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Abstract. Single buffer Markov fluid models are well understood in the liter-
ature, but the extension of those results for multiple buffers is still an open re-
search problem. In this paper we consider one of the simplest Markov fluid mod-
els (MFM) with 2 buffers of infinite capacity, where the fluid rates ensure that the
fluid level of buffer 1 is never larger than fluid level of buffer 2. In spite of these
restrictions, the stationary analysis is non straightforward with the available anal-
ysis tools. We provide an analysis approach based on the embedded time points
at the busy-idle cycles of buffer 1.

Keywords: Markov fluid model with 2 buffers · embedded process · Laplace
transform

1 Introduction

In the 1980’s, the evolution of the telecommunication systems turned the attention of
traffic engineers towards queueing models with “continuous” buffers, which are com-
monly referred to as fluid queues [2]. The associated fertile research effort resulted in
many solution techniques for such queues from spectral decomposition based ones [7]
to matrix analytic method based ones [8] by the 2010’s, the computational methods for
various performance measures of fluid models have also been enhanced [9,3].

During this evolution of single buffer fluid models and related solution techniques,
many practical problems popped up where multiple fluid buffers are present, but the
solution of such models is not available in general. In some special cases, e.g., when
one of the buffer is allowed to be negative as well, promising analytical approaches are
proposed [4,5], but results are still not available for one of the simplest fluid models, a
system which has two infinite buffers whose levels restricted to be non-negative and ita
fluid rates are modulated by a background Markov chain.

In order to pave the road for the analysis of fluid models with 2 buffers, in this
paper, we focus on a rather simple fluid model with two infinite buffers, whose levels

? This work is partially supported by the Hungarian Scientific Research Fund OTKA K-138208
project.
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are restricted to be non-negative, the fluid rates are such that the fluid level of buffer 1 is
never larger than the level of buffer 2 and the background Markov chain has two states.

The rest of the paper is organized as follows. Section 2 introduces the considered
fluid model and Section 3 presents its analysis at embedded time points. Based on the
embedded measures, Section 4 provides the time stationary measures. Section 5 pro-
vides a numerical example whose results are compared with simulation results. Section
6 concludes the paper.

2 Model description

We consider a system with 2 fluid buffers of infinite capacity whose fluid level is gov-
erned by a two-state background Markov chain (BMC). Let X1(t), X2(t) and φ(t) be
the fluid level in buffer 1, buffer 2 and the state of the BMC, respectively. The state
space of the BMC is composed of a state with positive fluid rates, S+ = {1} and a state
with negative fluid rates, S− = {2}. The generator matrix of the BMC is

Q =

[
−λ λ
µ −µ

]
. (1)

The fluid accumulation is such that

d

dt
X1(t) =

d

dt
X2(t) = 1 when φ(t) ∈ S+

and for i = {1, 2}

d

dt
Xi(t) = −ri < 0 when φ(t) ∈ S− & Xi(t) > 0 and

d

dt
Xi(t) = 0 when φ(t) ∈ S− & Xi(t) = 0

where r1 > r2 > 0. As a consequence X1(t) ≤ X2(t) holds for ∀t > 0 if X1(0) ≤
X2(0), which we assume in the paper. A trajectory of the system evolution is depicted
in Figure 1.

Our final goal is to compute the following time stationary measures

W̃+(x, y) = lim
t→∞

Pr(φ(t) ∈ S+, X1(t) < x,X2(t) < y)

W̃−(x, y) = lim
t→∞

Pr(φ(t) ∈ S−, X1(t) < x,X2(t) < y),

Ṽ (x) = lim
t→∞

Pr(φ(t) ∈ S+, X1(t) = X2(t) < x),

Ũ(y) = lim
t→∞

Pr(φ(t) ∈ S−, X1(t) = 0, X2(t) < y),

P = lim
t→∞

Pr(φ(t) ∈ S−, X1(t) = X2(t) = 0),

and W+(x, y) = d
dx

d
dy W̃+(x, y), W−(x, y) = d

dx
d
dy W̃−(x, y), V (x, y) = d

dx Ṽ (x),
U(x, y) = d

dy Ũ(y), for x, y > 0. Due to the sign of the fluid rates the other measures
are zero, e.g., lim

t→∞
Pr(φ(t) ∈ S+, X1(t) = 0, X2(t) = 0) = 0.
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Fig. 1: Evolution of the buffer contents during the busy-idle cycles of buffer 1

3 Performance analysis of the fluid model

3.1 Utilization of the buffers and stability condition

The stationary probabilities of the BMC are lim
t→∞

Pr(φ(t) ∈ S+) = µ
λ+µ and

lim
t→∞

Pr(φ(t) ∈ S−) = λ
λ+µ .

