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Abstract

Rational Arrival Processes (RAPs) form a general class of stochastic processes which include
Markovian Arrival Processes (MAPs) as a subclass. In this paper we study RAPs and their represen-
tations of different sizes. We show some transformation methods between different representations
and present conditions to evaluate the size of the minimal representation. By using some analogous
results from linear systems theory, a minimization approach is defined which allows one to transform
a RAP (from a redundant high dimension) into one of its minimal representations. An algorithm for
computing a minimal representation is also given. Furthermore, we extend the approach to RAPs
with batch arrivals (BRAPs) and to RAPs with arrivals of different customer types (MRAPs).

1 Introduction

Markovian Arrival Processes (MAPs) [18, 20] are widely used in stochastic modeling. The advantage
of MAPs is their nice stochastic interpretation as a continuous time Markov chain (CTMC) with some
marked transitions and the possibility to use them as arrival or service processes in models that are
analytically tractable. A superclass of MAPs is the class of rational arrival processes (RAPs) [3, 17].
RAPs, in contrast to MAPs, lack an intuitive stochastic description but the class is strictly larger than
the class of MAPs and they may as well be used in analytically tractable models like quasi-birth-death
processes (QBDs) as shown recently [4]. Nevertheless, in contrast to MAPs, RAPs have only rarely been
considered in the literature on stochastic modeling.

In this paper, we present an approach to determine the equivalence of different representations of
RAPs. In particular, we focus on the case when the size of the representations are different. This
viewpoint allows us to apply methods from linear systems theory [9] to RAPs which to the best of our
knowledge has been done in the literature only for phase type distributions [19, 7]. The contribution
of the paper is summarized as follows. We present necessary and sufficient conditions for the size of
minimal representations for RAPs. We introduce a numerically stable algorithm for computing a minimal
representation and apply the approach to the computation of the output process of a BMAP/MAP/1
queue. Additionally, we study the class of RAPs generating arrivals of different type. They are commonly
referred to as Marked RAPs, MRAPs [4]. The class of RAPs with batch arrivals, BRAPs, is isomorphic
to the class of MRAPs. For these extended model classes the minimization approach is also adopted.

The paper is structured as follows. In the next section we introduce RAPs and some basic properties
of these processes. Afterwards, in Sections 3 and 4, the equivalence of RAPs and minimal equivalent
representations are defined. Then, in Section 5, an algorithm for minimizing the size of a RAP representa-
tion is introduced. Afterwards, we consider the approximation of the output process of a BMAP/MAP/1
queue. Finally, we introduce the extensions of the approach to BRAPs and MRAPs. The paper ends
with the conclusion.
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2 Rational Arrival Processes

A matrix exponential (ME) distribution is a distribution whose density function is a matrix exponential
function of the variable and consequently its Laplace transform is a rational function of the transform
variable [2]. Let ν be a row vector of size m and D0 be a m×m matrix. Then (ν,D0) defines a matrix
exponential (ME) distribution, if and only if

F(ν,D0)(t) = 1− ν eD0 t I1 (1)

is a valid distribution function where I1 is the unit column vector of appropriate size. The row vector
before and the column vector after the matrix exponential term are referred to as initial and closing
vectors, respectively. In the literature (e.g., [2]) one can also find representations where the closing vector
differs from the unit vector and is explicitly part of the representation. However, it is always to possible
to transform the representation in an equivalent representation with a unit closing vector [15, 19] which
is used here. In this paper we further assume that F (0) = 0, that is ν I1 = 1. If F(ν,D0)(t) is a valid
distribution function, then the real part of the eigenvalues of matrix D0 are negative, consequently the
matrix is non-singular, and there is a real eigenvalue with maximal real part [15].

ME distributions have been used in stochastic modeling for some time and recently it has been shown
that they may be used instead of PH distributions in stochastic models such as queuing networks or
stochastic Petri nets, and numerical algorithms for computing the stationary or transient distributions
may still be used to compute performance measures [1, 4, 6].

Different representations may exist that describe the same distribution. We denote two representations
(ν,D0) and (ϕ,C0) as equivalent if and only if F(ν,D0)(t) ≡ F(ϕ,C0)(t). This is equivalent to the condition
that (ν,D0) of size m and (ϕ,C0) of size n are equivalent if and only if

ν (D0)
k
I1m = ϕ (C0)

k
I1n (2)

for all k ≤ 0 or all k ≥ 0 [5, 13], where we intentionally indicate the size of the unit column vectors.
A rational arrival process (RAP) is a point process whose joint density of the consecutive interarrival

times is a matrix exponential function of the variables and the double transform of the number of arrivals is
a rational function of the transform variables. In [17] series of correlated matrix exponentially distributed
arrivals are define, whereas [2] defines the class of RAPs. We use a slightly different definition of a
RAP than [2]. Our definition is related to the commonly used definition of MAPs in contemporary
literature [16, 20]. A pair of matrices, (D0,D1), defines a RAP with representation (D0,D1), denoted as
RAP(D0,D1), if and only if

f(D0,D1)(t1, . . . , tk) = νeD0t1D1e
D0t2D1 . . . e

D0tkD1 I1 (3)

is non-negative for all k ≥ 1 and t1, t2, . . . , tk ∈ R+. In this case f(D0,D1)(t1, . . . , tk) is the joint density
function of the interarrival times and the reduced joint moments of the interarrival times are

E(T i1
1 T i2

2 . . . T ik
k )

i1!i2! . . . ik!
= ν(−D0)

−i1P(−D0)
−i2P . . . (−D0)

−ik I1 , (4)

with i1, . . . , ik ∈ (N+ ∪ 0), P = (−D0)
−1

D1, νP = ν, ν I1 = 1, and the double transform of the number
of arrivals in (0, t), N(t), is a rational function of the transform variables∫ ∞

0

e−stE(zN(t))dt = ν(sI−D0 − zD1)
−1 I1 . (5)

Similar to ME distributions there are other definitions of RAPs with different closing vectors, which
are equivalent with the one above [15]. RAPs inherit several properties from ME distributions. The real
parts of the eigenvalues of matrix D0 are negative, consequently the matrix is non-singular. There is a
real eigenvalue with maximal real part. Additionally, (D0 + D1) I1 = 0 to ensure that (3) is a density
function.

Throughout this paper we consider only stationary RAPs and assume that the pair of matrices,
(D0,D1) uniquely defines the process. This requires that the solution of νP = ν, ν I1 = 1, is unique,
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that is, one is a unique eigenvalue of P (and, equivalently, zero is a unique eigenvalue of D0 + D1). If
the transient analysis of RAPs is considered this restriction can be relaxed, but in that case the process
should be defined by the governing matrices and an initial vector. The subsequent analysis identically
applies to the transient case, only the stationary initial vector has to be replaced by the transient one.

It should also be noted that a pair of (D0,D1) matrices does not necessarily represent a valid process,
only if the function defined in (3) is non-negative for each valid set of parameters. Unfortunately, this
condition is very hard to check.

The (D0,D1) representation of a given RAP is non-unique. Several pairs of matrices can describe the
same process [20]. This naturally raises the question for a minimal representation which will be answered
in the following two sections.

3 Equivalent Representations of RAPs

We are interested in different representations of the same RAP and in particular in a representation with
minimal size. This is formally defined below.

Definition 1 Two RAPs, RAP(D0,D1) and RAP(C0,C1), are equivalent if and only if all joint density
functions of the finite-dimensional distributions are identical (cf., (3)), which is equivalent to the condition
that all reduced joint moments are identical (cf., (4) ).

