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Abstract

Leaky buckets are commonly used for access control in networks, where access control
stands for traffic regulation at the ingress of the network. In network calculus, which
is often applied for performance analysis or dimensioning of networks, leaky buckets
are the model behind piecewise linear arrival curves that specify an input bound to a
network. In this paper we present the analysis of leaky bucket based access control un-
der stochastic arrivals using fluid queues, when the access control is implemented by
possibly more than one leaky buckets. This results in methods to dimension parameters
of access control for different stochastic arrival processes including correlated arrivals.
The approach is one step to bridge the gap between classical stochastic analysis us-
ing queuing networks and deterministic analysis using network calculus. Results are
presented for stochastic arrival processes using numerical methods and for measured
arrivals using trace driven simulation.
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1. Introduction

Single queues and queueing networks (QNs) are widespread models in performance
analysis. Two different ways exist to analyze these models. Traditionally, stochastic
assumptions are used and mean values for measures of interest are computed [1, 2].
Alternatively, bounds on measures of interest are computed from bounds on arrival and
service processes [3, 4]. The latter approach has been further developed in network
calculus (NC) [5]. The assumptions of both approaches are rather different. QN anal-
ysis (QNA) uses stochastic assumptions to characterize arrival and service processes.
Then, either mean values are computed using algorithms like mean values analysis [1]
or numerical techniques including matrix geometric methods are applied [2, 6] to ob-
tain detailed probabilistic results for queues or jobs. In contrast, NC assumes strict
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bounds on the arrival and service process to compute strict bounds on the delay and the
level of buffers.

Thus, QNA is a stochastic approach whereas NC is a deterministic approach. Both
approaches have in common that models for the arrival or service process have to be
estimated from available data and the resulting models are then used for analysis. In
QNA, Markov models are often applied to characterize arrival and service processes.
Parameters are estimated from the available data [7]. Markov models allow one to
describe correlated arrivals or services, but always have an exponentially decaying tail;
therefore, heavy tailed processes can only be approximated [8]. In NC, discrete arrivals
are substituted by fluid arrivals and services. Arrival and service processes are bounded
by so called arrival and service curves, which are often realized by affine functions or
simple piecewise linear functions. By defining an upper bound for the arrivals and a
lower bound for the service, upper bounds for buffer level and delay can be determined
using min/+ algebra. In real time systems with periodic behavior, bounds for arrivals
and services can be determined from the system specification [9]. However, for non-
periodic systems the bounds have to be estimated from available data [5, 10].

If NC is applied to non-periodic systems, then it is usually rather conservative be-
cause arrival and service bounds have to be valid for all possible sequences of arrivals
or services. If bounds result from measured data without any assumptions about the
generating process, then strict bounds can only be computed up to some probabil-
ity using extreme value statistics [11]. If the system does not contain hard real time
constraints, then violation of bounds with some small probability can usually be ac-
cepted. This consideration led to the development of Stochastic Network Calculus
(SNCO) [12, 13, 14]. SNC exploits the stochastic nature of traffic and computes bounds
that hold up to some small probability. It often uses moment generating functions
(MGFs) and often assumes exponentially bounded burstiness which roughly corre-
sponds to exponentially decaying tails, but SNC has also been used for heavy tailed
processes [13] which cannot be bounded by an affine function. SNC usually computes
simple affine arrival and service curves, often denoted as envelopes, that are then used
for an analysis with NC. The resulting bounds on backlog and delay then hold up to
some small probability. Often SNC uses a deterministic server and stochastic arrivals
[14, 15], which will also be applied in our approach.

In this paper, we go in a similar direction as SNC but use a different approach to
generate bounds for the arrival process. The goal is to compute a piecewise linear
arrival curve that is exceeded by the arrival process with a small predefined probability
at most. In this step, we usually do not consider the capacity of the server which is
part of the SNC analysis. Thus, we derive an access control realized by leaky buckets
(LBs), which assures that arriving traffic passes immediately with probability 1 — & for
some small e. Affine arrival curves with only one segment resulting from one LB, are
only a specific case which can often be improved by adding additional linear segments
or LBs. We assume a constant service but show how uncertainty in the service process
can be integrated in the arrival bound. In contrast to SNC, the approach is not based on
MGFs. Instead, we show that analysis can be done by fluid queues [16]. For a simple
affine arrival curve, a single fluid queue [16, 17] is sufficient for detailed analysis.
To analyze piecewise linear curves with more than one segment, a new type of fluid
queue with two coupled buffers [18] has to be analyzed. We show how the fluid queue



can be analyzed numerically for stochastic arrival and service processes and by trace
driven simulation using real network traces. Consequently, the approach allows the
computation of arrival curves from measured data, which is rarely considered in NC or
SNC. After the arrival curve is available, NC can be applied to compute backlog and
delay bounds for a system with a known service capacity.

The paper is structured as follows. In the next section, basic properties of network
calculus and the extension to SNC are summarized. Then, in Section 3, a class of
arrival curves is defined and it is shown how they are validated with respect to a trace
or from a stochastic description of arrivals by phase type distributions or Markovian
arrival processes [7]. In Section 4, we show how to compute an arrival curve for a trace
or a stochastic model by considering the fraction of arrivals that exceed the arrival
curve. Some statistical measures for a queue or a tandem of queues fed by an arrival
stream are introduced afterwards. Results of experiments with real or synthetic data
are presented in Section 6. The paper ends with the conclusions.

2. Network Calculus Basics

In the following we summarize some basic results for NC which can be found in
the literature [5, 19, 14]. First we show the basic computational steps, then piecewise
linear arrival curves are introduced and finally the extension to SNC is outlined.