Assuming X1(0) = 0, φ(0) ∈ S+, we define the length of the busy period of buffer
1 (while the buffer is non-empty) as γ = min(t > 0 : X1(t) = 0).

Theorem 1. During the γ long busy period of buffer 1 the time spent in S+ and S− are
r1γ

1+r1
and γ

1+r1
.

Proof. Since X1(0) = X1(γ) = 0, the fluid increase during the sojourn in S+ equals
to the fluid decrease during the sojourn in S− and r1γ

1+r1
(1) = γ

1+r1
(r1).

The utilization of the buffer 1 is the stationary probability that the buffer is non-
empty, that is ρ1 = lim

t→∞
Pr(X1(t) > 0).

Theorem 2. The utilization of the buffer 1 is ρ1 =
µ(1+ 1

r1
)

λ+µ .

Proof. Let X1(0) = 0, T > 0 and Ť = max(t < T : X1(t) = 0). For a stable queue,
lim
T→∞

Ť
T = 1 and this way

lim
T→∞

E
(∫ T

t=0
I{X1(t)>0}dt

)
T

= lim
T→∞

E
(∫ Ť

t=0
I{X1(t)>0}dt

)
Ť

= lim
T→∞

E
(∫ Ť

t=0
I{X1(t)>0,φ(t)∈S+}dt

)
Ť

+ lim
T→∞

E
(∫ Ť

t=0
I{X1(t)>0,φ(t)∈S−}dt

)
Ť

= lim
T→∞

E
(∫ Ť

t=0
I{φ(t)∈S+}dt

)
Ť

+
1

r1
lim
T→∞

E
(∫ Ť

t=0
I{φ(t)∈S+}dt

)
Ť

=
µ

λ+ µ

(
1 +

1

r1

)
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where I{A} is the indicator of event A (i.e., I{A} = 1 only when A is true) and∫ T
t=0
I{X1(t)>0}dt denotes the time while X1(t) > 0 in the (0, T ) interval. In the first

term of the second step, we utilized that the fluid buffer is always non-empty when
φ(t) ∈ S+. In the second term of the second step, similar to Theorem 1, we utilized
the fact that the fluid increase equals to the fluid decrease in (0, Ť ). In the last step, we
utilized that the stationary probability of state 1 is µ

λ+µ .

Similarly, the utilization of the buffer 2 is ρ2 = lim
t→∞

Pr(X2(t) > 0) =
µ(1+ 1

r2
)

λ+µ .
Since r1 > r2, ρ1 < ρ2. The stability of both buffers are ensured when ρ2 < 1, i.e.,
λr2 > µ. We assume stable buffers along this paper.

Due to the X1(t) ≤ X2(t) inequality, for the joint stationary probabilities we have

P = lim
t→∞

Pr(X1(t) = 0, X2(t) = 0) = lim
t→∞

Pr(X2(t) = 0) = 1− ρ2, (2)

lim
t→∞

Pr(X1(t) > 0, X2(t) = 0) = 0, (3)∫ ∞
0

U(y)dy = lim
t→∞

Pr(X1(t) = 0, X2(t) > 0) = ρ2 − ρ1, (4)∫ ∞
0

∫ ∞
0

W+(x, y) +W−(x, y)dydx = lim
t→∞

Pr(X1(t) > 0, X2(t) > 0)

= lim
t→∞

Pr(X1(t) > 0) = ρ1. (5)

That is, one of the performance measures of interest, P , is given by P = 1−ρ2. Further
more, from Theorem 1 we have∫ ∞

0

∫ ∞
0

W+(x, y)dydx = lim
t→∞

Pr(X1(t) > 0, X2(t) > 0, φ(t) ∈ S+)

= ρ1
r1

1 + r1
=

µ

λ+ µ
, (6)∫ ∞

0

∫ ∞
0

W−(x, y)dydx = lim
t→∞

Pr(X1(t) > 0, X2(t) > 0, φ(t) ∈ S−)

= ρ1
1

1 + r1
=

µ

r1(λ+ µ)
. (7)

For the analysis of the remaining measures of interest we apply an embedded pro-
cess based approach.

