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Abstract

There are widely used analysis techniques for stochastic Petri nets with phase type
(PH) distributed firing times. These techniques are based on the generation of an
expanded Markov chain that describes the behaviour of the marking process and
additionally the phase processes of the involved PH distributions.

In this paper we investigate the use of a similar approach when the firing time dis-
tribution does not allow a stochastic interpretation. We show that the same expan-
sion based technique is applicable in case of matrix exponentially (ME) distributed
firing times, but in this case the system does not allow any stochastic interpretation
and the applied solution methods should not be restricted to non-negative numbers.
Nevertheless, by defining an equivalence between PH and ME distributions it can
be shown that marking probabilities remain the same when PH distributions are
substituted by equivalent ME distributions.

Key words: Stochastic Petri Nets, Phase Type Distribution, Matrix Exponential
Distribution, Numerical Analysis.

1 Introduction

Matrix exponential (ME) distributions [12] have some advantages in compar-
ison to phase type (PH) distributions [15], but they are not as widely used in
practice as PH distributions due to the fact that they do not allow a stochastic
interpretation based on the theory of Markov processes as PH distributions
do. One of the most important advantages of ME distributions is that an ME
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distribution of a given order can often approximate an empirical distribution
much better than a PH of the same order. E.g., an ME distribution of order 5
can approximate an empirical distribution with coefficient of variation 0.082,
while a PH distribution of order 12 is needed to capture such a low coefficient
of variation [7].

To investigate the applicability of ME distributions in complex stochastic
models we consider the analysis of stochastic Petri nets (SPNs) with ME
distributed firing times. Following the general results in [12] it is very likely
that in a stochastic model ME distributions may be used instead of PH dis-
tributions and several results will carry over. However, to the best of our
knowledge, not much has been published about solution techniques for this
more general model class. In particular, it is not easy to prove results in the
general setting because probabilistic arguments do no longer hold. In [4] it has
recently been shown that matrix geometric methods can be applied for quasi
birth death processes (QBDs) with general arrival processes, an extension of
ME distributions which allows one to incorporate correlations. To prove that
the matrix geometric relations hold, the authors of [4] use an interpretation of
ME distributions that has been proposed in [2]. However, the resulting proofs
are non-trivial and the scope is limited to QBDs. In this paper we prove a
similar result in the more general setting of SPNs with generally distributed
firing times. Furthermore, we establish an equivalence relation between PH
and ME distributions at an algebraic level which becomes the basis of our
proofs.

The rest of the paper is organized as follows. Section 2 presents the basic
definitions of ME and PH distributions and some important results about their
representations. Section 3 defines the SPNs with ME distributed firing time
and the associated initial vector and transition matrix. Section 4 presents the
main result that SPNs with ME distributed firing time and with equivalent PH
distributed firing time provide identical performance measures at the Petri net
level. In Section 5 we introduce a small example to show possible applications
of the approach. Finally, Section 6 concludes the paper.

2 Matrix Exponential and Phase Type Distributions

We first define ME distributions and fix some notations. Afterwards, an equiv-
alence relation between different distributions is introduced.
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2.1 Basic Definitions and Notations

Definition 1 Let X be a random variable with cumulative distribution func-
tion (cdf)

FX(x) = Pr(X < x) = 1− αeAx1I,

where α is an initial row vector of size n, A is a square matrix of size n× n
and 1I is the column vector of ones of size n. In this case, we say that X is ma-
trix exponentially distributed with representation α,A, or shortly, ME(α,A)
distributed.

Definition 2 If X is an ME(α,A) distributed random variable, where α and
A have the following properties:

• αi ≥ 0, α1I = 1 (there is no probability mass at t = 0),
• Aii < 0, Aij ≥ 0 for i ̸= j, A1I ≤ 0,
• A is non-singular,

then we say that X is phase type distributed with representation α,A, or
shortly, PH(α,A) distributed.

The probability density function (pdf), the Laplace transform and the mo-
ments of X are

fX(x) = αeAx(−A)1I, (1)

f ∗
X(s) = E(e−sX) = α(sI−A)−1(−A)1I, (2)

µn = E(Xn) = n!α(−A)−n1I. (3)

Definition 3 ME(α,A) (PH(α,A)) is non-redundant if its cardinality equals
to its algebraic order, where the cardinality of ME(α,A) (PH(α,A)) is the
size of vector α and square matrix A and the algebraic order of ME(α,A)
(PH(α,A)) is the degree of the denominator of f ∗

X(s) (which is a rational
function of s).

2.2 Different Representations of ME Distributions

The initial vector and generator matrix representation of FX(x) is not unique.
There are different initial vector and generator matrix pairs resulting in the
same distribution. In the following we present results about the relations of
different representations with identical size and different sizes.

Theorem 1 [16] Let ME(α,A) and ME(γ,G) be two non-redundant ME dis-
tributions with cdf FX(x) and FY (x), respectively. FX(x) ≡ FY (x) if and only
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if there exists a non-singular matrix B such that γ = αB, G = B−1AB and
B1I = 1I.

We denote two distributions with cdf FX(x) and FY (x) as equivalent if FX(x) ≡
FY (x). The theorem implies that one of the two distributions can be a PH
distribution whereas the other representation may not observe the conditions
of Definition 2. Since B is a square matrix, both distributions have the same
number of states. We now consider the case with a different number of states.
To emphasize the size of different representations we indicate the length of the
column vector of ones in the sequel, e.g., 1In denotes the vector of size n. Let
In,m be the matrix of cardinality n×m, whose element i, j equals to 1 when
i = j and to 0 otherwise.

