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A new class of non-Markovian models is introduced that results from the combination

of stochastic automata networks and a very general class of stochastic processes namely

rational arrival processes which are derived from matrix exponential distributions. It is

shown that the modeling formalism allows a compact representation of complex models

with large state spaces. The resulting stochastic process is non-Markovian but it can be

analyzed with numerical techniques like a Markov chain and the results at the level of the

automata are stochastic distributions that can be used to compute standard performance and

dependability results. The model class includes stochastic automata networks with phase

type distributed and correlated event times and includes also models that have a finite state

space but cannot be represented by finite Markov chains. The paper introduces the model

class, shows how the descriptor matrix can be represented in compact form, presents some

example models and outlines methods to analyze the new models.
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1. Introduction

Markov models have been used in performance and dependability modeling for a long time

(e.g., Stewart, 1994). Their major advantage is the possibility of analyzing the resulting

Markov chain using numerical, simulative and a large number of approximate techniques.

However, the major disadvantage of Markov models is the problem of state space explosion

which implies that even harmless looking models result in state spaces of enormous size.

Even on contemporary hardware many realistic models cannot be analyzed numerically.

Consequently, the handling of large state spaces is a major research topic in Markov modeling.
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The most successful approach in handling large state spaces is based on a structured

description of models as a set of communicating components. This approach which has

been published in different variants during the last decades (e.g., in Buchholz et al., 2000;

Buchholz, 1992; Donatelli, 1994; Hermanns, 2002; Hillston, 1995; Plateau, 1985) allows one

to represent the generator matrix of the Markov chain in a compact form that avoids the

exponential growth and can be exploited in efficient numerical analysis techniques. The

reason for state space explosion is the combinatorial growth of the state space in terms of the

size of the state spaces of several components. This means that a large number of components

or components with larger state spaces result in huge Markov chains. So called structured

numerical analysis techniques represent the transition matrix in compact form such that the

storage and computation of the solution vector becomes the major bottleneck. One reason

for large component state spaces is the modeling of non-exponential distributions by phase

type (PH) distributions (Neuts, 1981) with a large number of phases. PH distributions are

often implicitly used in structured Markovian models as for example in (Buchholz et al., 2000;

Buchholz, 1992; Hermanns, 2002) but the integration of PH distribution in compositional

models is still an open topic (e.g., Sbeity et al., 2008). Often the reason for a large number of

phases are distributions with a small coefficient of variation or density functions with a large

number of local maxima and minima. A sufficiently accurate modeling of those distributions

with PH distributions requires many phases. The use of general distributions instead of PH

distributions destroys the Markov property such that the models are not or only with high

effort solvable by numerical techniques.

A generalization of PH distributions are Matrix Exponential (ME) distributions as de-

scribed in (Lipsky, 2008) which are based on a poorly algebraic description using matrices

and vectors. Although ME distributions have been known for some time they have rarely

been used in performance and dependability modeling. The reasons for this limited use are

missing stochastic interpretation, missing methods to fit distribution parameters and missing

analysis algorithms. However, recent results indicate that ME distributions or their exten-

sion Rational Arrival Processes (RAPs) developed in (Asmussen and Bladt, 1999) are an

interesting extension of PH distributions and Markovian Arrival Processes (MAPs) (Neuts,

1979) since they are more general and models including ME distributions and RAPs can be

analyzed like Markov chains with efficient numerical techniques as recently shown in (Bean

and Nielsen, 2010; Buchholz and Telek, 2010).

However, up to now ME distributions and RAPs are not used in structured descriptions
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of models and it has not been proved whether the compositionality of Markov models can

be extended to models including more general distributions. In this paper we propose a

new class of non-Markovian models based on stochastic automata networks (SANs) with

firing time distributions that are defined by ME distributions or RAPs. Since the model

class does not have a probabilistic interpretation, we name the corresponding components

as Rational Automata (RA), their networks as Rational Automata Networks (RANs) and

the underlying processes as Rational Processes (RPs). It will be shown that RPs can be

analyzed with similar techniques as Markov chains and that the descriptor of a RP resulting

from a RAN can be represented in a compact form similar to the descriptor of a SAN using

Kronecker products and sums. Although we restrict the model class to networks of automata

it can be easily extended to other approaches like stochastic Petri nets or stochastic process

algebras that can also be used to specify RPs in a structured form.

The paper is structured as follows. In the next section we define ME distributions and

RAPs. Furthermore, we extend the class of RAPs to RAPs with multiple events denoted as

MRAPs and show that ME distributions, RAPs and MRAPs are closed under composition

realized by a restricted form of synchronized products. Section 3 introduces rational au-

tomata as an extension of stochastic automata where event durations are described by ME

distributions and MRAPs. Then, in Section 4, networks of rational automata are built and

it is shown that the descriptor of a network of rational automata can be represented by a

sum of Kronecker products like the descriptor of a SAN. It is also outlined how numerical

solution techniques can exploit this representation. The paper ends with the conclusions.

Proofs of the theorems that are presented in the paper can be found in the appendix.

2. Matrix Exponential Distributions and Related Pro-

cesses

In this section we describe the class of distributions and processes that build the base of our

modeling approach.

2.1. ME Distributions

A ME distribution is defined as follows in (Lipsky, 2008).

Definition 1 Let G0 be a non-singular n× n real valued matrix where the real parts of all

eigenvalues are negative, I1 is a column vector of ones and π is an n-dimensional row vector
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with π I1 = 1. The pair (π,G0) defines a Matrix Exponential (ME) distribution of size n if

and only if

F(π,G0)(t) = 1− πeG0t I1

defines a valid distribution function.

Observe that F(π,G0)(0) = 0 follows from π I1 = 1. Several results on ME distributions

can be found in the literature (e.g., (Bladt and Neuts, 2003; Fackrell, 2005; Lipsky, 2008)).

Obviously, a PH distribution is a special case of a ME distribution where all off-diagonal

elements of matrix G0 are non-negative and all elements of vector π are non-negative. How-

ever, it can be shown that the class of ME distributions of size n > 2 is strictly larger than

the class of PH distributions of the same size (see Horváth et al., 2009) and the class of ME

distributions of finite size contains some distributions where the density becomes 0 in (0,∞)

which is not possible with a PH distribution of finite size.

Example 1 The following vector matrix pair from (Fackrell, 2003) defines for h ≤
2.30033340858 a ME distribution and can be represented as a PH distribution of size 3 for

h ≤ 0.552748375.

π = (0.2, 0.3, 0.5) , G0 =

 −1 0 0
0 −3 h
0 −h −3

 .

At h = 0.552748375 the canonical PH representation is (see Horváth and Telek, 2009)

π̃ = (0.988469, 0.0115306, 0) , G̃0 =

 −2.91865 0 0.176486
2.91865 −2.91865 0

0 1.16269 −1.16269

 .

The following matrix vector pair from (Éltető et al., 2006) describes also a ME distribution.

π = (2.63479,−1.22850,−0.406283) ,

G0 =

 −2.25709 0 0
0 −2.25709 −2.338187
0 2.338187 −2.25709

 .

This distribution has a squared coefficient of variation of 0.2009. Observe that a PH distri-

bution with 5 phases is necessary to reach such a low coefficient of variation.
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2.2. RAPs and MRAPs

To model correlations, ME distributions can be extended to rational arrival processes (RAPs)

(Asmussen and Bladt, 1999) like PH distributions have been extended to MAPs. We define

an extension of RAPs, namely MRAPs which consider multiple event types like MMAPs

(He and Neuts, 1998) which extend MAPs by introducing multiple event types. It should

be mentioned that MRAPs are structurally identical to BRAPs which have been defined in

(Bean and Nielsen, 2010) to model batch arrivals with inter-arrival times defined by a RAP.

Definition 2 A marked rational arrival process (MRAP) of size n with K event types is

defined by a set of K + 1 matrices of size n× n (G0, . . . ,GK) such that

1. (G0 +
∑K

k=1 Gk) I1 = 0,

2. all eigenvalues of G0 have a negative real part which implies that the matrix is non-

singular (Lipsky, 2008),

3. P = −G−1
0

(∑K
k=1 Gk

)
has a unique eigenvalue 1 such that the solution πP = π,

π I1 = 1 is unique and

4. f(G0,...,GK) (t1, k1, . . . , tj, kj) = πeG0t1Gk1e
G0t2Gk2 . . . e

G0tjGkj I1 is a valid joint density

for all ti ≥ 0 and ki ∈ {1, . . . , K} (i = 1, . . . , j). That is f(G0,...,GK) (t1, k1, . . . , tj, kj) ≥
0 and∑

k1
. . .
∑

kj

∫
t1
. . .
∫
tj
f(G0,...,GK) (t1, k1, . . . , tj, kj) dtj . . . dt1 = 1.

f(G0,...,GK) (t1, k1, . . . , tj, kj) is the probability density of the event that the first j arrivals

happen with inter-arrival times t1, . . . , tj and these arrivals are of types k1, . . . , kj. If Gk ≥ 0

for k = 1, . . . , K and G0 has non-negative off-diagonal elements, then the process is an

MMAP and f(G0,...,GK) (t1, k1, . . . , tj, kj) is necessarily a probability distribution. For K = 1

we obtain the definition of a RAP. Each ME(π,G0) distribution can be expanded into a

ME renewal process, which is a RAP with K = 1, (G0,G1 = −G0 I1π). To represent the

transient behavior of MRAP(G0, . . . ,GK) its description is extended by an initial vector ϕ.