Definition 2 The size of the representation (D0,D1) is the size of the square matrix D0.

Definition 3 A representation (D0,D1) of size m is minimal, if no other equivalent representation
(C0,C1) of size n < m exists.

Let (D0,D1) be a RAP of size m and B be a non-singular m ×m matrix such that B I1 = I1. Then
(C0,C1) of size m with C0 = B−1D0B and C1 = B−1D1B is an equivalent representation resulting from
a similarity transformation [20]. By means of similarity transformations infinitely many representations
can be computed for a RAP. [20] focuses mainly on the equivalence of RAPs of minimal size. We now
consider the existence of equivalent representations of different sizes.

Let (D0,D1) of size m and (C0,C1) of size n be two representations, where m > n. The following
two theorems present sufficient conditions that both representations are equivalent.

Theorem 1 If there is a matrix V ∈ IRm,n such that I1m = V I1n, D0V = VC0, D1V = VC1 and
νV = ϕ, where ν (−D0)

−1
D1 = ν and ϕ (−C0)

−1
C1 = ϕ, then (D0,D1) and (C0,C1) are equivalent.

Proof. We start from the joint density function of representation (D0,D1) and transform it by first using
I1m = V I1n, then (D0)

iD1V = V(C0)
iC1, and finally νV = ϕ. Therefore,

f(D0,D1)(t1, . . . , tk) = ν

(
k∏

j=1

(
∞∑

ij=0

(tjD0)
ij

ij !
D1

)
I1m

)
= ν

(
k∏

j=1

(
∞∑

ij=0

(tjD0)
ij

ij !
D1

)
V I1n

)

= νV

(
k∏

j=1

(
∞∑

ij=0

(tjC0)
ij

ij !
C1

)
I1n

)
= ϕ

(
k∏

j=1

(
∞∑

ij=0

(tjC0)
ij

ij !
C1

)
I1n

)
= f(C0,C1)(t1, . . . , tk) .

This transformation results in the joint density function of representation (C0,C1). �

Theorem 2 If there is a matrix W ∈ IRn,m such that I1n = W I1m, WD0 = C0W, WD1 = C1W and
ν = ϕW where ν (−D0)

−1
D1 = ν and ϕ (−C0)

−1
C1 = ϕ, then (D0,D1) and (C0,C1) are equivalent.
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Proof. Using ν = ϕW, W(D0)
iD1 = (C0)

iC1W, and I1n = W I1m, respectively, the following identity of
the joint densities holds:

f(D0,D1)(t1, . . . , tk) = ν

(
k∏

j=1

(
∞∑

ij=0

(tjD0)
ij

ij !
D1

)
I1m

)
= ϕW

(
k∏

j=1

(
∞∑

ij=0

(tjD0)
ij

ij !
D1

)
I1m

)

= ϕ

(
k∏

j=1

(
∞∑

ij=0

(tjC0)
ij

ij !
C1

)
W I1m

)
= ϕ

(
k∏

j=1

(
∞∑

ij=0

(tjC0)
ij

ij !
C1

)
I1n

)
= f(C0,C1)(t1, . . . , tk) .

�

The previous two theorems give sufficient conditions for reducing the size of the representation of
a RAP. Unfortunately, these conditions are hard to check directly. The next sections provide explicit
conditions for deciding the minimality of a representation.

4 Minimal Representation of RAPs

For notational convenience we often use the matrices M = −D−1
0 and P = MD1, where (M,P) and

(D0,D1) mutually define each other since D0 = −M−1 and D1 = −D0P. For a RAP (D0,D1) of size
m we define the following matrices

CD0 = CD0(0) =
(
I1,M I1, . . . ,Mm−1 I1

)
,

CD0,D1 = CD0,D1(0) =
(
CD0 ,PCD0 ,P

2CD0 , . . . ,P
m−1CD0

)
,

CD0(n+ 1) =
(
CD0,D1(n),MCD0,D1(n), . . . ,M

m−1CD0,D1(n)
)
,

CD0,D1(n+ 1) =
(
CD0(n+ 1),PCD0(n+ 1),P2CD0(n+ 1), . . . ,Pm−1CD0(n+ 1)

)
.

CD0(n) is an m×m2n+1 matrix and CD0,D1(n) is an m×m2n+2 matrix. These matrices are extensions
and generalizations of the controllability matrix known for linear systems [8, 10], and PH and ME
distributions [7, 20]. Indeed CD0 is the controllability matrix used in linear systems theory, where, similar
to the case of PH and ME distributions, a single matrix (and some additional vectors) characterizes the
system behaviour. The introduced recursive definition of matrices is not present in the literature we
know.

We define the rank of the generalized controllability matrix as rC = rank(CD0,D1(m)). This is a
simple, but very redundant definition of rC , which is relevant for the definition of a representation of
minimal size as shown in the following theorems, but can be computed in a much more efficient way (see
the RC RANK(D0,D1) procedure below). A cheap computation of rC is possible based on the following
corollaries.

Corollary 1 Let H and G be matrices of size m ×m and m × r, Ri = rank(G,HG, . . . ,Hi−1G) and
Si = span(G,HG, . . . ,Hi−1G).

If R0 < R1 < . . . < Ri = Ri+1 then Rk = Ri for k ≥ i.

Proof. From Ri = Ri+1 we have Si = Si+1 and consequently Si = Si+1 = Si+2 = . . ., since

Hi+2G = HHi+1G︸ ︷︷ ︸
∈Si︸ ︷︷ ︸

∈Si+1=Si

.

�

Assuming G = CD0(n) and H = P or G = CD0,D1(n) and H = M Corollary 1 suggests a stepwise
generation of CD0,D1(n) and CD0(n+1), respectively, which can be terminated at the first time when the
rank does not increase.
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Corollary 2 If rank(CD0,D1
(n)) = rank(CD0

(n)) = r then rank(CD0
(j)) = rank(CD0,D1

(j)) = r for
j ≥ n.

Proof. rank(CD0(n)) = r implies two consequences. The first one is that each column vector of CD0(n)
is a linear combination of r linearly independent vectors, say z0, . . . , zr−1, and the second one is that a
multiplication of any of these vectors with Mi is also a linear combination of z0, . . . , zr−1. Additionally,
rank(CD0,D1(n)) = rank(CD0(n)) = r implies that a multiplication of any of these vectors with Pi is also
a linear combination of z0, . . . , zr−1. Consequently, further multiplications with M or P remain a linear
combination of z0, . . . , zr−1, which preserves the rank of the subsequent matrices. �

Corollary 3 If rank(CD0
(n)) = rank(CD0,D1

(n− 1)) = r then rank(CD0
(j)) = rank(CD0,D1

(j)) = r for
j ≥ n.

Proof. Similar to Corollary 2 rank(CD0,D1(n−1)) = r implies two consequences. The first one is that each
column vector of CD0,D1(n−1) is a linear combination of r linearly independent vectors, say z0, . . . , zr−1,
and the second one is that a multiplication of any of these vectors with Pi is also a linear combination
of z0, . . . , zr−1. Additionally, rank(CD0(n)) = rank(CD0,D1(n − 1)) = r implies that a multiplication of
any of these vectors with Mi is also a linear combination of z0, . . . , zr−1. �

Let CD0(n) = ŨS̃T̃∗ be the singular value decomposition (SVD) [11] of CD0(n), where Ũ (T̃) is a

unitary matrix of size m×m (m2n+1 ×m2n+1), Ũ∗ is the conjugate transpose of matrix Ũ (in our case

Ũ∗ is the transpose of the matrix Ũ since CD0(n) is real), S̃ of size m × m2n+1 contains the singular
values in decreasing order on the diagonal and we neglect the dependence on n to simplify the notation.
Let Ii,j be the matrix of size i× j whose k, ℓ element equal to one if k = ℓ and zero otherwise.