In CTMC analysis lumpability is often used to define aggregated models with
an identical behavior but a smaller state space [11,5]. Here we briefly introduce
lumpability of ME distributions which is afterwards generalized to define an
equivalence between PH and ME distributions. Let (γ,G) be a PH distribution
of cardinality m and let P be a partition of the state space {1, . . . ,m} with
n (≤ m) partition groups. The partition can be defined by a m× n matrix V
with elements from {0, 1} such that V(i, j) = 1 if state i belongs to the jth
partition group and 0 otherwise. Since a state belongs to exactly one partition
group and to each partition group belongs at least one state, each row of V
contains exactly one element equal to 1 and each column contains at least one
element equal to 1. Define a n×m matrix W =

(
diag(VT1In))

−1(VT
)
where

diag(a) is a diagonal matrix with a(i) in position i. Observe that W results
from the transposed matrix V by normalizing each row sum to 1. According
to [11] matrix V describes a lumpable partition if and only if

GV = VWGV = VA (4)

where A = WGV and α = γV such that (α,A) is an equivalent PH distribu-
tion with n states. The equivalence of both distributions follows from Theorem
2 below and (α,A) is a PH distribution which follows from [11]. The following
theorem generalizes (4) by allowing V to have a more general structure. It
shows that we still obtain an equivalent distribution. However, the resulting
distribution is usually not a PH distribution.

Theorem 2 Let ME(α,A) of cardinality n and ME(γ,G) of cardinality m,
be two ME distributions with cdf FX(x) and FY (x), respectively. If there exists
a matrix V of cardinality m × n, such that α = γV, VA = GV, V1In = 1Im
then FX(x) ≡ FY (x).

4



Proof. If α = γV, VA = GV, V1In = 1Im then

FX(x) = 1− αeAx1In = 1− α
∞∑
i=0

Aix
i

i!
1In = 1− γV

∞∑
i=0

Aix
i

i!
1In =

= 1− γ
∞∑
i=0

Gix
i

i!
V1In = 1− γ

∞∑
i=0

Gix
i

i!
1Im = 1− γeGx1Im = FY (x)

(5)

�

Theorem 2 defines a generalization of lumpability. A second and alternative
condition for equivalence is given in the following theorem.

Theorem 3 Let ME(α,A) of cardinality n and ME(γ,G) of cardinality m,
be two ME distributions with cdf FX(x) and FY (x), respectively. If there exists
a matrix W of cardinality n×m, such that αW = γ, AW = WG, W1Im = 1In
then FX(x) ≡ FY (x).

Proof. If αW = γ, AW = WG, W1Im = 1In then

FX(x) = 1− αeAx1In = 1− α
∞∑
i=0

Aix
i

i!
1In = 1− α

∞∑
i=0

Aix
i

i!
W1Im =

= 1− αW
∞∑
i=0

Gix
i

i!
1Im = 1− γ

∞∑
i=0

Gix
i

i!
1Im = 1− γeGx1Im = FY (x)

(6)

�

Theorem 3 is an extension of weak lumpability [11] for PH distributions where
W is allowed to contain only non-negative entries and PH distributions are
only related to PH distributions.

The following theorem introduces a necessary and sufficient condition for two
ME distributions to be equivalent. To simplify the discussion we assume that
the redundant Jordan blocks are eliminated from the considered representa-
tion, otherwise the transformation matrix converting one representation into
the other would be far more complex.

Theorem 4 Let ME(α,A) of cardinality n and ME(γ,G) of cardinality m
(m > n), be two ME distributions with cdf FX(x) and FY (x), respectively,
such that ME(α,A) is non-redundant and the Jordan decomposition of G
does not contain multiple Jordan blocks or sub-blocks. FX(x) ≡ FY (x) if and
only if there exist a pair of matrices V and W of cardinality m× r and n× r
(n ≤ r ≤ m), respectively, and an ME(η,H) representation of size r such that
η = γV, VH = GV, V1Ir = 1Im and αW = η, AW = WH, W1Ir = 1In.
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Proof. According to Theorem 2 and 3 if η = γV, VH = GV, V1Ir = 1Im and
αW = η, AW = WH, W1Ir = 1In then FX(x) ≡ FY (x).

To show the opposite direction we construct such matrices V and W.

From FX(x) ≡ FY (x) for i ≥ 1 we have

(−1)i
di

dxi
FX(x)|x=0 = αAi1In = (−1)i

di

dxi
FY (x)|x=0 = γGi1Im, (7)

which means that the non-vanishing eigenvalues of G equal the eigenvalues of
A.

Let A = ∆−1ΛA∆ and G = Γ−1ΛGΓ be the Jordan decomposition of A and
G, where the Jordan blocks (sub-blocks) are ordered such that the Jordan
blocks (sub-blocks) of G which are common with the one of A are listed in
the same order as in ΛA, i.e.,

ΛA = In,mΛGIm,n. (8)

Furthermore, let r be the number of non-zero elements of Γ1Im and without
loss of generality we assume that the first r elements of Γ1Im are non-zero.
Γ and ∆ are normalized such that Ir,mΓ1Im = 1Ir and ∆1In = 1In. Due to
this normalization Γ1Im = Im,r1Ir, because the first r elements Γ1Im equal to
one and the last m − r elements equal to zero. Note that, ∆1In = 1In and
Γ1Im = Im,r1Ir imply ∆−11In = 1In and 1Im = Γ−1Im,r1Ir.

If FX(x) ≡ FY (x) then the algebraic order of ME(γ,G) and the algebraic
order of ME(α,A) equal to n, since ME(α,A) is non-redundant.

