) S

(3)
i,j [`]: LR2(+L)

vectors a[u], b[u] 2TR(+2T ) 2TR(+2T )
branch densities fi(x) TR P-2-D only: TR P-3-D only: TR

Table 1 depicts the memory consumption of the algorithms presented in Section 3.1 - 3.4. In case of the
serial forward-backward (FB) method (Section 3.1), the branch density vectors and the likelihood vectors
occupy the majority of the memory space. The +2T term in the parentheses corresponds to the scaling
exponents (ȧ) introduced in Section 4.1. Similarly, the memory requirement of the scaling exponents is given
in parentheses in the consecutive columns.

In case of the single-pass method (Section 3.2), on the one hand, storing matrices Ω
(2)
i [`] and Ω

(3)
i,j [`]

for each partition can be very memory consuming when R and L are large; on the other hand, the only
component that directly depends on T is the space occupied by the inter-arrival times. Interestingly, as
R << L << T typically holds, P-1 algorithm needs much less memory than the serial FB algorithm (and
at the same time, as shown later, provides much better execution speed).

Compared to the P-1 algorithm, the memory requirement of the P-2 algorithm (Section 3.3) is identical
in all components except the partial sums whose memory consumption reduces by a factor of R. The
memory consumption of the P-2-D variant, which is expected to improve on the running times by caching
the branch densities, is still better than the one of the serial FB algorithm (in case of the typical setting:
R << L << T ).

The methods P-3 and P-3-D (introduced in Section 3.4) are the most memory intensive ones among the
parallel algorithms due to the storage of the likelihood vectors, a[u] and b[u] for u = 1, . . . , T . In the P-3-D

variant the branch densities increase the memory consumption even further.
The comparison of the computational complexities is more difficult because of the algorithms are com-

posed of multiple parallel and serial computation steps. For a reasonable comparison, we divide the parallel
executed computation steps by the number of parallel threads. This approach might be inaccurate in some
specific computational environments, e.g., with high overhead of parallel execution, but without focusing
on a particular computational infrastructure, we resort to the assumption that parallel execution with L
threads is exactly L times faster than the serial one.
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The orders of the complexity of the algorithms are summarized in Table 2, where the rightmost column
refers to serial (S) and parallel execution in pass one (P1), two (P2) and three (P3). The table displays only
the order of the highest order terms.

Table 2: The order of computational complexity of the algorithms measured in floating point multiplications

Data to compute serial FB P-1 P-2-D P-3-D

branch densities fi(x) RT RT/L RT/L RT/L
P1matrices U [`] R3T/L R3T/L R3T/L

partial sums Ω
(3)
i,j [`]: R5T/L

vectors π`, 1` R2L R2L R2L S
branch densities fi(x) P-2 only: RT/L P-3 only: RT/L

P2partial sums ω
(3)
i,j [`]: R4T/L

a[u], b[u] R2T R2T/L
branch densities fi(x) P-3 only: RT/L

P3
partial sums S

(3)
i,j [`]: R2T/L

Π, λ, π R2T R4L R3L S

Similar to the memory consumption, the relation of the three characterizing parameters R, L, and T
determines the relation of the computational complexity of the algorithms. One can draw general conse-
quences based on the tables of memory consumption and execution time. E.g., when a sufficiently large
memory is available, then the P-3-D method gives the lowest computation time order, but already this basic
statement needs to be handled with care. For example, when R is small (e.g., R = 2) the difference between
R2 and R4 might be negligible with respect to other constant terms of the execution time which remain
hidden in the table of computational complexity orders.

However, there is an even more dominant factor of the computation time, the hardware and software
implementation of the algorithms. One of the most decisive elements with this respect is the memory access
times of different computing units, which is known to affect the running time significantly. The next section
summarizes our numerical experiments, which essentially follows the main trends presented in this section,
but shows particular differences in some cases.

5. Numerical experiments

We have implemented the algorithms in C++ language. All the developed procedures use single precision
floating point numbers for storing real values (i.e., the type of ’float’ in C++). The serial procedure is
executed on the CPU (i5-4690, 3.5GHz) and the parallel procedures, in addition, utilize a GeForce GTX
1070 graphics processing unit (GPU) having L∗ = 1920 parallel processing elements clocked at 1.5GHz and
8GB of RAM.

