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Abstract—Compositional modeling and the aggregation of The theoretical advantages of compositional model can
components according to equivalence relations based on pe exploited in practice since efficient methods exist for
stochastic bisimulation are often used to handle the probla computing the largest bisimulation relation for a compo-

of state space explosion in Markov models. The paper present -
a general class of equivalence relations between Markov nent [11], [12], [13] which can then be used to generate

models that include stochastic bisimulation or lumpabiliy as  the reduced component by state aggregation. Furthermore,
specific cases and proves the congruence property of the new the compositional model structure can be exploited for an
equivalence with respect to the composition of components. efficient analysis by representing the generator matrix of
It is shown that the equivalence relates Markovian and non- the resulting Markov chain using Kronecker operations [14]

Markovian representations but requires some restrictionsfor .
the composition which are automatically observed if stochgtic ~ Lo) [15], graph based data structures like MTBDDs [16] or

bisimulation is used as equivalence relation. Neverthelss combinations of both [17].
the approach offers the possibility of state space reductio Available results which use bisimulation for state space

beyond stochastic bisimulation without loosing the possibty  reduction are based on the observation that bisimulation is
of analyzing the resulting stochastic process by means of a congruence according to model composition. However
numerical methods. - . LY
equivalence of component behavior goes beyond bisimu-

Keywords-Compositional Modeling, Equivalence, Aggrega- lation. In [18] a general equivalence definition has been

tion, Markov Models, Rational Processes; introduced for components with state spaces of the same
sizes. This relation is defined algebraically and relates
|. INTRODUCTION Markovian and non-Markovian representations. The non-

Markovian representations are denoted as Rational Arrival

In the last two decades compositional modeling and thd’rocesses in the literature [19]. In [20], [21] it is shown
use of equivalence relations to reduce the state space tfiat these more general process types can be analyzed
components that are afterwards composed to build a complexumerically similarly to Markov chains. Recently, it has
model are the major steps to handle state space explosidieen shown in [21], [22] that the equivalence of [18] can be
in Markov modeling. Several approaches exist [1], [2], [3], extended to components with different state space sizes and
[4], [5], [6] which differ in various details but are based includes bisimulation, lumpability and weak lumpability a
on two central steps, namely the state space reduction @&pecific cases.
components to a behaviorally equivalent component using In this paper, we consider the general equivalence rela-
stochastic bisimulation [7], [8] which is based on some formtions proposed in [21], [22] and analyze their composition-
of lumpability [9], [10] and a composition of components ality. Interestingly, it turns out that although bisimudat is
which preserves the equivalence, i.e. the substitution o& congruence according to the composition operations this
a component by an equivalent component results in adoes not hold in all cases for the more general equivalence
equivalent model. The advantage of this approach steamelations. Thus, we either have to restrict compositiorher t
from the combinatorial growth of the state space in terms ofquivalence relations for compositional modeling.
the sizes of component state spaces. Consequently, if for a In other words, there are cases when a Markovian com-
component withm (1) states an equivalent component with ponent of sizen(!) can not be represented with a smaller
n (< m) states can be found and the component isMarkovian component, but there exists a non-Markovian
composed with another component with?) states, then the representation of the same component of sife (n(1) <
resulting model has(Vm 2 rather thanmm®? states. m). In these cases the composition of non-Markovian rep-
l.e., the state space is reduced by a faetdt /m™). If it is resentation of components can avoid state space explosion.
also possible to find for the second component an equivalerifo apply this methodology the paper collects composition
representation witl(? (< m(?) states, then the overall rules for non-Markovian components.
state space reduction ig"n ) /(mMm®). The paper is structured as follows. In the next section



the basic model class is defined. Section Il introducesas a unique and non-negative solution which is the station-
equivalence relations for our models. Afterwards, in sgcti ary vector of the Markov chain. From the stationary vector
IV the preservation of equivalence after the composition ofthe stationary throughput of eveate £, can be computed
components is analyzed. In Section V, several examples a®s D 1T and the transient throughput of evente & at
presented to show the possibilities of state space reductidime ¢ is meQ/D, 1.
based on equivalences. The paper ends with the conclusion.The joint density for a sequence df observations
(e1,t1,ea,ta,..., ek, tr), Wheree; € & is the event that
[I. COMPOSITIONAL MODELS is observed and; > 0 is the interevent time, is given by
We begin with the introduction of Markov models that k
are afterwards extended to a class of non-Markovian models faler,tr, ... epty) =7 <H eR“)\eiEei> L @4
which is derived from rational arrival processes [19]. Hina i=1
we consider the composition of components which results ifyhere
a Markovian or non-Markovian model depending on whether R=Q. — Z A.D,. (5)

the components are Markovian or non-Markovian. et

A. Markov Components Of course, by choosing = v the Markov renewal process
starting in steady state is considered. Based on the definiti
of R, D, and the non-negativity dE. it is straightforward

