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Abstract. We study the relation of Markov fluid queues and QBD processes in
this paper. Ahn and Ramaswami presented results about this relation and provided
a stochastic interpretation based reasoning in [1]. In the current work, first we
provide an algebraic proof for that relation.
After that, we present a negative result about the potential extension of the QBD
based analysis Markov fluid queues to Markov fluid queues with two buffers. We
present a 2-dimensional QBD process, which could be a candidate for describing
the stationary behaviour of the related Markov fluid queue, but it turns out that
the QBD based behaviour is different from the one of the Markov fluid queue.
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1 Introduction

Markov fluid queues (MFQs) have a long tradition in stochastic modeling [5]. MFQs
are queueing models where the queue length is continuous and the rate at which the
queue length (also referred to as fluid level) changes is modulated by a background
continuous time Markov chain (CTMC). Since the seminal applications of MFQs for
analyzing high speed networks in [4], they have been applied successfully in many
application areas, e.g., [13,18].

Several solution methods have been developed to obtain the stationary distribution
of the fluid level in MFQs (e.g., eigenvalue decomposition based [14], Schur decompo-
sition based [3], matrix-analytic [17,12], invariant subspace based [2], etc.).

In [1], Ahn and Ramaswami provide stochastic interpretation based results about
the relation of MFQs and quasi birth death (QBD) processes. The relation is based on
a stochastic coupling argument and shows a correspondence between the fluid level
and the virtual workload in a queue. In this work we present an algebraic proof for the
relation between MFQs and QBDs.

In [1] the authors mention that more than one QBD structure can establish the rela-
tion with the fluid queue, but they consider only one such QBD structure. In the current
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work we consider another QBD structure, when we prove the relation of fluid queues
and QBD models.

The main advantage of the QBD interpretation of MFQs is the possibility of using
efficient methods for QBD [15] analysis also for the analysis of MFQs. Thus, it is nat-
ural to ask whether the relation between MFQs and QBDs also can be established for
fluid models with more than one buffer like tandem systems [16], fluid-fluid systems [7]
or parallel buffers filled by one source but emptied with different rates [10]. Although
there are some first results on the stationary analysis of such models [8,6,11], the pro-
posed methods are often computationally expensive and numerically unstable. Thus, a
relation to QBDs or level dependent QBDs [9] would be an important step towards an
efficient analysis of more general fluid models.

In this paper we introduce two different level dependent QBDs to model fluid mod-
els with two parallel buffers. Unfortunately, as we show, the partial differential equa-
tions (PDEs) describing the fluid flows in the buffers differ from the PDEs of the origi-
nal systems. Consequently, the simple relation between QBDs and MFQs that holds for
one buffer, no longer holds for two buffers. This is a negative result which, nevertheless,
helps to understand the behavior of more complex fluid queues.

The rest of the paper is organized as follows. In the following section we introduce
the later used properties of MFQs and QBDs processes. In Section 3 we discuss the
relation of MFQs and QBD processes. In Section 4, a queuing model with two fluid
buffers is introduced together with its stationary equations, and after that we study a
level dependent quasi birth death (LDQBD) process, whose behaviour mimics the one
of the MFQ with two fluid buffers. As a result of this analysis we show that the behavior
of the two models differ. The paper is finally concluded in Section 5.

2 Basic properties of Markov fluid queues and Quasi birth deaths
processes

2.1 Markov fluid queues

We consider an infinite buffer MFQ (Y (t), J(t)), where J(t) ∈ S is the state of the
background CTMC and Y (t) is the fluid level at time t. We assume non-zero fluid
rates, such that the rates are positive when the CTMC visits a state in S+ and negative
when it visits a state in S− = S \ S+. That is, if the CTMC stays at state i ∈ S+ or the
CTMC stays at state i ∈ S− and Y (t) > 0, then the fluid level changes at rate ri,

d

dt
Y (t) = ri.

