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Abstract—Compositional modeling and the aggregation of
components according to equivalence relations based on
stochastic bisimulation are often used to handle the problem
of state space explosion in Markov models. The paper presents
a general class of equivalence relations between Markov
models that include stochastic bisimulation or lumpability as
specific cases and proves the congruence property of the new
equivalence with respect to the composition of components.
It is shown that the equivalence relates Markovian and non-
Markovian representations but requires some restrictionsfor
the composition which are automatically observed if stochastic
bisimulation is used as equivalence relation. Nevertheless,
the approach offers the possibility of state space reduction
beyond stochastic bisimulation without loosing the possibility
of analyzing the resulting stochastic process by means of
numerical methods.
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I. I NTRODUCTION

In the last two decades compositional modeling and the
use of equivalence relations to reduce the state space of
components that are afterwards composed to build a complex
model are the major steps to handle state space explosion
in Markov modeling. Several approaches exist [1], [2], [3],
[4], [5], [6] which differ in various details but are based
on two central steps, namely the state space reduction of
components to a behaviorally equivalent component using
stochastic bisimulation [7], [8] which is based on some form
of lumpability [9], [10] and a composition of components
which preserves the equivalence, i.e. the substitution of
a component by an equivalent component results in an
equivalent model. The advantage of this approach steams
from the combinatorial growth of the state space in terms of
the sizes of component state spaces. Consequently, if for a
component withm(1) states an equivalent component with
n(1) (< m(1)) states can be found and the component is
composed with another component withm(2) states, then the
resulting model hasn(1)m(2) rather thanm(1)m(2) states.
I.e., the state space is reduced by a factorn(1)/m(1). If it is
also possible to find for the second component an equivalent
representation withn(2) (< m(2)) states, then the overall
state space reduction isn(1)n(2)/(m(1)m(2)).

The theoretical advantages of compositional model can
be exploited in practice since efficient methods exist for
computing the largest bisimulation relation for a compo-
nent [11], [12], [13] which can then be used to generate
the reduced component by state aggregation. Furthermore,
the compositional model structure can be exploited for an
efficient analysis by representing the generator matrix of
the resulting Markov chain using Kronecker operations [14],
[6], [15], graph based data structures like MTBDDs [16] or
combinations of both [17].

Available results which use bisimulation for state space
reduction are based on the observation that bisimulation is
a congruence according to model composition. However,
equivalence of component behavior goes beyond bisimu-
lation. In [18] a general equivalence definition has been
introduced for components with state spaces of the same
sizes. This relation is defined algebraically and relates
Markovian and non-Markovian representations. The non-
Markovian representations are denoted as Rational Arrival
Processes in the literature [19]. In [20], [21] it is shown
that these more general process types can be analyzed
numerically similarly to Markov chains. Recently, it has
been shown in [21], [22] that the equivalence of [18] can be
extended to components with different state space sizes and
includes bisimulation, lumpability and weak lumpability as
specific cases.

In this paper, we consider the general equivalence rela-
tions proposed in [21], [22] and analyze their composition-
ality. Interestingly, it turns out that although bisimulation is
a congruence according to the composition operations this
does not hold in all cases for the more general equivalence
relations. Thus, we either have to restrict composition or the
equivalence relations for compositional modeling.

In other words, there are cases when a Markovian com-
ponent of sizem(1) can not be represented with a smaller
Markovian component, but there exists a non-Markovian
representation of the same component of sizen(1) (n(1) <
m(1)). In these cases the composition of non-Markovian rep-
resentation of components can avoid state space explosion.
To apply this methodology the paper collects composition
rules for non-Markovian components.

The paper is structured as follows. In the next section



the basic model class is defined. Section III introduces
equivalence relations for our models. Afterwards, in section
IV the preservation of equivalence after the composition of
components is analyzed. In Section V, several examples are
presented to show the possibilities of state space reduction
based on equivalences. The paper ends with the conclusion.

II. COMPOSITIONAL MODELS

We begin with the introduction of Markov models that
are afterwards extended to a class of non-Markovian models
which is derived from rational arrival processes [19]. Finally,
we consider the composition of components which results in
a Markovian or non-Markovian model depending on whether
the components are Markovian or non-Markovian.

A. Markov Components

A Markov component is defined asA = (S, π,Ee(e ∈
E),Λ), whereS = {0, . . . ,m− 1} is the finite state space,
π ∈ R

1,m is the initial probability distribution,E is a finite
set of events,Ee ∈ R

m,m is the transition weight matrix
according to evente and Λ = (λe(e ∈ E)) is a rate vector
which contains for every evente ∈ E a rate λe > 0.
Transition weights are non-negative, i.e.,Ee(x, y) ≥ 0 for
all e ∈ E and x, y ∈ S, whereEe(x, y) refers to thex, y
element of matrixEe. We number the elements in a vector
or matrix from0 to m− 1. Furthermore, define

De = diag(Ee I1) (1)

where I1 is a column vector of ones anddiag(α) is a diagonal
matrix with elementα(x) in position(x, x). We assume that
E contains a specific eventε that is not observable and we
denoteEs = E \ {ε}.