From the fact that the contributing Jordan blocks (sub-blocks) of ΛG are
listed first it follows that γΓ−1 and Γ1Im are such that the first n elements of
vector γΓ−1◦(Γ1Im)T (where ◦ denotes the element-wise vector multiplication)
are non-zero and the last m − n elements equal to 0. This structure ensures
that the order of ME(γ,G) is n and the remaining Jordan blocks (sub-blocks)
vanish. Based on this property for i ≥ 1 we have

γGi1Im = γΓ−1Λi
GΓ1Im

= γΓ−1Im,nIn,mΛ
i
GIm,nIn,mΓ1Im

= γΓ−1Im,n (In,mΛGIm,n)
i In,mΓ1Im

= γΓ−1Im,nΛ
i
A1In,

(9)

where we first utilized that the last m − n eigenvalues of G vanish then the
block diagonal structure of ΛG and finally (8) and the normalization of Γ.
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Substituting (9) and the Jordan decomposition of A into (7) gives

γΓ−1Im,nΛ
i
A1In = α∆−1Λi

A1In, (10)

from which

γΓ−1Im,n=α∆−1, (11)

because the rank of ΛA is n.

Let η = γΓ−1Im,r, H = Ir,mΛGIm,r and V = Γ−1Im,r, then η = γV,VH =
GV,V1Ir = 1Im follows. The first equality comes by definition, the last equality
is a consequence of the normalizing condition and

Γ−1Im,r︸ ︷︷ ︸
V

Ir,mΛGIm,r︸ ︷︷ ︸
H

= Γ−1ΛGΓ︸ ︷︷ ︸
G

Γ−1Im,r︸ ︷︷ ︸
V

equals due to the diagonal block structure of ΛG.

Now, let W = ∆−1In,r, then αW = η, AW = WH, W1Ir = 1In follows. The
second equality comes similarly due to the diagonal block structure of ΛG, the
last equality is a consequence of the normalizing condition and

α∆−1In,r︸ ︷︷ ︸
W

= γΓ−1Im,r︸ ︷︷ ︸
η

comes from (11) and the fact that the last r − n elements of η equal to zero
because the algebraic order of ME(η,H) is n. �

The result of Theorem 4 can be summarized as follows. If there is a non-
redundant and a redundant representation of an ME (or PH) distribution,
then a transformation with matrix V according to Theorem 2 (to eliminate
the redundancy due to the closing vector) and a transformation with matrix
W according to Theorem 3 (to eliminate the redundancy due to the initial
vector) can transform one representation into the other.

We are going to use these results together with the one of Asmussen and
O’Cinneide [3] which states that any ME distribution with strictly positive
density in (0,∞) has a PH representation of possible higher order. The nu-
merical procedure presented in [13] and implemented in the MoMI tool of S.
Mocanu generates such a PH representation.

We use these results according to the following steps:

• we replace the ME representations of our models with the equivalent PH
representations (e.g., computed with the approach from [13]),
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• we generate the generator matrix of the expanded Markov chain which de-
scribes the model based on the equivalent PH representations,

• at the same time we generate an expanded matrix of the model in a similar
way as the expanded Markov chain using the ME representations.

• with the use of the transformations with matrix V and W we show that
the aggregate model parameters obtained from the two descriptions are
identical.

If the pdf of a ME distribution touches the x axis it has no finite dimensional
PH representation and the mentioned proof is not applicable. We believe that
the expansion based analysis method remains valid also for this case, but our
proof does not cover this case.

In the following section we perform these steps in the context of SPNs. How-
ever, before we do so, an example for equivalent ME distributions is shown.

2.3 An Example

We use as an example the PH distribution (α,A) with

α =
(
0.2 0.0 0.0 0.1 0.7

)
, A =



−3 0 0 1 1/2

10/3 −8 4/3 2/3 2/3

0 15/2 −11 1/2 3/4

1 0 0 −4 2

1 0 0 1 −5



and the PH distribution (η,H) with

η =
(
0.1 0.1 0.1 0.7

)
, H =



−4 2 2 0

1 −5 0 1

1/2 1/2 −4 2

1/2 1/2 1 −5


.
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Both PH distributions are equivalent since AV = VH and αV = η for

V =



1/2 1/2 0 0

1/3 2/3 0 0

1/4 3/4 0 0

0 0 1 0

0 0 0 1


.

Observe that the equivalence between the two representations does not result
from lumpability since V contains elements that differ from 0 or 1.

Furthermore, both distributions are equivalent to (γ,G) with

γ =
(
0 0 1.0

)
, G =


−4.39428798 1.83425863 0.230777986

0.216420106 −3.89971738 3.29773452

0 1.20599464 −3.70599464

 .

since Wγ = η and WH = GW with

W =


0.605741202 0.605741202 −0.573237485 0.361755080

0.390216878 0.390216878 0.721893310 −0.502327066

0.1 0.1 0.1 0.7

 .

Although W contains negative elements, (γ,G) is still a PH distribution.

Now consider the PH distribution (α′,A) with α′ = (1, 0, 0, 0, 0). This PH
distribution is equivalent to (η′,H) with η′ = (0.5, 0.5, 0, 0) which can be seen
using the same matrix V as above. Both PH distributions are equivalent to
the ME distribution (γ,G′) with

γ =
(
0 0 1.0

)
, G′ =


−6 −0.618033989 3.55278640

−1 −5.61803399 5.34164079

0 −1.11803399 −3.81966011

 .

since W′γ = η′ and W′H = G′W′ with

W′ =


0.276393202 0.276393202 −0.447213595 0.894427191

1.17082039 1.17082039 −0.894427191 −0.447213595

0.5 0.5 0 0

 .
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3 Stochastic Petri Nets with ME Distributed Firing Times

In this section we introduce Stochastic Petri Nets where the transition firing
times are ME distributed. We consider first Petri Nets and their reachability
graph. Afterwards the reachability graph is expanded by considering detailed
states including the phases of the different distributions.