3.2 Analysis of embedded time points

Let X1(0) = 0, X2(0) = x, φ(0) ∈ S+, γ = min(t > 0 : X1(t) = 0).
In (0, γ), the time spent in S+ and S− are r1γ

1+r1
and γ

1+r1
(because the fluid inflow

equals the fluid out flow during (0, γ) and consequently, the ratio of time spent in S+

and S− is r1 : 1). This way

X2(γ) = x+ (1)
r1γ

1 + r1
+ (−r2)

γ

1 + r1
= x+

γ(r1 − r2)

1 + r1
= x+ γr, (8)
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where r = r1−r2
1+r1

. Intuitively, r is the increase rate of buffer 2 during the busy period of
buffer 1, as it is depicted in Figure 1.

After time γ, buffer 1 remains idle for a random amount of time denoted by τ .
During the idle period of buffer 1, X2(t) decreases with rate r2. At the end of the

idle period of buffer 1, X2(γ + τ) = max
(

0, x+ γ(r1−r2)
1+r1

− r2τ
)

.
Let T0 = 0, T1, . . . be the beginning of the busy-idle cycles of buffer 1 and Zn =

X2(Tn) the fluid level of buffer 2 in those instances. In Figure 1, the first busy-idle
cycle of buffer 1 is such that Z1 = 0 and the second one is such that Z2 > 0.

For Zn we have

Zn+1 = max

(
0, Zn +

γn(r1 − r2)

1 + r1
− r2τn

)
= max (0, Zn + rγn − r2τn) (9)

We are interested in the stationary behaviour of Z = limn→∞ Zn. Let p = Pr(Z =
0), Z̃(x) = Pr(Z < x) and Z(x) = d

dx Z̃(x) for x > 0, and we also introduce the
Laplace transform of Z(x), Z∗(s) =

∫∞
x=0

e−sxZ(x)dx. For stable fluid models these
quantities satisfy the normalizing equation

p+

∫ ∞
u=0

Z(u)du = p+ Z∗(0) = 1. (10)

At this point, we would like to emphasize the difference between the time stationary
and embedded stationary measures, that is

lim
t→∞

Pr(X1(t) = 0, X2(t) = 0) = 1− ρ2

6= lim
n→∞

Pr(X1(Tn) = 0, X2(Tn) = 0) = lim
n→∞

Pr(Zn = 0) = p.

According to the behaviour of the BMC in (1), τ is exponentially distributed with
rate µ. The return measure of buffer 1,

Ψ(t) =
d

dt
Pr(γ < t|X1(0) = 0),

is available in LT domain. With our BMC (commonly the related expressions are given
in matrix from in the literature, e.g. in [1], which we specify here according to (1)) and
fluid rates, Ψ∗(s) , E(e−sγ) =

∫∞
0
e−stΨ(t)dt is

Ψ∗(s) =
s(r1 + 1) + r1λ+ µ−

√
(s(r1 + 1) + r1λ+ µ)2 − 4r1λµ

2µ
, (11)

and E(γ) = −Ψ∗′(0) = 1+r1
λr1−µ .

Theorem 3. At the beginning of stationary busy period of buffer 1 the buffer content in
buffer 2 is characterized by

Z∗(s) =
pµ (1− Ψ∗(rs))
r2s− µ+ µΨ∗(rs)

. (12)
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Proof. Considering that the density of γ is Ψ(x) and the density and the CDF of τ are
f(x) and F (x), from (9) we have

Z(x) = p

∫ ∞
y=x/r

Ψ(y)
1

r2
f

(
ry − x
r2

)
dy (13)

+

∫ ∞
u=0

Z(u)

∫ ∞
y=(x−u)+/r

Ψ(y)
1

r2
f

(
u+ ry − x

r2

)
dydu

p = p

∫ ∞
y=0

Ψ(y)

(
1− F

(
ry

r2

))
dy

+

∫ ∞
u=0

Z(u)

∫ ∞
y=0

Ψ(y)

(
1− F

(
u+ ry

r2

))
dydu. (14)

Considering f(x) = µe−µx and F (x) = e−µx, from (16) we have

p = p

∫ ∞
y=0

Ψ(y) exp

(
−µry

r2

)
dy +

∫ ∞
u=0

Z(u)