2.1. Basic Computations for System Analysis

In NC, a system component, which can be a network, a part of network or a simple
processing station, is characterized by the load that arrives and the service it provides
such that the input stream is delayed and results in an output stream. The input stream
or arrival process is denoted by A(#) and describes the accumulated load that arrived
until time ¢ > 0. Consequently, A(?) is non decreasing, left continuous and A(¢) = 0 for
t < 0. The service process S (f) describes the amount of load that is processed in the
interval (0, ¢] if load to be processed is available for the complete time interval. Again,
S (#) is non decreasing, left continuous and S (f) = 0 for # < 0. If arrival process A(?) is
fed into a queue with service process S (¢), then a departure process A’(¢) results, which
is a delayed version of A(?) (i.e., A’(¢) < A(¢) for all ). The departure process equals’

A'(t) = 0i<n£t A +S@HO-S)}=A®S(®). (1)

The backlog of load in the system is given by
b, = A(f) — A’(t) and by = sup {by} . 2)

=0
If we assume that load is processed in First Come First Served (FCFS) order, then the
virtual delay of the load arriving at time ¢ equals

wy =sup{r: A(t) < A'(t + 7)} and wyax = sup {w;}. 3)

>0 >0

!In NC, the usual notation of min-plus convolution is ®, which we use for denoting Kronecker products
in the sequel.



Since A(#) and S (¢) are usually non-deterministic in most systems, either stochastic
models or deterministic models for bound computation have to be applied. We consider
here deterministic models that are later expanded by some stochastic assumptions. A
strict upper arrival curve is defined as a nondecreasing function a(¢), with

A)-A(T) <a(t—-1)forall0 <7<t (@)
Similarly, a strict lower service curve is defined as a nondecreasing function 5(t), with
SO-S(r)=2pE—7)forall0 <7<t 5)

If the arrival process «() is fed into a queue with service process S (), or the arrival
process A(?) is fed into a queue with service process 5(f), then the functions can be
plugged into (1)-(3) to compute bounds under FCFS scheduling, e.g. A’(f) < a ® S(?)
and A’(1) > A®B(1).

2.2. Arrival Curves
From (4) is follows that

a(t) > sup {A(t + u) — A(u)} ©6)
u>0

where sup,.q {A(f + 1) — A(u)} is the smallest upper arrival curve, which is referred to
as empirical envelope in [20]. However, if this function is computed for some measured
arrival stream, the result is usually a complicated function which makes computations
cumbersome. Consequently, simpler function are used as upper arrival curves. The
simplest form is an affine function a(¢f) = ¢ + r - t, where c is the initial step and r is
the average arrival rate. This function corresponds to arrivals restricted by a LB with
capacity c and rate r. More complicated functions result from the combination of n LBs
with ¢;,7; (i = 1,...,n) where ¢; < c¢;y1 and r; > r;41. These functions are piecewise
linear with decreasing slope.

|-
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Figure 1: Piecewise linear arrival curve with three segments.

Figure 1 shows an example of an arrival curve with three segments, affine curves
are described by each of the three lines. Piecewise linear curves have a tight connection



to combinations of LBs. They can be described as a sequence of LBs as shown below.
Alternatively, it can be assumed that the arrival stream is fed to each LB in parallel
and if it is delayed in one LB, load cannot pass. We come back to this aspect when
stochastic input processes are analyzed.

Service curves can, in principle, be handled similarly. However, we consider here
only simple linear servers with service rate s such that 8(¢) = s - f which is then com-
bined with stochastic arrivals.

2.3. Stochastic Arrival Envelopes

Arrival curves in SNC are often denoted as arrival envelopes which are exceeded
with some small probability. Usually SNC is applied to a discrete time scale and affine
envelope functions a(f) = (¢t > 0)c + r - t are used [12, 13], where d(e) is the indicator
function of event ¢, i.e., 6(e) = 1 if e is true and O otherwise. In this situation A(¢) —A(s)
(s < t) is arandom variable that describes the arrivals in the interval (s, z]. We assume
that the underlying process is stationary, i.e., P(A(r) — A(s) < x) = P(A( — s) < x),
such that A(?) is a random variable describing the arrival stream in an arbitrary interval
of length ¢. If A(¥) is distributed according to a distribution with an infinite support,
then A(#) < ¢ + r- ¢ cannot hold for finite ¢ and r. Consequently, SNC defines an arrival
envelope @, (f) = 6(t > 0)c, + r, - t that holds up to some probability € > 0.

VieNy: PA®M) > 6(t > 0)ce + 7o - 1) < &, 7

which is equivalent with the S?BB model in [21]. Different approaches exist to derive
such envelope functions. The most prominent are based on MGFs and exponentially
bounded burstiness (EBB) which are related via Chernoff bounds as shown in [13].
In the following we briefly describe the computation of arrival envelopes using MGFs
which can be applied to compute the parameters of leaky buckets assuring a predefined
& with which the load exceeds the bucket content at most. For more sophisticated
bounds we refer to the literature [13, 14, 22].

According to [12], a stochastic arrival stream A(%) is upper (c(6), r(6)) constrained
for 6 > 0 if

é log (E (™ ~4)) < c() + r(O)(t - 5) 8)

for all 0 < s < t where c(6), () are non-negative functions of parameter 6. For
stationary arrival streams we define

NN 1 0A(D)
r*(0) = lim ,SBE {H_I log (E (e )) . ©)]
r*(#) can be interpreted as the infimum of the required rate for leaky buckets with finite
capacity ¢, because the following relation holds [12, Lemma 7.4.1(ii)]

LO)-0)
PX()>8) < 5 (10)

O

for all 8 > 0 and 7 > r*(0), where X(¢) is the backlog at the LB formally defined below.
The equation defines an upper bound for the probability that the bucket becomes empty



which holds for all 8 > 0. Optimization with respect to 6, ¢ and 7 allows one to find
appropriate parameters for the leaky bucket to assure P (X(¢) > ¢) < & for any threshold
e>0.