The initial vector ϕ is valid for a MRAP(G0, . . . ,GK), if ϕe
G0t1Gk1e

G0t2Gk2 . . . e
G0tjGkj I1 is

a valid joint density for all ti ≥ 0 and ki ∈ {1, . . . , K} (i = 1, . . . , j). In the rest of the paper,

sometimes we add the initial vector ϕ to the MRAP definition such that (ϕ,G0, . . . ,GK) is

denoted as MRAP with initial vector ϕ. If ϕ = π which is the initial vector given by the left
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eigenvector of matrix P, we have the stationary behavior of the MRAP and do not indicate

the initial vector.

If ϕ ̸= π, then the MRAP is considered with another initial vector which differs from the

stationary vector after an arbitrary event. E.g., if one wants to analyze the process after an

event of class k, then ϕ = π(−G0)
−1Gk/(π(−G0)

−1Gk I1).

Definition 3 For a MRAP (ϕ,G0, . . . ,GK) we define the set of available initial vectors

V(ϕ,G0,...,GK) as follows. Let

V(0)
(ϕ,G0,...,GK) = {ϕ} ,

V(i+1)
(ϕ,G0,...,GK) =

{
ν

∣∣∣∣ν = ηeG0tGk for i > 0, t ≥ 0, k ∈ {1, . . . K}, η ∈ V(i)
(ϕ,G0,...,GK)

}
and

V(ϕ,G0,...,GK) =
∞∪
i=0

V(i)
(ϕ,G0,...,GK).

Corollary 1 (ϕ,G0, . . . ,GK) defines a MRAP if and only if ν I1 ≥ 0 for all vectors ν ∈
V(ϕ,G0,...,GK).

Definition 3 avoids the normalization of vectors. It is implicitly assumed that if ν ∈
V(ϕ,G0,...,GK), then also cν ∈ V(ϕ,G0,...,GK) for all c > 0. It is because a multiplication with c

does not affect the nonnegativity of ν I1.

Example 2 The following matrixes define a MRAP

G0 =

 −1.89167 −0.6 −0.05
0.198611 −3.1 −0.0916667
2.18472 −1.1 −4.00833

 , G1 =

 1.09167 −0.145833 0.554167
2.00139 −1.18403 1.09931
2.01528 −1.02431 0.0923611

 ,

G2 =

 0 0.545833 0.495833
0.166667 1.00069 −0.0909722
1.83333 0.00763889 −0.000694444

 .

The stationary initial vector, satisfying π = −πG−1
0

(∑K
k=1 Gk

)
, π I1 = 1, is π =

(0.9867,−0.1933, 0.2067). A valid transient initial vector is ϕ = (1.96,−1.08, 0.12).

These vectors and matrixes define a valid process because f(π,G0,...,GK) (t1, k1, . . . , tj, kj)

and f(ϕ,G0,...,GK) (t1, k1, . . . , tj, kj) are non-negative for all valid set of parameters. An

invalid transient initial vector is ϕ̂ = (−1, 3,−1), because with this initial vector

f(ϕ̂,G0,G1,G2)
(t1 = 1, k1 = 2) = −0.0237813.
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If we remove the events from a MRAP, we obtain a Rational Process (RP) defined as

follows.

Definition 4 Let (G0, . . . ,GK) be a MRAP, then G =
∑K

k=0 Gk is the transition matrix of

a rational process (RP).

Due to the conditions for MRAPs, matrix G of a RP has a unique eigenvalue 0 such that

the solution ψG = 0 with ψ I1 = 1 exists. ψ is the stationary vector of the RP which can

be computed from the solution of a linear set of equations. Similarly, the transient vector is

given by νt = ν0e
Gt where ν0 is the initial vector which has to be a valid initial vector for

the MRAP from which the RP has been generated.

Theorem 1 If G is the matrix of a RP and ν0 is an initial vector with ν0 I1 = 1, then νt I1 = 1

for all t ≥ 0.

As it is seen in Example 2 neither ψ nor νt need to be probability vectors with non-

negative elements. They may contain negative values but the elements should sum up to

1.

2.3. Composition of MRAPs

It is known that the class of PH distributions and MAPs are closed under several composition

operations. We now show that some composition results hold for MRAPs too.

We begin with the thinning of MRAPs. Thinning is a way to generate an (thinned)

arrival process from an original arrival process. It works such that an arrival of the original

process is probabilistically decided whether it is accepted or not. The set of accepted arrivals

form the thinned arrival process. The following theorem shows that the class of MRAPs is

closed under thinning and presents the matrix representation of the thinned process.

Theorem 2 Let (G0, . . . ,GK) be a MRAP, pk ∈ [0, 1] (k = 1, . . . , K) and for at least one

k ∈ {1, . . . , K} pk > 0, then (H0, . . . ,HK) = (G0 +
∑K

k=1(1 − pk)Gk, p1G1, . . . , pKGK) is

the thinned process which is also a MRAP.

In the above theorem pk = 0 for all k ∈ {1, . . . , K} has been excluded since in this case

we obtain a RP rather than a RAP. If some of the values pk are zero, then the corresponding

classes are no longer visible in the thinned process.
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The second operation is the synchronized composition of MRAPs. To define this com-

position let Ĝk = diag(Gk I1) where diag(a) for a vector a is a diagonal matrix with a(i) in

position (i, i) and for a MRAP (π,G0, . . . ,GK) let G
′
0 = G0 +

∑K
k=1 Ĝk.

For synchronized composition we consider MRAPs that are defined over the same set of

events K = {1, . . . , K} and synchronization is performed over an event set C ⊆ K. Now

assume that two MRAPs (G0,Gl(l ∈ G)) and (H0,Hm(m ∈ H)) with K = G ∪H should be

composed. Then first the event sets are made identical by adding so called pseudo events.

Thus, we define Gk = I for k ∈ C \G, Gk = 0 for k ∈ K \ (C ∪G), Hk = I for k ∈ C \H, and

Hk = 0 for k ∈ K \ (C ∪ H). The resulting MRAPs are (G0, . . . ,GK) and (H0, . . . ,HK).

Substituting I and 0 matrices in the composition operations defined in the following theorem

shows that these extensions do not modify the behavior of the composed process.

Theorem 3 Let (G0, . . . ,GK) and (H0, . . . ,HK) be two MRAPs of size n and m, respec-

tively. The synchronized composition via a set of classes C ⊆ K = {1, . . . , K} is denoted as

(G0, . . . ,GK)∥C(H0, . . . ,HK) and is defined as (F0, . . . ,FK) of size nm with

F0 = G′
0 ⊕H′

0 −
∑
k/∈C

Ĝk ⊕ Ĥk −
∑
k∈C

Ĝk ⊗ Ĥk,

Fk = Gk ⊕Hk, for k /∈ C,
Fk = Gk ⊗Hk, for k ∈ C,

(1)

where ⊗ is the Kronecker product and ⊕ the Kronecker sum (Stewart, 1994). (F0, . . . ,FK)

is a MRAP if the solution of ψF = 0, ψ I1 = 1 is unique, where F = F0 +
∑K

k=1 Fk and one

of the following conditions hold:

1. (G0, . . . ,GK) and (H0, . . . ,HK) are both MMAPs, or

2. C = ∅, or

3. (G0, . . . ,GK) and (H0, . . . ,HK) are both MRAPs and there exists F ⊆ C, such that

- for k ∈ F Hk I1 = dk I1, and

- for k ∈ C \ F Gk I1 = ck I1

furthermore

- (G̃0,Gk (for k ∈ K \ F), dkGk (for k ∈ F)) and

- (H̃0,Hk (for k ∈ K \ (C \ F)), ckHk (for k ∈ C \ F))
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are MRAPs too, where G̃0 = G′
0−

∑
k∈K\F

Ĝk−
∑
k∈F

dkĜk and H̃0 = H′
0−

∑
k∈K\(C\F)

Ĥk−∑
k∈C\F

ckĤk.

Naturally, the roles of (G0, . . . ,GK) and (H0, . . . ,HK) may be interchanged.

The theorem is central for the composition of MRAPs and we briefly explain the different

cases. Case 2 is the simplest one since it describes independent MRAPs which run in parallel.

It is intuitively clear that the resulting process is again an MRAP. The first case considers

the composition of two MMAPs where the result is again an MMAP. However, even if the

resulting process is an MMAP, the general composition has some strange properties. It is

for example sensitive to similarity transformation including speed up (change of the time

scale). Let (G∗
0, . . . ,G

∗
K) be a MRAP similar to (G0, . . . ,GK) (i.e., there exists a non-

singular B such that G∗
k = B−1GkB) then (G0, . . . ,GK)∥C(H0, . . . ,HK) is not similar to

(G∗
0, . . . ,G

∗
K)∥C(H0, . . . ,HK) in general. Furthermore, let (G∗

0, . . . ,G
∗
K) and (H∗

0, . . . ,H
∗
K)

be two MRAPs c times faster than (G0, . . . ,GK) and (H0, . . . ,HK) (i.e., G∗
k = cGk and

H∗
k = cHk) then (G0, . . . ,GK)∥C(H0, . . . ,HK) and (G∗

0, . . . ,G
∗
K)∥C(H∗

0, . . . ,H
∗
K) are two

different processes, in general. This behavior indicates that the composition of two processes

where the timing of an event may depend on the state of both processes has a behavior that

is not well defined since the composed process behaves differently at different time scales

which destroys the basic assumption of time scale invariance in modeling. If the composed

processes are MRAPs, then the general composition may even result in something that is

not a stochastic process. In the third case, the composition is restricted by defining for

each k one MRAP that determines the timing. The other MRAP only reacts which means

that it changes its state when the event occurs. Of course, different events can be triggered

by different MRAPs. This composition behaves well since it is invariant under similarity

transformations and assures that the resulting process is an MRAP. Constants ck, dk ̸= 1.0

can be used to slow down speed up events independently of the state of the other MRAP.