3.1 Basic Notations and Definitions

We briefly present some basic definitions and results for Petri nets, further
results and details can be found in the literature [14].

Definition 4 A Petri Net is a five tuple PN = (P, T, I, O,M0) where

• P is a set of places,
• T is a set of transitions such that P ∩ T = ∅,
• I : P × T → IN is the input function,
• O : T × P → IN is the output function, and
• M0 : P → IN is the initial marking.

We assume that the transitions of the net are ordered such that for t, t′ ∈ T
with t ̸= t′ either t < t′ or t > t′ holds. Denote by •t = {p|p ∈ P ∧ I(p, t) > 0}
and t• = {p|p ∈ P ∧ O(t, p) > 0} the input and output bag of transition t,
respectively. Marking M0 is a specific marking, i.e., can be interpreted as a
vector of length |P | including the token population of each place. Transition
t is enabled in marking M if and only if M(p) ≥ I(p, t) for all p ∈ •t. If t
is enabled in marking M and fires, then a new marking M ′ with M ′(p) =

M(p)− I(p, t) +O(t, p) is generated. We use the notation M
t→ M ′. To keep

the later notation simpler we assume that M
t→ M ′ implies M ̸= M ′. The set

of markings available from M0 with repeated application of relation
t→ defines

the reachability set RS of the net. The reachability graph RG is a directed
and labeled graph with vertex set RS and an arc labeled with t between

M,M ′ ∈ RS if and only if M
t→ M ′. Further assumptions about RS and RG,

like finiteness or strong connectivity will be made later when necessary.

Let Ena(M) = {t|t ∈ T and for all p ∈ P : M(p) ≥ I(p, t)} be the set of
enabled transitions in marking M . The concept underlying our definition of
newly enabled transitions is denoted as enabling memory in [1]. The approach
is applicable for age memory policy as well. Only the structure of set S in
(12) and the definition of Rt′,t(M

′,M) in (16) changes in that case, but we
do not present this case here to avoid further complication of notations and
discussions. Furthermore, we assume single server semantics for all transitions.
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3.2 State Space and Transition Matrix

We now assume that a distribution ME(αt,At) is associated with transition
t. Let St = {1, . . . , nt} be the state space of the ME distribution associated
with transition t, where in case of ME distributions we use the term state in
the same sense as for PH distributions.

If all distributions associated to transitions are PH distributions, then the un-
derlying stochastic process is a Markov chain [1]. However, if we allow ME
distributions that do not belong to the PH class, then the process has no
probabilistic interpretation. Consequently, we give a purely algebraic descrip-
tion of the resulting state space and matrix. In the next section we present
an interpretation in terms of the stationary and transient distribution. In the
following we use the convention that empty sums and Kronecker sums are 0,
empty product or Kronecker products are 1.

We denote by S the state space of the process which considers the marking
process and the states or phases of all enabled distributions. Thus, S can be
decomposed into subsets S(M) for each M ∈ RS, such that

S =
∪

M∈RS
S(M) =

∪
M∈RS

M ��
t∈Ena(M)

St . (12)

Let n be the number of states of the complete SPN and n(M) be the number
of states for marking M .

n =
∑

M∈RS
n(M) =

∑
M∈RS

∏
t∈Ena(M)

nt (13)

Let π(0) be the initial distribution vector for SPN. π(0) is a row vector of size
n, composed by blocks of size n(M), π(0,M), representing the initial values
associated with marking M . When M0 is the initial marking π(0,M) = 0 for
∀M ̸= M0 and

π(0,M0) =
⊗

t∈Ena(M0)

αt. (14)

The transition matrixA of the SPN is block structured and submatrixA(M,M ′)
describes all transition starting in marking M and ending in marking M ′. We
begin with the case M = M ′. Since every transition of the SPN changes the
marking we have

A(M,M) =
⊕

t∈Ena(M)

At . (15)
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Non-diagonal block A(M ′,M) equals

A(M ′,M) =
∑

t:M ′ t→M

At(M
′,M)

where At(M
′,M) =

⊗
t′∈T

RA
t′,t(M

′,M) and

RA
t′,t(M

′,M) =



Int′ ,nt′ if t′ ̸= t and t′ ∈ Ena(M ′) ∩ Ena(M)

αt′ if t′ ̸= t, t′ /∈ Ena(M ′) and t′ ∈ Ena(M)

1Int′
if t′ ̸= t, t′ ∈ Ena(M ′) and t′ /∈ Ena(M)

−At 1Int if t′ = t, t ∈ Ena(M ′) and t /∈ Ena(M)

−At 1Intαt if t′ = t and t′ ∈ Ena(M ′) ∩ Ena(M)

1 otherwise

(16)
The superscript in RA

t′,t(M
′,M) identifies the generator of the firing time dis-

tributions. The structure of the matrices and submatrices follows from the
hierarchical Kronecker representation of SPNs and related models (see e.g.,
[6] for details). During the above described generation of the state space and
the transition matrix we used simple algebraic steps without utilizing any spe-
cial property of the contributing matrices. We apply the same procedure to
generate the state space and the transition matrix for the ME representation.

