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Abstract—The modeling of electric car charging stations is 

essential for determining the required number of chargers in 
order to ensure the required service quality. In this paper we 
propose a new estimation method for the stochastic modeling of 
electric car charging stations, based on Markov arrival process 
(MAP).  

The input of the proposed model is empirical data for the 
arrival and service process of electric cars, given as histograms: 
the number of arriving cars during a fixed time slot (5 minutes in 
our case) and the histogram of service times (in 5 minutes 
granularity). The fact that observations on the continuous time 
process of car charging is available in discrete time steps poses a 
modeling challenge, which was not considered before. We 
propose a procedure to fit the observed data with a continuous 
time MAP of order 2 such that three moments and a correlation 
parameter of the discrete time observations are matched with 
three moments and the correlation parameter of the continuous 
time MAP for the given time interval. We implemented the fitting 
procedure in MATLAB and verified the obtain model of car 
charging station against simulation. As the MAP model of the 
arrival processes is reasonable close to the observations the 
obtained MAP/G/c queue allows a more accurate dimensioning of 
car charging station than the previously applied ones.  
 

Index Terms — electric vehicle, charging station, Markov 
arrival process, point process fitting, simulation. 

I. INTRODUCTION 
LECTRIC vehicles (EVs) require an adequate number of 
chargers at charging stations in order to have neither 

unwanted long queues at the station, nor a poorly utilized 
system due to idleness. Furthermore, without enough chargers 
the customers will not buy EVs out of sheer fear of range 
anxiety (i.e. they will not find a charging station nearby where 
they can recharge their cars when needed), while if there are 
not enough EVs, there is no point in constructing charging 
stations. To cope with this problem, government or industrial 
subsidies are required, both in promoting the dissemination of 
EVs and in constructing charging stations. This paper intends 
to suggest a modeling procedure that would help in the 
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charging station construction by determining the required 
number of chargers in a fast charging station. As this topic is 
highly relevant today, many papers deal with it. They can be 
classified into two sets: some papers use optimization 
algorithms to dimension a charging station: for example [1] 
proposes a multi-objective electric vehicle charging station 
planning method which can ensure charging service while 
reducing power losses and voltage deviations of distribution 
systems; authors of [2] study the EV charging station 
placement problem by finding the best locations to construct 
charging stations in a city in such a way, that they minimize 
the construction cost with coverage extended to the whole city 
and they also study the complexity of the station placement 
problem; authors of [3] developed a mathematical model for 
the optimal sizing of EV charging stations with the 
minimization of total cost associated to these stations and 
solved it by a modified primal-dual interior point algorithm.  

Other papers use stochastic models, with which system 
performance can be studied: the literature review shows that 
they almost exclusively use M/M/c queues for charging station 
modeling, i.e., they assume the arrival and service process of 
EVs to be Poisson-processes. In this sense [4] models the fast 
charging stations with the help of an M/G/S/K queue and 
incorporates a fast charging model (i.e. charging 
characteristics show that charging power during fast charging 
is not constant) into the queuing analysis as well as the 
revenue model of the charging station; the authors of [5] 
present a methodology of modeling the overall charging 
demand of plug-in hybrid electric vehicles (PHEVs) and 
employ queuing theory (M/M/c model) to describe the 
behavior of multiple PHEVs; [6] uses a discrete-state, 
discrete-time Markov chain to define the states of all the EVs 
at each time step. Four states are considered in [6], depending 
on whether an EV is parked or not and on the parking location.  

However, as [7] clearly states, most of the M/M/c models 
are based on some unrealistic assumptions without validation. 
[4] rejects the assumption that the service process can be 
modeled as a Poisson-process, as charging time depends on 
initial battery state of charge. This statement is supported by 
measurements made by the authors of [8], see Fig.1. 
Furthermore, according to [9], sojourn times are in general not 
exponentially distributed. In fact, the assumption that EV 
charging can be modeled by M/M/c queues has to our best 
knowledge never really been justified in the literature. 
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Our aim in this paper is thus to create a model that can be 
used even if the arrival and service processes are not Poisson-
processes. We propose a stochastic model based on Markov 
arrival processes (MAP) to capture the nature of electric car 
charging process. A similar approach is presented in [10], 
where the authors use a DMAP/PH/N/R model (where DMAP 
stands for discrete time MAP and PH for phase type 
distributed service time) to investigate a battery replacement 
strategy to increase the efficiency of chargers and save drivers' 
time at charging stations.  

Our proposed approach is essentially different. We assume 
that cars arrive according to a continuous time stochastic 
process to which we have observations only in equidistance 
discrete time instances. This assumption is motivated by the 
lack of available experimental data. We take the input data 
from [11], where the motion of a taxi fleet composed of 
electric cars is simulated in 5 min long time periods. That is 
why we assume that the EV arrivals are known in every ∆=
5𝑚𝑚𝑚𝑚𝑚𝑚 long time periods. The fact that we need to fit a 
continuous time MAP to a set of discrete observation instances 
raises a new research challenge. To the best of our knowledge 
this problem is considered here for the first time. We would 
like to emphasize, that the main contribution of our paper is 
the applied methodology, which has not been applied for EV 
modeling yet and contains the solution of previously 
unavailable analysis step (MAP fitting based on restricted 
observations), the numerical example in Section V is 
presented to show the capabilities of the proposed approach. 

