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Abstract

We consider Markov fluid models with two infinite buffers, whose fluid
rates ensure that the fluid level of buffer 1 is never larger than the one of
buffer 2. For the model we derive the system of PDEs describing the tran-
sient behavior and expressions for the stationary analysis in the Laplace do-
main. Examples for the application of the model in the context of network
access control are presented. Numerically computed results are compared
with detailed simulation results to show that the numerical approach com-
putes the required measures with sufficient accuracy.

Keywords: Markov fluid model, Two infinite fluid buffers, Stationary
analysis, Partial differential equations, Laplace transform.

1 Introduction
The analysis of fluid queues has a long tradition in stochastic modeling [6, 7]. Cor-
responding models are often denoted as Markov modulated fluid models. Orig-
inally, single queues or buffers with Markovian arrival processes have been ex-
tensively used to model packet switched networks with a large number of sources

∗This work is partially supported by the OTKA K-138208 project and the Artificial Intelligence
National Laboratory Programme.
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[18, 23] or ruin probabilities in financial mathematics [8, 9] among other applica-
tions. Analysis of single buffer fluid queues with finite or infinite buffers is well
understood. Stationary measures are derived from corresponding results for quasi
birth death processes [27, 3, 17, 11], transient results are usually computed in the
Laplace domain [4, 12, 5]. Using advanced methods for the numerical inversion
of the Laplace transforms [2, 21], the resulting methods for transient analysis are
highly accurate and efficient.

Analysis of fluid models with more than one buffer becomes, unfortunately,
much more complicated. Different versions of fluid models with two buffers have
been introduced in the literature [13, 14, 15]. The classical model considers two
fluid buffers X1(t), X2(t), where Xi(t) is the level of buffer i at time t, and a
finite Markov chain which determines the flow into or out off the buffers. Often
it is assumed that flow rates for the first buffer depend on the state of the back-
ground Markov chain but not on the filling of the second buffer but rates for the
second buffer may depend on both, the state of the background Markov chain and
the filling of the first buffer. These models are often denoted as stochastic fluid-
fluid models (SFFMs). A specific version of this model describes a tandem of two
fluid queues [26, 22]. Fluid models with more than one buffer may be used to
model mobile ad hoc networks, maintenance problems, risk processes or environ-
mental systems like coral reefs [8, 14, 24]. Although SFFMs are known for some
time, the available operator analytical expression for the stationary distribution of
SFFMs [14, 26] usually do not result in numerical algorithms, therefore numerical
approximations are applied [10] or only specific sub-classes of the general model
are handled [15].

In this paper, we also consider a specific case of a two-dimensional fluid model
which is more general than the subclass considered in [15], where fluid rates of
both buffers have to be proportional and the background Markov process has a
specific structure. In the model analyzed here, two infinite buffers are driven by
an arbitrary finite state Markov chain. We assume that in state i of the Markov
chain, the level of buffer 1 changes with rate ri and the level of buffer 2 with rate
si. Both buffers have an infinite capacity and a lower bound of 0. We assume that
the state space of the finite background Markov chain can be decomposed in into
two subsets: In state i of the first subset, the level of both buffers increases with an
identical rate ri = si. In the states of the second subset, the fluid rates are negative,
satisfying ri≤si for all i and, consequently, assuming X1(0) = X2(0) = 0, we
have X1(t) ≤ X2(t) for t ≥ 0. The model has applications modeling computer
networks and parallel systems. It can, in particular, be used to analyze the behavior
of a sequence of leaky buckets with stochastic inputs. However, the current paper
focuses mainly on introducing a computational method to analyze the steady state
behavior of the model.

A preliminary version of this model, where the background Markov chain has
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only two states has been published recently in [16]. The analysis of that model
is based on embedded time points, but we could not generalize that analysis ap-
proach for more than 2 states. In this paper, we define and analyze the above
mentioned model with arbitrary finite background Markov chains based on a fun-
damentally different analysis approach.

Starting from the partial differential equations describing the transient be-
haviour of the performance measures of interest, we obtain Laplace transform
domain expressions for the stationary measures, which can be conveniently eval-
uated using numerical inverse Laplace transformation. To validate the results of
the numerical algorithm we compare them with simulation results.

The rest of the paper is organized as follows. In the next section we formalize
the problem, introduce the necessary notation and describe a typical application.
Afterwards the PDEs for the transient behavior are derived, and based on them, the
equations for the stationary behavior in Sections 4 and 5. Section 6 describes the
solution of the PDEs in the Laplace domain and Section 7 develops an algorithm
to compute the required results. In Section 8, we demonstrate the behaviour of the
computational method and present results for an example that are compared with
simulation results. The paper ends with the conclusions and an outlook of future
extensions of the model.