We now assume that distribution ME(αt,At) of size nt has a PH representation
PH(γt,Gt) of size mt, for all transitions. Let m be the number of states of the
obtained SPN, and m(M) be the number of states for marking M .

m =
∑

M∈RS
m(M) =

∑
M∈RS

∏
t∈Ena(M)

mt. (17)

The composition of the associated initial vector ν(0) and transition matrix G
follows the same pattern.

In this case, when all distributions are PH distributions, ν(0) is a probability
vector with only non-negative entries and G is a generator matrix of a Markov
chain which has non-negative elements everywhere except in the diagonal,
which is composed by strictly negative entries. Instead if ME distributions
are included, then π(0) is a general vector which may contain negative entries
and A is a general transition matrix which may contain positive and negative
entries at every position.
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4 Analysis of the SPN based on A and G

We consider two SPNs, namely SPN−ME and SPN−PH . In SPN−ME all
distributions are non-redundant ME distributions. ME(αt,At) of order nt is
associated with transition t. SPN−PH results from SPN−ME by associating
PH representation PH(γt,Gt) of order mt (≥ nt) with transition t such that
FME(αt,At)(x) ≡ FPH(γt,Gt)(x).

To simplify the discussion, instead of the two step procedure presented in
Theorem 4, we discuss the result of the transformations of Theorem 2 and 3
separately. I.e., we first investigate the behaviour of SPN−ME and SPN−PH
assuming that γtVt = αt, GtVt = VtAt and Vt 1Int = 1Imt , then we analyze
them assuming that γt = αtWt, WtGt = AtWt and 1Int = Wt 1Imt . This is
not a restriction since we may transform any SPN−ME to SPN−PH in two
steps by first building SPN−ME 1 from SPN−PH using Theorem 3 and then
SPN−ME from SPN−ME 1 using Theorem 2 as it is in Theorem 4.

Let ν(0) and G be the initial vector and the transition matrix of SPN−PH
which are an initial probability vector and a generator matrix of a Markov
chain and let π(0) and A be the initial vector and transition matrix for
SPN−ME . In the following subsections we show how transient and station-
ary vectors are computed from ν(0), G and π(0) , A. Then we show how the
vectors for both nets are related and that both vectors include the same ag-
gregated probabilities for the markings of the SPN and also result in the same
results at the Petri net level (i.e., same token distributions at the places and
same transition throughputs).

These results imply that we can use analytical techniques also for SPNs with
ME distributed firing times. As long as the distribution function remains iden-
tical, PH and ME distributions give the same results.

4.1 Transient Distribution

Let ν(τ) and π(τ) be the vector representing the state of SPN−PH and
SPN−ME at time τ , respectively, which are given by

ν(τ) = ν(0)eGτ = ν(0)
∞∑
k=0

(Gτ)k

k!
and π(τ) = π(0)eAτ = π(0)

∞∑
k=0

(Aτ)k

k!
.

(18)
Define

g(k) = ν(0)Gk and a(k) = π(0)Ak
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then

ν(τ) =
∞∑
k=0

g(k) τ
k

k!
and π(τ) =

∞∑
k=0

a(k) τ
k

k!
. (19)

The different vectors can be decomposed into subvectors according to the state
space partition defined by the marking of the net. E.g., ν(τ,M) is the vector of
state probabilities at time τ for all states of SPN−PH that belong to marking
M . Let Prob(τ,M) be the probability of marking M at time τ which is given
by

Prob(τ,M) = ν(τ,M)1Im(M) . (20)

Similarly the throughput of transition t at time τ is given by

Tput(τ, t) =
∑

M :t∈Ena(M)

ν(τ,M)
(
1Im<t

⊗
−Gt 1Imt

⊗
1Im>t

)
, (21)

where m<t =
∏

t′∈Ena(M),t′<t mt and m>t =
∏

t′∈Ena(M),t′>tmt. The results for
SPN−ME are computed similarly after substituting ν(τ,M) by π(τ,M), mt

by nt and (γt,Gt) by (αt,At).

The following theorem shows the relation between ν(τ,M) and π(τ,M) when
Theorem 2 describes the relation between all distributions in SPN−ME and
SPN−PH .

Theorem 5 If ν(0),G and π(0),A are generated from the same SPN using
ME(αt,At) and PH(γt,Gt) such that γtVt = αt, GtVt = VtAt and Vt 1Int =
1Imt, then

∀M ∈ RS,∀τ ≥ 0 : π(τ,M) = ν(τ,M)

 ⊗
t∈Ena(M)

Vt

 .

Furthermore, Prob(τ,M) and Tput(τ, t) remain the same in both nets.

Proof. Starting from (14) we have

π(0,M0) =
⊗

t∈Ena(M0)

αt =
⊗

t∈Ena(M0)

γtVt = ⊗
t∈Ena(M0)

γt

 ⊗
t∈Ena(M0)

Vt

 = ν(0,M0)

 ⊗
t∈Ena(M0)

Vt

 .