The behavior of the component is as follows. In state
x ∈ S an exponential distribution with rateλeDe(x, x) is
enabled for evente ∈ E . Consequently, we have possibly
up to |E| exponential distributions running in parallel such
that the sojourn time in the state is exponentially distributed
with rate

∑

e∈E λeDe(x, x). If the exponential distribution
for evente expires first, successor statey is chosen proba-
bilistically with probabilityEe(x, y)/De(x, x). Observe that
x = y is included. The probability thate ∈ E expires first is
given byλeDe(x, x)/

(

∑

f∈E λfDf (x, x)
)

. Sinceε is not

observable we defineQε = λε(Eε − Dε).
Thus, we can define the stationary or transient behavior

of a component. Let

Q = Qε +
∑

e∈Es

λe (Ee − De) (2)

be the generator matrix of the Markov chain defined by
the component. For stationary analysis we assume thatQ

is irreducible such that

ψQ = 0 andψ I1 = 1 (3)

has a unique and non-negative solution which is the station-
ary vector of the Markov chain. From the stationary vector
the stationary throughput of evente ∈ Es can be computed
as ψDe I1 and the transient throughput of evente ∈ Es at
time t is πeQtDe I1.

The joint density for a sequence ofk observations
(e1, t1, e2, t2, . . . , ek, tk), whereei ∈ Es is the event that
is observed andti ≥ 0 is the interevent time, is given by

fA(e1, t1, . . . , ek, tk) = π

(

k
∏

i=1

eRtiλei
Eei

)

I1, (4)

where
R = Qε −

∑

e∈Es

λeDe. (5)

Of course, by choosingπ = ψ the Markov renewal process
starting in steady state is considered. Based on the definition
of R, De and the non-negativity ofEe it is straightforward
to show [22] thatf(e1,t1,...,ek,tk) is a valid density, i.e.
f(e1,t1,...,ek,tk) ≥ 0 and

∫

τ1

. . .

∫

τk

∑

e1

. . .
∑

ek

f(e1,t1,...,ek,tk) = 1.

We did not consider the specification of components yet.
However, components can be easily described using stochas-
tic automata [6], [5], stochastic process algebra [4], [8],
stochastic Petri nets [2], [14], interactive Markov chains[3]
or similar approaches.

B. Non-Markovian Components

The Markov models described above are often used in
stochastic modeling and have a clear probabilistic interpre-
tation. However, if one uses an algebraic interpretation of
the vectors and matrices, then it is possible to consider
non-Markovian representations. For a valid component it is
only required thatf(e1,t1,...,ek,tk) as defined in (4) is a valid
joint density. This yields the more general interpretationof
Rational Arrival Processes as defined in [19]. Since we do
not consider specifically arrival processes, we denote the
corresponding processes as rational processes (RPs) in the
sequel.

In contrast to Markov models matricesEe and vectorπ of
RPs may contain negative entries but we still requireπ I1 = 1.
Since matrixQ is computed as in (2), we also haveQ I1 = 0.
In contrast to the Markov case, RPs have no probabilistic
interpretation at the state level but the observation of the
occurrence of events still describes a stochastic process.

The more general class of components is more powerful
than Markov models, but on the other hand, it is rather
hard to check if a set of matrices and an initial vector
define a valid joint density. Consequently, it is hard to
define specification techniques to specify valid RPs. In
this paper we go another way. We start with a Markov
model and define equivalence relations that allow us to



relate Markovian and non-Markovian representations. Since
equivalence means that the joint densities are identical, a
non-Markovian model resulting from an equivalent Markov
model is a valid stochastic model. We come back to this
point in Section III.

C. Composition of Components

Composition is the major step to build complex mod-
els from simpler components. It alleviates to some ex-
tent state space explosion if the explicit generation of the
composed state space can be avoided. We consider here
the composition of two components. However, since the
composition is associative, it can be extended to an arbitrary
number of components.

Let A(1) = (S(1), π(1),E
(1)
e (e ∈ E),Λ) and A(2) =

(S(2), π(2),E
(2)
e (e ∈ E),Λ) be two components that should

be composed. We assume that the event setsE and the rate
vectorsΛ of length |E| are identical which can always be
achieved by scaling the values in the matricesE

(i)
e and

adding pseudo events withE(i)
e = I (i = 1, 2, e ∈ Es),

whereI is the identity matrix, if necessary. The size of a
component is the cardinality of its state space and is denoted
asn(i).

Composition is performed over the set of signalsE .
Signals fromC ⊆ Es occur as synchronized signals in
both components whereas signals fromN = Es \ C and
signal ε occur independently in the components. This is
the usual way of defining composition in different modeling
formalisms [4], [2], [14].

We define the composition now using Kronecker op-
erations. This is, however, only a compact way to write
composition down and prove some results later. The results
concerning the preservation of equivalence after composition
are, of course, independent of the mathematical formalism
we use for its presentation.

Let A(0) = A(1)‖CA(2) be the composed model that
is considered over the state spaceS(0) = S(1) × S(2).
For the definition of synchronization, the definition of the
rate of synchronized transitions is one important design
decision, several possibilities exist [23]. In conjunction with
Kronecker representations usually the product of weights is
used resulting in a Kronecker product of matrices [6], [15].
For G ∈ R

n,n, H ∈ R
m,m the Kronecker product is defined

as

F = G⊗ H ∈ R
nm,nm

such thatF(iam+ ib, jam+ jb) = G(ia, ja)H(ib, jb) (0 ≤
ia, ja < n, 0 ≤ ib, jb < m). The Kronecker sum of matrices
is defined as [15]

F⊕ H = F⊗ Im + In ⊗ H,

whereIm is the identity matrix of sizem.

Definition 1: The matrices of the composed modelA(0)

are defined as

E
(0)
e =

{

E
(1)
e ⊕ E

(2)
e if e ∈ N ∪ {ε},

E
(1)
e ⊗ E

(2)
e if e ∈ C,

D
(0)
e = diag(E

(0)
e I1) if e ∈ Es,

Q
(0)
ε = Q

(1)
ε ⊕ Q

(2)
ε = λε

(

E
(1)
ε ⊕ E

(2)
ε − D

(1)
ε ⊕ D

(2)
ε

)

.