 
Fig. 1. Distribution of battery pack SOC at the start of charging by 
charging location [8] 

The rest of the paper is structured as follows. Section II 
summarizes the basics of MAP modeling. In Section III we 
present the theoretical basis of restricted observation based 
MAP fitting and in Section IV the procedure itself. In Section 
V simulation results are presented and discussed. The paper is 
concluded in Section VI. 

II. MODELING WITH MARKOV ARRIVAL PROCESS 
This section introduces the basic properties of MAPs.  

A. Markov arrival processes 
The Markov arrival process is a point process where the 

arrivals are governed by a background continuous time 
Markov chain (CTMC). A possible interpretation of MAP is 
through the joint stochastic process ��𝑁𝑁(𝑡𝑡), 𝐽𝐽(𝑡𝑡)�: 𝑡𝑡 ≥ 0� 
where 𝑁𝑁(𝑡𝑡) denotes the number of arrivals in the time interval 
(0, 𝑡𝑡) and 𝐽𝐽(𝑡𝑡) denotes the state of the background CTMC 
(commonly referred to as phase) at time 𝑡𝑡. 𝐽𝐽(𝑡𝑡) is CTMC on 
the finite state space 𝑀𝑀, while 𝑁𝑁(𝑡𝑡) is a stochastic counting 
process depending on 𝐽𝐽(𝑡𝑡). The �𝑁𝑁(∙), 𝐽𝐽(∙)� joint stochastic 
process is a CTMC on the state space {(𝑚𝑚, 𝑗𝑗): 𝑚𝑚 ≥ 0 , 1 ≤ 𝑗𝑗 ≤
𝑀𝑀} with the infinitesimal generator matrix  

𝑄𝑄 = �

𝐷𝐷0 𝐷𝐷1 0 0
0 𝐷𝐷0 𝐷𝐷1 0
0
⋮

0
⋮

𝐷𝐷0
0

𝐷𝐷1
⋱

�, 

where  
• 𝐷𝐷0 and 𝐷𝐷1are 𝑀𝑀 × 𝑀𝑀 matrices, 
• 𝐷𝐷1 ≥ 0 elementwise, 
• [𝐷𝐷0]𝑖𝑖,𝑗𝑗 ≥ 0 , 1 ≤ 𝑚𝑚 ≠ 𝑗𝑗 ≤ 𝑀𝑀 and [𝐷𝐷0]𝑖𝑖,𝑖𝑖 < 0 , 1 ≤ 𝑚𝑚 ≤ 𝑀𝑀, 
• and ∑ [𝐷𝐷0]𝑖𝑖,𝑗𝑗𝑗𝑗 + ∑ [𝐷𝐷1]𝑖𝑖,𝑗𝑗𝑗𝑗 = 0 that is  

(𝐷𝐷0 + 𝐷𝐷1) ∙ 𝟏𝟏 = 0, (5) 
where 𝟏𝟏 is the column vector of ones of the appropriate size.  

This means that a Markov arrival process is defined by the 
matrices 𝐷𝐷0 and 𝐷𝐷1, where the elements of 𝐷𝐷0 represent 
hidden transitions and elements of 𝐷𝐷1 observable transitions.  

We use second-order MAPs (denoted with MAP(2)) 
because they have significantly more modeling flexibility (e.g. 
correlated inter-arrival time) compared to Poisson processes 
while their computational complexity is still low. An 
important advantage of using MAP(2) is the availability of a 
canonical representation [12], which is a minimal unique 
Markovian representation for all members of the MAP(2) 
class. This means that 𝑀𝑀 = 2, and both 𝐷𝐷0 and 𝐷𝐷1 are 2 × 2 
matrices.  

 

Fig. 2. Markov chain of the canonical MAP(2) with positive 
correlation 

Depending on whether the correlation of consecutive inter-
arrivals is positive or negative there are two different 
canonical forms [12]. Based on the properties of our data sets 
(which are discussed in Subsection C) we use only the 
canonical form with positive correlation in this paper. The 𝐷𝐷0 
and 𝐷𝐷1 matrix representation of this canonical form is as 
follows: 
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𝐷𝐷0 = �−𝜆𝜆1 (1 − 𝑎𝑎) ∙ 𝜆𝜆1
0 −𝜆𝜆2

�, (1) 

𝐷𝐷1 = �
𝑎𝑎 ∙ 𝜆𝜆1 0

(1 − 𝑏𝑏) ∙ 𝜆𝜆2 𝑏𝑏 ∙ 𝜆𝜆2
�, (2) 

where 𝜆𝜆1 and 𝜆𝜆2 are rate parameters, 𝑎𝑎 and 𝑏𝑏 are 
probabilities. The transition graph representation of this 
canonical form is depicted on Fig. 2. 