' to show [22] thatf, +,....c..t,) IS @ valid density, i.e.
f(el.,tl.,...,ek.,tk) >0 and

A Markov component is defined ad = (S, 7,E.(e €
€),A), whereS = {0,...,m — 1} is the finite state space
7 € RY™ is the initial probability distributiong is a finite
set of eventsE. € R™™ is the transition weight matrix
according to event and A = (\.(e € £)) is a rate vector / / Z Zf _
which contains for every event ¢ £ a rate \. > 0. N A (ex,trmmmenstie) =
Transition weights are non-negative, i.&,(x,y) > 0 for _ ] o
alle € £ andz,y € S, whereE, (z,y) refers to thez,y We did not consider the spemﬂcgtlon of_compo_nents yet.
element of matrixE,. We number the elements in a vector However, components can be easily described using stochas-

.

k €1 €L

or matrix from0 to m — 1. Furthermore, define tic automata [6], [5], stochastic process algebra [4], [8],
stochastic Petri nets [2], [14], interactive Markov cha]iBk
D. = diag(E.1) (1)  or similar approaches.

wherel is a column vector of ones anldag(«) is a diagonal ~ B. Non-Markovian Components

matrix with elementy(z) in position(z, z). We assume that  The Markov models described above are often used in
& contains a specific eventthat is not observable and we stochastic modeling and have a clear probabilistic ineerpr
denote&; = £\ {e}. tation. However, if one uses an algebraic interpretation of
The behavior of the component is as follows. In statethe vectors and matrices, then it is possible to consider
z € S an exponential distribution with rate.D(z,z) iS  non-Markovian representations. For a valid component it is
enabled for event € £. Consequently, we have possibly only required thatf(c, 1, c..t,) @s defined in (4) is a valid
up to [€] exponential distributions running in parallel such joint density. This yields the more general interpretatdn
that the sojourn time in the state is exponentially distebu  Rational Arrival Processes as defined in [19]. Since we do
with rate 3 . AcDe(z, ). If the exponential distribution not consider specifically arrival processes, we denote the

for evente expires first, successor stageis chosen proba- corresponding processes as rational processes (RPs) in the
bilistically with probabilityE (z, y)/De(z, z). Observe that = sequel.

x = y is included. The probability that € £ expires first is In contrast to Markov models matricEs and vectorr of
given by A\.D.(z,z)/ (Zf€£ ArDy(x, :v)). Sincee is not  RPs may contain negative entries but we still requife= 1.
observable we defin@, = \.(E. — D). Since matrixQ is computed as in (2), we also ha& = 0.
Thus, we can define the stationary or transient behavioln contrast to the Markov case, RPs have no probabilistic
of a component. Let interpretation at the state level but the observation of the
occurrence of events still describes a stochastic process.
Q=Q.+ Z Ae (Ee — D) 2) The more general class of components is more powerful
ec&, than Markov models, but on the other hand, it is rather

be the generator matrix of the Markov chain defined byhard to check if a set of matrices and an initial vector

the component. For stationary analysis we assume Ghat define a valid joint density. Consequently, it is hard to
is irreducible such that define specification techniques to specify valid RPs. In

this paper we go another way. We start with a Markov
YQ =0andyl=1 (3) model and define equivalence relations that allow us to



relate Markovian and non-Markovian representations.&inc  Definition 1: The matrices of the composed modé{®)
equivalence means that the joint densities are identical, are defined as
non-Markovian model resulting from an equivalent Markov

model is a valid stochastic model. We come back to this g(©) _ E @B if e e NU{e},
point in Section IlI. ‘ EM oE? ifeec,
DY = diagEVT)  if e &,
C. Composition of Components Q¥ = QM e Q@ = A, (Egl) o»E® - DY ¢ DEQ)) _
Composition is the major step to build complex mod- (6)

els from simpler components. It alleviates to some ex-Based on this definition for € N we have
tent state space explosion if the explicit generation of the _(,

composed state space can be avoided. We consider herDe )= diag(B 1) = diag(EeY © BY) L) =
the composition of two components. However, since the = diag((EY" @ 1) + Loy @ EP) (L0 @ L)) =
composition is associative, it can be extended to an arpitra = dz‘ag(Egl)][,lm Q@ L,2) + diag(L,1) ® E§2)]L,l<2>)
number of components. = dz’ag(Egl)][nm) @ diag(T,>))