There are a couple of limitations for this approach. First, the arrival process is of-
ten given by a trace measured in a real system. In this case, parameters of the arrival
envelope have to be estimated. In [23] statistical network calculus is developed which
allows the estimation of the parameters of an affine envelope function from measured
arrivals. An alternative approach will be presented below. Second, although SNC
allows different arrival envelopes in principle, in practice, affine curves are used in
computational approaches. This often has the disadvantage that either r is much larger
than the average rate or the size of an accepted burst ¢ becomes very large for small
values of . However, other possibilities of defining arrival envelopes exist [24] as well.
We will consider piecewise linear functions as natural extensions of affine curves and
show that even with only two segments the mentioned problem is reduced to a large ex-
tent. Third, moment generating functions are useful for independent random variables.
The integration of dependencies in the approach is challenging [25] and, if possible
at all, results in pessimistic bounds. We present an approach that naturally incorpo-
rates various dependencies between inter-arrival times and sizes of arriving load units.
Fourth, SNC often requires a discrete time scale which often implies discretization of
the continuous time scale with which the system evolves. We consider continuous time
analysis.

3. Checking if Traffic Sources Comply with Arrival Curves

We distinguish between the cases when the traffic source is given by a trace, that is
available from some measurement or monitoring of the system, and by the stochastic
description of the arrival process. In the latter case, we consider only arrivals described
by Markov models [7].

3.1. Measured Arrivals

Arrivals in computer networks or related systems occur in discrete portions that
arrive at some points in time. A trace 7 describes a finite sequence of arrivals that
have been measured in a real system or result from a simulation. Let m be the length
of the trace. Traces are described by a sequence (¢;, w;) (i = 1,...,m), where ¢; is the
inter-arrival time between the i — 1th and the ith arrival and w; is the size of the the ith
arrival. We assume without loss of generality that #y = 0.

Now assume that 7~ should be validated against an upper arrival curve @ =
(ci, 1i)i=1,. o Fig. 2 shows the sequence of LBs to validate the trace. Each LB con-
sists of two buffers: a token bucket, and a buffer. The level of the token bucket is
denoted by C;, which indicates the available capacity which can pass the ith LB imme-
diately. The level of the buffer is denoted by L;. This buffer contains the delayed load
units because of an empty token bucket. The ith token bucket is continuously filled
with rate r; until capacity c; is reached. Load arrives in discrete pieces but might pass a
bucket partially. Thus, if a load unit of size w arrives at time ¢ at a LB with level x and
rate r, then the load can pass immediately if x > w. In this case, the new level of the
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Figure 2: Sequence of LBs for arrival curve validation.
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bucket is x —w. Otherwise load x passes immediately, the remaining load passes in the
interval (¢, + *=*] with rate r and the token bucket remains empty in the interval.

To validate a trace against an arrival curve, a discrete event based approach can
be applied, even though the model contains continuous parts. Let (C;(¢), L;(t)) be the
state of token bucket i and buffer i at time #. This implies 0 < C;(¥) < ¢;, 0 < Li(?)
and Ci(t) - Li(t) = 0. Let T; = Zle t; be the time of the jth arrival. Now define for
i=1,....n

LO i L) > 0,
Ao(t) = 1};i>1r1{Tj —tf, Ay ={ SO if L =0ACH) < e, an
"~ 0 otherwise,

where Ag(?) is the time of the next arrival after 7, and A;(¥) (i=1,...,n) is the time of
the next event associated with LB i. Then A(f) = ming<;<, {A;(?)} is the next event after
time t. Let Lo(¢#) > 0 and ry = 0 by definition and k;(7) be the last busy buffer before
node i at time ¢, i.e. k;(f) = argmaxo<x<; Ly(f) > 0. If A(f) # Ap(?), then at t + A(¢) the
new state (C;(t + A(?)), L;(t + A(f))) becomes

0 if L;(¢) > 0,
Cit+ A@) =4 Ci(t) + AO(ri = rry) 0L Ci(0) < ALi(2) =0,
Ci if Ci(¢) = ¢y, (12)

| L) - A — rw)  if Li(t) > 0,
L+ AW = { 0 otherwise.

If an arrival (¢, w;) takes place at time ¢ + A(?) (i.e., Ag(?) = A(?)), define values
Vio = Wwj, Co(t) =0 and Vi = min{vj,,»_l,C,»_l(t)} (13)

fori=1,...,n. Thatis, v;; is the amount of load arriving to LB i from LB i — 1 at the
time of the jth arrival to the system. With these values the new buffer levels are given
by Li(t + A(t)) = Li(t) + v; — vi;1 and Ci(t + A(¥)) = max {C;(¢) — v;,0}. Let T,,41 be the
time when the mth arrival leaves the last LB completely. Then,

m Ty

Y 6 (maxiey . {L(TT)} > 0) [ 6 (maxi_y . {Li0)} > 0)dt
i and P) = 0
m Tm+1

P =

a

(14)



are estimates for the probability that an arrival exceeds arrival curve @ and the prob-
ability that a random observer finds backlog in the system (which approximates the
fraction of time that the arrival process exceeds the arrival curve), respectively. The
earlier is more commonly used in practice.