Corollary 4 If rank(CD0(n)) = r then

rank(CD0,D1
(n)) = rank

(
Z̃,PZ̃,P2Z̃, . . . ,Pm−1Z̃

)
,

where Z̃ = ŨS̃Im2n+1,r.

Proof. rank(CD0(n)) = r implies that each column vector of CD0(n) is a linear combination of r linearly

independent vectors. Matrix Z̃ of size m × r contains such a set of vectors because according to the
structure of the matrix S̃, the ith column vector of CD0(n), CD0(n)i, can be expressed as CD0(n)i =∑r

j=1 T̃
∗
ijZ̃j , where Z̃j is the jth column vector of Z̃ and T̃∗

ij is the i, jth element of T̃∗.

A column vector of CD0,D1(n) has the form PkCD0,D1(n)i and it can be expressed as PkCD0(n)i =

Pk
∑r

j=1 T̃
∗
ijZ̃j from which the corollary follows. �

Similarly, let CD0,D1(n) = ÛŜT̂∗ be the singular value decomposition of CD0,D1(n).

Corollary 5 If rank(CD0,D1(n)) = r then

rank(CD0(n+ 1)) = rank
(
Ẑ,MẐ,M2Ẑ, . . . ,Mm−1Ẑ

)
,

where Ẑ = ÛŜIm2n+2,r

Proof. The proof follows the same pattern as the one for Corollary 4. �

Based on these results rC can be computed with the following efficient procedure
———————————
1. RC RANK(D0,D1)

2. roC = 0, M = −D−1
0 , P = MD1,

3. rC = 1, Z = I1, Θ = Z, H = M,
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4. FOR n = 0 TO m DO

5. WHILE rc < rank(Θ,HZ) DO Θ = (Θ,HZ), H = HM, rc = rank(Θ);

6. / ∗ rC = rank of CD0(n) ∗/
7. IF rC == roC OR rC == m THEN RETURN(rC);

8. roC = rC ; Z =SPANNING(Θ); H = P;

9. WHILE rc < rank(Θ,HZ) DO Θ = (Θ,HZ), H = HP, rc = rank(Θ);

10. / ∗ rC = rank of CD0,D1(n) ∗/
11. IF rC == roC OR rC == m THEN RETURN(rC);

12. roC = rC ; Z =SPANNING(Θ); H = M;

13. ENDFOR
———————————

where
———————————
1. SPANNING(Θ)

2. {i, j} =SIZE(Θ);

3. {U,S,T} =SVD(Θ);

4. r =RANK(Θ);

5. RETURN(U ∗ S ∗ Ii,r);
———————————

Note that, in this procedure the size of the matrix Θ is never greater than m×m2/4. This computation
of rC helps us to show the following property.

Corollary 6
rank(CD0,D1(⌈m/2⌉)) = rank(CD0(⌈m/2⌉)) . (6)

Proof. The upper limit of the iterations, m, is also redundant, since on the one hand the rank is bounded
above by m (the size of the representation) and, on the other hand, the rank is nondecreasing in each
of the steps (rank(CD0(n)) ⇒ rank(CD0,D1(n)) and rank(CD0,D1(n)) ⇒ rank(CD0(n + 1)), since all
matrices contain the previous ones) and this way roC increases by at least 2 in each completed iteration.
Consequently, the rank can not increase after ⌈m/2⌉ iterations. �

Example 1 Consider the MAP with representation

D0 =


−1 0 0 0 0 0
0.5 −2 1 0 0 0
1 0 −3 1 0 0
1 0 1 −4 1 0
4 0 0 0 −5 0
5 0 0 0 0 −6

 , D1 =


0.25 0.5 0 0.25 0 0
0 0 0.25 0 0.25 0

0.75 0 0 0.25 0 0
0 0.5 0 0.25 0.25 0
0 0.5 0 0.5 0 0
0 0.5 0 0.25 0 0.25

 .

For this MAP
rank(CD0(0)) = 2, rank(CD0,D1(0)) = 3, rank(CD0(1)) = 4,
rank(CD0,D1(1)) = 5, rank(CD0(2)) = 5, rank(CD0,D1(2)) = 5,

which means that for this MAP rC = 5, but we need to perform 3 iterations in the rC computing procedure
to recognize this order.

Similarly, let

OD0 = OD0(0) =


ν

νM
...

νMm−1

 , OD0,D1 = OD0,D1(0) =


OD0

OD0P
...

OD0P
m−1

 ,
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OD0(n+ 1) =


OD0,D1(n)

OD0,D1(n)M
...

OD0,D1(n)M
m−1

 , OD0,D1(n+ 1) =


OD0(n+ 1)
OD0(n+ 1)P

...
OD0(n+ 1)Pm−1

 ,

where νP = ν, ν I1 = 1. OD0 is the observability matrix used in linear systems theory [8, 10]. The
other matrices are extensions and generalizations of the observability matrix. We define the rank of the
generalized observability matrix as rO = rank(OD0,D1(m)).

Theorem 3 If for a RAP(D0,D1) of size m rank(CD0,D1(m)) = rC = n < m, then there exists a non
singular m×m transformation matrix B such that

D′
0 = B−1D0B =

(
C0 ⋆
0 ⋆

)
, D′

1 = B−1D1B =

(
C1 ⋆
0 ⋆

)
and B−1 I1m =

(
I1n
0

)
,

where the considered vector and matrix blocks are of size n,m − n in each dimension and ⋆ indicates
irrelevant matrix block. (C0,C1) is an equivalent representation of the same RAP of size n.

Proof. Let CD0,D1(m) = UST∗ be the singular value decomposition of CD0,D1(m). Since
rank(CD0,D1(m)) = n the first n singular values are non-zero and the last m − n are zero, that is,
the last m − n rows of S and ST∗ are zero. From U∗CD0,D1(m) = ST∗ we have that U∗CD0,D1(m) is
composed by m2m+2 column vectors of size m, whose last m−n elements are zero. The very first column
vector of CD0,D1(m), numbered as the zeroth column vector, is I1 by definition. From this we have

[U∗CD0,D1(m)]0 = U∗ I1 =

(
z0
0

)
,

where z0 is a column vector of size n and 0 is a column vector of zeros of size m− n. For column vector
number ℓ =

∑2m+1
j=0 mjij (with 0 ≤ ij ≤ m− 1) we have

[U∗CD0,D1(m)]ℓ = U∗Pi2m+1Mi2m . . .Pi1Mi0 I1 = (7)

U∗Pi2m+1U U∗Mi2mU . . .Pi1U U∗Mi0U U∗ I1 =

(
zℓ
0

)
.

According to (6) rank(CD0(m)) = n. It means that the vectors z0, z1, . . . , zm2m+1−1 of size n contain
n linearly independent ones. Let z′0, z

′
1, . . . , z

′
n−1 (column vectors of size n) be n linearly independent

vectors from z0, z1, . . . , zm2m+1−1 and compose the matrix

(
Z′

0

)
=

(
z′0
0

,
z′1
0

, . . . ,
z′n−1

0

)
. From

(7) we have

U∗MU

(
Z′

0

)
=

(
⋆
0

)
and U∗PU

(
Z′

0

)
=

(
⋆
0

)
.