L2€t "42(1) (:2) (8(1),7T(1),E£1)(€ € 5)7A) and A(Q) = + diag(][nu)) & dz’ag(EéQ)][n@))
(8@, 72 E¥ (e € £),A) be two components that should — diag(EVL 1) @10 + 10 © diag BT, o)

be composed. We assume that the event&etad the rate
vectorsA of length |£] are identical which can always be
achieved by scaling the values in the matrid@¥ and  and consequently
adding pseudo events witE) = 1 (1 = 1,2, e € &),

= diag(EV1,0)) @ diag(EP1,2) = DY @ DX,

wherel is the identity matrix, if necessary. The size of a O - > /\eDgO) =
component is the cardinality of its state space and is denote eeN @)
asn(i), (QE” -3 AeDé”) ® <Q£2> - ACDS’).

eeN eeN

Composition is performed over the set of signdls
Signals fromC C & occur as synchronized signals in |, 4 similar wayDgo) _ Dgl) ®D£2) forecC.

b.Oth componer_ns whereas S|gnals frovh = £\ C an(_j . In stochastic automata networks (SANS) [6], [15] the basic
signal e occur independently in the components. This Srates \. are usually inserted in one of the matrices. It is
the usgal way of defining composition in different modeling 5, possible to extend the approach by defining some other
formallsm_s [4]. [2], [14]. . . form of computing the rates of synchronized transitions as
We define the composition now using Kronecker op-tr example done in the stochastic process algebra PEPA
erations. This is, however, only a compact way t0 Write[4) However, we will not consider this case here although

composition down and prove some results later. The resulty o4 he incorporated in the approach we present. Thelinitia
concerning the preservation of equivalence after comiposit | octor of A s given by

are, of course, independent of the mathematical formalism
we use for its presentation. 70 = 7(1) & £(2) (8)

Let A® = AW, AP be the composed model that
is considered over the state spaf€) = S x S@. such thatrtT =7 1= 1 implies7©1=1.
For the definition of synchronization, the definition of the If A(®) and A® are Markov models, themt(®) is also
rate of synchronized transitions is one important desigr2 Markov model sincer® > 0 and EX > 0 in this
decision, several possibilities exist [23]. In conjunatigith ~ case. For the moment we consider only the Markov case, the
Kronecker representations usually the product of weights inon-Markovian case will be described later in conjunction
used resulting in a Kronecker product of matrices [6], [15].with equivalence relations. The generator matrix of the

For G € R™", H € R™™ the Kronecker product is defined resulting Markov process is computed using (2). It should
as be remarked thaf(®) may contain unreachable states which

F—GoH e RV implies thatQ_ is not irredl_JcibIe. Si_nC(_e we define the_initial
vector, transient and stationary distribution of the resgl
such thatF (iqm + iy, jam + jy) = G (i, ja)H(ip, jy) (0 < process are _WeII_ defined but for an efficient numerical
iasja < 1,0 < iy, j» < m). The Kronecker sum of matrices computation it might be preferable to choose some other

is defined as [15] representation \{vhich contgins only reachable gtates _[14],
[24], [17]. We will not consider these representations sinc
FoH=F®IL,+1, ®H, the numerical analysis is not the topic of this paper and the

necessary methods to handle unreachable states are kvailab
wherel,, is the identity matrix of sizen. and established.



I1l. EQUIVALENCE RELATIONS the representation, components in relatignare equivalent

We begin with a general definition of equivalent com- Which implies that components in relatiar, and ~o are
ponents of the same sizes [18]. Afterwards, two differenflSO €quivalent since components that are in relatigror
equivalences relating components with different stateespa ~o are also in relation-,. _
sizes are introduced which are both based on the genera| Theorem L:if AM~A®), thenA™ and A are equiv-
equivalence definition and allow state space reduction dué€nt:

to redundancy according to the closing or initial vector][22 Proof: We have to show that
. . . fAu)((el,tl,...,ek,tk) = fA(z)(el,tl,...,ek,tk) for
A. An Algebraic Equivalence Relation all k > 0, e; € & andt; > 0. Observe thaB1 = 1
We use the following definition of equivalence for two implies (by multiplying both sides by3—!) BT = I
components and assume in the sequel that components dret RU) = QE‘” = D cee. )\eDé’) (j = 1,2), then
defined over the same event séts R® = B 'RWB holds due toAM~,A432). We have
Definition 2: Two components AW = (see also [22])
1
(S(I)J(l)’Eé; (e N 5)’A). and_ AR - Fam ((erta, ... ep ) =
(8@ 72 Be¥ (e € ), A) are equivalent, if and only if K "
) ( capRWE)A, EL ) 1=
f.A(l) (el,tl, ceey €k,tk) = f_A(z) (61, t1,...,€kL, tk) iil
& [ESPIRY;
forall k > 0, ; € & andt; > 0. (! ( > Bt )\eiEg)> I=
Definition 3: Two vectors of sizen, #() and7(?), and i=15=0
two ordered sets of matrices of sizex m, M) and M ®), B k i": B'RUBL) \ poipp | B-l1—
are in similarity relationCy if a non-singulamm x m matrix 1720 7! “ “
B exists such that koo o,
. BI=1, @ (] Y BEAED | 1=
e 72 = 7B and 1=15=0
« F@ — B-IFOB, for all F) ¢ M® (i = 1,2) fao ((e1,t1, .o e, ty)
associated matrices of the two sets. u

