
Performance Analysis of the Uplink of a CDMA Cell
Supporting Elastic Services
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Abstract. We consider a single cell of a multi-service CDMA network, in which
some of the service classes are explicit rate controlled. We call these elastic ser-
vice classes. The instantaneous bit rate of elastic services is dynamically adjusted
between a minimum and maximum value such that the system always remains
work conserving. We develop a Markov model that allows us to study the impact
of such state dependent (dynamic) rate control on the class-wise blocking proba-
bilities and the first two moments of the holding times. We conclude that dynamic
(state dependent) rate adjustment decreases the class-wise blocking probabilities
and only moderately increases the expectation and the second moment of the time
spent in the system.

1 Introduction

The Erlang capacity of code division multiple access (CDMA) systems has long been in
the focus of research, basically starting ever since code division was first proposed as a
multiple access technique; see for instance Chapter 6 of [1] and Section 5.7 of [2] which
are dedicated to Erlang capacity issues in CDMA networks. Recently, the seminal paper
by Altman [3], (see also [4]) showed that assuming perfect power control, slowing the
transmission rates in the case of a single cell with heterogeneous QoS characteristics
increases capacity. This result is non-trivial, since slowing the transmission rate leads
to increased holding time of the session. Specifically, consider a multi-service system
at which sessions arrive according to a Poisson process with intensityλ and assume
that the session holding times are exponentially distributed with parameterµ. Then,
assuming afixedslow down ratea, the load (and thereby the Erlang capacity) of the
multi-service system can increase fromρ =

∑
i λi/µi to ρa > ρ (a > 1) under the

same class-wise blocking probability constraints. The assumption on the system state
independent fixed slow down ratea leads to a product form solution for the steady state
that allows for a straightforward derivation of the blocking probabilities.

However, slowing down the transmission rates in all system states leads to a non-
optimal resource utilization. Therefore, in this paper we propose a model that allows the
instantaneous bit-rate of the elastic service classes toadaptivelydecrease/increase de-
pending on the system state. The relaxation of the assumption thata is fixed is motivated
by the observation that assuming perfect power control, the individual session bit-rates
may change dynamically in the system depending on the currently on-going number of
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Table 1.Model (Input) Parameters

K Number of service classes
Rp(k) Peak bit rate associated with class-k sessions
λ(k) Arrival intensity of sessions belonging to class-k

1/µ(k) Mean (nominal) holding time of sessions belonging to class-k

â(k) Maximum slow down (using the terminology of [3]) ofRp(k)

i Other cell (sector) interference to own cell (sector) interference ratio
E(k)/N0 Normalized signal energy per bit requirement of class-k

sessions and their service class requirements. We intuitively expect that slowing down
the session rates only in those system states in which it is necessary (as opposed to
slowing down the elastic sessions inall system states) will lead to lower blocking prob-
abilities and higher resource utilization. As we shall see, this is indeed the case. Unfor-
tunately our setting destroys the product form solution but leads to a quasi birth-death
structure that still allows for efficient solution of the system, at least when the number
of service classes is low.

It has been observed by several papers that for elastic services not only the first, but
also the second moment of the actual holding time has an impact on the user perceived
QoS [5], [6]. Therefore, we also develop a modified Markov model that allows us to
arrive at numerical results for the second moment of the elastic class holding time.

The paper is structured as follows. In the next Section we formulate the model
and state the analysis objective in terms of performance measures of interest. Next,
Section 3 examines the system state space and develops a solution for the steady state,
from which various performance measures are derived. Subsequently, in Section 4, we
describe the elements and the solution of the Markov model that allows us to derive
the higher moments of the time spent in the system by elastic flows. Section 6 draws
conclusions.

2 Model Assumptions and Performance Analysis Objective

2.1 The Input Parameters

We consider a single CDMA cell at which sessions belonging to one ofK service
classes arrive according to a Poisson arrival process of intensityλ(k) (k = 1, . . . , K).
Each class is characterized by a peak bit-rate requirementRp(k) and an exponentially
distributed nominal holding time with parameterµ(k). When sending with the peak rate
for a session, the required target ratio of the received power from the mobile terminal
to the total interference energy at the base station is calculated as follows:

∆̃(k) =
E(k)
WN0

·Rp(k), k = 1, . . . ,K,

whereE(k)/N0 is the signal energy per bit divided by the noise spectral density
that is required to meet a predefined QoS (e.g. bit error rate, BER); noise includes both



Performance Analysis of CDMA 3

thermal noise and interference. This requiredE(k)/N0 can be derived from link level
simulations and from measurements.Rp(k) is the peak bit rate of the session of classk
andW is the spread spectrum bandwidth.