The stationary distribution of the MAP arrivals in a ∆ long 
time interval is given by the following z-transform expression:  

𝑝𝑝(∆, 𝑧𝑧) = 𝛼𝛼 ∙ 𝑒𝑒(𝐷𝐷0+𝐷𝐷1∙𝑧𝑧)∙∆ ∙ 𝟏𝟏, (3) 

where 𝛼𝛼 = [𝛼𝛼0 𝛼𝛼1] is the time stationary phase distribution 
vector, and 𝟏𝟏 = �11� is the summation vector of size 2. 𝛼𝛼 is 
obtained from the 𝐷𝐷0 and 𝐷𝐷1 matrix representation as the 
solution of the linear system of equations  

𝛼𝛼 ∙ (𝐷𝐷0 + 𝐷𝐷1) = 0,   𝛼𝛼 ∙ 𝟏𝟏 = 1  (4) 

and it is  

𝛼𝛼 = �
(1−𝑏𝑏)∙𝜆𝜆2

(1−𝑎𝑎)∙𝜆𝜆1+(1−𝑏𝑏)∙𝜆𝜆2

(1−𝑎𝑎)∙𝜆𝜆1
(1−𝑎𝑎)∙𝜆𝜆1+(1−𝑏𝑏)∙𝜆𝜆2

�.    

B. Histogram of the empirical arrival process 
The number of cars arriving to the charging station during a 

fixed time slot is depicted on Fig. 3 (the example obtained 
from [11]).  

 
Fig. 3. Histogram showing the number of cars arriving in a ∆ long 
time interval 

We form the following z-transform polynomial from the 
histogram: 

𝐴𝐴(𝑧𝑧) = ∑ 𝑝𝑝𝑖𝑖 ∙ 𝑧𝑧𝑖𝑖𝑖𝑖 , (6) 

where 𝑝𝑝𝑖𝑖  is the probability that 𝑚𝑚 cars arrive in a ∆ long time 
interval. The polynomial in our example (according to Fig. 3.) 
is the following: 

𝐴𝐴(𝑧𝑧) =
1

11521
∙ (𝑧𝑧13 + 𝑧𝑧12 + 3𝑧𝑧11 + 7𝑧𝑧10 + 21𝑧𝑧9 + 63𝑧𝑧8 + 

+149𝑧𝑧7 + 383𝑧𝑧6 + 765𝑧𝑧5 + 1326𝑧𝑧4 + 2023𝑧𝑧3 + 2393𝑧𝑧2 + 
+2525𝑧𝑧 + 1861).     (7) 

We fit the number of arrivals of a MAP(2) in a ∆ long time 

interval, given in the form of (3), to this polynomial. More 
precisely we set the first three factorial moments of this data 
set, which can be obtained from 𝐴𝐴(𝑧𝑧) (as well as from the 
probabilities 𝑝𝑝𝑖𝑖 , but we use 𝐴𝐴(𝑧𝑧) in order to exploit the 
similarity with the transform domain based computation of 
MAP(2) parameters) through its derivatives with respect to z, 
which are 

• 𝑑𝑑
𝑑𝑑𝑧𝑧
𝐴𝐴(𝑧𝑧)|𝑧𝑧=1 = 2.315, 

• 𝑑𝑑2

𝑑𝑑𝑧𝑧2
𝐴𝐴(𝑧𝑧)|𝑧𝑧=1 = 6.2644, 

• 𝑑𝑑3

𝑑𝑑𝑧𝑧3
𝐴𝐴(𝑧𝑧)|𝑧𝑧=1 = 18.2198. 

C. Correlation of the arrival data 
The number of car arrivals in consecutive ∆ long time 

intervals can be independent or dependent. We check the 
dependence structure of the car arrival process by computing 
the experimental correlation of observation intervals k lags 
apart. Having 𝑁𝑁 samples the lag-k correlation is computed 
between the first 𝑁𝑁 − 𝑘𝑘 observations: 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁−𝑘𝑘 and the 
next 𝑁𝑁 − 𝑘𝑘 observations 𝑥𝑥𝑘𝑘+1, 𝑥𝑥𝑘𝑘+2, … , 𝑥𝑥𝑁𝑁 according to the 
following expression [14]  

𝜌𝜌�𝑘𝑘 =
∑ �𝑥𝑥𝑡𝑡−�̅�𝑥(1)�∙�𝑥𝑥𝑡𝑡+1−�̅�𝑥(𝑘𝑘+1)�𝑁𝑁−𝑘𝑘
𝑡𝑡=1

�∑ �𝑥𝑥𝑡𝑡−�̅�𝑥(1)�
2𝑁𝑁−𝑘𝑘

𝑡𝑡=1 ∙∑ �𝑥𝑥𝑡𝑡−�̅�𝑥(𝑘𝑘+1)�
2𝑁𝑁

𝑡𝑡=𝑘𝑘+1

, (8) 

where �̅�𝑥(1) is the experimental mean of the first 𝑁𝑁 − 𝑘𝑘 
observations and �̅�𝑥(𝑘𝑘+1) is the experimental mean of the last 
𝑁𝑁 − 𝑘𝑘 observations.  

The correlation of the data sample for arrivals can also be 
obtained by using MATLAB's autocorr function. The 
experimental lag-k correlation parameters are depicted in Fig. 
4. The lag-1 correlation is 𝜌𝜌�1 = 0.2443.  