That is, if i ∈ S+, then ri > 0 and the fluid level increases, if i ∈ S− and Y (t) > 0,
then ri < 0 and the fluid level decreases. If i ∈ S− and Y (t) = 0, then the fluid level
does not change.

The characterizing matrices of the MFQ are the generator matrix of the CTMC, Q,
and the diagonal matrix of the fluid rates, R. The rate dependent decomposition of the
characterizing matrices are
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Q =

[
Q++ Q+−
Q−+ Q−−

]
and R =

[
R+ 0
0 −R−

]
. (1)

The stationary behaviour of the MFQ is characterized by the following measures:
the empty buffer probability πi = lim

t→∞
Pr(J(t) = i, Y (t) = 0) and the fluid density

fi(x) = lim
t→∞

d
dxPr(J(t) = i, Y (t) < x). We note that Pr(J(t) = i, Y (t) = 0) = 0

for i ∈ S+, because the fluid buffer cannot be empty when the fluid rate is positive.
In this work, we do not look into the solution methods to compute these stationary

measures, we only discuss the set of differential, boundary and normalizing equations
which have to be satisfied by the stationary solution.

We also introduce the related quantities νi = πi|ri| and φi(x) = fi(x)|ri|, which
is often referred to as flux. The vectors composed of the state dependent measures are
π− = [πi]i∈S− , ν− = [νi]i∈S− , f−(x) = [fi(x)]i∈S− , f+(x) = [fi(x)]i∈S+ , φ−(x) =
[φi(x)]i∈S− , and φ+(x) = [φi(x)]i∈S+ .

The stationary measures satisfy the following ordinary differential relations [17]

d

dx
f+(x)R+ = f+(x)Q++ + f−(x)Q−+, (2)

− d

dx
f−(x)R− = f+(x)Q+− + f−(x)Q−−, (3)

and, equivalently,

d

dx
φ+(x) = φ+(x)T++ + φ−(x)T−+, (4)

− d

dx
φ−(x) = φ+(x)T+− + φ−(x)T−−, (5)

where T = |R−1|Q. The initial conditions of these ordinary differential equations [17]
are

f+(0)R+ = πQ−+, (6)
−f−(0)R− = πQ−−, (7)

and, equivalently, we have

φ+(0) = νT−+, (8)
−φ−(0) = νT−−. (9)

Finally, the normalizing equations for the density and the flux are

1 = π1+

∫ ∞
0

(f+(x)1+ f−(x)1) dx and

1 = νR−
−11+

∫ ∞
0

(
φ+(x)R+

−11+ φ−(x)R−
−11

)
dx. (10)
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2.2 QBD process

Discrete or continuous time QBD processes are discrete or continuous time Markov
chains whose states can be efficiently represented by two discrete variables {X ,J },
where X ∈ {0, 1, . . . } is called the level and J ∈ {1, 2, . . . , N} is called the phase.
The direct state transitions of QBD processes are restricted between states of the same
level or the neighbouring levels.

We assume (level) homogeneous QBD processes, where matrix B holds the rates
of the level backward transitions, F the rates of the level forward transitions, and L the
ones of the local transitions, which are not accompanied by the change of the level. At
level zero the behavior of the local transitions can differ from the regular ones and the
matrix describining these transitions is denoted by L′.

In case of discrete time QBD processes, the one step state transition probability
matrix has the following block tri-diagonal structure

P =


L′ F
B L F

B L F
. . . . . . . . .

 .

The stationary distribution of this QBD satisfies the stationary equations

p0 = p0L
′ + p1B, (11)

pn = pn−1F+ pnL+ pn+1B for n ≥ 1, (12)

where pn is the stationary probability vector associated with level n.

3 Relation of MFQs and QBD process with singe buffer

3.1 QBD structure proposed in [1]

Ahn and Ramaswami established a relationship between QBD processes of a given
structure and MFQs. In their QBD process, the states of the background CTMC of the
MFQ are mapped to the phases of the QBD. Following the S+, S− partitioning of the
states, the transition matrices of the QBD process proposed in [1] are as follows:

B =
1

2

[
0 0
0 I

]
,L =

1

2

[
I 0

P−+ P−−

]
,F =

1

2

[
P++ P+−
0 0

]
. (13)

For level 0 the local matrix is L′ = L +B and matrix P is defined as P = T/λ + I,
where T = |R−1|Q and λ = maxi,j |Ti,j |.