2 The process
Let X1(t), X2(t) and φ(t) be the fluid level in buffer 1, the fluid level of buffer 2,
and the state of the irreducible background Markov chain (BMC). The state space
is composed of 2 subsets S = S+ ∪ S−. The fluid accumulation is such that

d

dt
X1(t) = ri =

d

dt
X2(t) = si > 0 when φ(t) = i ∈ S+

d

dt
X1(t) = ri≤si < 0 when φ(t) = i ∈ S− & X1(t) > 0 and

d

dt
X1(t) = 0 when φ(t) ∈ S− & X1(t) = 0

d

dt
X2(t) = si < 0 when φ(t) = i ∈ S− & X2(t) > 0 and

d

dt
X2(t) = 0 when φ(t) ∈ S− & X2(t) = 0.

Consequently, ri ≤ si for ∀i ∈ S and, starting from empty buffers,X1(t) ≤ X2(t)
for t ≥ 0.
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Figure 1: Evolution of the buffer contents

The condition that si < 0 for i ∈ S−, can be relaxed, but we avoid it in this
paper in order to maintain a unique S = S+∪S− decomposition of the state space
which applies for both fluid buffers and simplifies the discussion. Additionally,
we exclude zero fluid rates for the same reason.

Assuming that the states of the BMC are ordered according to S+ and S−,
the generator matrix of the modulating BMC can be decomposed as Q =[
Q++ Q+−

Q−+ Q−−

]
and the diagonal matrices of the fluid rates associated with

buffer 1 and buffer 2 as R = diag(r1, . . . , r|S|) =

[
R+

R−

]
and S =

diag(s1, . . . , s|S|) =

[
S+

S−

]
, where R+ = S+ have positive diagonal elements

and the diagonal elements of R− and S− are negative. A possible trajectory of the
system evolution is depicted in Figure 1.

2.1 Stability condition
The stability of the fluid model is ensured by the stability of buffer 2. Let π be
the stationary distribution of the irreducible BMC. That is, πQ = 0 and π1 = 1,
where 1 is the column vector of ones. Buffer 2 is stable when πS1 < 0, which
we assume to hold in this paper.

3 Motivational example
As a motivating example, in this section we present a tandem queueing system
with token bucket servers, which can be mapped to the investigated two buffer
fluid model. A token bucket server contains a (packet) buffer, where arriving
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packets are waiting for service and a token bucket, which controls the rate of
service. The service of packets at the token bucket is assumed to be performed in
infinitesimally small parts. The token bucket has a given size b and is filled with
tokens with some constant rate ρ. At time t, the next packet in the buffer can be
served in zero time if the packet size p is smaller than the TB(t) level of the token
bucket at time t, in this case the level of the token bucket is decreased by p. If the
size of the next packet to serve is larger than TB(t) then TB(t) bits are served
immediately, and the remaining p−TB(t) bits are served at rate ρ. Token buckets
are widely used in telecommunication, (e.g., DiffServ [20], the traffic control of
Linux kernel [1]) as they provide an efficient way to rate limit communication
while decreasing burstiness.

Let us first consider a single token bucket server, where packets arrive to an
infinite buffer, whose level at time t is PB(t). As above, let us denote the size of
the token bucket by b, the rate of token influx by ρ, and the current level of the
bucket by TB(t). Consequently, we have

PB(t) ≥ 0, (1)
0 ≤ TB(t) ≤ b, (2)

PB(t) = 0 if TB(t) > 0, (3)
TB(t) = 0, if PB(t) > 0. (4)

From (1) - (4) it follows, that the

X̄(t) = PB(t)− TB(t) + b (5)

process describes the state of the system completely and that X̄(t) ≥ 0. X̄(t) is
the backlog of the queue shifted by b to ensure non-negativity. When X̄(t) < b,
then TB(t) > 0, thus PB(t) = 0. When X̄(t) = b, then PB(t) = TB(t) = 0,
and when X̄(t) > b, then PB(t) > 0 and TB(t) = 0. Let Ti,∀i ≥ 1 be the arrival
time of the ith packet, Si the size of the ith packet and τi = Ti−Ti−1,∀i ≥ 1 their
interarrival time with T0 = 0. The evolution of X̄(t) is demonstrated in Figure 2a.
To eliminate the jumps from the trajectory, we modify the system behaviour such
that the buffer fills with rate 1 instead of instantaneously. Figure 2b demonstrates
the evolution of the X(t) process corresponding to this modified system. If Si and
τi are Markovian, this modified system can be described by a Markov fluid model
whose generator matrix Q and rate matrix R have the following structure:

Q =

[
Q++ Q+−

Q−+ Q−−

]
, R =

[
I
−ρI

]
, (6)

where I is the identity matrix whose side is determined by the context, Q++ de-
scribes the Markovian transitions while the fluid level increases, Q+− contains the
transitions which concludes the fluid increase period, etc.
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Figure 2: Evolution of the single buffer token bucket server

If Si is independent exponentially distributed with parameter µ, and τi is inde-
pendent exponentially distributed with parameter λ, then

Q =

[
−λ λ
µ −µ

]
, R =

[
1
−ρ

]
. (7)

If Si is independent phase type distributed with initial vector β and generator
matrix B, and τi is independent phase type distributed with initial vector α and
generator matrix A, then