The above relations can be used to prove whetHer
for componentd = (S, 7, (e € £), A). describes a valid process even if |t_ is a non-Mark0v_|an
B D representation. If it is possible to find some Markovian
o Mo ={Qe - eg ADe, Ee(e € &)}, representationd’ with A~y A’, then A describes a valid
o« M~={Q. - ZS AD.,E.(e € &), D.(e €C)}, process since a Markov representation always defines a
eeN process. This approach is used in [18] to transform non-
. Mz = {QeaEe(e € 55)7De(6 S 55)}

. ~ Markovian representations resulting form moment fitting
M. and M are independent of the set of synchronizedinto Markovian representations.

Definition 4: The following sets of matrices are defined

signalsC < &, but for M~ setC and consequentiy’ = The transform relation of the diagonal matrices that is
&\ C have to be defined. For notational convenience thigsed in~, and=~ in Definition 5 is a very strict condition
dependence is not indicated explicitly. as shown in the following theorem.

The following definition relates two components with the  Theorem 2:1f D? = B-!'D"B for two diagonal
same state space ) matricesD!" of sizem, thenB(z,y) = 0 or DV (z, z) =

Definition 5: Let A = (5,7, EM (e € £),A) and D (y, )

2 . € 1) .

AP = (8,72, ES )(6 € &),A) with |S| = m be two Proof: SinceD{" are diagonal matrices, we have
components. We define three equivalence relations between(l) @) ) @
AM and A associated with similarity relatio@. D.’B =BD.” = D, (z,2)B(z,y) = B(z,y)D.” (y,y)

o AN~ AR iff Cy holds for (7, M®) and forall 0 <z,y <m. u

(7, M), The relations defined in this section all relate represen-

« AV~ A iff ¢, holds for (ﬂ_(l)’M(Nl)) and tations of the same sizes. In the following two subsecti_ons
(x® /\/l(f)) - we show how this a_pproach_can be _extended tq relations
e (1) between representations of different sizes. To define a rela
o AWz A®) iff Cp holds for (7, ML) and  tion of components with different sizes some redundancy has
(W(2)7Mg))- to be in the larger representation. This redundancy can be
From these definition it follows thatg = ~y = ~, for related to the so called closing vector whichlig our case
C =1, ~y & ~g and forC = &, ~y & ~¢. The relations or the initial vectorr. The approach we present is related

may relate Markovian and non-Markovian representationsto minimal representations in linear system theory [25] and
The following theorem shows, however, that independent ohas been adopted for non-Markov models in [21], [22].



B. Redundancy According to the Closing Vector

The relations define equivalent representations but do not

We now extend the equivalence relations of Definition gdescribe a method to decide whether two representations

to define a relation betweed) with m states and4(?

are equivalent or, more important, describe a method to

with n (< m) states. To distinguish the sizes of vectdrs compute for a component)) of size m an equivalent

we usel,, and I, for the vector of ones of lengtin and

representationd® of minimal size. However, such an

n, respectively. Furthermore, we have to distinguish betwee @PProach is available in linear system theory (see e.g) [26]

zero and arbitrary submatrices and 0der the former anck

and has been adopted to Markov and non-Markov models

for the latter. Again we assume that components are defindd [27]- For the lack of space we do not present the details

over the same alphabé&twith the same vectoA.
Definition 6: Two vectors,7(!) of size m and 7(?) of
sizen (n < m), and two ordered sets of matricesq(!)
composed by matrices of size x m and M composed
by matrices of sizew x n, are in similarity relationC; if a
non-singularm x m matrix B exists such that
—1 . ][n
« B, = o |
« 7B = (w(z),*), and
F@ « ; N
« B'FUB = 0 , forall F&) € M@ (i =
1,2) associated matrices of the two sets.

Definition 7: The equivalence relations, ~; and =
are defined in the same way &g, ~ and~ in Definition
5 using similarity relationC;.