(22)

Together with π(0,M) = 0 and ν(0,M) = 0 for M ̸= M0 this implies that the
theorem holds for τ = 0. Due to this and (19) it is sufficient to show for all
M ∈ RS that

a(k)(M) = g(k)(M)

 ⊗
t∈Ena(M)

Vt

 ⇒ a(k+1)(M) = g(k+1)(M)

 ⊗
t∈Ena(M)

Vt


(23)
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where

g(k+1)(M) = g(k)(M)G(M,M) +
∑

M ′:M ′ t→M

∑
t∈Ena(M ′)

g(k)(M ′)Gt(M
′,M)

and a(k+1)(M) is computed in the same way using the matrices A(M,M) and
A(M ′,M). We show that the required relation holds after all separate multipli-
cations with the submatrices which implies that it also holds after summation.
We begin with the multiplication with the diagonal blocks. Observe that

G(M,M) =
⊕

t∈Ena(M)

Gt =
∑

t∈Ena(M)

Im<t,m<t

⊗
Gt

⊗
Im>t,m>t

such that

g(k)(M)G(M,M)

( ⊗
t∈Ena(M)

Vt

)
=

g(k)(M)
∑

t∈Ena(M)

(( ⊗
t′∈Ena(M),t′<t

Imt,mt

)⊗
Gt

⊗( ⊗
t′∈Ena(M),t′>t

Imt,mt

))( ⊗
t∈Ena(M)

Vt

)
=

g(k)(M)
∑

t∈Ena(M)

(( ⊗
t′∈Ena(M),t′<t

Vt

)⊗
GtVt

⊗( ⊗
t′∈Ena(M),t′>t

Vt

))
=

g(k)(M)
∑

t∈Ena(M)

(( ⊗
t′∈Ena(M),t′<t

Vt

)⊗
VtAt

⊗( ⊗
t′∈Ena(M),t′>t

Vt

))
=

g(k)(M)

( ⊗
t∈Ena(M)

Vt

) ∑
t∈Ena(M)

(( ⊗
t′∈Ena(M),t′<t

Int,nt

)⊗
At
⊗( ⊗

t′∈Ena(M),t′>t
Int,nt

))
=

a(k)(M)A(M,M) .

For the non-diagonal blocks we have to show for M ′ t→ M that ⊗
t′∈Ena(M ′)

Vt′

⊗
t′∈T

RA
t′,t(M

′,M)

 =

⊗
t′∈T

RG
t′,t(M

′,M)

 ⊗
t′∈Ena(M)

Vt′


(24)

Matrix Rt′,t is defined in (16). We consider the different possibilities:

• if t′ ̸= t and t′ ∈ Ena(M ′) ∩ Ena(M) then

Vt′ R
A
t′,t(M

′,M) = Vt′Int′ ,nt′ = Imt′ ,mt′Vt′ = RG
t′,t(M

′,M)Vt′ ,

because Imt′ ,mt′
Vt′ = Vt′ and Vt′Int′ ,nt′

= Vt′ ,
• if t′ ̸= t, t′ /∈ Ena(M ′) and t′ ∈ Ena(M) then

RA
t′,t(M

′,M) = RG
t′,t(M

′,M)Vt′

because γt′Vt′ = αt′ ,
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• if t′ ̸= t, t′ ∈ Ena(M ′) and t′ /∈ Ena(M) then

Vt′ R
A
t′,t(M

′,M) = RG
t′,t(M

′,M)

because Vt′ 1Int = 1Imt ,
• if t′ = t, t ∈ Ena(M ′) and t /∈ Ena(M) then

Vt R
A
t,t(M

′,M) = −VtAt 1Int = −GtVt 1Int = −Gt 1Imt = RG
t,t(M

′,M),

• if t′ = t and t′ ∈ Ena(M ′) ∩ Ena(M) then

Vt R
A
t,t(M

′,M) = −VtAt 1Inαt = −GtVt 1Inαt

= −Gt 1Imtαt = −Gt 1ImtγtVt = RG
t,t(M

′,M)Vt,

This completes the proof of the inductive relation between the solution vectors
in (23). The relation between the vectors implies that the probability for every
marking is the same since

ProbME(τ,M) = ν(τ,M)

( ⊗
t∈Ena(M)

1Imt

)

= ν(τ,M)

( ⊗
t∈Ena(M)

Vt 1Int

)
= ν(τ,M)

( ⊗
t∈Ena(M)

Vt

)( ⊗
t∈Ena(M)

1Int

)

= π(τ,M)

( ⊗
t∈Ena(M)

1Int

)
= ProbPH(τ,M)

For the throughput of transition t we obtain

TputPH(τ, t) =∑
M :t∈Ena(M)

ν(τ,M)

(( ⊗
t′∈Ena(M):t′<t

1Imt′

)⊗
Gt 1Imt

⊗( ⊗
t′∈Ena(M):t′>t

1Imt′

))
=

∑
M :t∈Ena(M)

ν(τ,M)

(( ⊗
t′∈Ena(M):t′<t

Vt′ 1Int′

)⊗
GtVt 1Int

⊗( ⊗
t′∈Ena(M):t′>t

Vt′ 1Int′

))
=

∑
M :t∈Ena(M)

ν(τ,M)

( ⊗
t′∈Ena(M)

Vt′

)( ⊗
t′∈Ena(M):t′<t

1Int′

)⊗
At 1Int

⊗( ⊗
t′∈Ena(M):t′>t

1Int′

)
=

∑
M :t∈Ena(M)

π(τ,M)

( ⊗
t′∈Ena(M):t′<t

1Int′

)⊗
At 1Int

⊗( ⊗
t′∈Ena(M):t′>t

1Int′

)
=

TputME(τ, t) .

(25)
�

Theorem 6 If ν(0),G and π(0),A are generated from the same SPN using
ME(αt,At) and PH(γt,Gt) such that γt = αtWt, WtGt = AtWt and 1Int =
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Wt 1Imt then

∀M ∈ RS,∀τ ≥ 0 : ν(τ,M) = π(τ,M)

 ⊗
t∈Ena(M)

Wt

 .

Furthermore Prob(τ,M) and Tput(τ, t) remain the same in both nets.