To emphasize the applicability of the proposed method we 
note that the MAP(2) class can also represent the case when 
the correlation is zero. In that case parameter 𝑏𝑏 equals to zero, 
thus the canonical form of MAP(2) simplifies to 

𝐷𝐷1 = �𝑎𝑎 ∙ 𝜆𝜆1 0
𝜆𝜆2 0�, (9) 

while 𝐷𝐷0 remains the same.  

 
Fig. 4. Correlation of the original dataset 
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D. Moment matching procedure 
The MAP(2) canonical form has four unknown parameters 

(𝑎𝑎, 𝑏𝑏, 𝜆𝜆1, 𝜆𝜆2). We set these parameters such that the first three 
moments of the inter-arrival time distribution (𝑚𝑚�𝑘𝑘, 𝑘𝑘 = 1,2,3), 
and the lag-1 correlation of the experimental data (𝜌𝜌�1) is 
matched. This procedure requires calculating these four 
parameters from both the empirical data and the MAP(2) 
canonical from.  

For the later ones we need the first 3 derivatives of 𝑝𝑝(∆, 𝑧𝑧) 
with respect to 𝑧𝑧 at 𝑧𝑧 = 1 and the lag-1 correlation from the 
double transform description of the number of car arrivals in 
consecutive intervals given in (23).  

Finally, we have to solve the obtained system of equation 
for the variables 𝑎𝑎, 𝑏𝑏, 𝜆𝜆1 and 𝜆𝜆2.  

III. DERIVATIVES OF  𝑝𝑝(∆, 𝑧𝑧) AND THE CORRELATION 
Although theoretically the symbolic derivation of the 

𝑝𝑝(∆, 𝑧𝑧) polynomial is possible, but it is computationally 
challenging. Instead of the direct, brute force solution, we 
apply some algebraic manipulations to make computations 
faster (and feasible). 

A. First moment 
Only the part 𝑒𝑒(𝐷𝐷0+𝐷𝐷1∙𝑧𝑧)∙∆ contains the parameter 𝑧𝑧 in (3), 

thus we have to calculate  𝑑𝑑
𝑑𝑑𝑧𝑧
𝑒𝑒(𝐷𝐷0+𝐷𝐷1∙𝑧𝑧)∙∆�

𝑧𝑧=1
. The Taylor-

series expansion of the matrix exponential function is  

𝑑𝑑
𝑑𝑑𝑧𝑧
𝑒𝑒(𝐷𝐷0+𝐷𝐷1∙𝑧𝑧)∙∆ = (10) 

= 𝑑𝑑
𝑑𝑑𝑧𝑧
∑ ∆𝑖𝑖

𝑖𝑖!
∙ (𝐷𝐷0 + 𝐷𝐷1 ∙ 𝑧𝑧)𝑖𝑖 = ∑ ∆𝑖𝑖

𝑖𝑖!
∙∞

𝑖𝑖=0
∞
𝑖𝑖=0

𝑑𝑑
𝑑𝑑𝑧𝑧

(𝐷𝐷0 + 𝐷𝐷1 ∙ 𝑧𝑧)𝑖𝑖.  

Due to the matrices in the series, the order of the parts 
matter this time. The calculation yields  

𝑑𝑑
𝑑𝑑𝑧𝑧
𝑒𝑒(𝐷𝐷0+𝐷𝐷1∙𝑧𝑧)∙∆�

𝑧𝑧=1
= (11) 

= ∑ ∆𝑖𝑖

𝑖𝑖!
∙ ∑ (𝐷𝐷0 + 𝐷𝐷1 ∙ 𝑧𝑧)𝑘𝑘𝑖𝑖−1

𝑘𝑘=0
∞
𝑖𝑖=1 𝐷𝐷1 ∙ (𝐷𝐷0 + 𝐷𝐷1 ∙ 𝑧𝑧)𝑖𝑖−𝑘𝑘−1�

𝑧𝑧=1
, 

so  

𝑝𝑝(∆, 𝑧𝑧) = 𝛼𝛼 ∙ 𝑒𝑒(𝐷𝐷0+𝐷𝐷1∙𝑧𝑧)∙∆ ∙ 𝟏𝟏 = (12) 

= 𝛼𝛼 ∙�
∆𝑖𝑖

𝑚𝑚!
∙�(𝐷𝐷0 + 𝐷𝐷1 ∙ 𝑧𝑧)𝑘𝑘
𝑖𝑖−1

𝑘𝑘=0

∞

𝑖𝑖=1

𝐷𝐷1 ∙ (𝐷𝐷0 + 𝐷𝐷1 ∙ 𝑧𝑧)𝑖𝑖−𝑘𝑘−1�
𝑧𝑧=1

∙ 

∙ 𝟏𝟏 = 𝛼𝛼 ∙ ∑ ∆𝑖𝑖

𝑖𝑖!
∙ ∑ (𝐷𝐷0 + 𝐷𝐷1)𝑘𝑘𝑖𝑖−1

𝑘𝑘=0
∞
𝑖𝑖=1 𝐷𝐷1 ∙ (𝐷𝐷0 + 𝐷𝐷1)𝑖𝑖−𝑘𝑘−1 ∙ 𝟏𝟏.  