We use the following partition of the matricBsandB 1,

B=(V,%) andB™! = ( ‘*N > :
Visam xnandW an x m matrix.
Theorem 3:The following relations hold for matrice¥
and' W according to Definition 7:
« WL, =1,, VI, =1,, andWV =1,
o« 7OV =72,
e« WFDV =F®? andFVV = VF®?),

Proof: The proof follows by a simple substitution of

the matrices. E.g.,

(o 1)=mm=(V)wn=("0 1)

| ]
Theorem 4:1f AM~; A thenA™) and A are equiv-
alent.
Proof: We have

faom((er,t1,. .. en tr) =
n) ﬁ io: W/\mEg) L, =
i=14=0

koo ;
ONEIDY (R(;#/\QES) Vi, =
i=1j=0

i=1j=

A0V (] 5 B2 521, =
i=13j=0 >
fA(z)((el,tl,...,ek,tk) .

of the algorithms here but use them to compute equivalent
representations in Section V.

These equivalences are related to lumpability [10], [9] and
bisimulation [7], [4] as shown in the following theorem that
can be found in [22].

Theorem 5:1f A of size n results from A of size
m (> n) by aggregating states according to a stochastic
bisimulation relation, thetV € {0,1}™"™ andV contains
one element equal t@ per row and at least one element
equal tol per column.

In this caseEVV = VE? = DYV = vD® which
implies ~; & ~; & =~

C. Redundancy According to the Initial Vector

The equivalence relations from the previous paragraph can
also be defined in a symmetric form which will be done now.
Definition 8: Two vectors,7(!) of size m and 7(?) of
sizen (n < m), and two ordered sets of matricey(")
composed by matrices of size x m and M2 composed
by matrices of sizer x n, are in similarity relationC, if a
non-singularm x m matrix B exists such that

« 7B = (77(2),0),

« B71, = L, , and

@) , |
B FOB=( 7 0 forall FO e MO (i =

1,2) associated matrices of the two sets.

Definition 9: The equivalence relations,, ~> and =,
are defined in the same way &g, ~¢ and= in Definition
5 using similarity relationC’s.

Similar to Theorems 3 and 4, the following two theorems
can be proved.

Theorem 6:The following relations hold for matrice¥
and W according to Definition 9:

o 7 = 7@W,

« W1, =1,, VI, =1,, andWV =1,

e WFV =F®? and WF) = FOW.

Theorem 7:1f AN~y A2 thenA™ and A are equiv-
alent.

The proof of the theorem follows the same pattern as the
one of Theorem 4.

The equivalence relation defined in Definition 9 is an
extension of weak lumpability [10] or exact performance
equivalence [7], [28] as shown in [22]. Algorithms to
compute minimal representations according to one of the



equivalence relations from Definition 9 can be derived fromThese relations prove the theorem for all matrices\ef.,
the approaches used to compute minimal relations accordirgince according to (6) and (7) one of the two Kronecker

to the equivalence relations of Definition 7 [27].

IV. COMPOSITIONALITY AND EQUIVALENCE

To be really useful, equivalence relations should be pre-

served by composition which means thdf!) s A®
implies AM|[cA®) b1 A || AG) for everyC C &, com-
ponentA®) and<ie {~q, =0, &, ~1, 21, R, ~a, o, R ).
It is known that this relation holds for Markovian represen-
tations and bisimulation or inverse bisimulation [4], [But

operations relates the associated matrices.

To prove A®||c AN ~; AB) | AR matrix V3132 =
I, ® V(12 s used. Apart form this the proof is analogous.
[ ]

Corollary 1: If A AR then

AW AB 2, AP || AB) (j = 0,1,2) for all C € &,.

it is important to note that the equivalence relations do not

hold in general for Markovian representations andif V

and W are not restricted as much as in bisimulation and

inverse bisimulation, i.e., iV ¢ {0,1}™". We now extend

Proof: The proof is identical with the one of Theorem
8 assuming’ C &;. [ |

the results to non-Markovian representations and the more

general equivalence relations.

Theorem 8:If A(l)NjA 2, then
AW e A~ AP A®) and A 3)ch4 Ve A® | AP
(j =0,1,2) if the setC used to computex; equals the set
C used for synchronization.

Proof: We show the proof for~;, the other two
proofs are similar. Letd® = AW A®) and A®) =
A@ | A®). Let n® be the size ofA®) and let V(1:2)
be an x n® matrix such thatV2 T o, = 1,0,
7V = 7)) and FOV12) = VEAF®R) for all
FO ¢ MY @ 1,2). Matrix V(1.2 exists since
AW~ A@) holds. Observe thak™® = nWp® and
n) = n@npBG. To prove A13)~; A3 it has to be
shown that an(®® x n(?¥) matrix V(13:23) exists for
which V32T o5y = T sy, n(1DVE323) — 7(23) gnd
F(13)y(13,23) _ V(13 23)F(23) for all FO ¢ M(l (i =
13,23) holds. DefineV(13:23) = V(1.2 @ T ). Then

V(13’23)][n<13) = (V(1’2) ® In(3)) (I,) @ L)) = 1,29,

and
7(13)37(13,23) _ (Wu) ® 7T(s)) (V<1,2> ® In<s>) — n(23),

Corollary 1 shows thats; is a congruence according to
parallel composition but since:; requires conditions for
all diagonal matrices, Theorem 2 applies and the possible
relations are close to the known bisimulations which also
hold for non-Markovian representations. Theorem 8 shows
that the strict conditions on the matricd.” are only
required for events that are used in a synchronization.
This implies that the equivalence relation has to be chosen
according to the composition. The following theorem shows
that~; is also a congruence, if the composition is adequately
chosen.