Based on the stochastic interpretation of the QBD process with these transition ma-
trices and the MFQ characterized by Q and R, the stationary solution of the MFQ
is provided based on the stationary solution of the QBD process. Unfortunately, this
solution requires a different scaling of time in S+ and S− [1, Theorem 4]. It is also
mentioned in [1] that different QBD structures can be used for establishing such rela-
tion between a QBD process and a MFQ. The modified structure we use in this paper
allows identical scaling of time in S+ and S−.
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Fig. 1: Block structure of the QBD

3.2 QBD process with modified structure

In this work, we study a slightly modified QBD structure, whose analytical treatment is
simpler. Let X(t) = {N(t), J(t)} be a QBD process where J(t) ∈ S is the state of the
background CTMC and N(t) is the level of the QBD at time t. Based on the S+ – S−
decomposition, the blocks structure of the characterizing matrices of the QBD process
are

B =
1

2

[
0 0
0 I

]
,L =

1

2

[
I P+−
0 P−−

]
,F =

1

2

[
P++ 0
P−+ 0

]
. (14)

For level 0 the generator matrix is L′ = L+B. The state transition structure of the QBD
is depicted in Figure 1. Arrows from/to the upper half of the ellipses indicate transitions
from/to S+.

Let us define pn,i = lim
t→∞

Pr(N(t) = n, J(t) = i), which describes the stationary

distribution of the QBD. Let p+n and p−n be the row vectors composed of pn,i for i ∈ S+
and i ∈ S−, respectively. These vectors satisfy the following stationary equations for
n ≥ 1

p+0 = 0, (15)

p−0 = p−0 (I+P−−)/2 + p−1 I/2, (16)

p+n = p+n−1P++/2 + p−n−1P−+/2 + p+n I/2, (17)

p−n = p−nP−−/2 + p+nP+−/2 + p−n+1I/2, (18)

which can be simplified to

p−1 = p−0 (I−P−−), (19)

p+n = p+n−1P++ + p−n−1P−+, (20)

p−n (2I−P−−) = p+nP+− + p−n+1I. (21)

3.3 Algebraic proof of the relation of MFQs and QBD processes

The following theorem relates the stationary behaviour of the QBD processes defined
in (14) with L′ = L+B and the MFQ with characterizing matrices defined in (1).
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Theorem 1. When T = |R−1|Q, λ = maxi,j |Ti,j |, P = T/λ + I, and p+n , p−n is a
non-zero solution of (19) - (21), then

φ̂±(x) =

∞∑
n=1

λnxn−1e−λx

(n− 1)!
p±n and ν̂ = p−0 (22)

satisfy the differential equations (4) and (5) with boundary conditions (8) and (9).

The theorem states that the solution of the MFQ is a mixture of Erlang distributions
of order n and rate λ weighted according to the stationary distribution of level n of the
QBD process for n ≥ 1 and the empty buffer probability of the MFQ is related to the
stationary distribution of level 0 of the QBD process.

Proof. When P = T/λ + I, we have P++ = T++/λ + I, P+− = T+−/λ, P−− =
T−−/λ+ I, P−+ = T−+/λ.