Due to the fact that Z′ is an n×n matrix of rank n, the rank of the lower left block of U∗MU and U∗PU

are zero, i.e., U∗MU and U∗PU have the structure

(
⋆ ⋆
0 ⋆

)
with the zero block of size m− n× n.

If z0 contains zero elements, then we introduce matrix R =

(
R̂ 0
0 I

)
such that R̂, and consequently R,

are non-singular and ẑ0 = R̂z0 is composed of non-zero elements. If z0 does not contain zero elements,
then R = I. Since R and R−1 are block diagonal matrices a multiplication of U∗MU (U∗PU) with R
or R−1 preserves the zero block structure of U∗MU (U∗PU).
Let Γ be the diagonal matrix composed of the n (non-zero) elements of the vector ẑ0 and m−n ones, that
is, Γ = Diag⟨ẑT0 , I1

T
m−n⟩. Finally B = UR−1Γ results in the required transformation matrix. Since Γ is a

diagonal matrix M′ = B−1MB = Γ−1RU∗MUR−1Γ and also P′ = B−1PB = Γ−1RU∗PUR−1Γ have
the same structure as RU∗MUR−1 and RU∗PUR−1, respectively, and

B−1 I1m = Γ−1RU∗ I1m = Γ−1R

(
z0
0

)
= Γ−1

(
ẑ0
0

)
=

(
I1n
0

)
.
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D′
0 = −M′−1

and D′
1 = −D′

0P
′ has the required matrix structure, because the matrix inversion and the

matrix multiplication maintains the zero block at the lower left corner. �

Corollary 7 If for a RAP(D0,D1) of size m

−νD−1
0 D1 = ν, ν I1m = 1,

and

B−1D0B =

(
C0 ⋆
0 ⋆

)
, B−1D1B =

(
C1 ⋆
0 ⋆

)
and B−1 I1m =

(
I1n
0

)
then νB =

(
ϕ ⋆

)
, where

−ϕ C−1
0 C1 = ϕ, ϕ I1n = 1

Proof. From ν = −νD−1
0 D1 we have

νB = −νB

(
C−1

0 ⋆
0 ⋆

)(
C1 ⋆
0 ⋆

)
= −νB

(
C−1

0 C1 ⋆
0 ⋆

)
,

and from 1 = ν I1m we have

1 = νBB−1 I1m = νB

(
I1n
0

)
.

Since ϕ is the first n elements of νB, we have −ϕ C−1
0 C1 = ϕ and ϕ I1n = 1. �

Theorem 4 If for a RAP (D0,D1) of size m rank(Om
D0,D1

) = rO = n < m, then there exists a non
singular m×m transformation matrix B such that

B−1D0B =

(
C0 0
⋆ ⋆

)
, B−1D1B =

(
C1 0
⋆ ⋆

)
and νB =

(
ϕ 0

)
and (C0,C1) is an equivalent representation of size n.

Proof. The proof follows the same pattern as the proof of Theorem 3. �

Corollary 8 If for a RAP(D0,D1) of size m

−νD−1
0 D1 = ν, ν I1m = 1,

and

B−1D0B =

(
C0 0
⋆ ⋆

)
, B−1D1B =

(
C1 0
⋆ ⋆

)
and νB =

(
ϕ 0

)
then B−1 I1m =

(
I1n
⋆

)
and −ϕ C−1

0 C1 = ϕ, ϕ I1n = 1.

Proof. The proof follows the same pattern as the proof of Corollary 7. �

An alternative way to obtain the relation of Theorem 3 and 4 is to recognize that OD0,D1(m) of
a RAP with representation (D0,D1), initial vector ν, and closing vector I1 is the same as CDT

0 ,DT
1
(m)

with representation (DT
0 ,D

T
1 ), initial vector I1T , and closing vector νT , and vice versa, CD0,D1(m) of a

RAP with representation (D0,D1), initial vector ν, and closing vector I1 is the same as ODT
0 ,DT

1
(m) with

representation (DT
0 ,D

T
1 ), initial vector I1T , and closing vector νT .

Theorems 1 and 3 and similarly Theorems 2 and 4 are closely related. Matrix V of Theorem 1 results
from the first n columns of matrix B of Theorem 3 and matrix W of Theorem 2 from the first n rows
of matrix B of Theorem 4. Having all of these ingredients we can present the main theorem about the
minimal representation of a RAP.
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Theorem 5 (D0,D1) of size m is a minimal representation of a RAP if and only if rO = rC = m.

Proof. First we prove that if rO = rC = m then (D0,D1) is minimal using contradiction.
Let us assume that rO = rC = m and there exists an equivalent (C0,C1) representation of the same
RAP of size n < m, then CC0,C1(m) is of size n× n2m+2 and consequently rank(CC0,C1(m)) ≤ n, which
is in contrast with rC = m.
The other statement of the theorem says that if (D0,D1) is minimal then rO = rC = m. This statement
is a result of Theorem 3 which provides a procedure to represent the same RAP with size n if rC = n < m,
and Theorem 4 which provides a procedure to represent the same RAP with size n if rO = n < m. �

4.1 Computation of a minimal representation

The procedure of Theorem 3 can also be interpreted as a procedure to eliminate the redundancy of the
representation caused by the closing vector, and the one of Theorem 4 as a procedure to eliminate the
redundancy of the representation caused by the initial vector.

Due to the fact that a minimal representation does not allow reduction neither due to the initial nor
due to the closing vector a general RAP with representation (D0,D1) has to be minimized in two steps (in
arbitrary order). In one step the procedure of Theorem 3 eliminates the redundancy of the representation
caused by the closing vector and in the next step the procedure of Theorem 4 eliminates the redundancy
of the representation caused by the initial vector. Example 3 below demonstrates a case when both steps
are necessary for finding a minimal representation. More precisely the following procedure can be used
to minimize the size of the representation of a RAP.
———————————
1. MINIMIZE(D0,D1)

2. {i, j} =SIZE(D0);

3. IF RC RANK(D0,D1) < i THEN (D0,D1) =MINIMIZE BY THEOREM3(D0,D1);

4. {i, j} =SIZE(D0);

5. IF RO RANK(D0,D1) < i THEN (D0,D1) =MINIMIZE BY THEOREM4(D0,D1);

6. RETURN(D0,D1);
———————————
The proof of Theorem 3 and 4 suggests procedures to obtain a smaller representation of a RAP, but

due to the redundancy of the definition of rC and rO this procedure might be inefficient. The following
section proposes a computationally efficient procedure.

5 The Staircase Algorithm

In the previous section conditions for the minimality and the steps to compute a minimal representation
have been introduced. Here we present an algorithm that computes a non-singular matrix B such that

B−1 I1m =

(
I1n
0

)
, B−1D0B =

(
C0 ⋆
0 ⋆

)
and B−1D1B =

(
C1 ⋆
0 ⋆

)
, (8)

without computing the large matrices CD0
(m) and CD0,D1

(m). By defining B−1 =

(
W
F

)
and B =(

V G
)
where V is an m× n matrix and W is an n×m matrix we obtain the matrices to transform

the representation (D0,D1) of size m into the representation (C0,C1) of size n (cf. Theorems 1 and 2).
For the computation of B the staircase algorithm from linear system theory [10, 21] can be extended.
The algorithm computes a transformation matrix B stepwise such that finally (8) holds. The algorithm
is based on a SVD which has already been used in the proof of Theorem 3. For some matrix A of size
r× c the SVD is A = UST∗. The singular values are in decreasing order and the first rank(A) singular
values are positive and the remaining are zero. In particular,

U∗A =

(
F
0

)

9



holds where F is a rank(A) × c matrix. If all non-zero singular values are distinct, then matrix U∗ is
uniquely defined up to complex signs. If identical singular values exist, then U∗ is unique up to complex
signs and the ordering of rows belonging to identical singular values.