This means that we can simplify equation (12) further as 
follows:  

𝑑𝑑
𝑑𝑑𝑧𝑧
𝑝𝑝(∆, 𝑧𝑧)|𝑧𝑧=1 = 𝛼𝛼 ∙ ∆ ∙ 𝐷𝐷1 ∙ 𝟏𝟏. (13) 

This formula gives the first moment. 

B. Second moment 
The calculation is similar to the first moment: we want to 

obtain 𝑑𝑑2

𝑑𝑑𝑧𝑧2
𝑒𝑒(𝐷𝐷0+𝐷𝐷1∙𝑧𝑧)∙∆�

𝑧𝑧=1
, so we take the derivation of  

equation (11) with respect to 𝑧𝑧, and we obtain  

𝑑𝑑2

𝑑𝑑𝑧𝑧2
𝑒𝑒(𝐷𝐷0+𝐷𝐷1∙𝑧𝑧)∙∆ = (14) 

= 𝑑𝑑
𝑑𝑑𝑧𝑧
�∑ ∆𝑖𝑖

𝑖𝑖!
∙ ∑ (𝐷𝐷0 + 𝐷𝐷1 ∙ 𝑧𝑧)𝑘𝑘 ∙ 𝐷𝐷1 ∙ (𝐷𝐷0 + 𝐷𝐷1 ∙ 𝑧𝑧)𝑖𝑖−𝑘𝑘−1𝑖𝑖−1

𝑘𝑘=0
∞
𝑖𝑖=1 �. 

 After the Taylor-series expansion and the derivation of the 
first few parts we can see that the solution is  

𝑑𝑑2

𝑑𝑑𝑧𝑧2
𝑒𝑒(𝐷𝐷0+𝐷𝐷1∙𝑧𝑧)∙∆ = �

∆𝑖𝑖

𝑚𝑚!
∙ (��(𝐷𝐷0 + 𝐷𝐷1 ∙ 𝑧𝑧)𝑙𝑙 ∙ 𝐷𝐷1 ∙

𝑘𝑘−1

𝑙𝑙=0

𝑖𝑖−1

𝑘𝑘=1

∞

𝑖𝑖=2

 

∙ (𝐷𝐷0 + 𝐷𝐷1 ∙ 𝑧𝑧)𝑘𝑘−𝑙𝑙−1 ∙ 𝐷𝐷1 ∙ (𝐷𝐷0 + 𝐷𝐷1 ∙ 𝑧𝑧)𝑖𝑖−𝑘𝑘−1 + 

+� � (𝐷𝐷0 + 𝐷𝐷1 ∙ 𝑧𝑧)𝑘𝑘 ∙ 𝐷𝐷1 ∙ (𝐷𝐷0 + 𝐷𝐷1 ∙ 𝑧𝑧)𝑙𝑙 ∙ 𝐷𝐷1 ∙
𝑖𝑖−𝑘𝑘−2

𝑙𝑙=0

𝑖𝑖−2

𝑘𝑘=0

 

∙ (𝐷𝐷0 + 𝐷𝐷1 ∙ 𝑧𝑧)𝑖𝑖−𝑘𝑘−𝑙𝑙−2). (15) 

After further simplifications using (4) and (5) we obtain  

𝛼𝛼 ∙ 𝑑𝑑
2

𝑑𝑑𝑧𝑧2
𝑒𝑒(𝐷𝐷0+𝐷𝐷1∙𝑧𝑧)∙∆�

𝑧𝑧=1
∙ 𝟏𝟏 = (16) 

= 2! ∙ 𝛼𝛼 ∙ ∑ ∆𝑖𝑖

𝑖𝑖!
∙ 𝐷𝐷1 ∙∞

𝑖𝑖=2 (𝐷𝐷0 + 𝐷𝐷1)𝑖𝑖−2 ∙ 𝐷𝐷1 ∙ 𝟏𝟏.  

Let's denote 𝐷𝐷0 + 𝐷𝐷1 with 𝐷𝐷. This means that we can 
reformulate (16) as  

2! ∙ 𝛼𝛼 ∙ 𝐷𝐷1 ∙ ∑
∆𝑖𝑖

𝑖𝑖!
∙∞

𝑖𝑖=2 𝐷𝐷𝑖𝑖−2 ∙ 𝐷𝐷1 ∙ 𝟏𝟏, (17) 

where we can see that ∑ ∆𝑖𝑖

𝑖𝑖!
∙∞

𝑖𝑖=2 𝐷𝐷𝑖𝑖−2 resembles to the Taylor-
series expansion of the matrix exponential function 𝑒𝑒𝐷𝐷∆. To 
obtain that formula, we have to alter (17) a little, but we 
cannot extend the formula by multiplying simply with 𝐷𝐷2 ∙
𝐷𝐷−2, because 𝐷𝐷−2 does not exist as 𝐷𝐷 is singular (see (5)). 
Instead, we have to do the extension using (𝐷𝐷 − 𝟏𝟏 ∙ 𝛼𝛼)2 
∙ (𝐷𝐷 − 𝟏𝟏 ∙ 𝛼𝛼)−2. If 𝐷𝐷 is an irreducible Markov-chain, then 𝐷𝐷 −
𝟏𝟏 ∙ 𝛼𝛼 is not singular [15]. With further calculations, utilizing 
(4) and (5), we can reformulate (17) as  