Substituting this into (19)-(21), for n ≥ 1, we get

λp−1 = −p−0 T−−, (23)

λp+i = p+i−1(T++ + λI) + p−i−1T−+, (24)

p−i (λI−T−−) = p+i T+− + p−i+1λI. (25)

For i ≥ 1, we have

d

dx

λixi−1e−λx

(i− 1)!
= I{i>1}

λixi−2e−λx

(i− 2)!
− λi+1xi−1e−λx

(i− 1)!
, (26)

from which φ̂±(x) satisfies

d

dx
φ̂±(x) =

∞∑
i=2

λixi−2e−λx

(i− 2)!
p±i − λ

∞∑
i=1

λixi−1e−λx

(i− 1)!
p±i

= λ

∞∑
i=1

λixi−1e−λx

(i− 1)!
p±i+1 − λφ̂±(x). (27)

Multiplying (24) by λi−1xi−2e−λx

(i−2)! and summing up from i = 2 to∞ gives

λ

∞∑
i=2

λi−1xi−2e−λx

(i− 2)!
p+i

=

∞∑
i=2

λi−1xi−2e−λx

(i− 2)!

(
p+i−1(T++ + λI) + p−i−1T−+

)
, and

d

dx
φ̂+(x) + λφ̂+(x) = φ̂+(x)(T++ + λI) + φ̂−(x)T−+, and

d

dx
φ̂+(x) = φ̂+(x)T++ + φ̂−(x)T−+. (28)
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Multiplying (25) by λixi−1e−λx

(i−1)! and summing up from i = 1 to∞ gives

∞∑
i=1

λixi−1e−λx

(i− 1)!
p−i (λI−T−−) =

∞∑
i=1

λixi−1e−λx

(i− 1)!

(
p+i T+− + p−i+1λI

)
, and

φ̂−(x)(λI−T−−) = φ̂+(x)T+− +
d

dx
φ̂−(x) + λφ̂−(x), and

− d

dx
φ̂−(x) = φ̂+(x)T+− + φ̂−(x)T−−, (29)

where, from (27), we used that

∞∑
i=2

λixi−2e−λx

(i− 2)!
p±i = λ

∞∑
i=1

λixi−1e−λx

(i− 1)!
p±i+1 =

d

dx
φ̂±(x) + λφ̂±(x). (30)

For the initial conditions, we start from the definition of φ̂±(x) given in (22), from
which

φ̂±(0) = λp±1 . (31)

Substituting p−1 from (23) and p+1 from (24) (and using that ν̂ = p−0 and p+0 = 0) gives

φ̂+(0) = ν̂T−+, (32)

−φ̂−(0) = ν̂T−−. (33)

ut

Theorem 1 does not imply that φ±(x) = φ̂±(x) and ν = ν̂, because the normalizing
condition of the MFQ and the QBD process differ. φ(x) and ν satisfy the normalizing
equation (10), while φ̂(x) and ν̂ are normalized as follows

∞∑
i=0

(p+i 1+ p−i 1) = ν̂ +

∫ ∞
x=0

φ̂+(x)1+ φ̂−(x)1dx = 1. (34)

4 Two fluid buffers

In this section we investigate if the relation of QBD processes and MFQs can be ex-
tended for simple MFQs with two buffers using the same approach as in the previous
section.

4.1 Markov fluid queue

We consider a MFQ with two infinite buffers (J(t), Y1(t), Y2(t)), where J(t) is the state
of the background CTMC and Yi(t) is the fluid level of buffer i (i ∈ {1, 2}) at time t.
The state space of the CTMC is composed of two disjoint subsets S+ and S− = S \S+
such that the fluid level of both buffers increases at rate 1 in S+ and in S−, the fluid
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level of buffer 1 decreases with rate 1 and the fluid level of buffer 2 decreases with rate
r2 < 1, if the buffers are non-empty. That is, the characterizing matrices of the MFQ

are Q =

[
Q++ Q+−
Q−+ Q−−

]
, R1 =

[
I 0
0 −I

]
and R2 =

[
I 0
0 −r2I

]
. A trajectory of the fluid

levels is depicted in Figure 2. An important consequence of this model behaviour is that
Y1(t) ≤ Y2(t) for t > 0. As a consequence, the MFQ is stable if buffer 2 is stable.
Figure 2 indicates 4 possible cases:

– Y2(t) > Y1(t) > 0,
– Y2(t) > 0, Y1(t) = 0,
– Y2(t) = Y1(t) = 0,
– Y2(t) = Y1(t) > 0.