Theorem 9:If AW ~; A®  and for
either Eél)][n(l) 1,0, Egz)][n(z)
Eg?’)][n(a) = ][n(a), then A(I)Hc.A(B)N
AP e AW~ A8 || AP (5 =0,1,2).

al e € C,
][n(z) or

AP AB) and

Proof: Note that in the extreme case whelf") ~;.A(%)
and for alle € C, Egl)][nu) =1 w, Eéz)]ln@) =1, then

D! =1, and AM~; A® holds. It means that in this
case Theorem 8 applies.

To prove the relation between the matrices we first prove 1
that the required relation holds for matrices composed with In the general case for thg'(*: C C subset of syn-

Kronecker products and sums. For the Kronecker producﬂzhfonlzed eventE!’ )][nm =T,m, ES ]LL@)

we obtain

FU)VI32) — (FO o F®) (VI @1, )
=FOVEL2) g FOT

— VIR g, F®) = v3.23)F(23)
and for the Kronecker sum
F3)v13.2) — (FO) g FO) (VI @ 1,)

=(FYI,) (VE?) L)

+ (In(l) ® F(g)) (V(l"z) & In<3>)
= (FOVID QT o) + (VD @ FO)

= (VIIFD RI,s) + (VED @ FO)

(V(l 2) o1 (%)) (F(2) D F(3)) Vv (13,23) p(23)

][n(z) and
for the 7 = ¢\ J1? subset of synchronized events
E( )][n<3) = 1, hold. We prove the theorem for,, the
other two proofs are similar. As in Theorem 8 we have
to show thatF(13)v(13.23) — v(13.23)F(23) follows from
FOVI2) = vI2IFER) Again we definev(13:23) —
V12 @1 . Then it follows from the proof of Theorem
8 that V(13:23) observes the conditions according to the
closing vectorL,, sy and the initial vector Furthermore, the
relation holds for all matriceE( (z =12, e€ &) It
remains to show that the similarity relatlon also holds for

<ng3) B Z )\eDéiB‘)

ec&s

the matricesR(*3) = . Using that



Eéi)][ = T implies Dg) =1I,u, we have

R =
< (QE” @ Q?)) ~ T A (DE” @ DS’))

eeN

Z)\e(nu)@D) Z)\( ®In<3))>:

eeJ(1:2) ecJ3)
(le) ® Ims)) + (Inu) ® Q£3))
- > e (Dgl) ® In<3)) - Z Ae (In(l) ® DS’))

eeEN

Z)\e(nu)@D ) > Ae ( ®In(g))>:

ecJ(1,2) ecJ3)

QY- = ADV e Q¥ - = ADY
<< ee JUN eeJ (LDHUN

Thus
R(13)v(13.23) _

QY- = ADV e Q¥ - 3 ADY
<< ee JOUN eeJ (LDHUN

(V(l"z) ® In<3>) =

<<Q£”— ) &Dé”) v<1v2>> @ <Q£3>— 5> AD®
ee T B UN ee T2 UN
(9)

It remains to show that

1) Z AeDgl) V(1,2) _ V(1,2) QEQ) _ Z )\eDg2)
eeJBIUN eeJBIUN

because having that we obtaiR(1P)V1323)  —

V323 R(23) ysing the same steps as in (9) in reverse

order. According to AM~; A the similarity relation

holds when we sum over all € &,. Using also that the

similarity relation holds for unity matrices we have

1) _ Z /\eDgl)> V(1,2) _

eeJBIUN

Yo ADY )+ | X AL || VD =
ec&y e 12)yN

(a5 w0 o 5 11.))-
e€&s edJ (12D UN

V(1,2) QEQ) _ Z )\eD((eQ)
eeJBIUN

which completes the proof ford() | A3 ~; AP || AG)

Again the proof for A®)||c AN~ A®) | AP is similar
using matrixV® =1, @ v(1:2) -

The theorem shows that the weakest relation is a con-

gruence if the composition iasynchronousvhich means

that for each event one component is active and the other
component accepts the event and does not block it or affect
the rate of the synchronized event.