Q =

[
A aβT

bαT B

]
, R =

[
I
−ρI

]
, (8)

where a = −A1 and b = −B1 and 1 is the column vector of ones.
If Si form a dependent sequence for i ≥ 1 characterized by a Markov arrival

process [25] with matrices (D0,D1) and τi form a dependent sequence for i ≥ 1
characterized by a Markov arrival process with matrices (G0,G1), then

Q =

[
D0 ⊗ I D1 ⊗ I
I⊗G1 I⊗G0

]
, R =

[
I
−ρI

]
, (9)

where ⊗ denotes the Kronecker product of matrices.
If the data served by a first token bucket server is further regulated by a second

token bucket server we get the tandem queueing system which is shown in Figure
3a. Server i (for i ∈ {1, 2}) has a token bucket with size bi that fills with rate
ρi, token level TBi(t) and packet buffer level PBi(t) at time t. If ρ1 ≤ ρ2 and
b1 ≤ b2, then the presence of server 2 does not change the total delay of the
system. In this paper we analyze a fluid model corresponding to the case when
ρ1 > ρ2 and b1 ≤ b2, however, the ρ1 ≤ ρ2, b1 > b2 case is also tractable with
the same methods and corresponds to a fluid model that is identical aside from
swapping the indices of the buffers. As for the single buffer case, let us define

X̄1(t) = PB1(t)− TB1(t) + b1,

X̄2(t) = PB2(t)− TB2(t) + b2,
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Figure 3: Tandem queue with two token bucket servers

which are the backlog of server 1 and server 2, shifted by the respective bucket
sizes. Similar to before, to eliminate the jumps from the system, we modify its
behaviour such that the buffers fills with rate 1 instead of instantaneously and
denote the corresponding backlog levels by X1(t) and X2(t). The evolution of
these processes is demonstrated in Figure 3b.

If Si and τi are Markovian, this modified system can be described by a two
buffer Markov fluid model whose generator and rate matrices, Q,R,S, have the
following structure:

Q =

[
Q++ Q+−

Q−+ Q−−

]
, R =

[
I
−ρ1I

]
,S =

[
I
−ρ2I

]
. (10)

This example is a special case of the model introduced in Section 2, where the
fluid rates might differ in different positive and negative states.

4 PDE description
In this section we investigate the transient behavior of the system. Let

Wi(t, x, y) =
d

dx

d

dy
Pr(φ(t) = i,X1(t) < x,X2(t) < y),

Ui(t, y) =
d

dy
Pr(φ(t) = i,X1(t) = 0, X2(t) < y),

Pi(t) = Pr(φ(t) = i,X1(t) = X2(t) = 0),

Vi(t, x) =
d

dx
Pr(φ(t) = i,X1(t) < x,X2(t) < x),

where the first 3 measures describe the cases with 0, 1, 2 idle buffers and the last
measure describes the fluid accumulation right after both buffers were idle.
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By definition, for i ∈ S+, Pi(t) = Ui(t, y) = 0 and for i ∈ S−, Vi(t, x) = 0.
In Figure 1, C0 denotes the periods when X1(t) = X2(t) = 0 (consequently Pi(t)
can be positive for i ∈ S−), C1 the ones when X1(t) = X2(t) > 0 (Vi(t, x) can
be positive for i ∈ S+), C2 the ones when X1(t) > 0, X2(t) = 0 (Ui(t, y) can
be positive for i ∈ S−), C3 the ones when X2(t) > X1(t) > 0 and φ(t) ∈ S+

(Wi(t, x, y) can be positive for i ∈ S+), and C4 the ones whenX2(t) > X1(t) > 0
and φ(t) ∈ S− (Wi(t, x, y) can be positive for i ∈ S−).

To simplify the PDE based analysis, we introduce Y (t) = X2(t)−X1(t). Y (t)
is such that

d

dt
Y (t) = 0 when φ(t) ∈ S+,

d

dt
Y (t) = si − ri > 0 when φ(t) = i ∈ S− & X1(t) > 0,

d

dt
Y (t) = si when φ(t) = i ∈ S− & X1(t) = 0 & X2(t) > 0

d

dt
Y (t) = 0 when φ(t) = i ∈ S− & X1(t) = 0 & X2(t) = 0.

Similar to {φ(t), X1(t), X2(t)}, {φ(t), X1(t), Y (t)} is also a Markov fluid model
with 2 infinite buffers.

To analyze the {φ(t), X1(t), Y (t)} system we introduce

W̃i(t, x, y) =
d

dx

d

dy
Pr(φ(t) = i,X1(t) < x, Y (t) < y), (11)

Ṽi(t, x) =
d

dx
Pr(φ(t) = i,X1(t) < x, Y (t) = 0), (12)

and note that

d

dy
Pr(φ(t) = i,X1(t) = 0, Y (t) < y) = Ui(t, y),

P r(φ(t) = i,X1(t) = Y (t) = 0) = Pi(t),

and Ṽi(t, x) = 0 for i ∈ S−.
Below, we present the differential equations governing the {φ(t), X1(t), Y (t)}

system mostly without proofs. These equations can be obtained, e.g., based on
[23, 19]. We prove only two of them which are specific to our model.
Let us denote the (i, j) element of Q as qi,j . Then, for i ∈ S+, Pi(t) = 0 and for
i ∈ S−