The GPU architecture facilitates several levels of memory having different capacities and latencies. The
global memory has the largest capacity (in our case it can store up to 8GB of data). We use it for storing all
the inter-arrival times copied from the host environment. Reading/writing the global memory is executed
for 128 bytes per transaction, and these operations are cached; there are both L2 and L1 caches available. To
improve the memory latency, we have implemented coalesced access where it was possible. We did not find
a use for shared memory, and since technically it is the same memory as used for L1 cache, we configured
the GPU device to dedicate more memory to L1 cache instead. The fastest type of memory is the register.
To utilize them, we have statically allocated arrays in register file using C++ parametrized templates. Our
GPU device supports up to 255 registers per thread. Luckily, we have not exceeded this per-thread register
usage limitation up to R = 10. For R > 10, however, register spilling might occur, which would result in the
usage of local memory, which has negative performance consequences. Furthermore, to store the parameters
of the ER-CHMM structure, we have used the constant memory, which is cached, too. Also, to exploit
instruction level parallelism (ILP) we have statically unrolled all the loops for R.
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Figure 3: The runtimes of procedures for L = L∗
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Figure 4: The memory consumption of procedures for L = L∗

We do not provide more specific GPU related implementation details here; we just note that we did
our best to optimize the algorithms for as fast execution as possible and made the source code available at
https://github.com/minbraz/parmap.

For testing and demonstration purposes we used a data set of T = 50, 000, 000 inter-arrival time samples,
which we obtained by simulating a MAP. The samples were generated by an ER-CHMM with parameters

r = {3, 3, 2, 1, 1} , λ = {1, 3, 2, 1, 3} ,Π =
1

10


1 2 1 4 2
3 1 2 1 3
2 3 1 1 3
4 1 2 2 1
2 2 1 3 2

 .
To point out how high this T parameter is, we note that one of the first papers on the topic ([5]) reported that
the EM-based MAP fitting procedure is limited to a few thousands of samples due to the high computation
effort.

A critical parameter of the procedures is L, the number of parallel threads used by the implementation.
The parallel computing ability is not fully utilized when L < L∗, and according to Section 4.2, the memory
requirement increases with L, suggesting that L = L∗ is an optimal choice. However, when the amount
of memory available is not a bottleneck, there might be cases when a higher level of parallelism decreases
the computation time. It is due to the pipeline executions of the parallel threads which might benefit from
utilizing the computational resources while other threads are blocked. This feature is closely related with
the particular HW/SW implementation, and we do not consider it in details, we only conclude that L = L∗

is an almost optimal choice and in case of large memory resources, one can try with L = nL∗ where n is a
small integer number.

In the rest of the section, we provide the memory consumption and the computation time for 100
iterations of all the presented algorithms for L = L∗ = 1920, L = 2L∗ = 3840, and L = 4L∗ = 7680. In all
of the numerical experiences, starting from the same initial guess, and using the same samples, the resulted
MAP produced by the different versions of the algorithm were the same up to the first 6 digits.

The execution times and the memory requirements are depicted in Figures 3 and 4 for L = L∗, in Figures
5 and 6 for L = 2L∗ and in Figures 7 and 8 for L = 4L∗.

The figures indicate the following conclusions. The speed improvement over the serial algorithm is
essential (up to two orders of magnitude), the presented algorithms do benefit from the parallel hardware
indeed. In line with our analysis in Section 4.2, method P-1 slows down the fastest as R increases. Switching
to vector-based operations (P-2 and P-2-D) leads to better running times, especially when R is large. In our
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Figure 5: The runtimes of procedures for L = 2L∗

2 3 4 5 6 7 8 9 10

103

104

Num. of branches, R

M
em

or
y

co
n

su
m

p
ti

on
,

in
m

eg
ab

y
te

s

serial
P-1
P-2
P-2-D
P-3
P-3-D

Figure 6: The memory consumption of procedures for L =
2L∗

2 3 4 5 6 7 8 9 10
100

101

102

103

104

Num. of branches, R

F
it

ti
n

g
ti

m
e,

s

serial
P-1
P-2
P-2-D
P-3
P-3-D

Figure 7: The runtimes of procedures for L = 4L∗
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Figure 8: The memory consumption of procedures for L =
4L∗

implementation and hardware environment, it turned out that storing the branch densities (method P-2-D)
does not lead to further improvement. When R is large, the fastest procedures are the 3-pass methods (P-3
and P-3-D). In this case, storing the branch densities leads to significant improvement.