3.2. Stochastic Arrival and Service Times

For stochastic analysis we assume that inter-arrival times and the amount of arriving
load are distributed according to a phase type distribution (PHD) with representation
(p, D), denoted as PHD(p, D), or a Markovian arrival process (MAP) with representa-
tion (D, C) [7], denoted as MAP(D, C), where p is a probability distribution vector, D
is a sub-generator with only transient states (i.e., —D~' exists and is non-negative) and
C is a non-negative matrix such that D + C is an irreducible generator. For a MAP the
embedded initial vector is defined as the unique solution of —pD~!C = p and pl = 1,
where 1 is the column vector of ones. In this case the marginal distribution of the MAP
is PHD(p, D). Furthermore, we define d = —D1. Each arrival adds an amount of
work to the system which is distributed according to the corresponding PHD(p*, D) or
MAP(D?, C?), and the time between two arrivals is defined according to PHD(p*, D%)
or MAP(D“,C?). Since the amount of work that arrives corresponds to the time re-
quired to serve the load divided by the speed of the server, we can denote the load size
as service time. If this load is fed to a single LB (c, ), then the resulting model can be
interpreted as a fluid queue with service rate r, which will be described first, before we
introduce the input to a sequence of LBs.

X

1+n

O

X
|
<7

Figure 3: Fluid queue modeling the stochastic input driven by an affine arrival curve.

For an affine arrival curve the resulting fluid model is shown in Fig. 3. The fluid
level in the fluid queue is driven by a Markov chain [17]. The state space of the driving
Markov chain can be decomposed into two subsets: S, and S_. In states from S,
fluid arrives to the queue with rate 1, in states from S_ the queue is emptied with rate
r. The sojourn time in S, corresponds to the service time and the sojourn time in S_
corresponds to the inter-arrival time. Fig. 4 shows an example trajectory of the fluid
level in the queue. In the left graph, we see the behavior of the Markov fluid queue. In
states from S, the queue grows linearly, in states from S_ the queue shrinks linearly
or remains zero. In the original system, load arrives in batches and the behavior is as in
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Figure 4: Example trajectory of the fluid model (left) and the same trajectory restricted to S— (right).

the right graph in Fig. 4, which presents the same behavior of the queue that is shown
in the left graph restricted to the states in S_. If we know the results for the Markov
fluid queue model (left graph), then it is easy to derive results for the modified model
(right graph) by considering conditional probabilities, which is well established in the
analysis of fluid queues [26].

Let X;(¢) = ¢; — C1(¢) + L1 (¢) denote the continuous fluid level which represents the
state of the LB at time ¢. Since 0 < C(¥) < ¢1,0 < Li(¢) and C;(r)-L1(¢) = 0 hold, X;(?)
completely characterizes the C(f) token bucket and the L, () buffer contents. That is,
Ci(t) = c; — Xi(#) and L,(¢) = 0 if X;(¢) < ¢y, while C;(#) = 0 and L,(¢) = X;(t) — ¢
if Xi(¢#) > ¢;. Consequently, the knowledge of X;(¢) allows us to derive all relevant
quantities from the model as shown below. The fluid queue in Fig. 3 is driven by an
irreducible Markov chain with generator matrix

_ 0., 0.
Q‘( 0. 0. )

where O, contains the transitions between the states in S, @, _ from the states in
S, to the states in S_, etc. The steady state results for the queue can be analyzed
using matrix geometric methods [16] and the fluid level distribution in steady state has
a matrix exponential representation. The @ matrix, in our case, can have one of the
following structures

_ DS dspu _ I®DS I®d3‘

QO - ( daps D¢ ’ Ql - ( Ca®ps D¢ )v (15)
_( D' p'eC’ _(IeD* I8C°

Q= ( d‘®l D'®I ) Q= ( c'ol D®I )

where ® denotes the Kronecker product. O, describes PH distributed iid arrival and
service. For example, if the inter arrival time is phase type distributed with rep-
resentation p°, D*, and the packet size is phase type distributed with representation

p*, D?, where p* = [1,0], D* = 31 and p° =1[05,0.5], D* = 4 1) then
0 -1 0o -2
-3 1 1 1
s _ ST — 2 a _ af — 3 _ D’ dspa _ 0 -1 05 05
d——DI—(l),d——D]I—(z)andQO_(dups D“)_ 300 -4 1
2 0 0 =2



0, describes correlated (MAP) inter-arrival times and iid (PH) service times, Q, iid
(PH) inter-arrival times and correlated (MAP) service times, and Q5 correlated (MAP)
inter-arrival times and correlated (MAP) service times. If n and »n® are the dimen-
sions of the Markov chains describing arrivals and service, then matrices Q, through
05 have dimensions n? + n*, n“n® + n%, n“ + n°n* and 2n“n®, respectively. Furthermore,
the following matrix

s N
0, =( POy ) (16)
with B*, B¢ > 0, ij,D;-’j > 0fori # j, D'l = —B*lT and D*I = —B“l allows the
representation of correlation between inter-arrival and service times. For the analysis
of the correlation and the computation of parameters to obtain specific coefficients of
correlations we refer to [27].

The introduced model allows stochastic inter-arrival times and a stochastic distri-
bution of the arriving load. If the service of the fluid queue has some stochastic fluctu-
ation, this can be encoded in the fluid model. E.g., if the server fails from time to time
and requires some recovery time, then set S_ can be split into a set S_, where the fluid
level in the buffer decreases and Sy, where the fluid level remains constant. In a similar
way, varying rates of the fluid server according to some background Markov process
can be modeled and analyzed [16].

Let f(x) be the pdf of the buffer level of the fluid queue restricted to states from
S_ and f*(x) the pdf of the buffer level immediately after entering S_. Both quantities
can be derived from the matrix exponential stationary solution of the fluid queue (c.f.
[28, Theorem 1]). From these quantities, the probability of an arrival and a random
observer finding backlog in the system can be computed, respectively, as

P, = foo ff(dx and P, = fm f(x)dx. 17

Now assume that we have an arrival curve according to (ci, 1), (¢2, 72) with ¢; < ¢
and r; > rp, as shown in Fig. 1 by the red and blue lines. Let fj(x) and ff (x) be the
pdfs for the arrival curve (¢, r1). To obtain results for the two LBs together, we need to
know the joint density of fluid in the buffer defined by LB 1 with (cy, r;) and the buffer
defined by LB 2 with (¢;, r2). This can be done by considering an extended fluid model
with two buffers that are filled simultaneously, as shown in Fig. 5.