∫ ∞
y=0

Ψ(y) exp

(
−µu+ ry

r2

)
dydu

= p

∫ ∞
y=0

Ψ(y) exp

(
−µry

r2

)
dy

+

∫ ∞
u=0

Z(u) exp

(
−µ u

r2

)∫ ∞
y=0

Ψ(y) exp

(
−µry

r2

)
dydu

= pΨ∗
(
rµ

r2

)
+ Z∗

(
µ

r2

)
Ψ∗
(
rµ

r2

)
=

(
p+ Z∗

(
µ

r2

))
Ψ∗
(
rµ

r2

)
That is

p =

(
p+ Z∗

(
µ

r2

))
Ψ∗
(
rµ

r2

)
and

Z∗
(
µ

r2

)
=
p
(

1− Ψ∗
(
rµ
r2

))
Ψ∗
(
rµ
r2

) (15)

Similarly, from (13) we have

Z(x) = p
µ

r2

∫ ∞
y=x/r

Ψ(y) exp

(
−µry − x

r2

)
dy

+
µ

r2

∫ ∞
u=0

Z(u)

∫ ∞
y=(x−u)+/r

Ψ(y) exp

(
−µu+ ry − x

r2

)
dydu

= p
µ

r2

∫ ∞
y=x/r

Ψ(y) exp

(
−µry

r2

)
exp

(
µ
x

r2

)
dy

+
µ

r2

∫ ∞
u=0

Z(u)

∫ ∞
y=(x−u)+/r

Ψ(y) exp

(
−µ u

r2

)
exp

(
−µry

r2

)
exp

(
µ
x

r2

)
dydu
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A multiplying both sides with e−sx and integrating from 0 to∞ gives

Z∗(s) = p
µ

r2

∫ ∞
x=0

e−sx
∫ ∞
y=x/r

Ψ(y) exp

(
−µry

r2

)
exp

(
µ
x

r2

)
dydx

+
µ

r2

∫ ∞
x=0

e−sx
∫ ∞
u=0

Z(u)

∫ ∞
y=(x−u)+/r

Ψ(y) exp

(
−µu+ ry − x

r2

)
dydudx

= V ∗1 (s) + V ∗2 (s).

Using
∫∞
x=0

∫∞
y=x/r

•dydx =
∫∞
y=0

∫ ry
x=0
•dxdy, for the first term we have

V ∗1 (s) = p
µ

r2

∫ ∞
y=0

Ψ(y) exp

(
−µry

r2

)∫ ry

x=0

exp

(
µ
x

r2
− sx

)
dx︸ ︷︷ ︸ dy

= p
µ

r2

∫ ∞
y=0

Ψ(y) exp

(
−µry

r2

)
r2

r2s− µ

(
1− exp

(
−y r(r2s− µ)

r2

))
︸ ︷︷ ︸ dy

=
pµ

r2s− µ

(
Ψ∗
(
rµ

r2

)
− Ψ∗

(
rµ

r2
+
r(r2s− µ)

r2

))
=

pµ

r2s− µ

(
Ψ∗
(
rµ

r2

)
− Ψ∗(rs)

)
.

For the second term we first refine the integrals

∫ ∞
x=0

∫ ∞
u=0

∫ ∞
y=(x−u)+/r

• dydudx =

∫ ∞
u=0

∫ ∞
x=0

∫ ∞
y=(x−u)+/r

• dydxdu

=

∫ ∞
u=0

∫ u

x=0

∫ ∞
y=0

• dydxdu+

∫ ∞
u=0

∫ ∞
x=u

∫ ∞
y=(x−u)/r

• dydxdu

=

∫ ∞
y=0

∫ ∞
u=0

∫ u

x=0

• dxdudy +

∫ ∞
u=0

∫ ∞
y=0

∫ u+yr

x=u

• dxdydu

=

∫ ∞
y=0

∫ ∞
u=0

∫ u

x=0

• dxdudy +

∫ ∞
y=0

∫ ∞
u=0

∫ u+yr

x=u

• dxdudy
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Based on this, the second term is

V
∗
2 (s) =

µ

r2

∫ ∞
y=0

Ψ(y) exp

(
−y

rµ

r2

)∫ ∞
u=0

Z(u) exp

(
−u

µ

r2

)∫ u

x=0

exp

(
−x
(
s−

µ

r2

))
dx︸ ︷︷ ︸ dudy

+
µ

r2

∫ ∞
y=0

Ψ(y) exp

(
−y

rµ

r2

)∫ ∞
u=0

Z(u) exp

(
−u

µ

r2

)∫ u+yr

x=u

exp

(
−x
(
s−

µ

r2

))
dx︸ ︷︷ ︸ dudy

=
µ

r2

∫ ∞
y=0

Ψ(y) exp

(
−y

rµ

r2

)∫ ∞
u=0

Z(u) exp

(
−u

µ

r2

)
r2

r2s− µ

(
1− exp

(
−u
(
s−

µ

r2

)))
︸ ︷︷ ︸ dudy

+
µ

r2

∫ ∞
y=0

Ψ(y) exp

(
−y

rµ

r2

)∫ ∞
u=0

Z(u) exp

(
−u

µ

r2

)
·

r2

r2s− µ

(
exp

(
−u
(
s−

µ

r2

))
− exp

(
−u
(
s−

µ

r2

)
− yr

(
s−

µ

r2

)))
︸ ︷︷ ︸

r2
r2s−µ

exp(−us) exp(u
µ
r2

)