𝛼𝛼 ∙ 𝑑𝑑
2

𝑑𝑑𝑧𝑧2
𝑒𝑒(𝐷𝐷0+𝐷𝐷1∙𝑧𝑧)∙∆�

𝑧𝑧=1
∙ 𝟏𝟏 = (18) 

= 2! ∙ [𝛼𝛼 ∙ 𝐷𝐷1 ∙
∆2

2!
∙ 𝐷𝐷1 ∙ 𝟏𝟏 + 𝛼𝛼 ∙ 𝐷𝐷1 ∙ 

∙ �𝑒𝑒𝐷𝐷∙∆ − 𝐼𝐼 − 𝐷𝐷 ∙ ∆ − (𝐷𝐷∙∆)2

2!
� ∙ (𝐷𝐷 − 𝟏𝟏 ∙ 𝛼𝛼)−2 ∙ 𝐷𝐷1 ∙ 𝟏𝟏].  

This is the second momentum of the number of arrivals in 
(0,∆), where 𝐼𝐼 denotes the 2 × 2 identity matrix. 

C. Third moment 
Based on our calculations regarding the first and the second 

moment, we can determine the third one. We have seen that 
there was a single summation in the case of the first moment, a 
double summation in the second and here in the case of the 
third moment, a triple summation would come, with the 
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argument being something like  

(𝐷𝐷0 + 𝐷𝐷1 ∙ 𝑧𝑧)𝑘𝑘 ∙ 𝐷𝐷1 ∙ (𝐷𝐷0 + 𝐷𝐷1 ∙ 𝑧𝑧)𝑙𝑙 ∙ 𝐷𝐷1 ∙ (𝐷𝐷0 + 𝐷𝐷1 ∙ 𝑧𝑧)𝑚𝑚 ∙ 𝐷𝐷1 ∙ 
∙ (𝐷𝐷0 + 𝐷𝐷1 ∙ 𝑧𝑧)𝑛𝑛. 

This one, however is hard to deal with, as not all of the 
factors disappear when we multiply with the vectors 𝛼𝛼 and 𝟏𝟏, 
so convolutions would appear. To make calculations easier, 
we can trace the summation back to matrix products: if we 
raise to powers the  

𝔻𝔻1 = �𝐷𝐷 𝐷𝐷1
0 𝐷𝐷 � (19) 

hyper matrix, we can obtain the factors in the aforementioned 
sums; they are given by the upper right block of the 𝔻𝔻1 hyper 
matrix, so we have to multiply 𝔻𝔻1 with [𝐼𝐼2 02] from the left 

and with �02𝐼𝐼2
� from the right, where 𝐼𝐼2 is the 2 × 2 identity 

matrix and 02 is the 2 × 2 zero matrix. Using the hyper matrix 
we can obtain the third momentum as follows: 

𝛼𝛼 ∙
𝑑𝑑3

𝑑𝑑𝑧𝑧3
𝑒𝑒(𝐷𝐷0+𝐷𝐷1∙𝑧𝑧)∙∆�

𝑧𝑧=1
∙ 𝟏𝟏 = 3! ∙ 𝛼𝛼 ∙ 𝐷𝐷1 ∙ [𝐼𝐼2 02] ∙ �

∆𝑛𝑛

𝑚𝑚!

∞

𝑛𝑛=3

∙ 

∙ 𝔻𝔻1
𝑛𝑛−2 ∙ 𝔻𝔻𝑒𝑒

2 ∙ 𝔻𝔻𝑒𝑒
−2 ∙ �02𝐼𝐼2

� ∙ 𝐷𝐷1 ∙ 𝟏𝟏, (20) 

where  

𝔻𝔻𝑒𝑒 = �𝐷𝐷 − 𝟏𝟏 ∙ 𝛼𝛼 𝐷𝐷1
0 𝐷𝐷 − 𝟏𝟏 ∙ 𝛼𝛼�. (21) 

If we calculate the powers of the 𝔻𝔻𝑒𝑒 hyper matrix and 
substitute the obtained results into (20), we can see that the 
third moment is simplified: 

𝛼𝛼 ∙
𝑑𝑑3

𝑑𝑑𝑧𝑧3
𝑒𝑒(𝐷𝐷0+𝐷𝐷1∙𝑧𝑧)∙∆�

𝑧𝑧=1
∙ 𝟏𝟏 = 3! ∙ 𝛼𝛼 ∙ 𝐷𝐷1 ∙ [𝐼𝐼2 02] ∙ �

∆𝑛𝑛

𝑚𝑚!
∙

∞

𝑛𝑛=3

 

∙ �𝔻𝔻1
𝑛𝑛 + �0 𝐷𝐷𝑛𝑛−3 ∙ (−𝐷𝐷 ∙ 𝐷𝐷1 ∙ 𝟏𝟏 ∙ 𝛼𝛼 + 𝐷𝐷1 ∙ 𝟏𝟏 ∙ 𝛼𝛼)

0 0
�� ∙ 𝔻𝔻𝑒𝑒

−2 ∙ 

∙ �02𝐼𝐼2
� ∙ 𝐷𝐷1 ∙ 𝟏𝟏. (22) 