The following theorem introduces a specific case of a MRAP that is reset by or superposed

with a Poisson process.

Theorem 4 If (ϕ,G0,G1, . . . ,GK) is a MRAP, then

(ϕ,G0 − λI,G1, . . . ,GK , λ I1ϕ) and (ϕ,G0 − λI,G1, . . . ,GK , λI) are MRAPs for all λ ≥ 0.

If the solution ψF = 0, ψ I1 = 1 is non-unique and one of the three conditions holds, then

F is still the matrix of a rational process but does not fulfill the unique stationary condition
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of MRAPs. For the process (η,F0, . . . ,FK) this can imply that V(η,F0,...,FK) does not span

Rn. This property is the counterpart of reducibility of Markov models.

3. Rational Automata

The class of rational automata which is defined in this section is based on the class of

stochastic automata as they have been proposed by (Plateau, 1985; Plateau and Fourneau,

1991). The original version of stochastic automata has exponentially distributed event times

and contains state dependent rates. Only recently stochastic automata have been formally

extended by integrating PH distributions in (Sbeity et al., 2008). Implicitly PH distributions

have already been used in composed stochastic automata, stochastic Petri nets or stochastic

process algebras before for example in (Buchholz et al., 2000; Dayar et al., 1997; El-Rayes

et al., 1999). Here we use similar ideas. However, instead of using PH distributions, we use

MRAPs to model durations of events. The approach follows in some sense the generalization

of (Sbeity et al., 2008) but our approach differs in several details apart from the use of MRAPs

instead of PH distributions.

3.1. The Skeleton Automaton

We define the skeleton automaton as a finite automaton and denote the states of the skeleton

automaton as locations. Denote by L the finite set of locations for an automaton. The

dynamic behavior of an automaton is defined by transitions which are either local or belong

to a class Es of global events that are later used for synchronization. Define E = Es ∪ {ε}
where ε denotes local transitions. Let L = |L| be the number of locations, then the behavior

of the skeleton automaton can be described by a set of L × L matrices. Matrix Pe (e ∈ E)
describes the transitions due to event e. If event e is disabled in location x, then row x is

zero in Pe. If e is enabled in x, then row x defines a probability distribution, i.e., Pe(x, y) ≥ 0

and
∑

y∈L Pe(x, y) = 1. Events may also start and end in the same location but we assume

that Pϵ(x, x) = 0 to simplify the presentation of the descriptor matrix as introduced in the

following section. We furthermore assume that Pe equals the identity matrix if it is not

explicitly defined which means that additional events without any effect are added. We

define for a location x: Ena(x) ⊆ E as the set of events e such that Pe(x, y) > 0 for some y.

Furthermore, we define the initial location of the automaton as xini ∈ L. This definition
can be easily extended to a initial distribution by defining a probability distribution over the
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set of locations.

Examples

Different example automata are shown in Figures 1-3. We will briefly describe them and

continue to introduce the complete models in the following sections.

Automaton 2...J

0

1 2

Automaton 1

0

sr

r

rr

s ε
ε

Figure 1: Automata of the first example RAN

Example 3 The example (see Fig. 1) consists of two types of automata, Automaton 1 has

only a single location that enables the transitions r and s. It will act like a control process for

the other automata. The remaining automata belong to the second type with three locations.

In location 0 the automaton does some local processing which ends with a local transition

and results in a successful computation (location 1) or an unsuccessful computation (location

2). From location 2 the automaton has to be reset with an r transition. After a successful

computation the automaton can also be reset via an r transition or it can start a new service

via an s transition. Transitions labeled with r and s occur only synchronously in all automata.

The automata are described by the following matrices.

P(1)
s = P(1)

r = (1) , P(j)
ϵ =

 0 1− p p
0 0 0
0 0 0

 , P(j)
r =

 1 0 0
1 0 0
1 0 0

 , P(j)
s =

 0 0 0
1 0 0
0 0 0


where j = 2, . . . , J and p is the probability of an unsuccessful computation.

Example 4 The example (see Fig. 2) describes an automaton generating arrivals (Automa-

ton 1) followed by two queues (Automata 2 and 3) with capacity Ni (i = 1, 2), respectively.

The queues have specific failure event that is enabled whenever the queue is non-empty. If the

failure occurs in one of the queues both queues become empty and the input process is reset.

All automata are synchronized via the failure events f1, f2, event a describes an arrival to the

first queue and event s a service at the first queue corresponding to an arrival at the second
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f2

f1

f2
f2

...0 1 Ns s s
f 1

aa a a

f2

f1

f1
f2

Automaton 2

Automaton 3

...0 1 N
f 1

s s s s
ε ε ε

1

2

Automaton 1

0
a, f  , f  1 2

Figure 2: Automata of the second example RAN

queue. We skip the presentation of the matrices P(j)
e since they follow from the graphical

representation of the automata.

Automaton 2...JAutomaton 1

0

2

d

cf_i (i\=j)
(1−c)f_i (i\=j)

r_i

ε

1

d d, f_i (i\=j)

f_i (i\=j)

0

1 2

r_jε
ε

f_j

Figure 3: Automata of the third example RAN

Example 5 The example consists again of two types of automata. The first is a repair unit

which performs a repair operation of automaton i (i = 2, . . . , J) via event ri. Afterwards

it requires some spare time in location 1 before the next repair can be started. If an event

of type d occurs, the repair component goes down. The second type of automata describes

components subject to failures and recovery. In location 0 a component is working properly.

Via an internal transition, the component might get into recovery location 1. From the

recovery location, the component may recover by an internal transition or a second failure

may occur bringing the component down to location 2. Failures in component j (j = 2, . . . , J)

are described by event fj. If a failure occurs in a component, then other working components
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are affected with probability (1− c). If a component is affected it performs a transition from

location 0 to 1. A component in failure location 2 goes back to the working location 0 via

event rj. Event d is also enabled in location 2 but does not modify the location if it occurs.

The same holds for the events fi (i ∈ {2, . . . , J}\{j}) in the locations 1 and 2 of automaton

j. Automaton 1 and j (j = 2, . . . , J) are synchronized by transitions labeled with d, rj and

automaton j (j = 2, . . . , J) and i (i ∈ {2, . . . , J}\{j}) are synchronized by transitions labeled

with fi.

3.2. Adding Timing and Weight Information

The usual timing in stochastic automata (Plateau, 1985) is defined by exponential distri-

butions such that the resulting automaton can be interpreted as a CTMC with labeled

transitions. We now extend this interpretation by using MRAPs for the timing. Let D be

a set of MRAPs and denote by (π(d),G
(d)
0 , . . . ,G

(d)
Kd

) the dth MRAP in the set with n(d)

phases. Denote by Class(d) = {1, . . . , Kd} the set of all classes of MRAP d. This definition

naturally applies to a set of MRAPs, Class(D) =
∪

d∈D Class(d). Observe that the class of

MRAPs contains RAPs (with Kd = 1), MMAPs (with G
(d)
0 (x, y) ≥ 0 for x ̸= y and G

(d)
k ≥ 0

for 1 ≤ k ≤ Kd), MAPs (an MMAP with Kd = 1), ME distributions (with Kd = 1 and

G
(d)
1 = −G

(d)
0 I1π(d)) and PH distributions (a ME distribution where G

(d)
0 (x, y) ≥ 0 for x ̸= y

and G
(d)
1 ≥ 0).

Since automata are composed to build a network, the definition of timing information for

synchronized transitions is often crucial. One common solution is to define one automaton

as a master automaton that determines the timing of an event and the remaining automata

only react (see e.g., (Sbeity et al., 2008)). The disadvantage of this approach is that only the

complete model has an interpretation as a process since the behavior of isolated automata

according to transitions where the automaton is not the master is not defined. Thus, we

choose a slightly different approach by associating an exponential distribution with rate 1 to

those events where the timing is triggered by the environment. The exponential distribution

with rate 1 acts as a neutral element according to the synchronized composition of MRAPs

which is the basic operation to compose automata in a network. Let (π,G0, . . . ,GK) be

a MRAP and let (ϕ = (1),H0 = (−K),H1 = (1), . . . ,HK = (1)), then the synchronized

composition via C = {1, . . . , K} where the initial vector is computed as the Kronecker
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product of the initial vectors is given by

η = π ⊗ (1) = π

F0 = G′
0 ⊕ (0) +

∑K
k=1 Ĝk ⊗ (1) = G0

Fk = Gk ⊗ (1) = Gk

For a location x ∈ L let Act(x) ⊆ D be the set of MRAPs that are active in x. Each class

k ∈ Class(Act(x)) is assigned to exactly one e ∈ Ena(x) but it is possible that more than

one class k is assigned to an event. For a valid specification at least one k has to be assigned

to each event. Let Assign(x, e) ⊆ Class(Act(x)) be the set of classes of MRAPs assigned to

event e in location x. We usually use the notation (d, k) for elements of Assign(x, e) where

d is the MRAP and k denotes the class. Furthermore, we define for a location, event pair,

(x, e), where e ∈ Ena(x), the set Reset(x, e) ⊆ Act(x) which defines the set of MRAPs that

are reset when event e occurs in location x.