With these ingredients we define an algorithm that works on three matrices, two m×m matrices X,
Y, and an m× c matrix Z. The algorithm computes a unitary matrix U such that

U∗XU =

(
X1 X2

0 X4

)
, U∗YU =

(
Y1 Y2

0 Y4

)
and U∗Z =

(
Z1

0

)
(9)

where X1 and Y1 are of size n× n and Z1 is of size n× c.
The computation of a smaller representation of a RAP with representation (D0,D1) according to

Theorem 3 is done with the following algorithm which is called with square matrices X = D0, Y = D1

of size m and an m× c (c = 1) matrix Z = I1m, that is, STAIRCASE(D0,D1, I1m).
———————————
1. STAIRCASE(X, Y, Z)

2. i = 0; {m, j} =SIZE(X); U∗ = I;

3. REPEAT

4. i = i+ 1 ; ri = rank(Z) ; {Ui,Si,Ti} =SVD(Z) ;

5.

(
Z1

0

)
= U∗

iZ ;

(
X1 X2

X3 X4

)
= U∗

iXUi ;

(
Y1 Y2

Y3 Y4

)
= U∗

iYUi ;

/∗ X1 and Y1 are of size ri × ri ∗/

6. U∗ =

(
I∑i−1

j=1 rj
0

0 U∗
i

)
U∗ ;

7. X = X4; Y = Y4; Z = (X3 Y3) ;

8. UNTIL rank(Z) = m−
∑i

j=1 rj or Z = 0 ;

9. IF (Z = 0) THEN

10. n =
∑i

j=1 rj ;

11.

(
x

0m−n

)
= U∗ I1m ;

12. IF (x ̸= 0) THEN R = I ELSE R = non-singular matrix such that Rx ̸= 0
/∗ element-wise ∗/

13. y = Rx ; Γ = diag(y) ; B =

[(
Γ−1 0
0 Im−n

)(
R 0
0 Im−n

)
U∗
]−1

;

14. ELSE n = m ; B = I ; /* no reduction is possible */

15. RETURN(n,B) ;
———————————
The following corollary is needed for the proof of the subsequent theorem which shows the termination

and correctness of the above algorithm.

Corollary 9 Let X and Y be two m ×m matrices and Z be a m × c matrix. If a non-singular matrix
B exists such that

B−1XB =

(
X̃1 X̃2

0 X̃4

)
, B−1YB =

(
Ỹ1 Ỹ2

0 Ỹ4

)
and B−1Z =

(
Z̃1

0

)
, (10)

then a unitary matrix U exists such that

U∗XU =

(
X1 X2

0 X4

)
, U∗YU =

(
Y1 Y2

0 Y4

)
and U∗Z =

(
Z1

0

)
, (11)

where X̃1,X1, Ỹ1,Y1 are n× n matrices and Z̃1,Z1 are n× c matrices.
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Proof. The rank of CD0,D1
(m) is n in this case and the result follows from the proof of Theorem 3 where

the unitary matrix is constructed. �

Theorem 6 The algorithm computes in at most m − 1 iterations a matrix B that observes (8), if such
a matrix exists.

Proof.
We first show that the number of iterations is at most m− 1:
In the first iteration matrix Z has m rows, in the subsequent iterations the number of rows of Z equals
the number of rows of Z from the previous iteration minus the rank of Z from the previous iteration. If
Z becomes 0 or has full rank, the iteration stops. This implies that in each iteration Z has at least one
row less such that after m− 1 iterations a 1× 1 matrix Z has been computed and this matrix is either 0
or has full rank.
After i iterations, the algorithm has computed the following matrices (see also [10])

H∗
iZ =



Z
(1)
1

0
...
0
0
0


, H∗

iXHi =



X
(1)
1 ⋆ ⋆ · · · · · · ⋆

Z
(2)
X X

(2)
1 ⋆ ⋆

...

0 Z
(3)
X X

(3)
1 ⋆ ⋆

...
...

. . .
. . .

. . .
. . . ⋆

... 0 Z
(i)
X X

(i)
1 X

(i)
2

0 · · · · · · 0 X
(i)
3 X

(i)
4


,

H∗
iYHi =



Y
(1)
1 ⋆ ⋆ · · · · · · ⋆

Z
(2)
Y Y

(2)
1 ⋆ ⋆

...

0 Z
(3)
Y Y

(3)
1 ⋆ ⋆

...
...

. . .
. . .

. . .
. . . ⋆

... 0 Z
(i)
Y Y

(i)
1 Y

(i)
2

0 · · · · · · 0 Y
(i)
3 Y

(i)
4


,

(12)

where the size of the blocks are r1, r2, . . . , ri,m−ρi, ρi =
∑i

j=1 ri, Hi is the unitary transformation matrix

computed with the algorithm, X(i),Y(i),Z(i) are the matrices X,Y,Z of the ith iterations, X
(i)
j ,Y

(i)
j

(j = 1, 2, 3, 4) are the corresponding submatrices of X(i) and Y(i), and Z(i) =
(
Z

(i)
X ,Z

(i)
Y

)
for i > 1

where Z
(i)
X contains the reduced rows belonging to X

(i−1)
3 and Z

(i)
Y contains the reduced rows belonging

to Y
(i−1)
3 . By reduced row we mean that performing the unitary transformation of X

(i−1)
3 (Y

(i−1)
3 ) and

removing the zero rows gives Z
(i)
X (Z

(i)
Y ).

The procedure terminates as Z(i+1) = 0:

It means that X
(i)
3 and Y

(i)
3 are zero. In this case the matrix has the required form and the relation with

(11) is n = ρi, U = Hi, X4 = X
(i)
4 , Y4 = Y

(i)
4 .

The procedure terminates as Z(i+1) has full rank:
We are going to show that if Z(i+1) has full rank, then m = n. We use the result of Corollary 9 which
shows that if a transformation of the required form is possible by some non-singular matrix B, then a
unitary matrix U exists which transforms the matrices X and Y into the same structure. In this proof
we focus on the unitary matrix U, as it is the primary result of SVD, but according to Corollary 9 the
findings are valid for non-singular matrix B as well. Step 12 and 13 of STAIRCASE(X, Y, Z) generates
B from U.
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We show the statement by contradiction. We assume that Z(i+1) has full rank and a unitary matrix U
exists which performs the transformation of (11). Since

U∗XU = U∗Hi︸ ︷︷ ︸
G∗

H∗
iXHi H

∗
iU︸ ︷︷ ︸
G

= G∗H∗
iXHiG ,

a unitary matrix G has to exist such that U = HiG. In the following we show in i steps that based on
our assumptions G has the form

G =


G

(1)
1 0 0 0

0
. . . 0 0

0 0 G
(i)
1 0

0 0 0 G
(i)
4

 , (13)

where G1 is a ρi × ρi unitary matrix and G4 is a (m− ρi)× (m− ρi) unitary matrix. From