The inner hyper matrix can be rewritten into matrix 
exponential form utilizing the summation, so we can obtain 
the formula for the third moment: 

• 𝛼𝛼 ∙ 𝐷𝐷1 ∙ [𝐼𝐼2 02] ∙ ∑ ∆𝑛𝑛

𝑛𝑛!
∙∞

𝑛𝑛=3 𝔻𝔻1
𝑛𝑛 ∙ 𝔻𝔻𝑒𝑒

−2 ∙ �02𝐼𝐼2
� ∙ 𝐷𝐷1 ∙ 𝟏𝟏 = 𝛼𝛼 ∙ 

∙ 𝐷𝐷1 ∙ [𝐼𝐼2 02] ∙ �𝑒𝑒𝔻𝔻1∙∆ − 𝐼𝐼4 − 𝔻𝔻1 ∙ ∆ −
(𝔻𝔻1 ∙ ∆)2

2!
� ∙ 𝔻𝔻𝑒𝑒

−2 ∙ 

∙ �02𝐼𝐼2
� ∙ 𝐷𝐷1 ∙ 𝟏𝟏 is the matrix exponential form of (22) 

without the inner hyper matrix and  

• −�𝑒𝑒𝐷𝐷∆ − 𝐼𝐼 − 𝐷𝐷∆ − (𝐷𝐷∆)2

2!
� ∙ (𝐷𝐷 − 𝟏𝟏 ∙ 𝛼𝛼)−2 ∙ 𝐷𝐷1 ∙ 𝟏𝟏 ∙ 𝛼𝛼, 

• ∆3

3!
∙ 𝐷𝐷1 ∙ 𝟏𝟏 ∙ 𝛼𝛼 + �𝑒𝑒𝐷𝐷∆ − 𝐼𝐼 − 𝐷𝐷∆ − (𝐷𝐷∆)2

2!
− (𝐷𝐷∆)3

3!
� ∙

∙ (𝐷𝐷 − 𝟏𝟏 ∙ 𝛼𝛼)−3 ∙ 𝐷𝐷1 ∙ 𝟏𝟏 ∙ 𝛼𝛼 

are the additional terms obtained from the inner hyper matrix. 
With this, the third moment is also given. 

D. Correlation 

The correlation is calculated from the joint probability 
distribution of the number of cars arrived in the first and the 
second 5 minute time step. Let 𝑃𝑃(𝑧𝑧1𝑧𝑧2) denote the z-transform 
of the joint probability, then 

𝑃𝑃(𝑧𝑧1𝑧𝑧2) = 𝛼𝛼 ∙ 𝑒𝑒(𝐷𝐷0+𝐷𝐷1∙𝑧𝑧1)∙∆ ∙ 𝑒𝑒(𝐷𝐷0+𝐷𝐷1∙𝑧𝑧2)∙∆ ∙ 1.  (23) 

From this probability we can calculate the expected value of 
these variables as follows: 

𝐸𝐸(𝑥𝑥1𝑥𝑥2) = 𝜕𝜕
𝜕𝜕𝑧𝑧1

𝜕𝜕
𝜕𝜕𝑧𝑧2

𝑃𝑃(𝑧𝑧1𝑧𝑧2)|𝑧𝑧1=𝑧𝑧2=1. (24) 

The correlation is obtained from the expected value as 
follows: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐸𝐸(𝑥𝑥1𝑥𝑥2)−𝐸𝐸(𝑥𝑥1)∙𝐸𝐸(𝑥𝑥2)
𝜎𝜎𝑥𝑥1∙𝜎𝜎𝑥𝑥2

, (25) 

where 𝜎𝜎𝑥𝑥1  and 𝜎𝜎𝑥𝑥2  are the variances of the random values 𝑥𝑥1 
and 𝑥𝑥2. As 𝑥𝑥1 and 𝑥𝑥2 represent the number of arriving cars in 
the first and the second time slot, respectively, and the 
investigated process is assumed to be stationary, the variances  
are equal to each other and can be calculated from the 
moments as shown in (26): 

𝜎𝜎2 = 𝐸𝐸(𝑥𝑥12) − �𝐸𝐸(𝑥𝑥1)�2. (26) 

We have already calculated all the required parameters before 
(see (13), (18) and (22)), so the correlation is 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝛼𝛼∙𝐷𝐷1∙���𝑒𝑒𝐷𝐷∙∆−𝐼𝐼−∆∙𝟏𝟏∙𝛼𝛼�∙(𝐷𝐷−𝟏𝟏∙𝛼𝛼)−1�

2
−∆2∙𝟏𝟏∙𝛼𝛼�∙𝐷𝐷1∙𝟏𝟏

𝛼𝛼∙𝐷𝐷1∙�∆2∙(𝐼𝐼−𝟏𝟏∙𝛼𝛼)+2!∙�𝑒𝑒𝐷𝐷∙∆−𝐼𝐼−𝐷𝐷∙∆−(𝐷𝐷∙∆)2
2! �∙(𝐷𝐷−𝟏𝟏∙𝛼𝛼)−2�∙𝐷𝐷1∙𝟏𝟏

. (27) 

IV.  THE MATCHING PROCEDURE 

We have obtained the symbolic forms of the first three 
moments of the 𝑝𝑝(∆, 𝑧𝑧) polynomial and the 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 parameter. 
Now, we have to solve the system of non-linear equations  