3.3. The Stochastic Process described by a RA

We denote the skeleton automaton plus the timing information as a rational automaton (RA).

The behavior of the RA is as follows: It starts in an initial location xini by initializing all

d ∈ Act(xini) according to the initial vector π(d). All MRAPs from Act(xini) run in parallel.

If a MRAP generates an event that is associated to event e ∈ Ena(x), the corresponding

transition e occurs in the automaton and the successor location is chosen according to the

probability distribution defined in row xini of matrix Pe. Let y be the successor location.

Then upon entering y all MRAPs d ∈ Reset(x, e) ∩ Act(y) and all newly activated MRAPs

d ∈ Act(y) \Act(x) are reinitialized according to π(d). The remaining MRAPs d ∈ (Act(y)∩
Act(x)) \Reset(x, e) keep their phases.

This behavior will now be described formally. The state space of a RA is defined by

expanding the location space by the state vectors of the active MRAPs in each location.

Thus,

S =
∪
x∈L

Sx =
∪
x∈L

×
d∈Act(x)

S(d)

where S(d) is the set space of MRAP d and Sx is the set of states belonging to location x.

The size of the state space equals

n = |S| =
∑
x∈L

∏
d∈Act(x)

n(d).
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We assume that the elements in D are ordered such that the enumeration of elements of D
is well defined.

The automata matrices Pe are expanded by considering the phases of the MRAPs. We

denote the resulting matrices by Qe. Each matrix Qe is structured into |L|×|L| submatrices

such that Qe[x, y] describes the transitions between location x and location y. The blocks

are built as follows.

Qe[x, y] =


⊕

d∈Act(x)

G
(d)
0 for e = ε and x = y,

Pe(x, y)
∑

(d,k)∈Assign(x,e)

V[d, k, x, y] otherwise
(2)

where V[d, k, x, y] = ⊗c∈Act(x)Vc[d, k, x, y] and

Vc[d, k, x, y] =



G
(d)
k if d = c and d ∈ Act(y)

G
(d)
k I1n(d) if d = c and d /∈ Act(y)

In(c) if d ̸= c and c ∈ (Act(x) ∩ Act(y)) \Reset(x, a)
I1n(c)π(d) if d ̸= c and c ∈ Act(x) ∩ Act(y) ∩Reset(x, a)
I1n(c) if d ̸= c and c ∈ Act(x) \ Act(y)
π(c) if d ̸= c and c ∈ Act(y) \ Act(x)
1 otherwise

where In and I1n are identity matrix and the unit column vector of dimension n, respectively.

As before let Q′
ε = Qε +

∑
e∈Es Q̂e with Q̂e = diag(Qe I1).

Vc[d, k, x, y] describe the role of event k of MRAP d in the transition from x to y when

MRAP c is active. Starting from the top the expression for Vc[d, k, x, y] describes the

following cases:

• The transition is due to MRAP c and it remains active.

• The transition is due to MRAP c and it becomes inactive.

• The transition is not due to MRAP c, it remains active and it is not reset.

• The transition is not due to MRAP c, it remains active and it is reset (re-initialized

with vector π(d)).

• The transition is not due to MRAP c and it becomes inactive.

• MRAP c was inactive and becomes active after the transition.

• MRAP c was inactive and remains inactive after the transition.

In the following we describe a rational automaton (RA) by its matrices, i.e., RA =

(Qε,Qe(e ∈ Es)) is a RA. A vector describing the state of a RA contains one entry per state

(i.e., has length n) and can be decomposed into subvectors π[x] according to the locations
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of the skeleton automaton. For state vector ν vector ν̃ is an aggregation that contains one

entry per location and is computed as

ν̃[x] =
∑
y∈Sx

ν[x](y),

where ν[x](y) is the entry for state y of location x. The initial vector π of a RA is defined

by assigning the initial vectors of the MRAPs to the states belonging to locations xini; i.e.,

π[x] =

{ ⊗
d∈Act(xini)

π(d) if x = xini,

0 otherwise.
(3)

As it is summarized in the following theorem, a RA in isolation has a well defined behavior

which might contain negative elements at the state level but at the location level the behavior

is characterized by non-negative probabilities. For example, ν[x](y) might be negative, but

ν̃[x] is non-negative.

Theorem 5 Let (π,Qε,Qe(e ∈ Es)) be a RA, then

1. for any t > 0 the vector ν̃t that results from νt = πeQt with Q =
∑

e∈E Qe represents a

probability distribution over the locations (i.e., ν̃t[x] ≥ 0 for all x ∈ L and
∑

x∈L ν̃t[x] =

1), and

2. it is a MRAP, if ηQ = 0 and η I1 = 1 has a unique solution and limt→∞ πeQt = η.

Before we consider the computation of transient or stationary vectors in the following sec-

tion, networks of RAs are introduced and it is shown that a network can again be interpreted

as a RA.

Examples

We extend the examples for the skeleton automata presented in Example 3-5 by introducing

timing information. Although we do not explicitly define for an event a master automaton

that determines the time, as it is done in other approaches, we have implicitly such a concept

in our models using the Poisson signal with rate 1 and assuming that the timing of an event

is defined in one automaton.
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Example 3 In Example 3 we assume that automaton 1 defines the timing for both events r

and s. We assume that the event type s has an exponential duration with rate λ. The event

r has a duration with a low coefficient of variation. We take one of the ME distributions

from (Éltető et al., 2006) for example the distribution with 3 phases and squared coefficient of

variation 0.2009 presented in Example 1. Let (π,G0) be the representation of the distribution.

We furthermore assume that event r is reset when s occurs. Automaton 1 is then described

by the following matrices

Qε = G0 − λI, Qs = λ

 π
π
π

 , Qr = −G0 I1π .

The automaton observes the conditions of Theorem 4 and describes therefore a MRAP for

all λ > 0.

For the second type of automata events r and s are locally driven by an exponential

distribution with rate 1 that acts as a neutral element in composition as shown above. Timing

of the local events is given by a PH distribution (ϕ,H0) which is expanded into a MMAP

with 2 classes as (H0, (1− p)h0ϕ, ph0ϕ) with 0 < p < 1 the probability that a computation is

not successful, where h0 = −H0 I1. We assume that the occurrence of an r event in location

0 resets local events. The following matrices describe the second type of automata.

Qε =

 H0−I (1−p)h0 ph0

0 −2 0
0 0 −1

 , Qr =

 I1ϕ 0 0
ϕ 0 0
ϕ 0 0

 , Qs =

 0 0 0
ϕ 0 0
0 0 0

 .

Example 4 For Example 4 automaton 1 describes the arrivals which are realized by a RAP

(π,G0,G1). We assume that a failure in one of the queues resets the arrival process such

that

Qε = G0 − 3I, Qa = G1, Qs = I, Qf1 = Qf2 = I1υ,

where υ is the state vector after the RAP has been reset. The failure time distribution of the

second automaton is given by ME distribution (ϕ,F0) and the service time is exponentially
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distributed with rate µ1. The matrices for automaton 2 are as follows.

Qε =



−2 0 · · · · · · 0

0 F0 − (µ1 + 2)I 0 · · · ...
...

. . . . . .
...

...
. . . . . .

...
... . . . F0 − (µ1 + 2)I 0
0 · · · · · · 0 F0 − (µ1 + 2)I


,

Qa =


0 ϕ 0 · · · 0

0 0 I
. . .

...
...

. . . . . . 0
... 0 I
0 · · · · · · · · · I

 , Qs =


0 0 · · · · · · 0

µ1 I1 0 0
. . .

...

0 µ1I
. . .

...
...

. . . . . .
...

0 · · · 0 µ1I 0

 ,

Qf1 =


0 0 · · · · · · 0

f0 0
. . . . . .

...
...

...
. . .

...
...

. . . . . .
...

f0 0 · · · · · · 0

 , Qf2 =


1 0 · · · · · · 0

I1 0
. . . . . .

...
...

...
. . .

...
...

. . . . . .
...

I1 0 · · · · · · 0

 ,

where f0 = −F0 I1. The failure time distribution for the third automaton is given by a ME

distribution (η,H0) and the internal event of this automaton represents the service with rate

µ2. The automaton is described by the following matrices.

Qε =



−3 0 · · · · · · 0

µ2 I1 H0−(µ2 + 3)I 0 · · · ...

0 µ2I H0−(µ2 + 3)I
...

...
. . . . . .

...
...

. . . . . . 0
0 · · · 0 µ2I H0−(µ2 + 3)I


,

Qs =


0 η 0 · · · 0

0 0 I
. . .

...
...

. . . . . . 0
... 0 I
0 · · · · · · · · · I

 , Qf1 =


1 0 · · · · · · 0

I1 0
. . . . . .

...
...

...
. . .

...
...

. . . . . .
...