∂

∂t
Pi(t) =

∑
k∈S−

Pk(t)qk,i − siUi(t, 0). (13)
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For i ∈ S− and x > 0, Ṽi(t, x) = 0 and for i ∈ S+

∂

∂t
Ṽi(t, x) + ri

∂

∂x
Ṽi(t, x) =

∑
k∈S+

Ṽk(t, x)qk,i (14)

with initial condition

riṼi(t, 0) =
∑
k∈S−

Pk(t)qk,i. (15)

For i ∈ S+ and y > 0, Ui(t, y) = 0 and for i ∈ S−

∂

∂t
Ui(t, y) + si

∂

∂y
Ui(t, y) =

∑
k∈S−

Uk(t, y)qk,i − riW̃i(t, 0, y) (16)

For i ∈ S+ and x, y > 0, X1(t) increases with rate ri > 0 and Y (t) remains
unchanged, that is,

∂

∂t
W̃i(t, x, y) + ri

∂

∂x
W̃i(t, x, y) =

∑
k∈S

W̃k(t, x, y)qk,i, (17)

with boundary W̃i(t, x, 0) = 0.
For i ∈ S− and x, y > 0, X1(t) decreases with rate ri < 0 and Y (t) increases

with rate si − ri > 0, that is,

∂

∂t
W̃i(t, x, y) + ri

∂

∂x
W̃i(t, x, y) + (si − ri)

∂

∂y
W̃i(t, x, y) =

∑
k∈S

W̃k(t, x, y)qk,i,

(18)

and we still need the initial conditions for W̃i(t, x, 0) when i ∈ S− and W̃i(t, 0, y)
when i ∈ S+.

Theorem 1. For i ∈ S+ and y > 0

riW̃i(t, 0, y) =
∑
k∈S−

Uk(t, y)qk,i (19)

and for i ∈ S− and x > 0

(si − ri)W̃i(t, x, 0) =
∑
k∈S+

Ṽk(t, x)qk,i. (20)
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Proof. By the definition of W̃i(t, x, y) in (11), for i ∈ S+ and y > 0

riW̃i(t, 0, y) =

lim
∆→0

1

∆2
Pr(φ(t+ ∆) = i, 0 < X1(t+ ∆) < ri∆, y < Y (t+ ∆) < y + ∆).

(21)

φ(t + ∆) = i, 0 < X1(t + ∆) < ri∆, y < Y (t + ∆) < y + ∆ can hold
only if there was at least one state transition of the background Markov chain in
(t, t+ ∆). Otherwise X1(t+ ∆) would be larger than ri∆.

The probability of more than one state transitions in (t, t + ∆) vanishes
from the differential analysis so we focus on the case when exactly one state
transition happen in (t, t + ∆) and indicate the vanishing term by ε(∆), where
lim∆→0 ε(∆)/∆2 = 0 .

Starting from φ(t) = k ∈ S−, X1(t) = 0, Y (t) = γ and having a single
state transition from k to i at t + τ (where 0 < τ < ∆) results in φ(t + ∆) =
i,X1(t + ∆) = ri(∆ − τ), Y (t + ∆) = γ + skτ , and the probability density of
this state transition is e−qkτqk,ie−qi(∆−τ), where qk = −qk,k .

That is,

Pr(φ(t+ ∆) = i, 0 < X1(t+ ∆) < ri∆, y < Y (t+ ∆) < y + ∆)

=
∑
k∈S−

∫ ∆

τ=0

∫ y−skτ+∆

γ=y−skτ
Uk(t, γ)e−qkτqk,ie

−qi(∆−τ)dγdτ + ε(∆)

=
∑
k∈S−

qk,i e
−qi∆︸ ︷︷ ︸
∼1

∫ ∆

τ=0

∫ y−skτ+∆

γ=y−skτ
Uk(t, γ)dγ︸ ︷︷ ︸

∼Uk(t,y)∆

e(qi−qk)τ︸ ︷︷ ︸
∼1

dτ + ε(∆)

=
∑
k∈S−

qk,i∆
2Uk(t, y) + ε(∆).

Dividing the expression by ∆2 and letting ∆→ 0 gives (19).
Similarly, for i ∈ S− and x > 0,

(si − ri)W̃i(t, x, 0) = lim
∆→0

1

∆2
Pr

(
φ(t+ ∆) = i, x < X1(t+ ∆) < x+ ∆,

0 < Y (t+ ∆) < (si − ri)∆
)

(22)

by definition and φ(t+∆) = i, x < X1(t+∆) < x+∆, 0 < Y (t+∆) < (si−ri)∆
implies at least one state transition in (t, t+ ∆).