The stationary measures associated with these 4 cases are as follows

t

Y1(t)

Y2(t)

S+ S− S+ S− S+ S− S+

Fig. 2: Evolution of the buffer contents with r2 = 0.5

Wi(x, y) = lim
t→∞

d

dx

d

dy
Pr(J(t) = i, Y1(t) < x, Y2(t) < y),

Ui(y) = lim
t→∞

d

dy
Pr(J(t) = i, Y1(t) = 0, Y2(t) < y),

πi = lim
t→∞

Pr(J(t) = i, Y1(t) = Y2(t) = 0),

Vi(x) = lim
t→∞

d

dx
Pr(J(t) = i, Y1(t) = Y2(t) < x).

The vectors composed of the state dependent measures are π = [πi]i∈S− , U(y) =
[Ui(y)]i∈S− , V (x) = [Vi(x)]i∈S+ , W+(x, y) = [Wi(x, y)]i∈S+ , and W−(x, y) =
[Wi(x, y)]i∈S− .

The stationary solution satisfies the following equations

π+ = 0 ; 0 = π−Q−− + r2U(0); (35)

∂

∂x
V (x) = V (x)Q++, (36)
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with initial condition

V (0) = π−Q−+; (37)

−r2
∂

∂y
U(y) = U(y)Q−−−W−(0, y); (38)

∂

∂x
W+(x, y) +

∂

∂y
W+(x, y) =W+(x, y)Q++ +W−(x, y)Q−+, (39)

with initial conditions

W+(x, x) = 0 and W+(0, y) = U(y)Q−+; (40)

− ∂

∂x
W−(x, y)− r2

∂

∂y
W−(x, y) =W+(x, y)Q+− +W−(x, y)Q−−, (41)

with initial condition

r2W
−(x, x) = V +(x)Q+−. (42)

4.2 Level dependent quasi birth death process

In this section we introduce a level dependent quasi birth death (LDQBD) process
whose structure is meant to represent the behaviour of the MFQ with two buffers and
we check if the stationary behaviour of the MFQ with two buffers and the LDQBD
process are related.

The block structure of the process is depicted in Figure 3 applying the same graph-
ical representations of the transitions associated with S+ and S− as in Figure 1, that is,
the arrows from/to the upper half of the ellipses indicate transitions from/to S+ and the
lower half of the ellipses are related to S−.

Assuming, that the blocks of states of this process (indicated by ellipses in the fig-
ure) are such that the associated levels increase along the horizontal axis, and all of
the blocks along a vertical line compose the phases of the given level, the obtained
stochastic process is a LDQBD process whose state transitions can be described with
the transition probability matrix

L =


L(0) F(0)

B(1) L(1) F(1)

B(2) L(2) F(2)

. . . . . . . . .

 , (43)

where the size of the matrices of the different levels increases level-by-level. For the
detailed internal structure of the non-zero blocks of (43) we refer to Figure 3.



10 P. Buchholz, A Meszaros and M. Telek

I/2 P+−/2
0 (I+P−−)/2

I/2 P+−/2
0 ((1−r2)I+P−−)/2

I/2 P+−/2
0 ((1−r2)I+P−−)/2

I/2 P+−/2
0 ((1−r2)I+P−−)/2

I/2 P+−/2
0 P−−/2

I/2 P+−/2
0 P−−/2

I/2 P+−/2
0 P−−/2

I/2 P+−/2
0 P−−/2

I/2 P+−/2
0 P−−/2

I/2 P+−/2
0 P−−/2

I/2 0
• •

I/2 0
• •

I/2 0
• •

P−+/2

P++/2 P++/2 P++/2

P++/2P++/2

P++/2P++/2

P++/2

P−+/2 P−+/2

P−+/2P−+/2

P−+/2

P+−/2

P+−/2

P+−/2

r2I/2 r2I/2

r2I/2

r2I/2

r2I/2

r2I/2

r2I/2 r2I/2 r2I/2

(1−r2)I/2

(1−r2)I/2

(1−r2)I/2

(1−r2)I/2

(1−r2)I/2

(1−r2)I/2

P U(y)