(
1−exp(−yrs) exp

(
yr

µ
r2

))
dudy

=
µ

r2s− µ
Ψ
∗
(
rµ

r2

)(
Z
∗
(
µ

r2

)
− Z∗ (s)

)
+

µ

r2s− µ

∫ ∞
y=0

Ψ(y) exp

(
−y

rµ

r2

)∫ ∞
u=0

Z(u) exp (−us) dudy

−
µ

r2s− µ

∫ ∞
y=0

Ψ(y) exp (−yrs)
∫ ∞
u=0

Z(u) exp (−us) dudy

=
µ

r2s− µ

(
Ψ
∗
(
rµ

r2

)(
Z
∗
(
µ

r2

)
− Z∗ (s)

)
+ Ψ

∗
(
rµ

r2

)
Z
∗

(s)− Ψ∗ (sr)Z
∗

(s)

)
=

µ

r2s− µ

(
Ψ
∗
(
rµ

r2

)
Z
∗
(
µ

r2

)
− Ψ∗ (sr)Z

∗
(s)

)
.

Finally,

Z∗(s) =
pµ

r2s− µ

(
Ψ∗
(
rµ

r2

)
− Ψ∗(rs)

)
+

µ

r2s− µ

(
Ψ∗
(
rµ

r2

)
Z∗
(
µ

r2

)
− Ψ∗ (rs)Z∗ (s)

)
,

Using (15)

Z∗(s) =
pµ

r2s− µ

(
Ψ∗
(
rµ

r2

)
− Ψ∗(rs)

)
+

µ

r2s− µ

(
p

(
1− Ψ∗

(
rµ

r2

))
− Ψ∗ (rs)Z∗ (s)

)
=

pµ

r2s− µ
(−Ψ∗(rs)) +

µ

r2s− µ
(p− Ψ∗ (rs)Z∗ (s))

=
pµ

r2s− µ
(1− Ψ∗(rs))− µ

r2s− µ
Z∗ (s)Ψ∗ (rs)

=
µ

r2s− µ
(
p− Z̄∗(s)Ψ∗(rs)

)
where Z̄∗(s) = p+ Z∗(s).

Z̄∗(s) = p+
µ

µ− r2s

(
−p+ Z̄∗(s)Ψ∗(rs)

)
=

(
1− µ

µ− r2s

)
p+

µ

µ− r2s
Z̄∗(s)Ψ∗(rs)

which results in (12).
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Corollary 1. The only unknown in (12) can be obtained as

p = 1− µ(r1 − r2)

r2(λr1 − µ)
(16)

Proof. Since both, the numerator and the denominator of (12) are zero at s = 0, we use
the L’Hopital’s rule to obtain Z∗(0)

Z∗(0) , lim
s→0

Z∗(s) =

d
dspµ (1− Ψ∗(rs))

∣∣∣∣
s→0

d
dsr2s− µ+ µΨ∗(rs)

∣∣∣∣
s→0

=
−pµrΨ∗′(0)

r2 + µrΨ∗′(0)
. (17)

Using 1− p = Z∗(0) from (10), r = r1−r2
1+r1

and E(γ) = −Ψ∗′(0) = 1+r1
λr1−µ , we further

have

1− p =
−pµrΨ∗′(0)

r2 + µrΨ∗′(0)
=

pµ(r1 − r2)

r2(λr1 − µ)− µ(r1 − r2)
,

from which the corollary comes.

4 Time stationary behaviour

We aim to obtain the remaining time stationary measures based on the embedded sta-
tionary measure Z(x). For the joint distribution of the buffers we have the following
cases:

C0) X1(t) = X2(t) = 0, φ(t) ∈ S−: this case can be obtained from the stationary
analysis of buffer 2 in isolation. The associated stationary measure is P .