10



Starting from φ(t) = k ∈ S+, X1(t) = γ, Y (t) = 0 and having a single
state transition from k to i at t + τ (where 0 < τ < ∆) results in φ(t + ∆) =
i,X1(t+∆) = γ+rkτ+ri(∆−τ), Y (t+∆) = (si−ri)(∆−τ), and the probability
density of this state transition is e−qkτqk,ie−qi(∆−τ). Following the same steps as
before

Pr(φ(t+ ∆) = i, x < X1(t+ ∆) < x+ ∆, 0 < Y (t+ ∆) < (si − ri)∆)

=
∑
k∈S+

∫ ∆

τ=0

∫ x−ri∆−(rk−ri)τ+∆

γ=x−ri∆−(rk−ri)τ
Ṽk(t, γ)e−qkτqk,ie

−qi(∆−τ)dγdτ + ε(∆)

=
∑
k∈S+

qk,i∆
2Ṽk(t, x) + ε(∆),

which gives (20).

The PDEs can be solved numerical for a transient analysis of the model. For
the rest of the paper we derive explicit equations for stationary measures in the
Laplace domain, which result in a numerical algorithm for stationary analysis.

5 Stationary behaviour
We introduce the S+ and S− related vectors of the transient measures (e.g.,
U−(t, y) = {Ui(t, y)} with i ∈ S−)). Using that

lim
t→∞

∂

∂t
Pi(t) = lim

t→∞

∂

∂t
Ṽi(t, x) = lim

t→∞

∂

∂t
Ui(t, x) = lim

t→∞

∂

∂t
Wi(t, x, y) = 0

for all i ∈ S , we can also introduce the corresponding stationary measures, e.g.,
U−(y) = lim

t→∞
U−(t, y) and obtain the following stationary equations.

From (13), we have

P+ = 0 , 0 = P−Q−− −U−(0)S−. (23)

From (14) and (15), we have

Ṽ−(x) = 0 ,
∂

∂x
Ṽ+(x)R+ = Ṽ+(x)Q++ (24)

with initial condition

Ṽ+(0)R+ = P−Q−+. (25)
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From (16), we obtain

U+(y) = 0 ,
∂

∂y
U−(y)S− = U−(y)Q−− − W̃−(0, y)R−, (26)

and from (17) and (19)

∂

∂x
W̃+(x, y)R+ = W̃+(x, y)Q++ + W̃−(x, y)Q−+ (27)

with initial conditions

W̃+(x, 0) = 0 and W̃+(0, y)R+ = U−(y)Q−+. (28)

From (18), we obtain

∂

∂x
W̃−(x, y)R− +

∂

∂y
W̃−(x, y)(S− −R−) = W̃+(x, y)Q+− + W̃−(x, y)Q−−

(29)

with initial condition

W̃−(x, 0)(S− −R−) = Ṽ+(x)Q+−. (30)

The stationary behavior of the system satisfies this set of equations, which we
simplify as follows. Using (25), the solution of (24) can be written as

Ṽ+(x) = Ṽ+(0)eQ
++(R+)

−1
x = P−Q−+(R+)

−1
eQ

++(R+)
−1
x. (31)

Substituting it into (30), gives

W̃−(x, 0)(S− −R−) = P−Q−+(R+)
−1
eQ

++(R+)
−1
xQ+−. (32)

5.1 Directly computable stationary measures
The system definition ensures X1(t) ≤ X2(t), from which

Pi = lim
t→∞

Pr(φ(t) = i,X1(t) = X2(t) = 0) = lim
t→∞

Pr(φ(t) = i,X2(t) = 0)

can be computed from the stationary analysis of buffer 2 in isolation, which is
known (e.g. from [27]) and we summarize here for completeness.

Let the Ψ2 matrix of size |S+| × |S−| be the solution of

0 = S+−1
Q++Ψ2 + Ψ2|S−|

−1
Q−− + Ψ2|S−|

−1
Q−+Ψ2 + S+−1

Q+− (33)
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and K2 = S+−1
Q++ + Ψ2|S−|−1

Q−+. Then vector P− is the solution of

P−(Q−− + Q−+Ψ2) = 0 (34)

with normalizing condition

P−1 + P−Q−+(−K2)−1(S+−1
1 + Ψ2|S−|

−1
1) = 1. (35)

For i ∈ S−, let Li = lim
t→∞

Pr(φ(t) = i,X1(t) = 0) be the stationary probabil-

ity that buffer 1 is empty, and let L− = {Li} (for i ∈ S−). L− can be computed
from Q and R in a similar way as P− is computed from Q and S.

The results of the independent analysis of buffer 1 and 2 are related by

Li = lim
t→∞

Pr(φ(t) = i,X1(t) = 0)

= lim
t→∞

Pr(φ(t) = i,X1(t) = X2(t) = 0) + Pr(φ(t) = i,X1(t) = 0, X2(t) > 0)

= Pi +

∫ ∞
0

Ui(y)dy.

That is

L− = P− +

∫ ∞
0

U−(y)dy, (36)

where P− and L− are computed as described above.

6 LT domain
We look for the solution of the PDEs in Laplace transform domain. Due to P+ =
0, U+(y) = 0 and Ṽ−(x) = 0 we omit the superscript of P−, U−(y) and Ṽ+(x).

Applying x to s and y to z Laplace transforms for U∗(z) =
∫∞

0
e−yzU(y)dy,

V∗(s) =
∫∞

0
e−xsV(x)dx, W+,∗∗(s) =

∫∞
0

∫∞
0
e−yze−xsW+(x, y)dxdy and

W−,∗∗(s) =
∫∞

0

∫∞
0
e−yze−xsW−(x, y)dxdy give the following expressions.