I1 0 · · · · · · 0

 ,
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Qf2 =


0 0 · · · · · · 0

h0 0
. . . . . .

...
...

...
. . .

...
...

. . . . . .
...

h0 0 · · · · · · 0

 ,

where h0 = −H0 I1 and Qa = I.

Example 5 In Example 5 we assume that for automaton 1 all event times are exponentially

distributed. Local events occur with rate µ, d events with rate λ and ri (i = 2, . . . , J) events

with rate ω. This defines the following matrices for automaton 1.

Qε =

 (1− J)(ω + 1)− λ 0 0
µ −µ− λ− J + 1 0
0 0 1− J

 ,

Qd =

 0 0 λ
0 0 λ
0 0 0

 , Qri =

 0 ω 0
0 0 0
0 0 0

 , Qfi = I.

Note that the matrices satisfy (Qε +Qd +
∑J

i=2(Qri +Qfi)) I1 = 0.

For the second automata type describing automaton j, j ∈ {2, . . . , J}, we assume that

the timing of failures is defined by a MAP (π,G0,G1). In automaton j, this failure process

is assigned to the ε transition in location 0 and to fj transitions in location 1. It is not

enabled in location 2 but it remains enabled and is not reset when entering location 0 from

1 by a local ε transition. Observe that this modeling assures that consecutive failure times

that correspond to transitions from location 0 to 1 and from 1 to 2 are correlated as defined

by the RAP. Local transitions in location 1 have an exponential distribution with rate δ. To

all other events fi, ri (i ∈ {2, . . . , J} \ {j}) and d an exponential distribution with rate 1 is

assigned. The following matrices describe the process.

Qε =

 G0 + (4− 2J)I G1 0
δI G0 + (4− 2J − δ)I 0
0 0 −2J

 , Qrj =

 0 0 0
0 0 0
π 0 0

 ,

Qri = I, Qfj =

 0 0 0
0 0 G1 I1
0 0 0

 , Qfi =

 (1− c)I cI 0
0 I 0
0 0 1

 , Qd =

 0 0 0
0 0 0
0 0 1

 .

Note that (Qε +Qd +Qfj +Qrj +
J∑

i=2,i̸=j

(Qfi +Qri)) I1 = 0, since (G0 +G1) I1 = 0.
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4. Networks of Rational Automata

RAs can be combined to rational automata networks (RANs) which are an extension of SANs.

In this section we first describe the composition of RAs and show that this defines again a

RA before we introduce the representation of the transition matrix using Kronecker products

and sums. Finally, we briefly consider the computation of the transient and stationary

distribution for the skeleton automaton.

4.1. Composition of RAs

A rational automata network (RAN) results from the synchronous composition of J RAs.

We use the notation (π(j),Q
(j)
e (e ∈ E)) for RA j, denote the location and state space of RA

j by L(j) and S(j) and assume that all RAs are defined for the same event set E . Automata

with differing event sets are first transformed by adding additional events as it is described

above Theorem 3. The composition is formally defined as

(π(1),Q(1)
ε ,Q(1)

e (e ∈ Es))∥Es . . . ∥Es(π(J),Q(J)
ε ,Q(J)

e (e ∈ Es)) (4)

All RAs perform events labeled with ε independently, all remaining events can only occur

synchronously in all automata, that is C = Es. This is the same behavior as it is defined

for SANs. For the composition the results of Theorem 3 have to be considered. Thus, if

event e is associated to a MRAP that is not a MMAP, then event e has to be always enabled

by other automata or it is slowed down/speeded up and the scaled matrices still describe a

stochastic process. For MMAPs we do not have such restrictions.

The state and location space of a RAN is J-dimensional such that states and locations

can be described by vectors. Vector (x1, . . . , xJ) where xj ∈ L(j) describes a location and

(y1, . . . , yJ) with yj ∈ S(j) a state. Of course, a location represents a set of states. The

value of the transition matrix element from state (y1, . . . , yJ) to (z1, . . . , zJ) via event e

equals
∏J

j=1 Q
(j)
e (yj, zj). The value of the initial vector element for state (y1, . . . , yJ) equals∏J

j=1 π
(j)(yj). The number of locations of a RAN equals

∏J
j=1 |L(j)| and the number of states

equals
∏J

j=1 |S(j)|.

Examples

We briefly describe the behavior of the composed automata networks.
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Example 3 In Example 3 the automata 2 through J run in parallel and perform their com-

putations that are either successful or unsuccessful. If all processes reach a successful end, the

joint s event starts a new cycle. Automaton 1 controls the system by resetting the processes

after a timeout expired and the s event did not occur. Whenever the s event takes place the

timeout is reset.

Example 4 The example is a RAP/M/1/N1 → ./M/1/N2 queuing system with failures that

reset the whole system.

Example 5 In the example we have J − 1 components subject to failures. From a single

failure a component is able to recover. However, if a second failure occurs during recovery,

the component requires repair by a repair unit. If a component goes down, this initiates with

probability c a simultaneous failure in any other operating component. If all components are

down, the repair unit might also go down into an absorbing state which means that the whole

system is down.

4.2. Structure of the Descriptor

The descriptor of a RAN is an n×n matrix Q which can be described by a sum of Kronecker

products and sums as follows.

Q = Q′
ε +

∑
e∈Es

Qe −
∑
e∈Es

De

where Q′
ε =

J⊕
j=1

Q′(j)
ε , Qe =

J⊗
j=1

Q
(j)
e ,

De =
J⊗

j=1

Q̂
(j)
e , Q̂

(j)
e = diag(Q

(j)
e I1)

(5)

The initial vector is given by

π =
J⊗

j=1

π(j). (6)

Computation of the descriptor is completely analogous to the computation of the descrip-

tor for a SAN in (Plateau, 1985; Plateau and Fourneau, 1991), the only difference is that

at the moment we do not consider state dependent transitions and generalized Kronecker

products. However, the introduction of rates depending on the location of an automaton is

possible but requires in general a proof that the resulting matrices still specify a stochastic

process.
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Theorem 6 If Q is irreducible and conditions of composing MRAPs given in Theorem 3

have been observed, then (π,Q′
ε −

∑
e∈Es De,Qe(e ∈ Es)) is a MRAP.

Examples

The representation of the descriptor matrices for Examples 3-5 are defined above. We now

briefly argue why the conditions of Theorem 3 yield a valid composition.

Example 3 We have Es = {r, s} and Q
(1)
s I1 = λ I1. Since the automata 2, . . . , J are

MMAPs they can be composed and the resulting automaton is a MMAP. For this automaton

Q
(2,...,J)
r I1 = I1 holds. Consequently, the automaton can be composed with automaton 1 and

the conditions of Theorem 3 case (3) are met.

Example 4 For automaton 1 and event a the conditions of Theorem 3 case (3) hold since

Q
(2)
a I1 = Q

(3)
a I1 = I1. Similarly, for automaton 2 and events e ∈ {f1, s} Q

(1)
e I1 = Q

(3)
e I1 = I1 and

for automaton 3 Q
(1)
f2

I1 = Q
(2)
f2

I1 = I1 hold. Thus, the conditions of Theorem 3 case (3) are

observed with ce = 1 for e ∈ {a, s, f1, f2} which are all events in the RAN. Consequently, the

composed model is a RA if the components are RAs.

Example 5 Since all components are MMAPs, the composition is also a MMAP according

to Theorem 3 case (1).

It should be noted that Examples 3-4 define irreducible descriptor matrices. In Example

5, location 2 of the first automaton is absorbing. Since location 2 in the first automaton

can only be entered via a d transition which is only enabled in location 2 of the automata

2, . . . , J , states belonging to locations (2, x2, . . . , xJ) with at least one xj ̸= 2 are unreachable.

This implies that the network reaches from the initial state a single absorbing state and the

descriptor contains unreachable states such that methods as developed for the analysis of

Markov models in (Buchholz et al., 2000; Buchholz, 1999) may be applied for analysis. Of

course, since the model is absorbing, only transient analysis makes sense.

4.3. Numerical Analysis of RANs

For the lack of space, we cannot go too much into detail concerning numerical analysis

methods for RANs. We briefly present some solution approaches that are applicable for

transient or stationary analysis of RANs. The problem thatQ might not be irreducible is not
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explicitly considered. However, this problem occurs also in SANs and has been solved there

(see for example (Buchholz et al., 2000; Buchholz, 1999)). Exactly the same approaches can

be applied for RANs such that the following methods can be easily extended to the case

where Q is not irreducible. Here we assume that for stationary analysis Q is irreducible.

For transient analysis the differential equation

d

dt
νt = νtQ with ν0 = π (7)

has to be solved. An overview of different methods for the solution of (7) when Q is the

generator matrix of a Markov chain can be found in (Stewart, 1994, Chapter 8). Most of

the methods can also be applied if Q is the matrix of a RP. A notable exception is the

uniformization approach (Stewart, 1994, Chapter 8.1) which is based on the correspondence

between continuous time and discrete time MCs that does not hold for more general matrices.

However, the different ODE solvers that are presented in (Stewart, 1994; Cellier and Kofman,

2010) can all be applied for the solution of (7). Of particular importance are Runge-Kutta

methods which are based on the following iteration to compute νt+h from νt.