C1) X1(t) = X2(t) > 0, φ(t) ∈ S+: this case can arise after an idle period of buffer 2.
The associated stationary measure is V (x).

C2) X1(t) = 0, X2(t) > 0, φ(t) ∈ S−: this case can arise during the idle period of
buffer 1. The associated stationary measure is U(y).

C3) X2(t) ≥ X1(t) > 0, φ(t) ∈ S+: this case can arise during the busy period of buffer
1. The associated stationary measure is W+(x, y).

C4) X2(t) ≥ X1(t) > 0, φ(t) ∈ S−: this case can arise during the busy period of buffer
1. The associated stationary measure is W−(x, y).

4.1 Analysis of C1)

As it is demonstrated in Figure1, case C1) can occur only when φ(t) ∈ S+, in those
busy-idle cycles of buffer 1 where buffer 2 is idle at the beginning of the cycle. Accord-
ing to the ergodicity of the model

Ṽ (x) =
E
(∫ γ
t=0
I{X2(t)=X1(t)<x}dt

)
E (γ + τ)

, (18)
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where E (γ + τ) = E (γ) + E (τ) = 1+r1
λr1−µ + 1

µ .
We compute the numerator of the right hand side from the following conditional

relation. Let Φ be the sojourn time during the first visit in S+ in a busy-idle cycle of
buffer 1. If Φ = y and X2(0) = 0, we have∫ γ

t=0

I{X2(t)=X1(t)<x}dt =

{
y if y < x
x if y > x

Let FΦ(y) = Pr(Φ < y) = 1− e−λy be the CDF of Φ and Pr(X2(0) = 0) = p. Then

E

(∫ γ

t=0

I{X2(t)=X1(t)<x}dt

)
= p

∫ x

y=0

ydFΦ(y) + p

∫ ∞
y=x

xdFΦ(y) (19)

= p

∫ x

y=0

yλe−λydy + px

∫ ∞
y=x

λe−λydy =
p(1− e−λx)

λ
, (20)

from which

Ṽ (x) =
E
(∫ γ
t=0
I{X2(t)=X1(t)<x}dt

)
E (γ + τ)

=
p(1− e−λx)

λE (γ + τ)
, (21)

and V (x) = d
dx Ṽ (x) = pe−λx

E(γ+τ) .

4.2 Analysis of C2)

According to Figure1, case C2) can occur only when φ(t) ∈ S−. We recall from (9)
that Z = max (0, Z + rγ − r2τ), where r = r1−r2

1+r1
, γ is the busy time of buffer 1 and

τ is the idle time of buffer 1 in S−.
Similar to case C1), we compute Ũ(x) based on the analysis of the stationary busy-

idle cycle of buffer 1 using the ergodicity property.

1− Ũ(x) =
E
(∫ γ+τ

t=γ
I{X2(t)>x,X1(t)=0}dt

)
E (γ + τ)

. (22)

The numerator of the right hand side is obtained from the following conditional relation.
If τ = h, Z + rγ = y then∫ γ+τ

t=γ

I{X2(t)>x,X1(t)=0}dt =

∫ τ

t=0

I{X2(t)>x,X1(t)=0|X2(0)=y,X1(0)=0}dt

=


0 if y < x,
y−x
r2

if x < y < x+ hr2,

h if y > x+ hr2.

(23)
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Let G(y) = Pr(Z + rγ < y) and T (h) = Pr(τ < h) = 1 − e−µh be the CDF of
Z + rγ and τ , respectively. Than

E

(∫ γ+τ

t=γ

I{X2(t)>x,X1(t)=0}dt

)
(24)

=

∫ ∞
h=0

∫ ∞
y=0

E

(∫ γ+τ

t=γ

I{X2(t)>x,X1(t)=0}dt|τ = h, Z + rγ = y

)
dG(y)dT (h)

(25)

=

∫ ∞
h=0

∫ x+r2h

y=x

y − x
r2

dG(y)dT (h) +

∫ ∞
h=0

h

∫ ∞
y=x+hr2

dG(y)︸ ︷︷ ︸
1−G(x+hr2)

dT (h) (26)

=

∫ ∞
h=0

∫ r2h

y=0

y

r2
dG(y + x)µe−µhdh+

∫ ∞
h=0

(1−G(x+ hr2))hµe−µhdh (27)

=

∫ ∞
y=0

y

r2

∫ ∞
h=y/r2

µe−µhdh︸ ︷︷ ︸
e−µy/r2

dG(y + x) +

∫ ∞
h=0

(1−G(x+ hr2))hµe−µhdh (28)