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑑𝑑
𝑑𝑑𝑧𝑧

𝑝𝑝(∆, 𝑧𝑧)|𝑧𝑧=1 =
𝑑𝑑
𝑑𝑑𝑧𝑧

𝐴𝐴(𝑧𝑧)|𝑧𝑧=1 = 2.315

𝑑𝑑2

𝑑𝑑𝑧𝑧2
𝑝𝑝(∆, 𝑧𝑧)|𝑧𝑧=1 =

𝑑𝑑2

𝑑𝑑𝑧𝑧2
𝐴𝐴(𝑧𝑧)|𝑧𝑧=1 = 6.2644

𝑑𝑑3

𝑑𝑑𝑧𝑧3
𝑝𝑝(∆, 𝑧𝑧)|𝑧𝑧=1 =

𝑑𝑑3

𝑑𝑑𝑧𝑧3
𝐴𝐴(𝑧𝑧)|𝑧𝑧=1 = 18.2198

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜌𝜌�1 = 0.2443
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for the variables 𝑎𝑎, 𝑏𝑏, 𝜆𝜆1, 𝜆𝜆2. Fortunately, the fsolve function 
of MATLAB managed to obtain the results thanks to the 
algebraic manipulations summarized in the previous section. 
Without those manipulations all of our attempts failed. For our 
data set the obtained solution was: 
• 𝑎𝑎 = 0.2971, 
• 𝑏𝑏 = 0.6762, 
• 𝜆𝜆1 = 0.3196, 
• 𝜆𝜆2 = 0.9861,  

which gives a proper MAP(2) canonical form [12] with valid 
probability and rate values. 
 

A. The service process 
The service process can as well be modeled by a MAP(2) 

process: the fitting is done similarly, like before. In our 
example, however we constructed a simpler model for the 
service process as the histogram of the service time is much 
simpler, as depicted on Fig. 5. 

 
Fig. 5. Histogram of service time duration obtained from [11] 

It is clear from Fig. 5. that in this case the MAP(2) 
modeling would be preposterous: all we have to do is to 
determine the probabilities of each option (i.e. charging lasts 
for 5 or 6 time intervals) and raffle one of these numbers 
randomly, using the obtained probabilities for weighting. This 
is why the service process is considered to be G (general) 
instead of MAP(2) in our example. We have to note that this 
service process obtained from [11] implicitly incorporates the 
initial battery state of charge (SOC) of cars. For further 
applications data regarding battery SOC is also needed to be 
able to model the service process properly. 

V. SIMULATION OF THE ELECTRIC CAR CHARGING STATION 
We simulated the whole process using MATLAB. Cars 

arrive to charge according to the MAP(2) process with the 
calculated parameters.  

 
Fig. 6. Number of cars that have to wait - example 

If there is any available charger, they connect to it and 
begin charging and the charger becomes occupied. Charging 
time is raffled according to the service process as presented in 
Section IVA. In every time step, the charging time left for a 
given car decreases and if it reaches 0, the car is recharged, 
leaves the station and the charger becomes available again. If 
there is no available charger, the incoming cars have to wait, 
hence a waiting queue forms. The waiting queue has an FCFS 
discipline. For a given number of chargers we can determine 
the number of cars that have to wait (see Fig. 6. as an 
example). The aim is to have enough chargers in the charging 
station so that the probability of waiting is below a pre-defined 
threshold. 

Running the simulation for 100 times we can determine the 
number of waiting cars for a given number of chargers (see 
Fig. 7.). 

 
Fig. 7. Number of cars that have to wait for given no. of chargers 

To indicate the variance of the simulation we used 
MATLAB's boxplot function, where on each box, the central 
mark is the median, the edges of the box are the 25th and 75th 
percentiles, the whiskers extend to the most extreme data 
points not considered outliers, and outliers are plotted 
individually. We can compare the obtained results with the 
results from the original simulation from [11] (see Fig. 8.). If 
we set the threshold of the permitted number of waiting cars to 
be 5, we can see that both the original model and the MAP 
model also results in a required number of 19 chargers. Fig. 8. 
also depicts that although the MAP model underestimates the 
number of waiting cars when there are too few (in fact, an 
inadequate number of) chargers, the result of the MAP model 
converges to the original dataset, thus predicts the required 
number of chargers well. This means that with the proposed 
model one can determine the required number of fast chargers 
in a charging station, if traffic data is known. 
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Fig. 8. Comparison of the obtained results (MAP vs. original) 

VI. CONCLUSION 
The problem of appropriately dimensioned recharging units 

for electric vehicles is as important as appropriately 
dimensioned fueling units for cars with internal combustion 
engines. In this paper, exceeding the modeling restrictions of 
previously applied Poisson process based analyses, we 
addressed this dimensioning problem using continuous time 
MAPs assuming that only aggregate experimental data is 
available for time intervals of the same length. This limitation 
on the available data arises new modeling challenges for 
parameter matching of MAPs. We proposed a solution method 
using the canonical representation of MAP(2) processes. The 
proposed method and its results are verified against simulation 
and suggests appropriately accurate prediction for the required 
number of charging stations.  
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