Theorem 2. W̃−,∗∗(s, z) and W̃+,∗∗(s, z) satisfy

W̃−,∗∗(s, z) =
(
U∗(z)

(
− zS− + Q−(s)

)
+ PQ−(s)

)
(
sR− + z(S− −R−)−Q−(s)

)−1

(37)

and

W̃+,∗∗(s, z) =
(
W̃−,∗∗(s, z) + U∗(z)

)
Q−+

(
sR+ −Q++

)−1

, (38)

where Q−(s) = Q−− + Q−+
(
sR+ −Q++

)−1

Q+−.

13



Proof. Using the notation

W̃−,∗.(s, 0) =

∫ ∞
0

e−xsW−(x, 0)dx,

W̃−,.∗(0, z) =

∫ ∞
0

e−yzW−(0, y)dy,

from (26) and (23), we have

zU∗(z)S− −U(0)S−︸ ︷︷ ︸
PQ−−

= U∗(z)Q−− − W̃−,.∗(0, z)R−

and consequently

W̃−,.∗(0, z)R− = −U∗(z)
(
zS− −Q−−

)
+ PQ−−. (39)

From (31)

Ṽ∗(s) = Ṽ+(0)
(
sI−Q++(R+)

−1
)−1

= PQ−+(R+)
−1
(
sI−Q++(R+)

−1
)−1

= PQ−+
(
sR+ −Q++

)−1

. (40)

From (28), we write

W̃+,.∗(0, z)R+ = U∗(z)Q−+. (41)

Using (41) and (27), we have

sW̃+,∗∗(s, z)R+ − W̃+,.∗(0, z)R+ = W̃+,∗∗(s, z)Q++ + W̃−,∗∗(s, z)Q−+

sW̃+,∗∗(s, z)R+ −U∗(z)Q−+ = W̃+,∗∗(s, z)Q++ + W̃−,∗∗(s, z)Q−+

W̃+,∗∗(s, z)
(
sR+ −Q++

)
= W̃−,∗∗(s, z)Q−+ + U∗(z)Q−+. (42)

which results in (38).
From (30) and (40), we obtain

W̃−,∗.(s, 0)(S− −R−) = Ṽ∗(s)Q+− = PQ−+
(
sR+ −Q++

)−1

Q+− (43)

and from (29)(
sW̃−,∗∗(s, z)−W̃−,.∗(0, z)

)
R−+

(
zW̃−,∗∗(s, z)−W̃−,∗.(s, 0)

)
(S−−R−)

= W̃+,∗∗(s, z)Q+− + W̃−,∗∗(s, z)Q−−. (44)

14



Substituting (39) and (43) into (44) gives

sW̃−,∗∗(s, z)R− + U∗(z)
(
zS− −Q−−

)
−PQ−− + zW̃−,∗∗(s, z)(S− −R−)

−PQ−+
(
sR+ −Q++

)−1

Q+− = W̃+,∗∗(s, z)Q+− + W̃−,∗∗(s, z)Q−− (45)

and

W̃−,∗∗(s, z)
(
sR− + z(S− −R−)−Q−−

)
= W̃+,∗∗(s, z)Q+−

−U∗(z)
(
zS− −Q−−

)
+ PQ−− + PQ−+

(
sR+ −Q++

)−1

Q+−. (46)

Finally, substituting (38) into (46) gives

W̃−,∗∗(s, z)
(
sR− + z(S− −R−)−Q−−

)
=
((

W̃−,∗∗(s, z) + U∗(z)
)
Q−+

(
sR+ −Q++

)−1)
Q+−

−U∗(z)
(
zS− −Q−−

)
+ PQ−− + PQ−+

(
sR+ −Q++

)−1

Q+−, (47)

W̃−,∗∗(s, z)
(
sR− + z(S− −R−)−Q−− −Q−+

(
sR+ −Q++

)−1

Q+−
)

= U∗(z)Q−+
(
sR+ −Q++

)−1

Q+− −U∗(z)
(
zS− −Q−−

)
+ PQ−− + PQ−+

(
sR+ −Q++

)−1

Q+− (48)

and

W̃−,∗∗(s, z)
(
sR− + z(S− −R−)−Q−(s)

)
= U∗(z)

(
− zS− + Q−(s)

)
+ PQ−(s). (49)

Equation (49) results in (37).

Remark 1. For s = 0, Q−(0) = Q−−+Q−+
(
−Q++

)−1
Q+− is the generator of

the CTMC which is the BMC restricted to S−. This way the dominant eigenvalue
of Q−(0) is 0 and all other eigenvalues have negative real parts. For a real
positive s, Q−(s) is the generator of a transient CMTC with all eigenvalues having
negative real parts and the dominant one is real and unique with its real part. For
Re(s) > 0, all eigenvalues of Q−(s) have negative real part.