=

∫ ∞
y=0

y

r2
e−µy/r2G′(y + x)dy +

1

µ
−
∫ ∞
h=0

G(x+ hr2)hµe−µhdh (29)

Finally,

U(x) = − d

dx

∫∞
y=0

y
r2
e−µy/r2G′(y + x)dy + 1

µ −
∫∞
h=0

G(x+ hr2)hµe−µhdh

E (γ + τ)

=

∫∞
h=0

G′(x+ hr2)hµe−µhdh−
∫∞
y=0

y
r2
e−µy/r2G′′(y + x)dy

E (γ + τ)
. (30)

For G(x), we have

G∗(s) ,
∫ ∞
x=0

e−sxdG(x) =

∫ ∞
x=0

e−sxG′(x)dx (31)

= E(e−s(Z+rγ)) = E(e−sZ)E(e−srγ) = (p+ Z∗(s))Ψ∗(sr).

and
∫∞
x=0

e−sxG′′(x)dx = sG∗(s) − G′(0), where G′(0) = lim
s→∞

sG∗(s) = λpr1
r1−r2 .

Since G′(x) and G′′(x) are given only in Laplace transform domain, a numerical in-
verse Laplace transformation (NILT) is required (e.g., using [6]) to compute U(x).

4.3 Analysis of case C3) and C4)

Theorem 4. If X1(0) = 0, φ(0) = S+ and t < γ then

X2(t) = X2(0) + tr +X1(t)(1− r),

where r = r1−r2
1+r1

.
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Proof. IfX1(0) = 0, φ(0) = S+ andX1(t) = x for t < γ then the process spent r1t+xr1+1

time in S+ and t−x
r1+1 time in S− in the (0, t) time interval, since r1t+x

r1+1 + t−x
r1+1 = t and

X1(t) = 0︸︷︷︸
initial fluid level

+
r1t+ x

r1 + 1
(1)︸ ︷︷ ︸

fluid increase

+
t− x
r1 + 1

(−r1)︸ ︷︷ ︸
fluid decrease

= x.

In the mean time, buffer 2 increases with r1t+x
r1+1 × 1 and decreases with t−x

r1+1 × r2, that
is

X2(t) = X2(0) +
r1t+ x

r1 + 1
− t− x
r1 + 1

r2 = X2(0) + tr + x(1− r)

For ◦ ∈ {+,−}, let the transient probabilities of buffer 1 during the first busy period
be defined as

Θ◦(t, x) = Pr(φ(t) = S◦, X1(t) < x, t < γ|X1(0) = 0, φ(0) = S+),

and θ◦(t, x) = d
dxΘ◦(t, x). Their Laplace transforms, θ∗◦(s, x) =

∫∞
0
e−stθ◦(t, x)dt

are available in LT domain as

θ∗+(s, x) = exK(s) and θ∗−(s, x) = exK(s)Ψ(s), (32)

where K(s) = −λ − s + µΨ(s). Similar to (11), θ∗+(s, x), θ∗−(s, x), and K(s) are
obtained from the matrix expressions of those fluid measures, e.g. in [1], which are
specified here according to (1).

Applying the ergodic property again we have

W̃+(x, y) =
E
(∫ γ
t=0
I{X1(t)<x,X2(t)<y,φ(t)∈S+}dt

)
E (γ + τ)

. (33)

The numerator of the right hand side is obtained from the following conditional relation.
If X1(0) = 0, φ(0) = S+ and t < γ then, according to Theorem 4, X2(t) = z + tr +
X1(t)(1− r). This way,

I{X1(t)<x,X2(t)<y} =

{
1 if X1(t)<min(x, y−z−tr1−r ),

0 otherwise.

Let t∗(z) = max
(

0, y−z−(1−r)x
r

)
then, for t > 0

min

(
x,
y − z − tr

1− r

)
=

{
x if t ≤ t∗(z),
y−z−tr

1−r if t∗(z) < t.
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Using this and Z̃(x) = Pr(Z < x), we write

E

(∫ γ

t=0

I{X1(t)<x,X2(t)<y,φ(t)∈S+}dt

)
(34)

=

∫ ∞
t=0

Pr(X1(t) < x,X2(t) < y, φ(t) ∈ S+, t < γ)dt

=

∫ ∞
z=0

∫ t∗(z)

t=0

Pr(X1(t) < x, φ(t) ∈ S+, t < γ)dtdZ̃(z)

+

∫ ∞
z=0

∫ ∞
t=t∗(z)

Pr

(
X1(t) <

y − z − tr
1− r

, φ(t) ∈ S+, t < γ

)
dtdZ̃(z)

=

∫ ∞
z=0

∫ t∗(z)

t=0

Θ+(t, x)dtdZ̃(z) +

∫ ∞
z=0

∫ ∞
t=t∗(z)

Θ+

(
t,
y − z − tr

1− r

)
dtdZ̃(z)

which can be obtained from the transient measures of buffer 1.