V (x)

Fig. 3: Block structure of the LDQBD
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We decompose the stationary probability vector of the LDQBD into the
following blocks: p+00, p

−
00, p+10, p

−
10, p

+
11, p

−
11, p

+
12, p

−
12, . . ., p

+
i0, p

−
i0, . . . , p

+
i,i+1, p

−
i,i+1,

p+i+1,0, p
−
i+1,0, . . .. The stationary probability of the transient states of the LDQBD is

zero, from which

p+i−1,0 = 0 and p−i,i+1 = 0 for i ≥ 1. (44)

According to Figure 3, for i ≥ 1 and i ≥ j ≥ 1, the decomposed vectors satisfy the
following stationary equations

p−00 = p−00(I+P−−)/2 + (p−10 + p−11)r2I/2, (45)

p−i0 = p−i0((1−r2)I+P−−)/2 + p−i1(1−r2)I/2 + (p−i+1,0 + p−i+1,1)r2I/2, (46)

p+ij = p+ijI/2 + p+i−1,j−1P++/2 + p−i−1,j−1P−+/2, (47)

p−ij = p−ijP−−/2 + p+ijP+−/2 + p−i+1,j+1r2I/2 (48)

+ I{j<i}p−i,j+1(1−r2)I/2 + I{j=i}p
−
i,j+1P+−/2,

p+1,2 = p+1,2I/2 + p−0,0P−+/2, (49)

p+i+1,i+2 = p+i+1,i+2I/2 + p+i,i+1P++/2. (50)

4.3 Relation of the MFQ and the LDQBD

In this section we follow the same approach as in Theorem 1 and check if the stationary
behaviour of the LDQBD is related to the one of the MFQ.

Theorem 2. Assuming P = Q/λ + I, π̃ = p−0,0, Ṽ (x) =
∑∞
i=1

λixi−1e−λx

(i−1)! p+i,i+1,

Ũ(y) =
∑∞
i=1

λiyi−1e−λy

(i−1)! p−i,0, W̃ (x, y)± =
∑∞
i=1

∑i
j=1

λiyi−1e−λy

(i−1)!
λjxj−1e−λx

(j−1)! p±i,j ,

Ṽ (x), Ũ(x) and W̃ (x, y) satisfy

d

dx
Ṽ (x) = Ṽ (x)Q++. (51)

−r2
d

dy
Ũ(y) = Ũ(y)Q−− + (1−r2)W̃ (0, y)− + r2

(
d

dx
W̃ (0, y)− + λW̃ (0, y)−

)
︸ ︷︷ ︸

different from MFQ

,

(52)

∂

∂y
W̃ (x, y)+ +

∂

∂x
W̃ (x, y)+ = W̃ (x, y)+Q++ + W̃ (x, y)−Q−+

− 1

λ

∂

∂x

∂

∂y
W̃ (x, y)+︸ ︷︷ ︸

different from MFQ

, (53)
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− ∂

∂x
W̃ (x, y)− − r2

∂

∂y
W̃ (x, y)− = W̃ (x, y)−Q−− + W̃ (x, y)−Q−−

+ε(x, y)Q+− +
r2
λ

∂

∂x

∂

∂y
W̃ (x, y)−︸ ︷︷ ︸

different from MFQ

, (54)

where ε(x, y) =
∑∞
i=2

λi−1xi−2e−λx

(i−2)!
λi−1yi−2e−λy

(i−2)! p−i−1,i.

The proof is provided in the appendix.
While Ṽ (x) satisfies the same differential equation as V (x) in (36), unfortunately,

Ũ(x), W̃ (x, y)+ and W̃ (x, y)− are characterized by different differential equations
than (38), (39) and (41), respectively. It means that the stationary distribution of the
MFQ with two buffers cannot be established based on this LDQBD.