Proof. The proof follows the same pattern as the one of Theorem 5. �

The previous two theorems show that ME distributions and matrix A of the
resulting net can be used in (19) to compute the transient vector. The result-
ing vector may not be a probability vector, it may contain negative elements
but its elements sum up to 1 and marking probabilities as well as transition
throughput are computed exactly from the vector. Since the general model has
no probabilistic interpretation, uniformization with its nice probabilistic inter-
pretation [10] can only be applied for PH distributions and not in the general
case, but other methods to solve linear differential equations like the adap-
tive solvers from the Gnu Scientific Library [9] or the extended randomization
method [17] may be applied as well for the solution of (19).

4.2 Stationary Distribution

In principle we can apply the transient results also for stationary analysis by
letting τ → ∞. However, here we consider explicitly the stationary distribution
π and ν, and assume that πA = 0 or νG = 0 with π 1I = ν 1I = 1 exists.
We assume in the following theorems that one of the vectors π and ν exists
uniquely which implies in the Markov case that the process is ergodic.

Theorem 7 If G and A are generated from the same SPN using ME(αt,At)
and PH(γt,Gt) such that γtVt = αt, GtVt = VtAt and Vt 1Int = 1Imt, and π
and ν, the solution of πA = 0, νG = 0 with π 1I = ν 1I = 1, exist uniquely,
then

∀M ∈ RS : ν(M)

 ⊗
t∈Ena(M)

Vt

 = π(M) .

Furthermore, the stationary marking probability, Prob(M), throughput, TputME(t),
remain the same in both nets.

Proof. Let ν(M) and π(M) be the block of the stationary vectors associated
with marking M . From (24) for all M ∈ RS we have ⊗

t′∈Ena(M ′)

Vt′

A(M ′,M) = G(M ′,M)

 ⊗
t′∈Ena(M)

Vt′
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from which

∑
M ′:M ′ t→M

ν(M ′)G(M ′,M)

( ⊗
t′∈Ena(M)

Vt′

)
=

∑
M ′:M ′ t→M

ν(M ′)

( ⊗
t′∈Ena(M ′)

Vt′

)
A(M ′,M) =

∑
M ′:M ′ t→M

π(M ′)A(M ′,M)

and thus νG = 0 ⇒ πA = 0. Since π is unique, also πA = 0 ⇒ νG = 0
holds.

Furthermore,

ProbME(M) = ν(M)
(⊗

t∈Ena(M) 1Imt

)
= ν(M)

(⊗
t∈Ena(M)Vt 1Int

)
=

π(M)
(⊗

t∈Ena(M) 1Int

)
= ProbPH(M)

for all M ∈ RS such that ν 1I = 1 ⇔ π 1I = 1.

The identity of TputME(t) and TputPH(t) is obtained by the same steps as in
(25). �

Theorem 8 If G and A are generated from the same SPN using ME(αt,At)
and PH(γt,Gt) such that γt = αtWt, WtGt = AtWt and 1Int = Wt 1Imt and
π and ν exist uniquely, then

∀M ∈ RS : ν(M) = π(M)

 ⊗
t∈Ena(M)

Wt

 .

Furthermore, the stationary marking probability, Prob(M), throughput, Tput(t),
remain the same in both nets.

Proof. The proof of Theorem 8 follows the same pattern as the one of Theorem
7. �

In both cases described in the previous theorems a system of linear equations
has to be solved. In the Markovian case the resulting matrix is weakly diagonal
dominant which does not hold in general for matrix A. This has implications
on the convergence behavior of numerical solvers but does not modify the
general problem.
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p1

p2

p3

p4

t1 t3t2

Fig. 1. Example net.

SPN−PH SPN−ME

N states non-zeros states non-zeros

1 77 230 18 64

2 615 3536 81 550

3 1825 11546 198 1540

4 3707 24260 369 3034

5 6261 41678 594 5032

Table 1
Number of states and non-zero entries for SPN−PH and SPN−ME and different
token populations.

5 An Example

In the following we consider a small example model which is not intended
to describe a real application. However, it allows us to show that the sub-
stitution of PH distributions by equivalent ME distributions may result in a
non-Markovian process with a smaller state space such that numerical solution
methods benefit from the substitution. The example net is shown in Figure 1.
It contains three transitions with ME/PH distributed firing times. Distribu-
tions of the net are chosen either as ME distributions with 3 states each or as
equivalent PH distributions with 6, 8, and 7 states, respectively. The concrete
distributions are shown in the appendix.

The number of states and the number of non-zero entries in the matrices A and
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Uniformization RKF 45 RK 8PD

N iterations time iterations time iterations time

1 5679 0.1 11605 0.2 18189 0.3

2 6566 0.8 13507 1.5 21152 2.1

3 6566 2.1 13490 4.1 21230 6.5

4 6566 3.8 13501 8.4 21217 13.2

5 6566 6.8 13514 14.1 21230 22.4

Table 2
Effort for analyzing SPN−PH up to time t = 100 with different solvers.

RKF 45 RK 8PD

N iterations time iterations time

1 7573 0.1 11414 0.1

2 9104 0.3 13482 0.5

3 9560 0.6 14273 0.8

4 9650 1.0 14844 1.3

5 9814 1.4 15118 1.9

Table 3
Effort for analyzing SPN−ME up to time t = 100 with different solvers.

G resulting from this SPN can be found in Table 1 for initial markings with
N = 1, . . . , 5 tokens in each of the places p1 and p3. It can be noticed that the
state space of SPN−PH is about an order of magnitude larger than the state
space of SPN−ME and the number of non-zero elements, which determines
the effort for vector matrix multiplications, is about 8 times larger.