U∗Z = G(1)∗H∗
iZ = G(1)∗

(
Z

(1)
1

0

)
=

(
⋆
0

)
,

and the fact that Z
(1)
1 has full row rank, we have that the lower left m − r1 × r1 size block of G(1)∗ is

zero. Consequently, G(1)∗ and G(1) have the form

G(1)∗ =

(
G

(1)
1

∗
G

(1)
3

∗

0 G
(1)
4

∗

)
and G(1) =

(
G

(1)
1 0

G
(1)
3 G

(1)
4

)
,

where G
(1)
1 is a r1 × r1 matrix. Now from

I =

(
I 0
0 I

)
= G(1)G(1)∗ =

(
I G

(1)
1 G

(1)
3

∗

G
(1)
3 G

(1)
1

∗
⋆

)

we have G
(1)
3 G

(1)
1

∗
= 0 ⇒ G

(1)
3 = 0 ⇒ G

(1)
3

∗
= 0, since G

(1)
1 has full rank. As a result of the first step

we have

G(1)∗ =

(
G

(1)
1

∗
0

0 G
(1)
4

∗

)
and we start the second step with

G(2)∗ =

 G
(1)
1

∗
0 0

0 G
(2)
1

∗
G

(2)
2

∗

0 G
(2)
3

∗
G

(2)
4

∗

 =

 ⋆ 0 0

0 ⋆ G
(2)
2

∗

0 G
(2)
3

∗
⋆

 ,

where the size of the blocks are r1, r2,m− ρ2, respectively.

From (11) we have U∗XU = G(2)∗H∗
iXHiG

(2) =

 ⋆ ⋆ ⋆
⋆ ⋆ ⋆
0 0 ⋆

 and multiplying with G(2)∗ from the

right it is G(2)∗H∗
iXHi =

 ⋆ ⋆ ⋆
⋆ ⋆ ⋆
0 0 ⋆

G(2)∗. Substituting G(2)∗ and (12) into this equation we have

 ⋆ 0 0

0 ⋆ G
(2)
2

∗

0 G
(2)
3

∗
⋆


 X

(1)
1 ⋆ ⋆

Z
(1)
X ⋆ ⋆
0 ⋆ ⋆

 =

 ⋆ ⋆ ⋆
⋆ ⋆ ⋆
0 0 ⋆


 ⋆ 0 0

0 ⋆ G
(2)
2

∗

0 G
(2)
3

∗
⋆

 ,
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where the relevant blocks of the right side are ⋆ 0 0

0 ⋆ G
(2)
2

∗

0 G
(2)
3

∗
⋆


 X

(1)
1 ⋆ ⋆

Z
(1)
X ⋆ ⋆
0 ⋆ ⋆

 =

 ⋆ ⋆ ⋆
⋆ ⋆ ⋆
0 ⋆ ⋆

 .

A completely analogous representation with matrix Y exists. To obtain the zero elements in the lower

left corner of the matrix on the right side, we need G
(2)
3

∗
Z

(2)
X = G

(2)
3

∗
Z

(2)
Y = 0 which implies G

(2)
3

∗
= 0

since (Z
(2)
X ,Z

(2)
Y ) has full row rank. Using the same arguments as above, from I = G(2)G(2)∗ also G

(2)
2

∗

becomes 0 in G(2)∗. Using exactly the same line of argument we can continue with Z(3),Z(4), . . . until
we finish with a structure of G as in (13). Since G is a unitary matrix its diagonal blocks have full rank.
Using again the structure of U∗XU and U∗YU from (11) for the block of size (m − ρi) × (ri + ri) we
have

G
(i)
4

∗ (
X

(i)
3 ,Y

(i)
3

)
G

(i)
1 = 0,

which cannot hold since (X
(i)
3 Y

(i)
3 ) has full rank. Consequently, our assumptions are contradicted, and

there is no matrix U that exists which transforms the X, Y, Z matrices in the required from and therefore
n = m holds. �

The computation of the matrix B from the matrices (D0,D1) rather than from the matrices CD0,D1(n)
and CD0,D1(n) is recommended since it is more efficient and numerically stable (see also [10, p. 116]). The
algorithm can also be applied to compute a non-singular matrix B that observes the following relation.

νB = (ϕ,0) , B−1D0B =

(
C0 0
⋆ ⋆

)
and B−1D1B =

(
C1 0
⋆ ⋆

)
. (14)

Instead of applying the algorithm to (D0,D1, I1m), it is called with ((D0)
T , (D1)

T , νT ) resulting in a
matrix B that observes (14), if such a matrix exists.

Example 2 We consider a MAP of size 3 that can be represented by an equivalent RAP of size 2.

D0 =

 −5 1 0
3 −3 0
1 1 −5

 , D1 =

 0 0 4
0 0 0
1 1 1

 .

For this representation rC = 3, whereas rO = 2 such that Theorem 4 applies. The embedded stationary
initial vector equals ν = (1/7, 1/7, 5/7). With the staircase algorithm we obtain the following unitary
matrix

U =

 −0.68041 −0.19245 −0.70711
0.68041 −0.19245 0.70711
−0.27217 −0.96225 0

 ,

which is presented here with 5 significant digits of accuracy. Since U∗ I13 = (1.08866,−1.34715, 0)T ,
matrix U∗ has to be normalized resulting in the transformation matrix

B−1 =

 0.62500 0.62500 −0.25001
0.14286 0.14286 0.71429
−0.70711 0.70711 0

 ⇔ B =

 0.74074 0.25926 −0.70710
0.74074 0.25926 0.70710
−0.29629 1.2963 0

 ,

such that

B−1D0B =

 −2.5926 0.84261 0
1.6931 −4.4074 0
2.0951 7.3331 −6

 , B−1D1B =

 −1.0370 2.7870 0
0.67724 2.0370 0
0.83805 −3.6665 0


νB = (0, 1, 0) , B−1 I13 = (1, 1, 0)T

and

C0 =

(
−2.5926 0.84261
1.6931 −4.4074

)
, C1 =

(
−1.0370 2.7870
0.67725 2.0370

)
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is the resulting equivalent RAP of minimal order. This example indicates that the STAIRCASE method
is not meant for finding a MAP representation. For that purpose the procedure of [20] can be applied. In
case of (C0,C1) this procedure finds the following equivalent MAP representation

C′
0 =

(
−2.1713 0.421305
1.15009 −4.82871

)
, C′

1 =

(
0.3565 1.3935
3.035 0.6435

)
.

Example 3 We now modify the MAP slightly by modifying one element in D0 and D1.

D0 =

 −5 1 0
3 −3 0
1 1 −4

 , D1 =

 0 0 4
0 0 0
1 1 0

 .

In this case rC = 2 and by the staircase algorithm we obtain

C0 =

(
−6 1.17157
0 −2

)
and C1 =

(
0 4.82843
0 2

)
.

Now for representation (C0,C1) we have rO = 1 which means that the MAP is equivalent to a Poisson
process with rate 2. Consequently, (D0,D1) is a representation which contains redundancy according to
both, the initial and the closing vector. The first step, STAIRCASE(D0,D1, I1), eliminates the redundancy
due to the closing vector, while the second step STAIRCASE(CT

0 ,C
T
1 , ϕ

T ) eliminates the redundancy due
to the initial vector.

6 Approximation of BMAP/MAP/1 Output Processes

In [14, 22] Heindl and his coworkers present an approach to approximate the output process of a
MAP/MAP/1 and a BMAP/MAP/1 queue by a finite MAP. For these examples it has been found
that the resulting MAPs or RAPs are often redundant and can be reduced with the algorithm proposed
here. We consider in our example only the MAP/MAP/1 case but the approach can be easily extended
to arrivals from a BMAP. Let the service process be MAP(S0,S1) and the arrival process MAP(A0,A1).
The underlying Markov process has a quasi birth and death structure with generator matrix

Q =


L̃ F 0 0 0 · · ·
B L F 0 0 · · ·
0 B L F 0 · · ·
...