V. EXAMPLES

We present numerical results in this section. We begin
with some small matrices to clarify the equivalence relatio
Afterwards two more complex examples indicate that the
introduced equivalences go beyond bisimulation.

A. Small Matrices

The following example matrices are very small and are
used to present in detail the equivalence relations. Wenbegi
with a componentd® = (SO 71 EN(e e &),A).
The component ha$ states (i.e., S = {0,...,5}),

& = {¢a,b} and A = (1,1,1). The following matrices
characterize the behavior of the component.

0 0 0 0 5 2
3 O 0 0 1 2
D _ 0 0 0 125 0 0
€ 375 125 0 0 0 0 |’
15 05 48 12 0 0
0 0 0 0 00
00000 O
00000 O
e 00000 125
a 000O0O0C 0 |
00000 O
000O0TC0 2
’ 00 0 0 00
00 0 0 00
gD _| 00 2 0500
b [ o o0 o 0 5 0
00 0 0 00
0 0 32 08 2 0

71 = (0.111,0.037,0.430,0.107,0.176,0.139) is the sta-
tionary vector of Component 1 whose generator is

QY = A (BN D)+, (B —DM)+x(Ef -DiY).
Now consider the component® = (S 72 E®(e €

£),\) defined for same sef and the same vectak with
the matrices

0 0 4 2
2 | 1.0 00
E€_2600’

0 0 0O
00 00 00 00
(2)_0001E(2) 0210
“ 710000 00 00
0 0 0 2 0 4 2 0



AV~ AP since W (Egl) =D s Dgl)) =  B. A Disk System

E? _ s Dg)) W and WE" = EPW (e = a,b) The following example is a GSPN model of an 10 system
Wwith matrix which has been taken from [29]. A specification of the
model as a colored GSPN is shown in Figure 1. The system

07 025 0 0 0 0 consists ofd disks which can be accessed viahannels.
W — 0 0 08 02 0 0 A request arrives by firing the transition labeled with
0 0 0 0 10 and chooses with equal probability one of the disks (color
0 0 0 0 01 d={dy,...,dy}). To access the disk, the request needs the
_ disk (the token with colord on the upper place) and one
The nonzg/larkowan component  A®) = channel (one of the tokens on the place in the middle).
(8@, 73 EP (e e €),A) defined for the same set We assume that every channel can be used to access every
£ and the same vectok with the matrices disk. Sending the request to the disk requires a negligible
0 7 1 amount of time realized by an immediate transition which
3) releases the channel immediately. Then the disk operation
EY=( 1 0 0], . : , . o
is performed which requires an exponentially distributed
-1 -3 0 . . . .
0 0 0 d o 0 time with rate 1. Then a channel is required to transfer
E®_ | 0 05 05 E®_ [ o 35 0.5 the data. We assume that the transfer operation requires
o - 0 1'5 1'5 AU 0 10‘ 5 :1'5 an exponentially distributed time with rafe Finally, the

disk and channel are returned and the request terminates
is also equivalent to the other two components sincd firing transition labeled witht,. Thus, the component
AP A? . We have (E® — D p®)y .  communicates with its environment by receiving requests
¢ eeg € (firing transition labelt,) and returning the finished request
A% (E§3) — e DS)) andEPV = VE®) (e = a,b)  (transition with label;). The state space for the component

with matrix is generated for up te simultaneous requests. This implies
that the component can be used in an environment with up
L0 0 to n request that can be pending at the component or the

V = 0 1 0 component has to block additional request. In the former

8 ég _0055 case relation; can be used to find a representation with a

smaller state space, in the latter case relatigiis required.

Observe that only the weakest equivaleneeholds be-
tween the components. However, the simple example shows <d>
that equivalence between Markov components goes beyond La
bisimulation and equivalence between Markovian and non-
Markovian representations exists.

We can try to transform this representation in a Markovian
representation using relation, and the approach presented
in [18] to transform matrices to Markov representations by T
some elementary similarity transformations. For our examp
we obtain Figure 1. 10 system example model.

0 0.00219253  4.46261
EW = 2.1795 0 1.44534 |,
0.00697531 0.00120621 0

The example is symmetric according to the usage of the
disks which implies that the state space can be reduced
using bisimulation and lumpability for state space redrcti
We check whether the relations; and ~; go beyond

0.00573625  —0.000338443  1.21588 bisimulation for this example.
E(Y = | 5.37744% 107% —3.17273 % 107 0.00113983 | , Results for different configurations of the example are

0.00940847  —0.000555107  1.99426 shown in Table I. The table includes in the first three
columns the system parameters £ maximum number of
0.212434 2.3629 1.08851 concurrent requests; = number of disksc = number of
Ez()4) = | 0.000199146 0.0022151 0.00102042 |, channels) and in the fourth column the sizes of the tangible
0.34843 3.87557 1.78535 state spaces of the model without any state space reduction.