For both nets a transient analysis up to time t = 100 is performed with dif-
ferent solution techniques. For SPN−PH we use uniformization [10] and two
differential equation solvers from the Gnu Scientific Library [9], namely the
embedded Runge-Kutta-Fehlberg (4, 5) method (RKF 45) and the embedded
Runge-Kutta Prince-Dormand (8,9) method (RK 8PD). Table 2 contains the
analysis effort for SPN−PH with different initial markings. The table includes
the number of iterations and the CPU time in seconds needed on a standard
laptop. Uniformization runs with an error ϵ = 10−8, the ϵ-values for the two
differential equation solver are chosen such that the Euclidean norm of the dif-
ference between the marking probability vector computed by uniformization
and by the differential equation solvers is less than 10−6. Obviously uniformiza-
tion is the most efficient solver requiring the smallest number of iterations and
the shortest solution time.
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Table 3 includes the iteration numbers and the effort to analyze SPN−ME
up to time t = 100 with the same accuracy as SPN−PH . Since A is not a
stochastic matrix, uniformization cannot be applied but the two differential
equation solvers still work for this example. It can be seen that the solvers
require fewer iterations on A than on G which is a result of the smaller differ-
ence in the transition rates in the matrices of the ME distributions. However,
the number of iterations is still larger than the number of iterations required
by uniformization for G. Nevertheless, since A is much smaller than G and
contains fewer non-zero elements, the solution of SPN−ME with RKF 45 is
about 5 times faster than the solution of SPN−PH with uniformization.

It is, of course, not possible to draw general conclusions from a few experiments
but it is relatively obvious that if ME distributions are available to model some
real process, then it is preferable to use them directly in a model instead of
expanding the distributions to PH distributions with a larger state space. This
is especially attractive for distributions with a low coefficient of variation that
can be conveniently modelled by ME distributions.

We present here only results for transient analysis but results for steady state
analysis are similar. Since for steady state analysis no specific efficient method
like uniformization that requires Markovian models exists, the use of ME dis-
tributions is even more attractive in this case.

6 Conclusions

In this paper we focused on the solution of SPNs with ME distributed fir-
ing time and showed that the same expansion and solution techniques are
applicable as for the analysis of SPNs with PH distributed firing time if the
procedures do not utilize the non-negativity of the computed quantities.

The proposed approach is beneficial if the firing time distributions of SPNs
can be described with a low order ME distributions whose equivalent PH
representation has a higher order.

A simple example demonstrates the computational benefit of using small ME
representations instead of using larger PH representations. The computational
benefit holds even for a small gain in the size of the ME representation and it
increases when the size of the model increases.
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Appendix: Firing Time Distributions for the Example SPN

The firing time of transition t1 in SPN−ME is ME(α1,A1) distributed with

α1 = (0.8,−0.4, 0.6) , A1 =


−10.0 10.0 0.0

0.0 −20.0 20.0

0.0 25.0 −30.0

 .

For this ME distribution a PH distribution (γ1,G1) with 6 states can be
generated with the approach from [13].

γ1 = (0.79086, 0.10382, 0.03514, 0.00313, 0.01010, 0.05696) ,

G1 =



−0.958 0.958 0.0 0.0 0.0 0.0

0.0 −21.95 21.95 0.0 0.0 0.0

0.0 0.0 −21.95 21.95 0.0 0.0

0.0 7.204 0.0 −21.95 14.75 0.0

0.0 0.0 0.0 0.0 −52.67 52.67

0.0 0.0 0.0 0.0 0.0 −52.67


.

The second and third distribution are originated from ME(α,A) with

α = (0.2, 0.3, 0.5) , A =


−1.0 0.0 0.0

0.0 −3.0 h

0.0 −h −3.0

 .

It is known (see [8,16]) that for h ≤ 2.3 an ME distribution results from the
above matrix and for h ≤ 0.55 the distribution can be represented as a PH
distribution with 3 states. The ME distribution for transition t2 is associated
with the above ME distribution with h = 1.15 which can be expanded to a
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PH(γ2,G2) distribution with 8 states and

γ2 = (0.00031, 0.02684, 0.01689, 0.00515, 0.01179, 0.70035, 0.24954, 0.61914) ,

G2 =



−1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 −2.336 2.336 0.0 0.0 0.0 0.0 0.0

0.0 0.0 −2.336 2.336 0.0 0.0 0.0 0.0

0.0 0.429 0.0 −2.336 1.907 0.0 0.0 0.0

0.0 0.0 0.0 0.0 −4.571 4.571 0.0 0.0

0.0 0.0 0.0 0.0 0.0 −4.571 4.571 0.0

0.0 0.0 0.0 0.0 0.0 0.0 −4.571 4.571

0.0 0.0 0.0 0.0 0.0 0.0 0.0 −4.571



.

For h = 1 we obtain with the approach from [13] the following equivalent
PH(γ3,G3) with 7 states that is associated with transition t3.

γ3 = (0.00887, 0.02508, 0.01518, 0.00351, 0.03284, 0.21118, 0.70333) ,

G3 =



−1.0 1.0 0.0 0.0 0.0 0.0 0.0

0.0 −2.4227 2.4227 0.0 0.0 0.0 0.0

0.0 0.0 −2.4227 2.4227 0.0 0.0 0.0

0.0 0.2623 0.0 −2.4227 2.1603 0.0 0.0

0.0 0.0 0.0 0.0 −3.9811 3.9811 0.0

0.0 0.0 0.0 0.0 0.0 −3.9811 3.9811

0.0 0.0 0.0 0.0 0.0 0.0 −3.9811



.
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