(6)
Based on this definition fore ∈ N we have

D
(0)
e = diag(E

(0)
e I1nm) = diag((E

(1)
e ⊕ E

(2)
e ) I1nm) =

= diag((E
(1)
e ⊗ In(2) + In(1) ⊗ E

(2)
e )( I1n(1) ⊗ I1n(2))) =

= diag(E
(1)
e I1n(1) ⊗ I1n(2)) + diag( I1n(1) ⊗ E

(2)
e I1n(2))

= diag(E
(1)
e I1n(1)) ⊗ diag( I1n(2))

+ diag( I1n(1)) ⊗ diag(E
(2)
e I1n(2))

= diag(E
(1)
e I1n(1)) ⊗ In(2) + In(1) ⊗ diag(E

(2)
e I1n(2))

= diag(E
(1)
e I1n(1)) ⊕ diag(E

(2)
e I1n(2)) = D

(1)
e ⊕ D

(2)
e ,

and consequently

Q
(0)
ε −

∑

e∈N

λeD
(0)
e =

(

Q
(1)
ε −

∑

e∈N

λeD
(1)
e

)

⊕

(

Q
(2)
ε −

∑

e∈N

λeD
(2)
e

)

.
(7)

In a similar wayD(0)
e = D

(1)
e ⊗ D

(2)
e for e ∈ C.

In stochastic automata networks (SANs) [6], [15] the basic
ratesλe are usually inserted in one of the matrices. It is
also possible to extend the approach by defining some other
form of computing the rates of synchronized transitions as
for example done in the stochastic process algebra PEPA
[4]. However, we will not consider this case here although
it can be incorporated in the approach we present. The initial
vector ofA(0) is given by

π(0) = π(1) ⊗ π(2) (8)

such thatπ(1) I1 = π(2) I1 = 1 implies π(0) I1 = 1.
If A(1) andA(2) are Markov models, thenA(0) is also

a Markov model sinceπ(0) ≥ 0 and E
(0)
e ≥ 0 in this

case. For the moment we consider only the Markov case, the
non-Markovian case will be described later in conjunction
with equivalence relations. The generator matrix of the
resulting Markov process is computed using (2). It should
be remarked thatS(0) may contain unreachable states which
implies thatQ is not irreducible. Since we define the initial
vector, transient and stationary distribution of the resulting
process are well defined but for an efficient numerical
computation it might be preferable to choose some other
representation which contains only reachable states [14],
[24], [17]. We will not consider these representations since
the numerical analysis is not the topic of this paper and the
necessary methods to handle unreachable states are available
and established.



III. E QUIVALENCE RELATIONS

We begin with a general definition of equivalent com-
ponents of the same sizes [18]. Afterwards, two different
equivalences relating components with different state space
sizes are introduced which are both based on the general
equivalence definition and allow state space reduction due
to redundancy according to the closing or initial vector [22].

A. An Algebraic Equivalence Relation

We use the following definition of equivalence for two
components and assume in the sequel that components are
defined over the same event setsE .

Definition 2: Two components A(1) =

(S(1), π(1),E
(1)
e (e ∈ E),Λ) and A(2) =

(S(2), π(2),E
(2)
e (e ∈ E),Λ) are equivalent, if and only if

fA(1)(e1, t1, . . . , ek, tk) = fA(2)(e1, t1, . . . , ek, tk)

for all k > 0, ei ∈ Es and ti > 0.
Definition 3: Two vectors of sizem, π(1) andπ(2), and

two ordered sets of matrices of sizem×m, M(1) andM(2),
are in similarity relationC0 if a non-singularm×m matrix
B exists such that

• B I1 = I1,
• π(2) = π(1)B and
• F(2) = B−1F(1)B, for all F(i) ∈ M(i) (i = 1, 2)

associated matrices of the two sets.
Definition 4: The following sets of matrices are defined

for componentA = (S, π,Ee(e ∈ E),Λ).
• M∼ = {Qε −

∑

e∈Es

λeDe,Ee(e ∈ Es)},

• M' = {Qε −
∑

e∈N

λeDe,Ee(e ∈ Es),De(e ∈ C)},

• M≈ = {Qε,Ee(e ∈ Es),De(e ∈ Es)}.
M∼ andM≈ are independent of the set of synchronized

signalsC ⊆ Es, but for M' set C and consequentlyN =
Es \ C have to be defined. For notational convenience this
dependence is not indicated explicitly.

The following definition relates two components with the
same state spaceS.

Definition 5: Let A(1) = (S, π(1),E
(1)
e (e ∈ E),Λ) and

A(2) = (S, π(2),E
(2)
e (e ∈ E),Λ) with |S| = m be two

components. We define three equivalence relations between
A(1) andA(2) associated with similarity relationC0.

• A(1)∼0A(2) iff C0 holds for (π(1),M(1)
∼ ) and

(π(2),M(2)
∼ ),

• A(1)'0A(2) iff C0 holds for (π(1),M
(1)
' ) and

(π(2),M
(2)
' ),

• A(1)≈0A(2) iff C0 holds for (π(1),M
(1)
≈ ) and

(π(2),M
(2)
≈ ).

From these definition it follows that≈0 ⇒ '0 ⇒ ∼0, for
C = ∅, ∼0 ⇔ '0 and forC = Es, '0 ⇔ ≈0. The relations
may relate Markovian and non-Markovian representations.
The following theorem shows, however, that independent of

the representation, components in relation∼0 are equivalent
which implies that components in relation'0 and≈0 are
also equivalent since components that are in relation'0 or
≈0 are also in relation∼0.