The only unknown which we still need for applying Theorem 2 is U∗(z).
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6.1 Analysis of U∗(z)

We compute U∗(z) based on the property that (37) is analytic for Re(s) > 0. For
a fixed z and i = 1, . . . , |S−|, let si be the ith solutions of

det (F∗(s, z)) = 0 (50)

with positive real part, where F∗(s, z) = sR− + z(S− −R−)−Q−(s).
Let ui be the right eigenvector of F∗(si, z) associated with eigenvalue 0, that

is, ui satisfying

F∗(si, z)ui = 0. (51)

According to (37), W̃−,∗∗(s, z) is analytic at si, when the effect of the zero
eigenvalue is eliminated by the fact that ui is orthogonal to

(
U∗(z)

(
− zS− +

Q−(si)
)

+ PQ−(si)
)

, that is,(
U∗(z)

(
− zS− + Q−(si)

)
+ PQ−(si)

)
ui = 0 (52)

for ∀i ∈ {1, . . . , |S−|}, which gives |S−| equations for the |S−| elements of U∗(z).

7 The proposed computational method
In the following we present a computational method for the stationary probabil-
ity measures of the fluid model. From (23), (24), and (26) we have P+ = 0,
Ṽ−(x) = 0, and Ũ+(y) = 0, respectively. The rest of the corresponding proba-
bility measures can be computed as follows.

7.1 Procedure for computing P− and Ṽ+(x)

1. Compute P− as the solution of the linear system (34) with normalizing
condition (35).

2. Compute Ṽ+(x) based on (31).

P− and Ṽ+(x) are computed directly without applying Laplace transform de-
scription.

16



7.2 Procedure for computing U∗(z)

To compute U∗(z) for a given z perform the following steps (based on the analysis
from Section 6.1).

1. Based on (50), compute the |S−| roots of det (F∗(s, z)) = 0 with positive
real part, denoted as s1, . . . , s|S−|

2. For all i ∈ {1, . . . , |S−|} compute ui (ui 6= 0) based on F∗(si, z)ui = 0,
according to (51).

3. Following (52), compute U∗(z) from the set of |S−| equations:(
U∗(z)

(
− zS− + Q−(si)

)
+ PQ−(si)

)
ui = 0 for i = 1, . . . , |S−|.

7.3 Procedure for computing W̃+,∗∗(s, z) and W̃−,∗∗(s, z)

To compute W̃∗∗(s, z) for a given s and z perform the following steps.

1. Compute U∗(z) for the given z according to Section 7.2.

2. Based on s, z, and U∗(z) compute W̃−,∗∗(s, z) using (37).

3. Based on s, z, U∗(z), and W̃−,∗∗(s, z) compute W̃+,∗∗(s, z) using (38).

7.4 Computation of U−(y) and W̃(x, y)

U−(y) is obtained from U∗(z) using one dimensional numerical inverse Laplace
transformation, while W̃(x, y) is obtained from W̃+,∗∗(s, z) and W̃−,∗∗(s, z) us-
ing two dimensional numerical inverse Laplace transformation. Efficient numeri-
cal inverse Laplace transformation (NILT) procedures of order n require the eval-
uation of the Laplace transform function in n points with positive real part in one
dimension and in n2 points with positive real part in two dimensions [2, 21]. That
is, the computation of U−(y) requires the evaluation of U∗(z) in n points and the
computation of W̃(x, y) the evaluation of W̃+,∗∗(s, z) and W̃−,∗∗(s, z) in n × n
points, such that the more expensive computation of U∗(z) according to Section
7.2, is performed only n times. Consequently, the calculation of W̃(x, y) is still
the dominant factor in the overall computational cost.

8 Numerical examples
We present two different kinds of examples. First, we describe the detailed anal-
ysis of an artificial model where we perform a detailed analysis of the numerical
results. Afterwards, we analyze a tandem system of two token buckets.
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(a) (b)

Figure 4: |det ((F∗(s, z))−1) | and |W̃−,∗∗(s, z)| as a function of s at z = 1 + i

8.1 A detailed numerical demonstration of the method
We first demonstrate the computation of U∗(z) according to Section 6.1 and verify
the LT domain formulas through a comparison with the results of a fluid simulator.
We consider the fluid model with

Q=


−4 1.7 1.1 1.2
3.6 −5 0.5 0.9
0.3 1.5 −2 0.2
1.5 0.5 1 −3

, R=


1 0 0 0
0 2 0 0
0 0 −2 0
0 0 0 −3

, S=


1 0 0 0
0 2 0 0
0 0 −1.5 0
0 0 0 −2

.
8.1.1 Calculating U∗(z)

The computation of U∗(z) is based on the fact that W̃−,∗∗(s, z) has to be analytic
for Re(s) > 0. We demonstrate the application of this constraint in the following.
Figure 4a depicts the effect of the roots of (50). Figure 4a plots the absolute value
of det (F∗(s, z)−1) for different s values with fixed z = 1 + i, where i denotes
the imaginary unit. The singularities in this figure at s1 = 0.54 + 0.41i and
s2 = 1.51 + 0.29i indicate the points where F∗(s, z)−1 is not analytic.