Let g(x,y) be the joint pdf of both buffer levels of the two buffer fluid model re-
stricted to states from S_ and g*(x,y) the pdf of the joint buffer levels immediately
after entering a state from S_ from a state in S.;. Then the required results, considering
that ¢; < ¢y, can be computed as

00 C1 00
P?Chrl)s(vz,rz) = f fl-'—(x)dx +f f g+(x,y)dde,
xX=c| x=0 Jy=c,
00 Cl 00
Pl e = Si@dx + f f 8(x, y)dydx,
X=C1 x=0 Jy=c,

where the first term contains the probability that LB 1 has backlog (X; > ¢;) and the
second term represents the probability that LB 1 has no backlog but LB 2 has (X; <

10
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Figure 5: Fluid queue modeling the stochastic input driven by a piecewise linear curve.

c1, X2 > ¢3). Analysis of the two buffer model is, unfortunately, more complex than
the analysis of the single buffer system. In [18] we developed a numerical approach to
analyze the system with sufficient accuracy for P2/ not too small.

4. Generation of Arrival Curves

Let7 = lim, @ denote the mean arrival rate. For a queue with inter-arrival time
distribution (p?, D) and service time distribution (p*, D®) (see the description above),
AU
PO
only on the marginal distributions and not on the correlation structure. For finite traces
7 has to be estimated using standard methods to compute one-sided confidence intervals
from possibly dependent observations [29].

An affine arrival curve is characterized by @ = (¢, r;) where r; = (1 + h)7 for some
constant 2 > 0. If the allocated bandwidth should be minimized, then a small value
h < 1 should be chosen. However, the value for c is usually determined by physical
restrictions of the system which cannot accept arbitrarily large batches. For a given
bound on P¢ or P}, a smaller r implies a larger ¢, which means that larger batches are
allowed to enter the system immediately. Usually some cost function W¥(c, r) = {.c+{, 1,
with positive coefficients £, and ¢, has to be optimized according to some bound & for

Py, or Pi . This results in the following optimization problem.

the mean arrival rate equals to 7 = Observe that the mean arrival rate depends

max

min ({o¢ + 1) st Py < 6, F <r <™ ¢ <™, (18)
c,r

where P, equals P{ ) or P/, and r™, ¢™* are bounds for 7 and ¢ which are usually
derived from constraints of the system. Since the optimization problem is non-linear,
one has to apply some intelligent search strategy. It should be noted that the evaluation
of P, is cheap for fixed r and varying c because P, is a matrix exponential function
of ¢, whereas the modification of r requires the solution of a new set of non-linear
matrix equations. However, usually the optimization is fairly smooth such that the
effort for computing the optimum, if matrix Q is not too large, is not much higher than

in SNC, which also requires numerical computations.

11



To generate arrival curves with more than one linear segment one can, in principle,
extend the approach by defining appropriate cost functions. However, even for only
two segments, an optimization problem with 4 parameters has to be solved, which is
more expensive than the optimization problem (18) because the two buffer fluid queue
is harder to solve than the one buffer system. It is often realistic to assume that some
parameters are fixed. A simple and practical approach is to set | according to the limits
of the system, e.g., 7] = rmax, and then determine c; from the analysis of a single buffer
fluid queue such that P ,y < &. This single LB can then be extended to a sequence of
two LBs by solving the following optimization problem.

min (e, ¢2 +&,12) S8 Perrenr) S 6T <12 S 1= Fnas €1 S ¢ S Cmax - (19)
2,12

Often, ¢ can also be fixed and only 7, computed. This problem can then be solved by
repeated solution of the two buffer fluid system. Again, modifications of r, require new
computations whereas results for different values of ¢, are much easier to compute.

5. Queueing Analysis

Arrival curves are then fed into some system which can be analyzed using the
standard NC approach. We consider here only single queues and tandems of queues
without cross traffic assuming FCFS scheduling. More complicated networks can be
analyzed as described in the literature [19, 5, 4, 30].

We begin with a single queue with upper arrival curve @ and lower service curve (.
Then it follows from (1-3) that a lower bound for the departure process is given by

()= Oi<n£l fa@)+SO-S@)}=a®S®) (20)

and upper bounds for the backlog and delay under FCFS are

biax < sup{a(s) — @’ (s)} and wyey < sup{t: a(f) < &' (t + 7)}. 20
5>0 >0
The equations describe the maximal horizontal and vertical difference between the ar-
rival and the service curves. If the arriving load passes a sequence of g servers with
lower service curves 8, (p = 1,...,q), then the service curves can first be combined
by computing 8 = 8, ®5, ®...®f,. The resulting model can be analyzed like a system
with a single server.

6. Examples

We consider two types of examples. First, stochastic queues and afterwards a traffic
trace that is fed into a server.