The fifth column contains the sizes of the reduced state
which is almost a Markovian representation of order spaces if ordinary lumpability or stochastic bisimulation



Parameters State space size Parameters State space size
n k¢ | original ordinary exact ~; =~ TWS TBS| original ordinary exact ~; 7
4 2 1 59 27 31 27 27 1 1 16 16 14 14 14
4 2 2 41 23 23 23 23 2 1 69 69 61 57 57
4 4 1 842 47 61 43 46 3 1 217 217 199 194 196
4 4 2 444 45 45 43 43 4 1 546 546 504 498 500
8 2 1 229 101 117 101 101 1 2 28 28 24 21 23
8 2 2 145 7 7 7 7 2 2 120 119 102 96 98
8 4 1 15143 541 836 508 524 3 2 384 378 339 329 334
8 4 2 7779 494 494 433 433 4 2 993 972 882 860 863
8 6 1| 326115 853 1501 738 752
8 6 2205239 968 971 890 898 Table II
8 8 4| 444496 530 598 482 482 STATE SPACE SIZES OF EQUIVALENT REPRESENTATIONS OF THE
COURIER PROTOCOL
Table |
STATE SPACE SIZES OF EQUIVALENT REPRESENTATIONS OF THI
SYSTEM.

the reduced component ared1) which indicates that the
aggregation is exact up to numerical inaccuracies.

is applied for state space reduction [7], [4]. Column sixC. A Communication Protocol

contains the state space sizes if state space reduction iStne second example has been taken from [31]. It describes
performed according to exact lumpability or exact perfor-, nigirectional communication protocol. We consider a
mance bisimulation [9], [28], column seven contains theompositional description that decomposes the model into
reduced state space sizes according to the relatiomnd  ¢o,r components and has been proposed in [32]. For aggre-
~2 which are applied one after the other and column €ighlaiion the transport layer of the sender, which is described
contains the state space sizes for relation and ~2.  py gne component, is used. The component can be param-
Exploitation of symmetries results in a reduction which giarized by the communication window siZBWg and the
is based on an ordinary and exactly lumpable partition,mper of messages concurrently accepted from the upper
Consequently, whenever the state space sizes according Ita%/er protocol TBS.
ordinary and exact lumpability differ, the reduction goes “rapie || contains the sizes of the different component state
beyond symmetry exploitation. spaces. Although the component is not symmetric, exact
_For several configurations of the example the state spacgq in some cases also ordinary lumpability allow one to
sizes according to ordinary and exact lumpability differ eqyce the state space. An additional reduction of the state
which shows that state space reduction is more than SYMM@pace is possible using relatien, and ~;. However, as in
try exploitation. Furthermore, for some configurationssit i e previous example this reduction reduces the state space
also possible to reduce the state space further if relatipn only slightly more than exact lumpability which is for the

and even if relations; is applied. Although the use of; example more effective than oridnary lumpability.
sometimes allows an additional reduction, possibly resylt

in a non-Markovian representation, the major reduction is , VI. CONCLUSION
of course, due to exploitation of the inherent symmetry of We have presented a framework for compaositional model-
the model. ing. This framework is composed by similarity relations and

It should be noted that the computation of lumpability compositional rules. The key feature which is investigaed
only requires the comparison of sums of transition rateshe paper is the set of similarity relations and composition
whereas the computation of reduced representations accorrlles which ensures congruence. It turns out that the simi-
ing to ~; requires a repeated singular value decompositiottarity relations of stochastic bisimulation are strict agh
of matrices which means that therank of a matrix is to ensure congruence also with synchronized composition,
computed (see e.g., [30], and note thaefers to numerical but it is not the case when more general similarity rela-
accuracy in this terminology). Even if singular value de-tions are considered. These more general similarity oeiati
composition is stable, singular values and matrix elementsmight relate Markovian models with also non-Markovian
do not completely vanish using floating point arithmetic ones, which are algebraic constructions without stocbasti
even if they would be zero under exact arithmetic. Thusjnterpretation. Necessary conditions are presented tarens
model reduction using the approach from [27] requires, likecongruence in case of the set of general similarity relation
model reduction in linear systems theory [25], the definitio  The investigation of efficient numerical analysis of possi-
of some threshold to define which values are interpreted bly non-Markovian compositional models and the state space
as0. In all examples we present the absolute value of theeduction due to the general set of similarity relations are
largest element in the lower left submatrix (cf. Definition future research plans. The paper presents numerical egampl
7) or the upper right submatrix (cf. Definition 9) is below which demonstrate that general similarity relations might
10~'% whereas non-zero matrix elements in the matrices ofesult in smaller models than stochastic bisimulation.
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