νt+h = νt +
L∑
l=1

blυ
(l) where υ(l) =

(
νt +

l−1∑
i=1

aliυ
(i)

)
Q (8)

ali, bl are constants and L is the number of stages. Runge-Kutta methods compute the first L′

(≥ L) terms of the Taylor series expansion. Different variants exist (see Cellier and Kofman,

2010). In our implementations we use the Runge-Kutta-Fehlberg (4,5) method (RKF45) and

the Runge-Kutta Prince-Dormand (8,9) (RKPD89) both combined with an adaptive step-

size control to set h according to a predefined error bound. All Runge-Kutta algorithms,

like most other algorithms for transient analysis, are based on the repeated computation

of vector matrix products which can be implemented using the compact representation of

the descriptor matrix defined in (5) without building the whole matrix (e.g., Plateau and

Fourneau, 1991; Buchholz et al., 2000).

Apart from Runge-Kutta methods other transient analysis techniques given in (Stewart,

1994) like implicit integration methods or projection methods may as well be used for the

transient analysis of RANs. However, Runge-Kutta methods are often the most efficient

among these approaches but are outperformed by uniformization if the system is not too

stiff (Reibman and Trivedi, 1988). This implies that there is the decision to use a SAN with

more states and a more efficient solver or to use a RAN with a slightly less efficient solver
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but with less states. It depends, of course, on the concrete model which of both alternatives

is preferable.

Stationary analysis requires the solution of the set of linear equations

ψQ = 0 subject to ψ I1 = 1. (9)

Again matrix Q is not necessarily a generator matrix since it may contain negative off-

diagonal entries and more important for stationary analysis, the absolute value of a diagonal

element is not necessarily larger than the absolute values of the off-diagonal elements in the

row. If the state space is of a moderate size, then matrix Q can be generated from the

Kronecker representation (2) and a direct solution method like LU-decomposition (Stewart,

1994, Chapter 2) can be applied. In contrast to generator matrices where a pivot step is not

necessary, general matrices Q require the use of a pivot step to compute the solution.

For larger state spaces, direct methods which produce fill-in in the sparse matrix are not

appropriate, instead iterative methods have to be used. For generator matrices of MCs a

large number of different iterative solution methods is proposed in (Stewart, 1994). The

classical iterative methods like the Power method, JOR or SOR rely on the structure of

generator matrices where the absolute value of the diagonal element is at least as large

as the largest off-diagonal element in the row. Since this property does no longer hold

for Q matrices resulting form RANs the mentioned methods cannot be applied directly.

The same holds for advanced numerical methods that are based on SOR or block SOR

like aggregation/disaggregation methods (Stewart, 1994). Fortunately, projection methods

like GMRES (Saad and Schultz, 1986) or BiCGStab (van der Vorst, 1992) can be applied

for general matrices and have been used for MCs and even for SANs in (Stewart, 1994).

Consequently, projection methods may as well be used for Q matrices resulting from RANs

and, since they require no modification of the matrix Q, they can be implemented without

building matrix Q. If Q is generated as a sparse matrix, then projection methods can be

combined with preconditioners like incomplete LU factorizations. We made good experiences

with the ILUTH type preconditions. For details about the algorithms we refer to (Stewart,

1994).

Although some numerical methods are available for the computation of the stationary

vector of a RAN, more research is required to develop new and efficient numerical methods

for this kind of matrices.
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After the transient or stationary vector has been computed, result measures are derived.

Usually these measures are defined at the level of the RAN and often they are defined

according to the locations and not the detailed states. Thus, it is sufficient to consider the

vectors ψ̃ and ν̃t as aggregated stationary and transient vectors, respectively. According to

Theorem 5 ψ̃ and ν̃t contain a probability distribution. Let r(j) be a column vector of length

|L(j)| that assigns a reward to each location of RA j. Then the stationary reward can be

computed as

ψ̃
J⊗

j=1

r(j) or ψ̃
J⊕

j=1

r(j), and the transient reward as ν̃t

J⊗
j=1

r(j) or ν̃t

J⊕
j=1

r(j).

Kronecker products assure that rewards are multiplied, e.g., to compute the probability that

all RAs are in a subset of their location spaces, Kronecker sums assure that rewards are

added, e.g., to compute the joint population. Other operations like minimum or maximum

can also be defined to combine rewards of the RAs. Since the vectors ψ̃ and ν̃t contain

probability distributions, the standard approaches to compute expectations, higher moments

or distributions of rewards can still be applied.

For the computation of throughputs, detailed state vectors are required. The stationary

and transient throughput of event e ∈ Es is given by

ψ

J⊗
j=1

Q(j)
e I1 and νt

J⊗
j=1

Q(j)
e I1.

Observe that although the vectors and matrices may contain negative elements in these

computations, the resulting throughput will be non-negative.

Examples

Example 3 For Example 3 assume that J = 3, i.e., we have the control process and two

other processes. The probability that a computation is not successful is p = 0.1 and the

mean duration of a computation is ϕ(−H0)
−1 I1 = 1. The r events are triggered by the ME

distribution, (π,G0), with three states and scv of 0.2009. Obsrve that an Erlang distribution

of order 5 would be necessary to reach such a low coefficient of variation. We analyze the

system for exponential, Erlang 2 and Cox 2 (with scv = 10 and equally occupied phases)

distributed computation times and different mean values for the interevent time of the r

events. As result measure we take the steady state throughput of s events (i.e., successful
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Figure 4: Throughput of Example 3

computations). Results are shown in Fig. 4. It can be seen that for the Coxian distribution

with scv = 10, a high throughput can be reached by resetting the computations frequently

since the restart and the high coefficient of variation assure that small computation times

are likely. The duration of the reset time has only a small effect for exponentially distributed

computation times if the reset time is not too small. For Erlang distributed computation

times it is better to choose a slightly longer reset time since small computation times are

rarely observed and restarting a computation gives no benefits.

To compare the solution times with different techniques we analyze the model with Cox-

ian distributed computation times and J between 3 and 10. Table 1 includes the size of the

state space and the CPU time required for the computation of the steady state vector using

an LU-decomposition, GMRES or BiCGStab with ILUTH preconditioning, and GMRES or

BiCGStab without preconditioning. The LU-decomposition and the preconditioned projection

techniques use a sparse matrix representation, whereas the projection techniques without pre-

conditioning exploit the Kronecker representation and do not build matrix Q. The iterative

techniques are stopped if the residual becomes smaller than 10−10. All experiments are per-

formed on a standard PC with 2.50 GHz QuadCore CPU and 4 GB main memory. It can be

noticed that the LU-decomposition can only be used for small configurations and the precon-

ditioned projection techniques are clearly outperformed by the projection techniques without
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preconditioning that work with the Kronecker representation of matrix Q.

J states CPU time in seconds
LU GMRES GMRES+ILUTH BiCGS BiCGS+ILUTH

3 48 0.00 0.00 0.00 0.00 0.00
4 192 0.00 0.00 0.00 0.00 0.00
5 768 0.63 0.02 0.03 0.01 0.03
6 3072 43.7 0.03 0.22 0.04 0.21
7 12288 2577 0.18 2.18 0.25 2.06
8 49152 −− 1.20 35.0 0.76 33.8
9 196608 −− 6.92 523 3.57 504
10 786432 −− 26.7 −− 21.6 −−

Table 1: Solution times for Example 3
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Figure 5: Mean throughput for different arrival rates λ for Example 4

Example 4 For Example 4 we consider a configuration where arrivals are generated by a

switched Poisson process with mean arrival rate λ/3, mean on time 20 and mean off time

40, i.e., G0 =

(
−λ− 0.05 0.05

0.025 −0.025

)
, G1 =

(
λ 0
0 0

)
. If the arrival process is reset by

a failure, it is switched off which implies that υ = (0, 1). Service times are exponentially

distributed with rates µ1 = µ2 = 2. The buffer size is 3 for both queues. Buffer failures are

modeled by different distributions with mean 10. We consider an exponential, an Erlang 3

and the ME distribution with 3 phases and low coefficient of variation in Example 1.
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We first perform a stationary analysis for different arrival rates λ and determine the

throughput of the second queue which equals the system throughput. Results are shown in

Figure 5. For exponentially distributed failure times, the throughput increases monotonically

with the arrival rate. For the Erlang or ME distribution an optimal arrival rate exists that

yields maximal throughput. This behavior results from the resetting of the failure times

whenever the buffer becomes empty. The ME distribution with the smaller scv results in a

higher throughput than the Erlang 3 distribution.

To compare solution times we consider a larger model with buffer size 10 for both queues.

With ME distributed failure times the process has 1922 states. Computation of the transient

distribution at t = 100 with RKF45 requires 2.06 second, RKPD89 needs 1.34 seconds. Al-

ternatively, one can model the failure times with Erlang 5 distributions which have a similar

coefficient of variation than the ME distributions. The state space of the resulting model in-

cludes 5202 states. However, uniformization requires only 0.95 seconds for the computation

of the transient distribution at t = 100. Consequently, for this example and a transient anal-

ysis at t = 100 the state space reduction due to the substitution of Erlang by ME distribution

gives no benefits. The situation is different for stationary analysis with BiCGStab which

is the fastest solver for this model. For the model with ME distributions 254 iterations are

required and the computation needs 0.07 seconds. With Erlang distributions 328 iterations

and 0.24 seconds are needed.

Example 5 Finally, we consider the transient analysis of Example 5 with J = 3 automata.