6.1. Queueing Models

We begin with a simple queueing model, where exact results are available and
extend this model afterwards by introducing correlation such that numerical analysis
of the fluid queue is required to obtain the results.
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6.1.1. M/M/1 queue

The first model we consider is the classical M/M/1 queue. Load arrives with expo-
nentially distributed inter-arrival times with rate A and the size of a load unit is expo-
nentially distributed with rate 4. The load is fed into a LB which is represented by a
fluid queue (see Fig. 3). Let X be the buffer level in steady state. X = L + ¢ — C de-
scribes the connection between the LB and the fluid queue, where L = lim,_,, L(¢) and
C = lim,_, C(¢) are the stationary backlog and token bucket levels. Furthermore, let
X“ be the fluid level immediately after an arrival. The results for this simple example
can be computed in closed form using results from queuing theory. It is known that
for an M/M/1 queue with arrival rate A, service rate u and utilization p = A/u < 1,
the steady state backlog of the server (time to empty the queue with no further arrival)
(B*) and the backlog immediately after an arrival (B?) satisfy P(B* > x) = pet(I=7)%
and P(B* > x) = e"!"P% respectively (see [31] and [32, Chap. 11.2]). In our case
the server has speed r and the size of arriving load units is exponentially distributed
with parameter u. Therefore p = A/(ru). Then, P(X¢ > ¢) = e "7 for ru > A. Fixing

e =P(X* > ¢,) implies ¢, = —log () m’_ 1 If we set ¢, according to this expression, the
A

< &. To compute P‘(m

we have P(X® > ¢) = pe™ %"

a
(ca>r)

resulting LB (c,, r) assures P ¢
.

—— " which ensures
ru—A4

for ru > A. Setting & = P(X* > c¢,), we have ¢, = —log (;)

P ) <e.

(csor

s
P(CJ)

1078 - a
—r=1.1
—r=1.5
10710 |- —1=20 -
—r=3.0
—1=5.0
107I2 - ]
10*14 | | | | | | |
0 5 10 15 20 25 30 35 40

Figure 6: P(SE Hasa function of ¢ for different rates r in the M/M/1-system with A = u = 1 and logarithmic
y-axis.

Results for the fluid model are exact and correspond to the analytical results of the
M/M/1 queue. Fig. 6 and Fig. 7 show an example with A = u = 1. For r only slightly
larger than 1, a huge c is necessary to obtain small P, and P, ,. Due to the simple

(c,r) S
structure of the model, the difference between P¢ | and P‘(‘cr is small. Tab. 1 shows

(c.r) )
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Figure 7: Pz’w) as a function of c¢ for different rates r in the M/M/1-system with A = u = 1 and logarithmic
y-axis.
§L-=§r=1 .{czzvgr:l évc':l»gr:z
& C r C r C r
0.1 3.88 246 | 3.41 3.08 | 454 2.03
0.01 6.81 3.09 | 6.21 387 | 7716 2.46
0.001 9.74 344 | 879 4.67 | 10.79 2.78
0.0001 1242 387 | 11.52 499 | 13.66 3.07
0.00001 15.10 421 | 1421 527 | 1631 3.40
0.000001 | 17.53 4.70 | 16.70 5.79 | 19.15 3.59

Table 1: Optimized LBs for different cost functions, different bounds &.

results for the LB configuration for different cost functions and different £ bounds.
Results for PY  are similar. It can be seen that by selecting an appropriate cost function
the relation between r and c can be adequately chosen.

Often the maximal size of load units that can be submitted to a system is restricted
and parameter r has to be adjusted to obtain P, <& We consider this situation for
the example and assume that ¢ < 15. Choosmg ¢ = 15 implies Plsy 2 Plse) =

3.059 - 1077, The second column in Tab. 2 contains the values for r that are necessary
to obtain Pls, s € using a single LB. In this situation the arrival envelope can be
improved by addmg a second LB (c;, r») such that ¢c; > ¢y, < ry. There are different
ways to compute the parameters for the second LB, here we minimize r, for ¢, = 100.
Results are given in column 4 of Tab. 2. It can be noticed that the second LB allows

one to reduce the final rate significantly, especially for smaller values of &.
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& rt (6] r [(65)

0.1 1.19 15.00 | 1.05 100.00
0.01 145 15.00 | 1.09 100.00
0.001 1.86 15.00 | 1.11  100.00

0.0001 2.60 15.00 | 1.19 100.00
0.00001 431 15.00 | 1.23  100.00
0.000001 | 12.67 15.00 | 1.45 100.00

Table 2: Optimized sequences of two LBs with ¢; = 15 and ¢, = 100 for different bounds &.

§(,2§r21 §c=2’§r=1 §c=1’§r=2

e c r c r c r
0.1 4.18 278 | 3.61 354 | 5.02 222
0.01 765 358 | 683 466 | 865 2.88
0.001 1079 431 | 970 583 | 11.99 3.42

0.0001 13.95 479 | 12,52 6.76 | 15.73 3.60
0.00001 16.83 540 | 1547 7.22 | 18.85 4.00
0.000001 | 19.81 5.81 | 18.09 8.15 | 22.54 4.07

Table 3: Optimized LBs for different cost functions and different bounds ¢ in case of correlated exponentially
distributed inter-arrival times and load sizes.

6.1.2. Dependent exponentially distributed inter-arrival times and load sizes
We consider the fluid model governed by matrix

-1 1 0]0 0 0

0 -2 20 0 0
o o 3]/3 o0 o
2=1"T0 03 2 o0
0 1 0]0 -2 1

0 0 1]0 0 -l

This matrix is of type Q, as defined in (16). The matrix describes the same exponential
marginal distributions as before but the sojourn times in S_ and S, are negatively
correlated with correlation coefficient —13/36 (see [33, 34] for further details). This
implies for our model that after short inter-arrival times the probability of a larger
arrival increases. For this model a closed form solution is not available, even for the
single buffer case. In Fig. 8 and Fig. 9, we plot ch,r) and Pl which are obtained
from the numerical analysis of the fluid model. Comparing the result in Fig. 6/7 and
Fig. 8/9, it can be seen that the negative correlation increases the tail probabilities by
about two orders of magnitude for the same exponential marginal distributions. This,
of course, also has an effect on the dimensioning of the LBs as it is exemplified in Tab.
3 and 4. A comparison of these results with the ones in Tab. 1 and 2 indicates that
correlation increases the necessary rate and size of the LBs for all € values.
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Figure 8: P/ as a function of ¢ for different rates r in case of correlated exponentially distributed inter-
arrival times and load sizes.