5 Conclusion

We revisited the relation of MFQs and QBD processes in order to extend it for MFQs
with two buffers. To this end, we replaced the stochastic intuition based discussion of
[1] with an algebraic one and provided an algebraic proof of the relation of MFQs and
QBD processes. For the analysis of a simple MFQ with two buffers we introduced a
LDQBD, whose structure mimics the behaviour of the queue in the same way as in
the single buffer case. Unfortunately, the accurate algebraic approach indicated that the
stationary behaviour of the MFQs with two buffers and the LDQBD process differ.
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A Proof of Theorem 2

Using P++ = Q++/λ + I, P+− = Q+−/λ, P−− = Q−−/λ + I, P−+ = Q−+/λ,
for i ≥ j ≥ 1, equations (45)-(50) can be simplified to

−p−00Q−− = λr2(p
−
10 + p−11), (55)

p−i0(λr2I−Q−−) = λ(1−r2)p−i1 + λr2(p
−
i+1,0 + p−i+1,1), (56)

λp+ij = p+i−1,j−1(λI+Q++) + p−i−1,j−1Q−+, (57)

p−ij(λI−Q−−) = p+ijQ+− + λr2p
−
i+1,j+1

+ I{j<i}λ(1−r2)p−i,j+1 + I{j=i}p
−
i,j+1Q+−, (58)

λp+1,2 = p−0,0Q−+, (59)

λp+i+1,i+2 = p+i,i+1(λI+Q++). (60)

Multiplying (60) by λixi−1e−λx

(i−1)! and summing up from i = 1 to∞ gives

∞∑
i=1

λixi−1e−λx

(i− 1)!
λp+i+1,i+2 =

∞∑
i=1

λixi−1e−λx

(i− 1)!
p+i,i+1(λI+Q++), (61)

d

dx
Ṽ (x) + λṼ (x) = Ṽ (x)(λI+Q++), (62)
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which results in (51).

By definition W̃ (0, x)± =
∑∞
i=1

λixi−1e−λx

(i−1)! λp±i,1. Multiplying (56) by λixi−1e−λx

(i−1)!
and summing up from i = 1 to∞ gives

∞∑
i=1

λixi−1e−λx

(i− 1)!
p−i0(λr2I−Q−−) =

∞∑
i=1

λixi−1e−λx

(i− 1)!

(
λ(1−r2)p−i1 + λr2(p

−
i+1,0 + p−i+1,1)

)
,

Ũ(x)(λr2I−Q−−) =
∞∑
i=1

λixi−1e−λx

(i− 1)!
λ(1−r2)p−i1︸ ︷︷ ︸

(1−r2)W̃ (0,x)−

+

∞∑
i=1

λixi−1e−λx

(i− 1)!
λr2p

−
i+1,1︸ ︷︷ ︸

r2( ddx W̃ (0,x)−+λW̃ (0,x)−)

+

∞∑
i=1

λixi−1e−λx

(i− 1)!
λr2p

−
i+1,0︸ ︷︷ ︸

r2( ddx Ũ(x)+λŨ(x))

,

which results in (51).
For the computation of W̃ (x, y) we need the following lemma.

Lemma 1. The derivatives of W̃ (x, y)± =
∑∞
i=1

∑i
j=1

λiyi−1e−λy

(i−1)!
λjxj−1e−λx

(j−1)! p±i,j
satisfy

∂

∂y
W̃ (x, y)± + λW̃ (x, y)± =

∞∑
i=2

i∑
j=1

λiyi−2e−λy

(i− 2)!

λjxj−1e−λx

(j − 1)!
p±i,j , (63)

∂

∂x
W̃ (x, y)± + λW̃ (x, y)± =

∞∑
i=1

i∑
j=2

λiyi−1e−λy

(i− 1)!

λjxj−2e−λx

(j − 2)!
p±i,j (64)

=

∞∑
i=2

i−1∑
j=2

λi−1yi−2e−λy

(i− 2)!