Theorem 1:If A(1)∼0A(2), thenA(1) andA(2) are equiv-
alent.

Proof: We have to show that
fA(1)((e1, t1, . . . , ek, tk) = fA(2)(e1, t1, . . . , ek, tk) for
all k > 0, ei ∈ Es and ti ≥ 0. Observe thatB I1 = I1
implies (by multiplying both sides byB−1) B−1 I1 = I1.
Let R(j) = Q

(j)
ε −

∑

e∈Es
λeD

(j)
e (j = 1, 2), then

R(2) = B−1R(1)B holds due toA(1)∼0A(2). We have
(see also [22])

fA(1)((e1, t1, . . . , ek, tk) =

π(1)

(

k
∏

i=1

exp(R(1)ti)λei
E

(1)
ei

)

I1 =

π(1)

(

k
∏

i=1

∞
∑

j=0

(R(1)ti)
j

j! λei
E

(1)
ei

)

I1 =

π(1)B

(

k
∏

i=1

∞
∑

j=0

(B−1R(1)Bti)
j

j! λei
B−1E

(1)
ei B

)

B−1 I1 =

π(2)

(

k
∏

i=1

∞
∑

j=0

(R(2)ti)
j

j! λei
E

(2)
ei

)

I1 =

fA(2)((e1, t1, . . . , ek, tk) .

The above relations can be used to prove whetherA
describes a valid process even if it is a non-Markovian
representation. If it is possible to find some Markovian
representationA′ with A∼0A′, then A describes a valid
process since a Markov representation always defines a
process. This approach is used in [18] to transform non-
Markovian representations resulting form moment fitting
into Markovian representations.

The transform relation of the diagonal matrices that is
used in'0 and≈0 in Definition 5 is a very strict condition
as shown in the following theorem.

Theorem 2:If D
(2)
e = B−1D

(1)
e B for two diagonal

matricesD(i)
e of sizem, thenB(x, y) = 0 or D

(1)
e (x, x) =

D
(2)
e (y, y).

Proof: SinceD
(i)
e are diagonal matrices, we have

D(1)
e B = BD(2)

e ⇒ D(1)
e (x, x)B(x, y) = B(x, y)D(2)

e (y, y)

for all 0 ≤ x, y < m.
The relations defined in this section all relate represen-

tations of the same sizes. In the following two subsections
we show how this approach can be extended to relations
between representations of different sizes. To define a rela-
tion of components with different sizes some redundancy has
to be in the larger representation. This redundancy can be
related to the so called closing vector which isI1 in our case
or the initial vectorπ. The approach we present is related
to minimal representations in linear system theory [25] and
has been adopted for non-Markov models in [21], [22].



B. Redundancy According to the Closing Vector

We now extend the equivalence relations of Definition 5
to define a relation betweenA(1) with m states andA(2)

with n (< m) states. To distinguish the sizes of vectorsI1
we use I1m and I1n for the vector of ones of lengthm and
n, respectively. Furthermore, we have to distinguish between
zero and arbitrary submatrices and use0 for the former and∗
for the latter. Again we assume that components are defined
over the same alphabetE with the same vectorΛ.

Definition 6: Two vectors,π(1) of size m and π(2) of
size n (n < m), and two ordered sets of matrices,M(1)

composed by matrices of sizem×m andM(2) composed
by matrices of sizen× n, are in similarity relationC1 if a
non-singularm×m matrix B exists such that

• B−1 I1m =

(

I1n

0

)

,

• π(1)B =
(

π(2), ∗
)

, and

• B−1F(1)B =

(

F(2) ∗
0 ∗

)

, for all F(i) ∈ M(i) (i =

1, 2) associated matrices of the two sets.

Definition 7: The equivalence relations∼1, '1 and ≈1

are defined in the same way as∼0, '0 and≈0 in Definition
5 using similarity relationC1.

We use the following partition of the matricesB andB−1,

B = (V, ∗) andB−1 =

(

W

∗

)

.

V is am× n andW a n×m matrix.
Theorem 3:The following relations hold for matricesV

andW according to Definition 7:

• W I1m = I1n, V I1n = I1m andWV = I,
• π(1)V = π(2),
• WF(1)V = F(2) andF(1)V = VF(2).

Proof: The proof follows by a simple substitution of
the matrices. E.g.,
(

I 0

0 I

)

= B−1B =

(

W

∗

)

(V, ∗) =

(

WV ∗
∗ ∗

)

.

Theorem 4:If A(1)∼1A(2), thenA(1) andA(2) are equiv-
alent.

Proof: We have

fA(1)((e1, t1, . . . , ek, tk) =

π(1)

(

k
∏

i=1

∞
∑

j=0

(R(1)ti)
j

j! λei
E

(1)
ei

)

I1m =

π(1)

(

k
∏

i=1

∞
∑

j=0

(R(1)ti)
j

j! λei
E

(1)
ei

)

V I1n =

π(1)V

(

k
∏

i=1

∞
∑

j=0

(R(2)ti)
j

j! λei
E

(2)
ei

)

I1n =

fA(2)((e1, t1, . . . , ek, tk) .

The relations define equivalent representations but do not
describe a method to decide whether two representations
are equivalent or, more important, describe a method to
compute for a componentA(1) of size m an equivalent
representationA(2) of minimal size. However, such an
approach is available in linear system theory (see e.g. [26])
and has been adopted to Markov and non-Markov models
in [27]. For the lack of space we do not present the details
of the algorithms here but use them to compute equivalent
representations in Section V.