...
. . .

. . .
. . .

. . .

 ,

where L̃ = A0 ⊗ I, F = A1 ⊗ I, L = A0 ⊕ S0 and B = I ⊗ S1. The exact departure process can be
described as MAP of infinite size with the matrices

Do =


L̃ F 0 0 0 · · ·
0 L F 0 0 · · ·
0 0 L F 0 · · ·
...

...
. . .

. . .
. . .

. . .

 and D1 =


0 0 0 0 0 · · ·
B 0 0 0 0 · · ·
0 B 0 0 0 · · ·
...

...
. . .

. . .
. . .

. . .

 .

The following finite truncation up to population n has been defined in [22, 14] for the process.

Dn
o =



L̃ F 0 0 · · · 0

0 L F 0
. . .

...

0 0 L F
. . .

...
...

...
. . .

. . .
. . . 0

0
... · · · 0 L F

0 · · · · · · · · · 0 L+ F


and Dn

1 =



0 0 0 0 · · · 0

B 0 0 0
. . .

...

0 B 0 0
. . .

...
...

...
. . .

. . .
. . .

...
...

... 0 B 0 0
0 · · · · · · 0 B− FG FG


,
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where G is the solution of the matrix quadratic equation B+LG+FG2 = 0. Observe that (Dn
0 ,D

n
1 ) is

not necessarily a MAP since the resulting matrices may contain negative elements outside the diagonal
of Dn

0 . We now show an example where the resulting representation is non-minimal.

Example 4 Consider a queue with arrival MAP

A0 =

(
−6.9375 0.9375
0.0625 −0.1958

)
, A1 =

(
6 0
0 0.1333

)
and service MAP

S0 =

(
−16 3
0 −2

)
, S1 =

(
6.5 6.5
1 1

)
.

For truncation level n = 2, the following representation for the output process is computed.

D0 =



−6.9375 0 0.9375 0 6 0 0 0
0 −6.9375 0 0.9375 0 6 0 0

0.0625 0 −0.1958 0 0 0 0.1333 0
0 0.0625 0 −0.1958 0 0 0 0.1333
0 0 0 0 −16.938 3 0.9375 0
0 0 0 0 0 −2.9375 0 0.9375
0 0 0 0 0.0625 0 −16.063 3
0 0 0 0 0 0.0625 0 −2.0625


,

D1 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

4.3570 4.3575 −0.8575 −0.8575 2.1425 2.1425 0.8575 0.8575
−6.94e− 2 −6.94e− 2 −1.9306 −1.9306 1.0694 1.0694 1.9306 1.9306
−3.25e− 4 −3.25e− 4 6.4337 6.4337 3.25e− 4 3.25e− 4 6.63e− 2 6.63e− 2
−7.32e− 4 −7.32e− 4 0.9341 0.9341 7.32e− 4 7.32e− 4 6.59e− 2 6.59e− 2


.

The rank of this representation is 6 such it can be equivalently represented by the matrices.

C0 =


−17.437 −1.3856 1.2600 1.5045 −2.2367 9.4778
−0.7536 −1.9889 −1.6629 −1.5543 −5.1252 4.6997
−2.7774 1.5484 −6.5427 −1.8290 −5.8846 7.0416
0.00167 0.5878 −3.6457 −2.5127 −5.7433 1.0085
−0.1702 −0.9751 −1.3438 0.9071 −14.863 −1.2237
0.0000 0.0000 0.0000 0.1200 −2.9253 −1.7892

 ,

C1 =


1.0029 −5.2946 −5.1786 0.4482 2.1492 15.690
−0.3269 1.46335 1.3392 −4.4856 −2.3315 10.726
0.1271 −0.5211 −0.4571 −0.4191 0.01373 9.7002
−0.1453 0.7544 0.7335 −2.0075 −1.0883 12.0418
−0.1203 0.5500 0.5081 −5.8666 −2.5615 25.159
0.0000 0.0000 0.0000 −0.9334 −0.3760 5.9039

 .

7 Extension to batch and marked RAPs

MAPs and RAPs can be used to model processes with a single type of event, which result in single arrivals
or services. It is natural to extend MAPs to generate batches of arrivals or multiple event types. This
resulted in the definition of batch MAPs (BMAPs) [16, 18] and marked MAPs (MMAPs) [12].

Similar to the extension from MAPs to BMAPs, the class of batch rational arrival processes (BRAPs)
has been introduced in [4]. We consider BRAPs with at most K arrivals at a time that are defined by a
set of K +1 matrices (D0, . . . ,DK), and also similar to the extension from MAPs to MMAPs, we define
a marked rational arrival process (MRAP) with K event types by a set of K + 1 matrices (D0, . . . ,DK)
such that
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1. (D0 +
∑K

k=1 Dk) I1 = 0,

2. all eigenvalues of D0 have a negative real part which implies that the matrix is non-singular [15],

3. P = −D−1
0

(∑K
k=1 Dk

)
has a unique eigenvalue 1 such that the solution νP = ν, ν I1 = 1 is unique,

and

4. the function

f(D0,...,DK) (t1, k1, . . . , tj , kj) = νeD0t1Dk1e
D0t2Dk2 . . . e

D0tjDkj I1 (15)

is a valid joint density for all ti ≥ 0 and ki ∈ {1, . . . ,K}
(i = 1, . . . , j). That is f(D0,...,DK) (t1, k1, . . . , tj , kj) ≥ 0 and∑

k1
. . .
∑

kj

∫
t1
. . .
∫
tj
f(D0,...,DK) (t1, k1, . . . , tj , kj) dtj . . . dt1 = 1.

We assume a finite K in this paper, because even though our results are valid for K = ∞, the
resulting procedure (for example, checking the rank of an infinite matrix) is impractical. Observe that
the stationary vector of an MRAP, ν, and any matrix Dk, k = 0, . . . ,K may contain negative elements
and the diagonal of D0 may contain positive elements. The class of BRAPs (MRAPs) contains BMAPs
(MMAPs). The conditions of the Markovian behavior are ν ≥ 0, Dk ≥ 0 for k = 1, . . . ,K and all
non-diagonal elements of D0 are non-negative. To avoid duplicate references from now on we refer only
to MRAPs, noting that the extensions presented apply to BRAPs in the same way. The extensions of
the required definition and basic theorems to MRAPs is straightforward.

Definition 4 Two MRAPs, MRAP(D0, . . . ,DK) and MRAP(C0, . . . ,CK), are equivalent if and only if
all joint density functions are identical (cf., (15)).

Definition 5 The size of the representation (D0, . . . ,DK) is the size of the square matrix D0.

Definition 6 A representation (D0, . . . ,DK) of size m is minimal, if no other equivalent representation
(C0, . . . ,CK) of size n < m exists.

Theorem 7 If there is a matrix V ∈ IRm,n such that I1m = V I1n, DkV = VCk, k = 0, . . . ,K and

νV = ϕ, where ν (−D0)
−1
(∑K

k=1 Dk

)
= ν and ϕ (−C0)

−1
(∑K

k=1 Ck

)
= ϕ, then (D0, . . . ,DK) and

(C0, . . . ,CK) are equivalent.