λjxj−2e−λx

(j − 2)!
p±i−1,j , (65)

and

∂

∂x

∂

∂y
W̃ (x, y)± + λ

∂

∂y
W̃ (x, y)± + λ

∂

∂x
W̃ (x, y)± + λ2W̃ (x, y)±

=

∞∑
i=2

i∑
j=2

λiyi−2e−λy

(i− 2)!

λjxj−2e−λx

(j − 2)!
p±i,j . (66)

Proof. The statements of the lemma can be obtained by substituting the definition of
W̃ (x, y)±. We omit the details of the proof here.
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Multiplying (57) by λi−1yi−2e−λy

(i−2)!
λj−1xj−2e−λx

(j−2)! and summing up from i = 2 to∞
and j = 2 to i and utilizing (66) gives

∞∑
i=2

i∑
j=2

λi−1yi−2e−λy

(i− 2)!

λj−1xj−2e−λx

(j − 2)!
λp+ij︸ ︷︷ ︸

1
λ
∂
∂x

∂
∂y
W̃ (x,y)++ ∂

∂y
W̃ (x,y)++ ∂

∂x
W̃ (x,y)++λW̃ (x,y)+

=

∞∑
i=2

i∑
j=2

λi−1yi−2e−λy

(i− 2)!

λj−1xj−2e−λx

(j − 2)!

(
p+i−1,j−1(λI+Q++) + p−i−1,j−1Q−+

)
︸ ︷︷ ︸

W̃ (x,y)+(λI+Q++)+W̃ (x,y)−Q−+

which results in (53).

For 2 ≤ j ≤ i we rewrite (58) as

p−i−1,j−1(λI−Q−−)− p
+
i−1,j−1Q+−

= λr2p
−
i,j + I{j<i}λ(1−r2)p

−
i−1,j + I{j=i}p

−
i−1,jQ+−, (67)

Multiplying (67) by λi−1yi−2e−λy

(i−2)!
λj−1xj−2e−λx

(j−2)! and summing up from i = 2 to∞
and j = 2 to i and utilizing Lemma 1 gives

∞∑
i=2

i∑
j=2

λi−1yi−2e−λy

(i− 2)!

λj−1xj−2e−λx

(j − 2)!
p−i−1,j−1︸ ︷︷ ︸

W̃ (x,y)−

(λI−Q−−)

−
∞∑
i=2

i∑
j=2

λi−1yi−2e−λy

(i− 2)!

λj−1xj−2e−λx

(j − 2)!
p+i−1,j−1︸ ︷︷ ︸

W̃ (x,y)+

Q+−

=

∞∑
i=2

i∑
j=2

λi−1yi−2e−λy

(i− 2)!

λj−1xj−2e−λx

(j − 2)!
λr2p

−
i,j︸ ︷︷ ︸

r2

(
1
λ
∂
∂x

∂
∂y
W̃ (x,y)−+ ∂

∂y
W̃ (x,y)−+ ∂

∂x
W̃ (x,y)−+λW̃ (x,y)−

)

+

∞∑
i=2

i−1∑
j=2

λi−1yi−2e−λy

(i− 2)!

λj−1xj−2e−λx

(j − 2)!
λ(1−r2)p−i−1,j︸ ︷︷ ︸

(1−r2)( ∂∂x W̃ (x,y)−+λW̃ (x,y)−)

+

∞∑
i=2

λi−1yi−2e−λy

(i− 2)!

λi−1xi−2e−λx

(i− 2)!
p−i−1,i︸ ︷︷ ︸

ε(x,y)

Q+−,
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that is

W̃ (x, y)−(λI−Q−−)− W̃ (x, y)+Q+−

= r2

(
1

λ

∂

∂x

∂

∂y
W̃ (x, y)− +

∂

∂y
W̃ (x, y)− +

∂

∂x
W̃ (x, y)− + λW̃ (x, y)−

)
+ (1−r2)

(
∂

∂x
W̃ (x, y)− + λW̃ (x, y)−

)
+ ε(x, y)Q+−,

which results in (54).
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