These equivalences are related to lumpability [10], [9] and
bisimulation [7], [4] as shown in the following theorem that
can be found in [22].

Theorem 5:If A(2) of size n results fromA(1) of size
m (> n) by aggregating states according to a stochastic
bisimulation relation, thenV ∈ {0, 1}m,n and V contains
one element equal to1 per row and at least one element
equal to1 per column.

In this caseE(1)
e V = VE

(2)
e ⇒ D

(1)
e V = VD

(2)
e which

implies∼1 ⇔ '1 ⇔ ≈1.

C. Redundancy According to the Initial Vector

The equivalence relations from the previous paragraph can
also be defined in a symmetric form which will be done now.

Definition 8: Two vectors,π(1) of size m and π(2) of
size n (n < m), and two ordered sets of matrices,M(1)

composed by matrices of sizem×m andM(2) composed
by matrices of sizen× n, are in similarity relationC2 if a
non-singularm×m matrix B exists such that

• π(1)B =
(

π(2),0
)

,

• B−1 I1m =

(

I1n

∗

)

, and

• B−1F(1)B =

(

F(2) 0

∗ ∗

)

, for all F(i) ∈ M(i) (i =

1, 2) associated matrices of the two sets.

Definition 9: The equivalence relations∼2, '2 and ≈2

are defined in the same way as∼0, '0 and≈0 in Definition
5 using similarity relationC2.

Similar to Theorems 3 and 4, the following two theorems
can be proved.

Theorem 6:The following relations hold for matricesV
andW according to Definition 9:

• π(1) = π(2)W,
• W I1m = I1n, V I1n = I1m andWV = I,
• WF(1)V = F(2) andWF(1) = F(2)W.

Theorem 7:If A(1)∼2A
(2), thenA(1) andA(2) are equiv-

alent.
The proof of the theorem follows the same pattern as the

one of Theorem 4.
The equivalence relation defined in Definition 9 is an

extension of weak lumpability [10] or exact performance
equivalence [7], [28] as shown in [22]. Algorithms to
compute minimal representations according to one of the



equivalence relations from Definition 9 can be derived from
the approaches used to compute minimal relations according
to the equivalence relations of Definition 7 [27].

IV. COMPOSITIONALITY AND EQUIVALENCE

To be really useful, equivalence relations should be pre-
served by composition which means thatA(1) ./ A(2)

impliesA(1)‖CA(3) ./ A(2)‖CA(3) for everyC ⊆ Es, com-
ponentA(3) and./∈ {∼0,'0,≈0,∼1,'1,≈1,∼2,'2,≈2}.
It is known that this relation holds for Markovian represen-
tations and bisimulation or inverse bisimulation [4], [7].But
it is important to note that the equivalence relations do not
hold in general for Markovian representations and∼j if V

and W are not restricted as much as in bisimulation and
inverse bisimulation, i.e., ifV 6∈ {0, 1}m,n. We now extend
the results to non-Markovian representations and the more
general equivalence relations.

Theorem 8:If A(1)'jA(2), then
A(1)‖CA

(3)'jA
(2)‖CA

(3) and A(3)‖CA
(1)'jA

(3)‖CA
(2)

(j = 0, 1, 2) if the setC used to compute'j equals the set
C used for synchronization.

Proof: We show the proof for'1, the other two
proofs are similar. LetA(13) = A(1)‖CA(3) and A(23) =
A(2)‖CA(3). Let n(i) be the size ofA(i) and let V(1,2)

be a n(1) × n(2) matrix such thatV(1,2) I1n(2) = I1n(1) ,
π(1)V(1,2) = π(2) and F(1)V(1,2) = V(1,2)F(2) for all
F(i) ∈ M

(i)
' (i = 1, 2). Matrix V(1,2) exists since

A(1)'1A
(2) holds. Observe thatn(13) = n(1)n(3) and

n(23) = n(2)n(3). To prove A(13)'1A(23), it has to be
shown that an(13) × n(23) matrix V(13,23) exists for
which V(13,23) I1n(23) = I1n(13) , π(13)V(13,23) = π(23) and
F(13)V(13,23) = V(13,23)F(23) for all F(i) ∈ M

(i)
' (i =

13, 23) holds. DefineV(13,23) = V(1,2) ⊗ In(3) . Then

V(13,23) I1n(13) =
(

V(1,2) ⊗ In(3)

)

( I1n(1) ⊗ I1n(3)) = I1n(23) ,

and

π(13)V(13,23) =
(

π(1) ⊗ π(3)
)(

V(1,2) ⊗ In(3)

)

= π(23).

To prove the relation between the matrices we first prove
that the required relation holds for matrices composed with
Kronecker products and sums. For the Kronecker product
we obtain

F(13)V(13,23) =
(

F(1) ⊗ F(3)
) (

V(1,2) ⊗ In(3)

)

= F(1)V(1,2) ⊗ F(3)In(3)

= V(1,2)F(2) ⊗ In(3)F(3) = V(13,23)F(23)

and for the Kronecker sum

F(13)V(13,23) =
(

F(1) ⊕ F(3)
) (

V(1,2) ⊗ In(3)

)

=
(

F(1) ⊗ In(3)

) (

V(1,2) ⊗ In(3)

)

+
(

In(1) ⊗ F(3)
) (

V(1,2) ⊗ In(3)

)

=
(

F(1)V(1,2) ⊗ In(3)

)

+
(

V(1,2) ⊗ F(3)
)

=
(

V(1,2)F(2) ⊗ In(3)

)

+
(

V(1,2) ⊗ F(3)
)

=
(

V(1,2) ⊗ In(3)

) (

F(2) ⊕ F(3)
)

= V(13,23)F(23)

These relations prove the theorem for all matrices ofM',
since according to (6) and (7) one of the two Kronecker
operations relates the associated matrices.