Proof. The proof follows the same pattern as the one in Theorem 1. �

Theorem 8 If there is a matrix W ∈ IRn,m such that I1n = W I1m, WDk = CkW, k = 0, . . . ,K and

ν = ϕW where ν (−D0)
−1
(∑K

k=1 Dk

)
= ν and ϕ (−C0)

−1
(∑K

k=1 Ck

)
= ϕ, then (D0, . . . ,DK) and

(C0, . . . ,CK) are equivalent.

Proof. The proof follows the same pattern as the one in Theorem 2. �

7.1 Minimal representation of MRAPs

Let M = −D−1
0 and Pk = MDk, k = 1, . . . ,K, where (M,P1, . . . ,PK) and (D0, . . . ,DK) mutually

define each other since D0 = −M−1 and Dk = −D0Pk. For an MRAP (D0, . . .DK) of size m define
the following matrices which are natural extensions of the corresponding matrices defined in Section 4
for RAPs.

CD0 = CD0(0) =
(
I1,M I1, . . . ,Mm−1 I1

)
,

CD0,DK
= CD0,DK

(0) =
(
CD0 ,P1CD0 ,P

2
1CD0 , . . . ,P

m−1
1 CD0 ,P2CD0 , . . . ,P

m−1
K−1CD0 ,PKCD0 , . . . ,P

m−1
K CD0

)
,

CD0(n+1) =
(
CD0,DK

(n),MCD0,DK
(n), . . . ,Mm−1CD0,DK

(n)
)
,

CD0,DK (n+1) =
(
CD0(n+1),P1CD0(n+1), . . . ,P

m−1
1 CD0(n+1), . . . ,PKCD0(n+1), . . . ,P

m−1
K CD0(n+1)

)
,
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CD0
(0) is of size m×m, CD0,DK

(0) is of size m×m2K, CD0
(1) is of size m×m3K and CD0,DK

(1) is

of size m×m4K2. In general, CD0(n) is an m×
(
m2K

)n
m matrix and CD0,D1(n) is an m×

(
m2K

)n+1

matrix. The rank of the generalized controllability matrix is rC = rank(CD0,DK (m)). Similar to the
RAP case this is a simple, but very redundant definition of rC , but it can be computed in a much more
efficient way with the following algorithm.
———————————
1. RC RANK K(D0, . . . ,DK)

2. roC = 0, M = −D−1
0 , FOR k = 1 TO K DO Pk = MDk,

3. rC = 1, Z = I1, Θ = Z, H = M,

4. FOR n = 0 TO m DO

5. WHILE rc < rank(Θ,HZ) DO Θ = (Θ,HZ), H = HM, rc = rank(Θ);

6. / ∗ rC = rank of CD0(n) ∗/
7. IF rC == roC OR rC == m THEN RETURN(rC);

8. roC = rC ;

9. FOR k = 1 TO K DO

10. Z =SPANNING(Θ); H = Pk;

11. WHILE rc < rank(Θ,HZ) DO Θ = (Θ,HZ), H = HPk, rc = rank(Θ);

12. / ∗ rC = rank of CD0,D1(n) ∗/
13. IF rC == roC OR rC == m THEN RETURN(rC);

14. roC = rC ; Z =SPANNING(Θ); H = M;

15. ENDFOR
———————————
Similarly, let

OD0 = OD0(0) =


ν

νM
...

νMm−1

 , OD0,DK = OD0,DK (0) =



OD0

OD0P1

...
OD0P

m−1
1

...
OD0P

m−1
K


,

OD0(n+1) =


OD0,DK

(n)
OD0,DK

(n)M
...

OD0,DK
(n)Mm−1

 , OD0,DK
(n+1) =



OD0(n+1)
OD0(n+1)P1

...
OD0(n+1)Pm−1

1
...

OD0(n+1)Pm−1
K


,

where νP = ν, ν I1 = 1. The rank of the generalized observability matrix is rO = rank(OD0,DK
(m)).

With these definition of rC and rO Theorem 5 remains valid for MRAPs.

7.2 The staircase algorithm for MRAPs

The computation of a smaller representation of an MRAP with representation (D0, . . . ,DK) according
to Theorem 3 can be done with the following version of the staircase algorithm. It should be called
as STAIRCASE K(D0,D1, . . . ,DK , I1m) to remove redundancy according to the closing vector or as
STAIRCASE K((D0)

T , (D1)
T , . . . , (DK)T , νT ) to remove redundancy according to the initial vector.
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———————————
1. STAIRCASE K(X0, X1, . . . , XK , Z)

2. i = 0; {m, j} =SIZE(X0); U
∗ = I;

3. REPEAT

4. i = i+ 1 ; ri = rank(Z) ; {Ui,Si,Ti} =SVD(Z) ;

5.

(
Ẑ
0

)
= U∗

iZ ; FOR k = 0 TO K DO

(
X̂k X̌k

X̃k X̄k

)
= U∗

iXkUi ;

/∗ X̂k are of size ri × ri ∗/

6. U∗ =

(
I∑i

j=1 rj
0

0 U∗
i

)
U∗ ;

7. Z =
(
X̃0 X̃1 . . . X̃K

)
; FOR k = 0 TO K DO Xk = X̄k;

8. UNTIL rank(Z) = m−
∑i

j=1 rj or Z = 0 ;

9. IF (Z = 0) THEN

10. n =
∑i−1

j=1 rj ;

11.

(
x

0m−n

)
= U∗ I1m ;

12. IF (x ̸= 0) THEN R = I ELSE R = non-singular matrix such that Rx ̸= 0

13. /* element-wise */

14. y = Rx ; Γ = diag(y) ; B =

[(
Γ−1 0
0 Im−n

)(
R 0
0 Im−n

)
U∗
]−1

;

15. ELSE n = m ; B = I ; /* no reduction is possible */

16. RETURN(n,B) ;
———————————

Example 5 We consider the following MMAP with 3 states and the matrices

D0 =

 −6 0 0
0 −5 2
0 0 −3

 , D1 =

 0 1 5
1 1 0
1 0 1

 , D2 =

 0 0 0
0 1 0
0 0 1

 .

After removing the redundancy due to the closing vector we obtain the following MRAP of size 2

D0 =

(
−5.8165 −0.63299
−0.8165 −3.18350

)
, D1 =

(
−2.8777 9.47698
−0.5443 3.87766

)
, D2 =

(
0.061168 −0.2110
−0.27217 0.9388

)
.

8 Conclusions

This paper presents explicit conditions to decide if a RAP representation is minimal and a computational
method for creating a minimal representation if it is not the case.

It turns out that, in contrast with the preliminary expectations based on [20], the rank of a RAP cannot
be decided based on rank(CD0,D1) and rank(OD0,D1) alone, both matrices are necessary to compute a
minimal representation. The minimization of RAPs is important because then they can be used in a
more efficient system analysis. As shown by the example of finding the minimal representation of RAPs
is underlined by an example in which the output process of an MAP/MAP/1 queue, it is sometimes
possible to find a reduced equivalent representation which can then be used in further analysis steps for
example as input process of another queue in tandem system. In a final step we extended the class of
RAPs to RAPs with multiple entity types denoted as MRAPs or BRAPs. It is shown that the conditions
for minimality representations and also the minimization algorithms can be naturally extended to this
more general case.
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The paper presents one step in the more general context of using RAPs rather than only Markovian
processes in performance and dependability analysis. This extension is attractive since RAPs are more
general in particular for a fixed size of the state space. In this paper we showed how to reduce a MAP
to a RAP such that the state space size is minimal, other aspects are exact and approximate analysis
techniques for the resulting processes as they are available for Markov processes but still require research
work in the case of RAPs.
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