The fact that W̃−,∗∗(s, z) is analytic in these points as well, gives two con-
straints for U∗(z) according to (52), from which U∗(1 + i) = [0.0180 −
0.00957i, 0.0118 − 0.0596i]. Using this, W̃−,∗∗(s, 1 + i) can be obtained from
(37) and results in the smooth analytic function whose absolute value is depicted
in Figure 4b.

8.1.2 Implementation note

The procedure to compute U∗(z) utilizes that (50) has |S−| distinct solutions with
positive real part. Theoretically, it might happen that some of those solutions
coincide. In the example it occurs at z = 2.7098 + 7.6646i, where s = 1.68395 +
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Figure 5: The results of simulation and NILT for U−1 (y) and W̃+
1 (x, x)

2.33178i is the root of (50) with multiplicity 2. In this case, we do not have
|S−| = 2 equations for the |S−| = 2 elements of U∗(z), and U∗(z) cannot be
computed.

The existence of rare (zero measure) z values where U∗(z) is not available
does not inhibit the application of the proposed numerical procedure, because the
points where U∗(z) needs to be evaluated depends on the applied NILT method.
If the problem of coinciding solutions appears in the computation with order n
NILT one can apply order n + 1 NILT which evaluates U∗(z) in different points
where U∗(z) is available with high probability.

The problem of coinciding solutions never appeared during our numerical
analysis. Indeed, it was challenging find z = 2.7098+7.6646i, which exemplifies
the existence of this problem.

8.1.3 Comparison with simulation

To verify the procedures in Section 7, we implemented a fluid simulator for the in-
vestigated model in Matlab. We used 100,000 runs of 1000 in model seconds (out
of which the first 100 seconds are discarded as warm-up phase) and approximated
the stationary pdf of the system using a resolution of ∆x = ∆y = 0.1.

To get comparable results from the analytical formulas, we applied numerical
inverse Laplace transformation (NILT) on the Laplace domain expressions for
U∗(z),W̃−,∗∗(s, z), and W̃+,∗∗(s, z) using the order 30 CME method presented
in [21]. As a demonstration, the results for the first element of U−(y) and of
W̃+(x, y) with y = x, denoted as U−1 (y) and W̃+

1 (x, x), respectively, are shown
in Figure 5. The curves obtained from NILT show good correspondence with the
simulation results. All other evaluated U−(y), W̃−(x, y) and W̃+(x, y) curves
indicate similar accuracy.
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Pr(X̃1 > b1 ∨ X̃2 > b2)
b1 simulation NILT
0.5 0.412 0.413
1.0 0.271 0.273
1.5 0.181 0.183
2.5 0.080 0.082
4.0 0.023 0.024

Table 1: Results for the model with two token buffers and uncorrelated arrivals.

8.2 A Tandem of Leaky Buckets
We consider an example of a tandem of token buckets shown in Fig. 3a and de-
scribed in Section 3. Two variants of the model are analyzed. In the first vari-
ant, we assume that inter-arrival times are hyper-exponentially distributed and the
amount of work (i.e., the packet size) is Erlang-2 distributed resulting in generator
matrix

Q =


−1 0 1 0
0 −3 3 0
0 0 −2 2
1 1 0 −2

 .

We analyze the model with two token buffers with ρ1 = 2, ρ2 = 1, varying
b1 and b2 = 2 ∗ b1. As a measure we consider Pr(X̃1 > b1 ∨ X̃2 > b2), the
probability that load has to wait due to an empty bucket. The NILT calculation
using our Wolfram Mathematica implementation takes around 1 second per data
point for this example. Results for different values of b1 are shown in Tab. 1.

As a second version of the example, we analyze the model with generator
matrix

Q =


−1 0 1 0 0 0
0 −3 0 0 3 0
0 0 −2 2 0 0

1.8 0.2 0 −2 0 0
0 0 0 0 −2 2

0.2 1.8 0 0 0 −2

 .

In this case, the service and inter-arrival times are distributed as in the first exam-
ple but inter-arrival times are positively correlated. The NILT calculation takes
around 5 seconds per data point for this larger example. The corresponding re-
sults are presented in Tab. 2. It can be seen that the positive correlation results in
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Pr(X̃1 > b1 ∨ X̃2 > b2)
b1 simulation NILT
0.5 0.450 0451
1.0 0.340 0.341
1.5 0.260 0.262
2.5 0.153 0.155
4.0 0.068 0.070

Table 2: Results for the model with two token buffers and correlated arrivals.

a much higher probability that the token buffer is empty and load has to wait for
access to the system.

Examples like the one we present here can be applied to configure access
control by sequences of leaky buckets.

9 Conclusion
The paper presents a numerical analysis method for a special Markov fluid model
with two fluid buffers of infinite capacity. The proposed computational procedure
provides a Laplace transform domain description of the model behaviour using
a numerical inverse transformation method. It is one of the first approaches to
compute stationary measures of fluid models with more than one buffer explicitly.

Our longer term research goal is to relax the model restrictions applied in
this work and to find an analysis approach for the stationary solution of Markov
fluid models with two fluid buffers and general fluid rates. Furthermore, we work
on different applications of the model for computer networks and maintenance
problems.
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