To prove A(3)‖CA(1)'1A(3)‖CA(2) matrix V(31,32) =
In(3)⊗V(1,2) is used. Apart form this the proof is analogous.

Corollary 1: If A(1)≈jA(2), then
A(1)‖CA

(3)≈jA
(2)‖CA

(3) (j = 0, 1, 2) for all C ∈ Es.

Proof: The proof is identical with the one of Theorem
8 assumingC ⊆ Es.

Corollary 1 shows that≈j is a congruence according to
parallel composition but since≈j requires conditions for
all diagonal matrices, Theorem 2 applies and the possible
relations are close to the known bisimulations which also
hold for non-Markovian representations. Theorem 8 shows
that the strict conditions on the matricesD(i)

e are only
required for events that are used in a synchronization.
This implies that the equivalence relation has to be chosen
according to the composition. The following theorem shows
that∼j is also a congruence, if the composition is adequately
chosen.

Theorem 9:If A(1)∼jA(2) and for all e ∈ C,
either E

(1)
e I1n(1) = I1n(1) , E

(2)
e I1n(2) = I1n(2) or

E
(3)
e I1n(3) = I1n(3) , then A(1)‖CA

(3)∼jA
(2)‖CA

(3) and
A(3)‖CA(1)∼jA(3)‖CA(2) (j = 0, 1, 2).

Proof: Note that in the extreme case whenA(1)∼jA(2)

and for alle ∈ C, E
(1)
e I1n(1) = I1n(1) , E

(2)
e I1n(2) = I1n(2) then

D
(i)
e = In(i) andA(1)'jA(2) holds. It means that in this

case Theorem 8 applies.

In the general case for theJ (1,2) ⊆ C subset of syn-
chronized eventsE(1)

e I1n(1) = I1n(1) , E
(2)
e I1n(2) = I1n(2) and

for the J (3) = C \ J (1,2) subset of synchronized events
E

(3)
e I1n(3) = I1n(3) hold. We prove the theorem for∼1, the

other two proofs are similar. As in Theorem 8 we have
to show thatF(13)V(13,23) = V(13,23)F(23) follows from
F(1)V(1,2) = V(1,2)F(2). Again we defineV(13,23) =
V(1,2) ⊗ In(3) . Then it follows from the proof of Theorem
8 that V(13,23) observes the conditions according to the
closing vectorI1n(i3) and the initial vector. Furthermore, the
relation holds for all matricesE(i3)

e (i = 1, 2, e ∈ Es). It
remains to show that the similarity relation also holds for

the matricesR(i3) =

(

Q
(i3)
ε −

∑

e∈Es

λeD
(i3)
e

)

. Using that



E
(i)
e I1 = I1 implies D

(i)
e = In(i) , we have

R(13) =
(

(

Q
(1)
ε ⊕ Q

(3)
ε

)

−
∑

e∈N

λe

(

D
(1)
e ⊕ D

(3)
e

)

−
∑

e∈J (1,2)

λe

(

In(1) ⊗ D
(3)
e

)

−
∑

e∈J (3)

λe

(

D
(1)
e ⊗ In(3)

)

)

=

(

(

Q
(1)
ε ⊗ In(3)

)

+
(

In(1) ⊗ Q
(3)
ε

)

−
∑

e∈N

λe

(

D
(1)
e ⊗ In(3)

)

−
∑

e∈N

λe

(

In(1) ⊗ D
(3)
e

)

−
∑

e∈J (1,2)

λe

(

In(1) ⊗ D
(3)
e

)

−
∑

e∈J (3)

λe

(

D
(1)
e ⊗ In(3)

)

)

=

((

Q
(1)
ε −

∑

e∈J (3)∪N

λeD
(1)
e

)

⊕

(

Q
(3)
ε −

∑

e∈J (1,2)∪N

λeD
(3)
e

))

Thus

R(13)V(13,23) =
((

Q
(1)
ε −

∑

e∈J (3)∪N

λeD
(1)
e

)

⊕

(

Q
(3)
ε −

∑

e∈J (1,2)∪N

λeD
(3)
e

))

·

(

V(1,2) ⊗ In(3)

)

=

((

Q
(1)
ε −

∑

e∈J (3)∪N

λeD
(1)
e

)

V(1,2)

)

⊕

(

Q
(3)
ε −

∑

e∈J (1,2)∪N

λeD
(3)
e

)

.

(9)
It remains to show that


Q(1)
ε −

∑

e∈J (3)∪N

λeD
(1)
e



V(1,2) = V(1,2)



Q(2)
ε −

∑

e∈J (3)∪N

λeD
(2)
e



 ,

because having that we obtainR(13)V(13,23) =
V(13,23)R(23) using the same steps as in (9) in reverse
order. According toA(1)∼jA(2) the similarity relation
holds when we sum over alle ∈ Es. Using also that the
similarity relation holds for unity matrices we have
(

Q
(1)
ε −

∑

e∈J (3)∪N

λeD
(1)
e

)

V(1,2) =

((

Q
(1)
ε −

∑

e∈Es

λeD
(1)
e

)

+

(

∑

e∈J (1,2)∪N

λeIn(1)

))

V(1,2) =

V(1,2)

((

Q
(2)
ε −

∑

e∈Es

λeD
(2)
e

)

+

(

∑

e∈J (1,2)∪N

λeIn(2)

))

=

V(1,2)

(

Q
(2)
ε −

∑

e∈J (3)∪N

λeD
(2)
e

)

,

which completes the proof forA(1)‖CA(3)∼jA(2)‖CA(3).
Again the proof forA(3)‖CA(1)∼1A(3)‖CA(2) is similar
using matrixV(3) = In(3) ⊗ V(1,2)

The theorem shows that the weakest relation is a con-
gruence if the composition isasynchronouswhich means

that for each event one component is active and the other
component accepts the event and does not block it or affect
the rate of the synchronized event.