According to Section 4.2, methods P-2-D and P-3-D need extra memory to store the branch densities,
while P-3 and P-3-D need a large amount of memory to store the forward and backward likelihood vectors
for every sample of the trace. Our numerical experiments confirm these considerations and demonstrate
that P-1 and P-2 have the lowest memory demand, in fact, one order of magnitude lower than the serial
algorithm.

All parallel procedures did profit from the higher number of partitions (L), especially when R is small.
At the same time, the memory consumption for the memory efficient procedures P-1 and P-2 increased
linearly with L in accordance with Table 1.

In general, algorithms with higher memory consumption are faster, but if T is large, the memory limi-
tation of the hardware can be reached easily. In case the memory size poses a limitation, the more memory
efficient procedures need to be applied.

The primary focus of this paper is on the parallel implementation of EM-based MAP fitting, but thanks
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to the efficient parallel implementation we have run several fitting experiments for a reasonably large data
set, and we have drawn some conclusions on the fitting properties of the EM method. These properties
are very much aligned with the related properties of other EM fitting methods (e.g., EM-based phase-type
distribution fitting [1]). When the initial guess of the EM method was identical with the ER-CHMM which
was used to generate the samples the obtained likelihood value was −6.4384612 · 107 and the elements of
the fitted λ and Π were identical with the initial ER-CHMM in the first 4 digits. Apart of this artificial
experiment, we have also executed fitting experiments with general initial guess for all ER-CHMM structures
with 10 states, i.e., where r is such that

∑R
i=1 ri = 10. The initial guess in these experiments was generated

by drawing Π randomly and then setting λi = λ∗ for i = 1, . . . , R, where λ∗ is chosen to fit the sample mean.
With this general initial guess the best likelihood is obtained by the r = {4, 3, 1, 1, 1} ER-CHMM structure
and it was −6.4397824 · 107 the second best likelihood was obtained by the r = {4, 2, 2, 1, 1} ER-CHMM
structure (−6.4406064 · 107) and the third best one by the r = {3, 3, 2, 1, 1} structure (−6.4406496 · 107). In
spite of the close likelihood values, the parameters of this best fitting r = {3, 3, 2, 1, 1} structure were rather
different from the ones used for generating the samples:

λfit = [1.007464, 0.963276, 1.791007, 1.301413, 1.59442] ,

Πfit =


0.032330 0.139179 0.395032 0.203579 0.229877
0.073530 0.017319 0.192946 0.401569 0.314634
0.121469 0.245083 0.043730 0.441435 0.148281
0.001723 0.068507 0.326094 0.381525 0.222148
0.272118 0.218650 0.108775 0.246126 0.154328

 .
This observation refers to an optimization problem with a flat surface and several local minima, which was
reported also in previous EM fitting experiments.

6. Conclusions

We have presented three parallel algorithm variants for EM-based MAP fitting and provided a primary
performance evaluation of them. We evaluated the algorithms in an implementation independent way in
Section 4.2 and collected experimental results of our GPU based implementation in Section 5.

As it is indicated by the performance characterization, all of the proposed algorithm versions might have
advantages over the other variants. It is not possible to name an ultimate winner over the algorithm variants
because the best choice depends on the model parameters (number of samples T and number of branches
R) and the properties of the particular hardware and software environment (e.g., number of parallel threads
L, and other specific properties of the HW and SW implementation as the memory access time of different
memory units). However, the P-2-D and the P-3-D methods are often among the best ones when there is
no severe memory limitation.

To apply the presented parallel approach in practice, we recommend to implement all the three parallel
algorithm versions and find the most appropriate one by experiments.
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