Failure times are modeled by a two state MAP that generates positively correlated failure

times, G0 =

(
−1.95 0.05
0.95 −1.05

)
, G1 =

(
1.9 0
0 0.1

)
, or by a PH distribution with the same

failure time distribution but uncorrelated failures. The mean time to failure is set to 1.0, for

the remaining parameters we choose µ = 2, δ = 10, λ = 10, ω = 5 and c = 0.1. Figure 6

shows the distribution function of the time until the first automaton reaches state 2 which

is absorbing and describes a system failure. It can be seen that with the introduction of

correlations, the time to system failure is drastically reduced. The computation time is in all

cases negligible since the state space contains only 75 states.
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Figure 6: Distribution function of the time to system failure for Example 5

5. Conclusion and Possible Extensions

This paper introduces a new class of stochastic models, namely rational automata networks

(RANs) that uses ME distributions and rational arrival processes as extensions of the well

established PH distributions and MAPs for defining timing in automata models. It is shown

that the descriptor matrix of a RAN can be represented in compact form like the descriptor

matrix of a stochastic automata network that describes a Markov chain. Although stochastic

processes described by RANs are non-Markovian, they can be analyzed numerically similar

to Markov chains and results at the automata level are stochastic distributions that can be

used for the computation of result measures via rewards.

There are several aspects that require more investigations. In particular, the parametriza-

tion of ME distributions and RAPs is an important task, although some progress has been

made in this area recently. Furthermore, specifically tailored numerical solution techniques

for the new class of stochastic processes are required that make use of the compact repre-

sentation of the descriptor matrix. The model class can be extended by location dependent

transition rates. It is, of course, also possible to define model checking or equivalences like

bisimulations for rational automata. However, this is more a long time goal.

29



References

Asmussen, S., M. Bladt. 1999. Point processes with finite-dimensional conditional probabil-

ities. Stochastic Processes and their Application 82 127–142.

Bean, N. G., B. F. Nielsen. 2010. Quasi-birth-and-death processes with rational arrival

process components. Stochastic Models 26 309–334.

Bladt, M., M. F. Neuts. 2003. Matrix-exponential distributions: Calculus and interpretation

via flows. Stochastic Models 19 113–124.

Buchholz, P. 1992. Numerical solution methods based on structured descriptions of Marko-

vian models. G. Balbo, G. Serazzi, eds., Computer Performance Evaluation - Modelling

Techniques and Tools . Elsevier, 251–267.

Buchholz, P. 1999. Hierarchical structuring of superposed GSPNs. IEEE Trans. Software

Eng. 25 166–181.

Buchholz, P., G. Ciardo, S. Donatelli, P. Kemper. 2000. Complexity of Kronecker opera-

tions and sparse matrices with applications to the solution of Markov models. INFORMS

Journal on Computing 12 203–222.

Buchholz, P., M. Telek. 2010. Stochastic Petri nets with matrix exponentially distributed

firing times. Performance Evaluation 67 1373–1385.

Cellier, F. E., E. Kofman. 2010. Continuous System Simulation. Springer.

Dayar, T., O. Pentakalos, A. B. Stephens. 1997. Analytical modeling of robotic tape libraries

using stochastic automata. Technical Report TR-97-189, Center of Excellence in Space

Data and Information Systems, NASA/Goddard Space Flight Center .

Donatelli, S. 1994. Superposed stochastic automata: a class of stochastic Petri nets amenable

to parallel solution. Performance Evaluation 18 21–36.

El-Rayes, A., M. Kwiatkowska, G. Norman. 1999. Solving infinite stochastic process algebra

models through matrix-geometric methods. J. Hillston, M. Silva, eds., Proc. 7th Process

Algebras and Performance Modelling Workshop (PAPM’99). 41–62.

30
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Appendix

Proof of Theorem 1

Since matrix G = G0 +
∑K

k=1 Gk we have G I1 = 0 such that

νt I1 = ν0e
Gt I1 = ν0

∞∑
i=0

(Gt)i

i!
I1 = ν0 I1 = 1.

Proof of Theorem 2

We have to prove that f(H0,...,HK) (t1, k1, . . . , tj, kj) is a valid joint density.

First we introduce the joint density of absolute times f̂(H0,...,HK) (τ1, k1, . . . , τj, kj) =

f(H0,...,HK) (t1, k1, . . . , tj, kj), where τi =
∑i

ℓ=1 tℓ. Define for the sequences Tj =

(τ1, k1, . . . , τj, kj) with τi−1 < τi and ki ∈ K = {1, . . . , K} and Sh = (ω1,m1, . . . , ωh,mh)

with ωi−1 < ωi, ωh < τj and mi ∈ K an ordered set Expand(Tj, Sh) containing the elements

of Tj and Sh, and the elements are ordered according to their time information (τi and ωi).

Then we obtain

f̂(H0,...,HK) (Tj) =
∞∑
h=1

∫
ω

∑
m∈Kh

Prob(Tj, Sh)f̂(G0,...,GK)(Expand(Tj, Sh))dω
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where Tj and Sh stand for the accepted and discarded arrivals, respectively,

Prob(Tj, Sh) =
j∏

i=1

pki
h∏

i=1

(1− pmi
),

the second summation is according to all combination of types,
∫
ω
=
∫ τj
ω1=0

∫ τj
ω2=ω1

. . .
∫ τj
ωh=ωh−1

and dω = dωh . . . dω1. This implies f̂(H0,...,HK) (Tj) ≥ 0 and consequently

f(H0,...,HK) (t1, k1, . . . , tj, kj) ≥ 0.

Further more, from
∑K

k=0 Gk I1 = 0 we have
∑K

k=0 Hk I1 = 0, which ensures the unit

integral of the joint density.

Proof of Theorem 3

We have to show that (η,F0, . . . ,FM) describes a valid density. The unit sum of the joint

density fF0,...,FM
(t1, k1, . . . , tj, kj) is provided by

∑M
k=0 Fk I1 = 0, since∫

t1

. . .
∫
tj

∑
k1

. . .
∑
kj

f(F0,...,FM )(t1, k1, . . . , tj, kj)dtj . . . dt1=

η
∫
t1

eF0t1dt1

(∑
k1

Fk1

)
. . .
∫
tj

eF0tjdtj

(∑
kj

Fkj

)
I1 =

η(−F0)
−1

(∑
k1

Fk1

)
. . . (−F0)

−1

(∑
kj

Fkj

)
I1 = 1,

where I1 = (−F0)
−1
∑M

k=1 Fk I1 is used in the last step. The non-negativity of the density

function remained to prove.

In case 1, we have two MMAPs and show that the resulting process is also a MMAP

which automatically shows that the density is non-negative. For MMAPs G′
0 and H′

0 have

non-negative non-diagonal elements and negative diagonal elements. This implies that the

same holds for

G′
0 ⊕H′

0 = (G′
0 ⊗ I) + (I⊗H′

0) .

Furthermore, since Gk,Hk ≥ 0, the same holds for Gk ⊕ Hk and Gk ⊗ Hk. Ĝk ⊕ Ĥk

and Ĝk ⊗ Ĥk are non negative diagonal matrices. This implies that F0 has non-negative

non-diagonal elements and Fk is non-negative which together assures that (F0, . . . ,FK) is a

MMAP.

In case 2, C = ∅, i.e., the two MRAPs run in parallel without any synchronization.

Observe that in this case

F0 = G′
0 ⊕H′

0 −
K∑
k=1

Ĝk ⊕ Ĥk = (G′
0 −

K∑
k=1

Ĝk)⊕ (H′
0 −

K∑
k=1

Ĥk) = H0 ⊕G0
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since Ĝk and Ĥk are diagonal matrices. Additionally, we have

eG⊕Ht =
∞∑
i=0

((G⊕H)t)i

i!
=

∞∑
i=0

((G⊗I+I⊗H)t)i

i!
=

∞∑
i=0

1
i!

i∑
j=0

(
i
j

)
(Gt)j ⊗ (Ht)i−j =

∞∑
i=0

(Gt)i

i!
⊗

∞∑
j=0

(Ht)j

j!
= eGt ⊗ eHt

such that both processes run independently. Consequently, (η,F0, . . . ,FK) is composed as

the superposition of two independent MRAPs and it is straightforward to show that the

superposition of two independent stochastic processes is again a stochastic process.

For case 3, without loss of generality we assume that C = {1, . . . , κ} (0 ≤ κ ≤ K),

where κ = 0 means C = ∅ and F = {1, . . . , ι} (0 ≤ ι ≤ κ) such that Hk I1 = dk I1 which

implies Ĥk = dkI for k ∈ {1, . . . , ι} and Gk I1 = ck I1 which implies Ĝk = ckI for k ∈
{ι + 1, . . . , κ}. According to this numbering of classes we have G̃0 = G′

0 −
∑ι

k=1 dkĜk −∑K
k=ι+1 Ĝk and H̃0 = H′

0 −
∑ι

k=1 Ĥk −
∑κ

k=ι+1 ckĤk −
∑K

k=κ+1 Ĥk and by assumption

(G̃0, d1G1, . . . , dιGι,Gι+1, . . . ,GK) and

(H̃0,H1, . . . ,Hι, cι+1Hι+1, . . . , cκHκ,Hκ+1, . . . ,HK) are MRAPs.