V. EXAMPLES

We present numerical results in this section. We begin
with some small matrices to clarify the equivalence relations.
Afterwards two more complex examples indicate that the
introduced equivalences go beyond bisimulation.

A. Small Matrices

The following example matrices are very small and are
used to present in detail the equivalence relations. We begin
with a componentA(1) = (S(1), π(1),E

(1)
e (e ∈ E),Λ).

The component has6 states (i.e.,S(1) = {0, . . . , 5}),
E = {ε, a, b} and Λ = (1, 1, 1). The following matrices
characterize the behavior of the component.

E
(1)
ε =

















0 0 0 0 5 2
3 0 0 0 1 2
0 0 0 1.25 0 0

3.75 1.25 0 0 0 0
1.5 0.5 4.8 1.2 0 0
0 0 0 0 0 0

















,

E
(1)
a =

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1.25
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 2

















,

E
(1)
b =

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 2 0.5 0 0
0 0 0 0 5 0
0 0 0 0 0 0
0 0 3.2 0.8 2 0

















.

π(1) = (0.111, 0.037, 0.430, 0.107, 0.176, 0.139) is the sta-
tionary vector of Component 1 whose generator is

Q(1) = λε(E
(1)
ε −D(1)

ε )+λa(E(1)
a −D(1)

a )+λb(E
(1)
b −D

(1)
b ).

Now consider the componentA(2) = (S(2), π(2),E
(2)
e (e ∈

E),Λ) defined for same setE and the same vectorΛ with
the matrices

E
(2)
ε =









0 0 4 2
1 0 0 0
2 6 0 0
0 0 0 0









,

E
(2)
a =









0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 2









,E
(2)
b =









0 0 0 0
0 2 1 0
0 0 0 0
0 4 2 0









.



A(1)∼2A
(2) since W

(

E
(1)
ε −

∑

e∈E D
(1)
e

)

=
(

E
(2)
ε −

∑

e∈E D
(2)
e

)

W and WE
(1)
e = E

(2)
e W (e = a, b)

with matrix

W =









0.75 0.25 0 0 0 0
0 0 0.8 0.2 0 0
0 0 0 0 1 0
0 0 0 0 0 1









.

The non-Markovian component A(3) =

(S(3), π(3),E
(3)
e (e ∈ E),Λ) defined for the same set

E and the same vectorΛ with the matrices

E
(3)
ε =





0 7 1
1 0 0
−1 −3 0



 ,

E
(3)
a =





0 0 0
0 0.5 0.5
0 1.5 1.5



 ,E
(3)
b =





0 0 0
0 3.5 −0.5
0 10.5 −1.5





is also equivalent to the other two components since
A(3)∼1A(2). We have

(

E
(2)
ε −

∑

e∈E D
(2)
e

)

V =

V
(

E
(3)
ε −

∑

e∈E D
(3)
e

)

and E
(2)
e V = VE

(3)
e (e = a, b)

with matrix

V =









1 0 0
0 1 0
0 1.5 −0.5
0 0.5 0.5









.

Observe that only the weakest equivalence∼ holds be-
tween the components. However, the simple example shows
that equivalence between Markov components goes beyond
bisimulation and equivalence between Markovian and non-
Markovian representations exists.

We can try to transform this representation in a Markovian
representation using relation∼0 and the approach presented
in [18] to transform matrices to Markov representations by
some elementary similarity transformations. For our example
we obtain

E(4)
ε =





0 0.00219253 4.46261
2.1795 0 1.44534

0.00697531 0.00120621 0



 ,

E(4)
a =





0.00573625 −0.000338443 1.21588
5.37744 ∗ 10−6 −3.17273 ∗ 10−7 0.00113983

0.00940847 −0.000555107 1.99426



 ,

E
(4)
b =





0.212434 2.3629 1.08851
0.000199146 0.0022151 0.00102042

0.34843 3.87557 1.78535



 ,

which is almost a Markovian representation of order3.

B. A Disk System

The following example is a GSPN model of an IO system
which has been taken from [29]. A specification of the
model as a colored GSPN is shown in Figure 1. The system
consists ofd disks which can be accessed viac channels.
A request arrives by firing the transition labeled withta
and chooses with equal probability one of the disks (color
d = {d1, . . . , dk}). To access the disk, the request needs the
disk (the token with colord on the upper place) and one
channel (one of thec tokens on the place in the middle).
We assume that every channel can be used to access every
disk. Sending the request to the disk requires a negligible
amount of time realized by an immediate transition which
releases the channel immediately. Then the disk operation
is performed which requires an exponentially distributed
time with rate 1. Then a channel is required to transfer
the data. We assume that the transfer operation requires
an exponentially distributed time with rate3. Finally, the
disk and channel are returned and the request terminates
by firing transition labeled withtb. Thus, the component
communicates with its environment by receiving requests
(firing transition labelta) and returning the finished request
(transition with labeltb). The state space for the component
is generated for up ton simultaneous requests. This implies
that the component can be used in an environment with up
to n request that can be pending at the component or the
component has to block additional request. In the former
case relation∼i can be used to find a representation with a
smaller state space, in the latter case relation≈i is required.

n

c

{d1,..,dk}

<d> <d>

<d>

<d> <d> <d> <d> <d>

<d>

<d>

t_a t_b

Figure 1. IO system example model.