& r C1 rn (&)

0.1 1.26  15.00 | 1.08 100.0
0.01 1.67 15.00 | 1.15 100.0
0.001 242  15.00 | 1.21 100.0

0.0001 4.00 15.00 | 2.30 100.0
0.00001 820 15.00 | 440 100.0
0.000001 | 30.39 15.00 | 9.90 100.0

Table 4: Optimized sequences of two LBs with ¢; = 15 and ¢2 = 100 for different bounds ¢ in case of
correlated exponentially distributed inter-arrival times and load sizes.

6.1.3. Dependent complex inter-arrival times and load sizes
In this example we consider the fluid queue governed by matrix

-2 2 0 0 0

0 -2 0 2 0

0= 0 0 -10 0 10
1782 0 0.018|-1.8 O
0018 0 0.182| 0 -0.2

This matrix is also of the type Q, according to (16). We have a MAP as arrival process
with a hyper-exponential marginal distribution and positive correlation between the
arrivals. The size of the arriving load depends on the subsequent phase of the arrival
process. If the next arrival is from the first (fast) phase of the MAP, then the size of
load is Erlang 2 distributed with mean 1, otherwise load is exponentially distributed
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Figure 9: P{. , as a function of ¢ for different rates r in case of correlated exponentially distributed inter-
arrival times and load sizes.

with rate 10. The example indicates that complicated dependencies can be described
by matrix Q.

The mean inter-arrival time is 1 and the mean size of the load is 0.9 -1+ 0.1-0.1 =
0.91 which is less than the mean load of the previous examples. Fig. 10 and Fig. 11
plot again P‘(Y(,J) and Pfc’r) as a function of ¢ for different rates r. For smaller values of
r, the probabilities of large buffer levels remain high because of the correlated arrivals,
whereas for larger values of r, the probabilities are smaller than in the previous example
because of the Erlang distributed arrival sizes.

The results for the dimensioning of the LBs, in Tab. 5 and 6, also confirm that for
smaller values of & larger values of r and/or ¢ are required than before but for smaller
¢ this no longer is the case because the Erlang distributed load sizes and the low arrival
rate in the second state of the MAP become dominant.

=4 =1 (e=280=1|4=1,{=2
E c r C r c r
0.1 3.66 336 | 3.10 408 | 438 290
0.01 5.88 4.09 | 506 507 | 688 344
0.001 7.88 466 | 6.80 6.12 | 9.18 3.82
0.0001 970 5.21 8.60 6.67 | 11.29 4.16
0.00001 11.51 5.65 | 1028 7.28 | 13.16 4.53
0.000001 | 13.25 6.07 | 11.93 7.82 | 1522 4.75

Table 5: Optimized LB with different cost functions and different bounds ¢ in case of correlated inter-arrival

times and load sizes.
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Figure 10: P‘(‘C asa function of ¢ for different rates r in case of correlated inter-arrival times and load sizes.

& r C1 r (&)

0.1 1.90 15.00 | 1.58 100.0
0.01 225 15.00 | 1.71 100.0
0.001 2.64 15.00 | 1.94 100.0

0.0001 3.15 15.00 | 2.29 100.0
0.00001 3.85 15.00 | 2.84 100.0
0.000001 | 4.86 15.00 | 3.30 100.0

Table 6: Optimized sequences of two LBs with ¢; = 15, ¢2 = 100 and different bounds & in case of correlated
inter-arrival times and load sizes.

6.1.4. Tandem Networks

We consider a tandem network consisting of a sequence of stations without cross
traffic. In QNA it is assumed that service times at the stations are independently drawn
from the service times distribution. In NC, each load unit has the same size in each
station and the service times depends only on the speed of the server. The latter view
is often more realistic, e.g., in case of the transmission of packets over a sequence of
connections in a computer network.

If we consider a tandem network with g stations with lower service curves 8,(¢) =
sp-tforpefl,...,q},thenf =51 ®L ®...®F, = s+t with s = min,—;_,s,. By
defining the arrival curve that corresponds to an LB with rate r = s and capacity c, we
can compute the output flow, backlog level and delay for all # > 0 according to (1)-(3)
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Figure 11: PE‘ as a function of ¢ for different rates r in case of correlated inter-arrival times and load sizes.

c,r)

as follows
@ > inf (S>>0 +7-r+(—-7)-5)=s5"1,
0<r<t
bi<a(®)-a' () =c,

C
WtS_z—.
N N

Thus, backlog and delay result from the parameters of the LB in this case. An exact de-
lay bound, which is exceeded with at most probability &, can be computed for stochastic
input processes with the approach proposed in this paper. For input processes defined
by a trace, trace driven simulation has to be applied.

For more complex service curves or envelopes, like latency-rate servers, the simple
relation between the LB at the input and backlog and delay no longer holds. In this
case, results from SNC have to be combined with the results presented here for the
determination of the arrival envelope.