4.4 Steps of the numerical procedure

Based on the above detailed analysis approach the stationary distribution of the model is
obtained from the model parameters (λ, µ, r1, r2, which satisfy r1 > r2 and the stability
condition, λr2 > µ) in the following steps:

1. compute P from (2),
2. compute p and Z∗(s) from (16) and (12),
3. compute V (x) from (21) using E (γ + τ) = 1+r1

λr1−µ + 1
µ ,

4. compute G′(x) and G′′(x) from (31) via NILT,
5. compute U(x) from (30),
6. compute Θ+(t, x) and Θ−(t, x) from (32) via NILT,
7. compute W (x, y) using (34).

5 Numerical example

To demonstrate the application of the procedure in Section 4.4, we present a numerical
example which we also compare with simulation results. We consider a system with
parameters λ = 2, µ = 1, r1 = 3, and r2 = 1. The parameters in Steps 1, 2, and 3
of Section 4.4 can be calculated analytically. To compute U(x) in Step 5, we need to
calculate the integrals in (30) numerically, since G′(x) and G′′(x) are only available as
a result of NILT in a finite number of points. The required integrals could be calculated
using, e.g., the Simpson integral formula. Instead, to accelerate the computation, we
calculate G′(x) and G′′(x) in 20 points for G′(x) and 50 points for G′′(x) and fit
functions Ĝ1(x) and Ĝ2(x) to them, respectively. Our numerical investigations show
that a polynomial of form

Ĝ1(x) =

11∑
i=0

aix
i
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provides a close fit for G′(x). On the other hand, while Ĝ2(x) = dĜ1(x)
dx gives accept-

able results, a much better fit can be achieved using the form

Ĝ2(x) = b0 + b1e
−c1x + b2e

−c2x.

Figure 2 shows the result of the fitting.

G'(x) - ILT

G

1(x)

1 2 3 4 5
x

0.2

0.4

0.6

0.8

(a) Approximation of G′(x)

G''(x) - ILT

G

2(x)

1 2 3 4 5
x

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

(b) Approximation of G′′(x)

Fig. 2: Approximation of G′(x) and G′′(x)

Using the obtained Ĝ1(x) and Ĝ2(x) functions we can approximateU(x) according
to (30). To verify the results, we implemented a model specific simulation tool which
computes V (x) and U(y) by discrete event simulation. We repeated the simulation
100000 times from simulation time 0 to 500 (where the time unit is defined by λ = 2
and µ = 1).

Figure 3 compares the results of the procedure in Section 4.4 with the ones obtained
from discrete event simulation. We note that in the figure the solid line corresponding
to V (x) is the result of fully analytical calculation, while U(y) is approximated by
simulation and the combination of NILT and numerical function fitting. Thus, Figure
3a shows the precision of the simulation, while Figure 3b shows that the simulation
and the proposed numerical procedure gives quite similar results, thus verifying the
obtained formulas and the validity of the proposed approach.

6 Conclusion

The paper presents an embedded time points based analysis of a fluid model with two
buffers, whose BMC is composed by two states and the fluid rates ensure that the con-
tent of one buffer is never less than the content of the other. This restriction significantly
simplifies the analysis of fluid models with two buffers.

The evaluated numerical example verifies that the results of the proposed computa-
tional method closely fit with simulation results.

In the future, we intend to extend the analysis of this model with general BMC. The
generalization of the embedded time points based approach does not seem to be straight
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V(x)

V(x) - Sim.

0.5 1.0 1.5 2.0 2.5 3.0
x
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0.20
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(a) V (x)

U(y) - ILT

U(y) - Sim.

0.5 1.0 1.5 2.0 2.5 3.0
y

0.05

0.10

0.15

0.20

0.25

(b) U(y)

Fig. 3: Results for U(y) and V (x)

forward because we miss an equation for obtaining the state probabilities of the BMC
at embedded time points. Instead, we look for alternative analysis approaches which
might be applicable for this fluid model also with general BMC.
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