The example is symmetric according to the usage of the
disks which implies that the state space can be reduced
using bisimulation and lumpability for state space reduction.
We check whether the relations∼i and ≈i go beyond
bisimulation for this example.

Results for different configurations of the example are
shown in Table I. The table includes in the first three
columns the system parameters (n = maximum number of
concurrent requests,k = number of disks,c = number of
channels) and in the fourth column the sizes of the tangible
state spaces of the model without any state space reduction.
The fifth column contains the sizes of the reduced state
spaces if ordinary lumpability or stochastic bisimulation



Parameters State space size
n k c original ordinary exact ∼i ≈i

4 2 1 59 27 31 27 27

4 2 2 41 23 23 23 23

4 4 1 842 47 61 43 46

4 4 2 444 45 45 43 43

8 2 1 229 101 117 101 101

8 2 2 145 77 77 77 77

8 4 1 15143 541 836 508 524

8 4 2 7779 494 494 433 433

8 6 1 326115 853 1501 738 752

8 6 2 205239 968 971 890 898

8 8 4 444496 530 528 482 482

Table I
STATE SPACE SIZES OF EQUIVALENT REPRESENTATIONS OF THEIO

SYSTEM.

is applied for state space reduction [7], [4]. Column six
contains the state space sizes if state space reduction is
performed according to exact lumpability or exact perfor-
mance bisimulation [9], [28], column seven contains the
reduced state space sizes according to the relation∼1 and
∼2 which are applied one after the other and column eight
contains the state space sizes for relation≈1 and ≈2.
Exploitation of symmetries results in a reduction which
is based on an ordinary and exactly lumpable partition.
Consequently, whenever the state space sizes according to
ordinary and exact lumpability differ, the reduction goes
beyond symmetry exploitation.

For several configurations of the example the state space
sizes according to ordinary and exact lumpability differ
which shows that state space reduction is more than symme-
try exploitation. Furthermore, for some configurations it is
also possible to reduce the state space further if relation∼i

and even if relation≈i is applied. Although the use of∼i

sometimes allows an additional reduction, possibly resulting
in a non-Markovian representation, the major reduction is ,
of course, due to exploitation of the inherent symmetry of
the model.

It should be noted that the computation of lumpability
only requires the comparison of sums of transition rates
whereas the computation of reduced representations accord-
ing to ∼i requires a repeated singular value decomposition
of matrices which means that theε-rank of a matrix is
computed (see e.g., [30], and note thatε refers to numerical
accuracy in this terminology). Even if singular value de-
composition is stable, singular values and matrix elements
do not completely vanish using floating point arithmetic
even if they would be zero under exact arithmetic. Thus,
model reduction using the approach from [27] requires, like
model reduction in linear systems theory [25], the definition
of some thresholdε to define which values are interpreted
as 0. In all examples we present the absolute value of the
largest element in the lower left submatrix (cf. Definition
7) or the upper right submatrix (cf. Definition 9) is below
10−10 whereas non-zero matrix elements in the matrices of

Parameters State space size
TWS TBS original ordinary exact ∼i ≈i

1 1 16 16 14 14 14

2 1 69 69 61 57 57

3 1 217 217 199 194 196

4 1 546 546 504 498 500

1 2 28 28 24 21 23

2 2 120 119 102 96 98

3 2 384 378 339 329 334

4 2 993 972 882 860 863

Table II
STATE SPACE SIZES OF EQUIVALENT REPRESENTATIONS OF THE

COURIER PROTOCOL.

the reduced component are inO(1) which indicates that the
aggregation is exact up to numerical inaccuracies.

C. A Communication Protocol

The second example has been taken from [31]. It describes
a unidirectional communication protocol. We consider a
compositional description that decomposes the model into
four components and has been proposed in [32]. For aggre-
gation the transport layer of the sender, which is described
by one component, is used. The component can be param-
eterized by the communication window size (TWS) and the
number of messages concurrently accepted from the upper
layer protocol (TBS).

Table II contains the sizes of the different component state
spaces. Although the component is not symmetric, exact
and in some cases also ordinary lumpability allow one to
reduce the state space. An additional reduction of the state
space is possible using relation∼i and≈i. However, as in
the previous example this reduction reduces the state space
only slightly more than exact lumpability which is for the
example more effective than oridnary lumpability.

VI. CONCLUSION

We have presented a framework for compositional model-
ing. This framework is composed by similarity relations and
compositional rules. The key feature which is investigatedin
the paper is the set of similarity relations and compositional
rules which ensures congruence. It turns out that the simi-
larity relations of stochastic bisimulation are strict enough
to ensure congruence also with synchronized composition,
but it is not the case when more general similarity rela-
tions are considered. These more general similarity relations
might relate Markovian models with also non-Markovian
ones, which are algebraic constructions without stochastic
interpretation. Necessary conditions are presented to ensure
congruence in case of the set of general similarity relations.

The investigation of efficient numerical analysis of possi-
bly non-Markovian compositional models and the state space
reduction due to the general set of similarity relations are
future research plans. The paper presents numerical example
which demonstrate that general similarity relations might
result in smaller models than stochastic bisimulation.
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