6.2. Network Traffic Traces

As an example for a real trace we use a trace from the MAWI Working Group Traffic
Archive [35, 36]. The archive contains traces for almost every day since 2006 from a 1
Gbps upstream link. We selected the trace from January 1st, 2023 and analyze only the
IP packets in it. Timestamps are used to compute the inter-arrival times and the payload
to define the packet size. The trace contains 68, 209, 829 IP packets, the statistics of the
trace can be found in Tab. 7. It can be seen that the link has an average load of about
47.2 Mbyte/sec.
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mean variance | min | max
inter-arrival time (msec) | 0.0132035 | 0.000344 | 0.0 | 0.8280277
packet size (byte) 623.54328 | 448434.5 | 28 1500
Table 7: Statistics of the MAWTI trace from January 1st 2023.
& Mopt c r Pien
0.1 100 | 9,000 130,000 | 0.08683225
1,000 | 9,000 130,000 | 0.08683225
0.01 100 | 25,500 140,000 | 0.00669713
1,000 | 22,500 140,000 | 0.00835178
0.001 100 | 30,000 190,000 | 0.00037201
1,000 | 33,000 170,000 | 0.00077814
0.0001 100 | 36,000 180,000 | 0.00049550
1,000 | 24,000 220,000 | 0.00004381
10,000 | 18,000 230,000 | 0.00001755
0.00001 100 | 22,500 230,000 | 0.00003314
1,000 | 22,500 230,000 | 0.00003314
10,000 | 21,000 240,000 | 0.00000320
0.000001 100 | 25,500 220,000 | 0.00004043
1,000 | 27,000 240,000 | 0.00000000
10,000 | 25,500 240,000 | 0.00000000

Table 8: Results for the LB with trace input (¢ in bytes, r in bytes/msec).

For dimensioning the LB we use trace driven simulation. From the trace sub-traces
of length ng, = 10,000, containing consecutive elements, are collected and n,,, sub-
traces are selected randomly to determine the parameters. For each sub-trace a trace
driven simulation of the fluid queue is performed and the probabilities of exceeding
given thresholds are estimated after neglecting the first 0.1ny,, arrivals to avoid the
transient phase. For optimization of the rate and size parameters the linear cost func-
tion with £, = ¢, = 1 is used, where the rate is given in bytes/msec and the size in
bytes. Furthermore, the parameters are computed with respect to the upper bound of
the one sided confidence interval with significance level 0.95. Optimization is done
on a grid with grid size 10,000 bytes/msec for the rates and 1, 500 bytes for the size.
The maximal size of the buffer is restricted to 36, 000 bytes. After the optimization has
been performed, results are validated by determining PE‘W) for a trace driven simulation
of the whole trace. We keep the sub-traces for one optimization with a fixed & but draw
new sub-traces whenever ¢ is modified.

Tab. 8 contains the results for a single LB with different values of & and n,,;. Results
that are above the required probability of exceeding the capacity of the LB are printed
in boldface. It can be noticed that the for larger values of &, reliable results are achieved
with a small number of replications. However, for € = 1073 or 107, results are much
more sensitive. Usually, these small probabilities of exceeding the available bucket
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€ Nopt C1 r €2 2 P ?30000,r1 )(120000.r,)
0.1 100 | 30,000 130,000 | 120,000 120,000 0.03323425
1,000 | 30,000 130,000 | 120,000 120,000 0.03323425
0.01 100 | 30,000 140,000 | 120,000 130,000 0.00536459
1,000 | 30,000 140,000 | 120,000 130,000 0.00536459
0.001 100 | 30,000 180,000 | 120,000 130,000 0.00163844
1,000 | 30,000 190,000 | 120,000 160,000 0.00039136
0.0001 100 | 30,000 230,000 | 120,000 180,000 0.00005484
1,000 | 30,000 230,000 | 120,000 200,000 0.00002632
0.00001 100 | 30,000 220,000 | 120,000 140,000 0.00042842

1,000 | 30,000 230,000 | 120,000 180,000 0.00005484
0.000001 100 | 30,000 230,000 | 120,000 180,000 0.00005484
1,000 | 30,000 240,000 | 120,000 230,000 0.00000000

Table 9: Optimized sequences of two leaky buckets with ¢; = 30,000 and ¢2 = 120, 000 for the trace input
and different bounds &.

size depend on a few large packets which often arrive one after the other with small
inter-arrival times. If these packets are not present in a trace driven simulation, or in
a real system in the trace used for dimensioning, results can become wrong. In our
experiments we took the trace as ground truth, which is obviously not the case in a real
system where a trace is only one random observation of the real behavior. Our results
indicate that for dimensioning LBs large traces are necessary if small probabilities are
required. However, even probabilities around 10~ seem to be achievable if sufficiently
reliable data is available.

We now consider two LBs in series and assume that the first LB has a size of 30, 000
bytes (i.e., 20 Ethernet packets of maximal size). For this LB we determine the rate »
such that threshold & is not exceeded. The value is determined from the same set of
randomly selected sub-traces that are used for optimization of the parameters of the
second LB. The values are then used as (cy, r;) for two LBs in series. Afterwards, r, is
computed for a LB with ¢, = 120, 000 bytes.

Results for the two LBs can be found in Tab. 9. It can be noticed that the use of a
second LB has not as drastic effects as for the stochastic input models, which indicates
that the trace exhibits more correlation and long range dependencies, but the rate for
the second bucket is always smaller than for the first bucket.

7. Conclusions

In this paper we develop an approach to compute the parameters of affine and piece-
wise linear arrival envelopes, corresponding to sequences of LBs, for stochastic input
processes. It has been shown how these models are related to fluid queues and how
the parameters can be derived from the stationary analysis of appropriate fluid models.
With the presented method it is possible to compute or estimate a combination of LBs
that assures for a given arrival process that 1 — £ of the arriving load is immediately
submitted to the system or network.
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There are several topics for extension of the presented approach. First, an inte-
gration into stochastic network calculus seems to be interesting and important. In the
presented analysis it is assumed that arriving load that exceeds the capacity of the LB is
delayed but not dropped. Since fluid queues with finite capacity can also be analyzed, it
should be possible to consider also the case when load is dropped. The case where load
units can be partially dropped if they are too a large for the available capacity seems to
be relatively simple, whereas the case where the whole packet is dropped if it exceeds
the capacity is more challenging.
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