The composed process is

F0 = G′
0 ⊕H′

0 −
κ∑

k=1

Ĝk ⊗ Ĥk −
K∑

k=κ+1

Ĝk ⊕ Ĥk =

= G′
0 ⊗ I+ I⊗H′

0 −
ι∑

k=1

Ĝk ⊗ dkI−
κ∑

k=ι+1

ckI⊗ Ĥk −
K∑

k=κ+1

Ĝk ⊗ I−
K∑

k=κ+1

I⊗ Ĥk =

= (G′
0 −

ι∑
k=1

dkĜk −
K∑

k=κ+1

Ĝk)⊗ I+ I⊗ (H′
0 −

κ∑
k=ι+1

ckĤk −
K∑

k=κ+1

Ĥk) =

= (G′
0 −

ι∑
k=1

dkĜk −
K∑

k=κ+1

Ĝk)⊕ (H′
0 −

κ∑
k=ι+1

ckĤk −
K∑

k=κ+1

Ĥk) =

= (G̃0 +
κ∑

k=ι+1

Ĝk)⊕ (H̃0 +
ι∑

k=1

Ĥk) = (G̃0 + (κ− ι)I)⊕ (H̃0 + ιI).

It means that eF0t = e(G̃0+(κ−ι)I)t⊗e(H̃0+ιI)t and e(G̃0+(κ−ι)I)t = e(κ−ι)teG̃0t as well as e(H̃0+ιI)t =

eιteH̃0t. This way

fF0,...,FK
(t1, k1, . . . , tj, kj) = η

(
j∏

i=1

eF0tiFki

)
I1 =

(π ⊗ ϕ)

(
j∏

i=1

(
e(G̃0+(κ−ι)I)ti ⊗ e(H̃0+ιI)ti

)
(Gki ⊗Hki)

)
I1 =(

π

(
j∏

i=1

e(κ−ι)tieG̃0tiGki

)
I1

)
⊗
(
ϕ

(
j∏

i=1

eιtieH̃0tiHki

)
I1

)
=

fG̃0,d1G1,...,dιGι,Gι+1,...,GK
(t1, k1, . . . , tj, kj)

fH̃0,H1,...,Hι,cι+1Hι+1,...,cκHκ,Hκ+1,...,HK
(t1, k1, . . . , tj, kj)e

κt∗ ≥ 0

where t∗ =
∑j

i=1 ti.
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Proof of Theorem 4

The unit integral of the joint density follows from G0 I1 =
∑K

k=1 Gk I1 which also holds after

adding λ I1 on both sides. Thus it remains that show that the joint density is non negative.

Case GK+1 = λI:

MRAP (ϕ,G0 − λI, . . . ,GK , λI) arises by the independent composition, C = ∅, of two
MRAPs (ϕ,H0, . . . ,HK ,0) and (−λ, 0, . . . , 0, λ), where Hk = Gk for k = 1, . . . , K. Accord-

ing to case 2 of Theorem 3 the composed process is a MRAP too.

Let us extract a consequence of this fact. Let k1 = . . . = kj−1 ≤ K and kj = K +1, then

fϕ,G0−λI,...,GK ,GK+1
(t1, k1, . . . , tj, kj) =

ϕ

(
j∏

i=1

e(G0−λI)tiGki

)
I1 = e−λt∗ϕ

(
j∏

i=1

eG0tiGki

)
I1 =

λe−λt∗ϕ

(
j−1∏
i=1

eG0tiGki

)
eG0tj I1 ≥ 0 .

(10)

Case GK+1 = λ I1ϕ:

Let z ≤ j and ta1 , . . . , taz the instances when the process generates type K + 1 signals,

i.e., ka1 = . . . = kaz = K + 1. Then

fϕ,G0−λI,...,GK ,GK+1
(t1, k1, . . . , tj, kj) =

ϕ

(
j∏

i=1

e(G0−λI)tiGki

)
I1 = e−λt∗ϕ

(
j∏

i=1

eG0tiGki

)
I1 =

λze−λt∗
z∏

ℓ=1

ϕ

 aℓ−1∏
i=aℓ−1

eG0tiGki

 eG0taℓ I1 ≥ 0 ,

where a0 = 0, t∗ =
∑j

i=1 ti and (10) is used in the last step.

Proof of Theorem 5

Let D = {(π(d),G
(d)
0 , . . . ,G

(d)
K )} be the set of MRAPs that are associated with the RA. In

each location x ∈ L, the set Act(x) is the set of active MRAPs in x which means that each

class from Class(Act(x)) is assigned to exactly one event e ∈ Ena(x). This implies that all

MRAPs from Act(x) are composed without synchronization. We define H0 = ⊕d∈Act(x)G
(d)
0

and He,(d,k) =
(
⊗c∈Act(x),c<dIn(c)

)
⊗ G

(d)
k ⊗

(
⊗c∈Act(x),c>dIn(c)

)
for (d, k) ∈ Assign(x, e). For

a proof we consider a sample path that visits different locations and show that the sojourn

time in each location is a valid density and the successor location is chosen probabilistically.

35



Assume that location x has been entered and the state vector equals ϕ = ⊗d∈Act(x)ϕ
(d)

with ϕ(d) ∈ V
(π(d),G

(d)
0 ,...,G

(d)
K )

. The density of observing e ∈ Ena(x) initiated by an event

(d, k) ∈ Assign(x, e) is then given by

f(ϕ,H0,Hf (f∈Ena(x))(t, e, (d, k)) = ϕeH0tHe,(d,k) I1 =( ⊗
d∈Act(x)

ϕ(d)

)
e⊕d∈Act(x)G

(d)
0 t

( ⊗
c∈Act(x),c<d

In(c)

)⊗
G

(d)
k

⊗( ⊗
c∈Act(x),c>d

In(c)

)
I1 =( ⊗

c∈Act(x),c<d

ϕ(c)eG
(c)
0 t

)⊗(
ϕ(d)eG

(d)
0 tG

(d)
k

)⊗( ⊗
c∈Act(x),c>d

ϕ(c)eG
(c)
0 t

)
I1 ≥ 0

Furthermore,

f(ϕ,H0,Hf (f∈Ena(x))(t, e) =
∑

(d,k)∈Assign(x,e)

f(ϕ,H0,Hf (f∈Ena(x))(t, e, (d, k)) ≥ 0

is the density for event e. This implies that we obtain a valid density if the initial vector is

given by a Kronecker product of vectors from V
(π(d),G

(d)
0 ,...,G

(d)
K )

. This obviously holds for the

initial location since the initial vector is defined as ⊗d∈Act(xini)π
(d).

We now show that the state vector upon entering location y from x via (c, k) ∈
Assign(x, e) can be represented as ⊗d∈Act(y)η

(d) with η(d) ∈ V
(π(d),G

(d)
0 ,...,G

(d)
K )

if location x

has been entered with a state vector ⊗d∈Act(x)ϕ
(d) with ϕ(d) ∈ V

(π(d),G
(d)
0 ,...,G

(d)
K )

. We have to

distinguish the different possibilities how the matrices of RA are built in (2) and consider

the resulting vector for d ∈ Act(y). If d in Act(y) \ Act(x) or in Act(y) ∩ Reset(x, e), then
η(d) = π(d) ∈ V

(π(d),G
(d)
0 ,...,G

(d)
K )

. If d = c, then

η(c) = ϕ(c)eG
(c)
0 tG

(c)
k ∈ V

(π(c),G
(c)
0 ,...,G

(c)
K )

and for all other d ∈ Act(y) ∩ Act(x), we have η(c) = ϕ(c)eG
(c)
0 t ∈ V

(π(c),G
(c)
0 ,...,G

(c)
K )

according

to (10), where t is the sojourn time in location x.

Consequently, it follows by induction that a new location x is always entered with a vector

that is given by the Kronecker product of vectors ϕ(d) ∈ V
(π(c),G

(c)
0 ,...,G

(c)
K )

for all d ∈ Act(x) and

the sojourn time in the states of a location is ME distributed. After leaving a location, the

successor location is chosen probabilistically according to the corresponding row in matrix Pe

if event e occurs. This defines a stochastic process with state space L where the distribution

at each time is well defined. Thus, the first part of the theorem is proved.

The above result also shows that the density of each sample path x1 =

xini, (d1, k1), t1, x2, (d2, k2), t2, . . . where xi ∈ L, (di, ki) ∈ Assign(xi, e) for e ∈
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Ena(xi) and ti ≥ 0 is non-negative. This implies that also the density of a sam-

ple path x1 = xini, e1, t1, x2, e2, t2, . . . for ei ∈ Ena(xi) is non-negative and therefore

f(π,Qε,Qe(e∈Es))(t1, e1, . . . , tj, ej) ≥ 0. The unit integral of the density follows from Qε I1 −∑
e∈Es Qe I1 = 0 which can be easily proved from the representation of the matrices defined

in (2). To have a valid MRAP we only have to show that the vector after an arbitrary event

from Es is unique. Since the solution ηQ = 0 η I1 = 1 is unique, the vector ϕ after an arbitrary

event can then be computed as

ϕ =
∑
e∈Es

ηQe

η
∑

e∈Es Qe I1
.

Proof of Theorem 6

The computation of the matrices in (5) equals the computation of the composed MRAP

matrices in Theorem 3 if C = E . Since each RA is a MRAP and the rules for composing

MRAPs are observed the theorem follows if π can be computed uniquely, which follows from

the irreducibility of the descriptor of a RAN.
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