Just like in [3], letM(k) be the number of ongoing sessions of classk. We will
refer to vectorM = {M(k)}, k = 1, . . . , K as thestateof the system. We now
assume that arriving sessions are blocked by a suitable admission control algorithm that
prevents the system to reach the state in which the power that should be received at the
base station would go to infinity. In other words, a suitable admission control algorithm
must prevent the system to reach itspole capacity(as defined by Equation (8.10) of [7]
and (5) of [3]).

In order to model this, we use the standard equations (8.3)-(8.12) from [7] as fol-
lows.

The powerP (k) that is received at the base station from the mobile terminal for
sessionk must fulfill (assuming that the terminal can control the power level for each
session separately):

P (k)
PN + Iown + Iother − P (k)

= ∆̃(k), k = 1, . . . , K (1)

whereIown is the total power received by the base station within its cell (or sector),
andIother is the total power received from other cells (or sector).PN is the background
noise power. That is,Iown =

∑K
k=1 M(k)P (k) and Iother = i · Iown.

Rewriting (1), we get:

P (k)
PN + Iown + Iother

= ∆(k), ∆(k) =
∆̃(k)

1 + ∆̃(k)
, k = 1, . . . ,K (2)

From (2):
P (k)

PN + (1 + i)
K∑

l=1

M(l)P (l)

= ∆(k), k = 1, . . . , K

Multiplying with M(k) and summing overk:

K∑

k=1

P (k)M(k) =

PN

K∑

l=1

M(l)∆(l)

1− (1 + i)
K∑

l=1

M(l)∆(l)

(3)

From (3):

P (k) =

(
PN + (1 + i)

K∑

l=1

M(l)P (l)

)
·∆(k), k = 1, . . . ,K (4)
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Substituting (3) into (4) and denotingΩ =
K∑

l=1

M(l) ·∆(l):

P (k) =
(

PN + (1 + i) · PN ·Ω
1− (1 + i) ·Ω

)
·∆(k) =

PN ·∆(k)
1− (1 + i) ·Ω , k = 1, . . . ,K

(5)
From (5) it is clear that the admission control algorithm must prevent thatΩ reaches

1/(1 + i). In the single class case, it means that the number of admitted sessions must
fulfill: M < bΩ/∆c (where we now letM = M(1) and∆ = ∆(1)). In the rest of
the paper we assume that such admission control algorithm operates in the system. We
note that because of the relation expressed by Equation (2) and the definition ofΩ, one
can considerΩ as the overall resource in the multi-rate CDMA system that the sessions
must share. This observation can be seen as an analogy between the multi-rate CDMA
model and the multi-rate loss models developed in the 80’s and 90’s [8]. The major
difference between the classical loss models and the present CDMA model is that the
relation between the slow down ratea(k) and the resource consumption∆a(k) is not
linear, as we shall see it in the next subsection and as it is also reflected by Equation (7).

2.2 The Impact of Slow Down

Recall that the required target ratio (∆(k)) depends on the required bit-rate. Explicit rate
controlled elastic services tolerate a certain slow down of their peak bit-rate (Rp(k)) as
long as the actual instantaneous bit rate remains greater than the minimum required
Rp(k)/â(k). When the bit rate of a class-k session is slowed down toRp(k)/a(k),
(0 < a(k) ≤ â(k)) its required∆a(k) value becomes:

∆a(k) =
∆̃(k)

a(k) + ∆̃(k)
=

∆(k)
a(k) · (1−∆(k)) + ∆(k)

, k = 1, . . . , K (6)

which increases the number of sessions that can be admitted into the system, since
nowΩa must be kept below1/(1 + i), where

Ωa =
K∑

k=1

M(k) ·∆a(k).

We use the notation∆min(k) = ∆â(k) to denote the class-wise minimum target
ratios (can be seen as the minimum resource requirement), that is when the session
bit-rates of class-k are slowed down to that class’ minimum value. It is the task of the
bandwidth sharing policy to determine the∆a(k) ≥ ∆min(k) values (and consequently
the a(k) ≤ â(k) class-wise instantaneous slow down factors) for each state of the
system such thatΩa < 1/(1 + i). Because of the admission control assumption, such a
resource assignment is always possible in feasible states.
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2.3 Performance Measures

In order to define the performance measures of interest in this system, we make the
following considerations. It is intuitively clear that the residency time of the elastic
flows in this system depends not only on the amount of data they want to transmit (which
is a random variable), but also on the instantaneous bit-rate they receive during their
holding times. In order to specify this relationship we define the following quantities:

– θ(t, k) = Ra(t) defines theinstantaneous throughputof a class-k elastic flow at
time t, Note thatθ(t, k) is a discrete random variable for anyt ≥ 0.

– Tx(k) = inf{t | ∫ t

0
θ(τ, k)dτ ≥ x} (random variable) gives the time it takes for

the system to transmitx amount of data through a class-k elastic flow,
– θ̂x(k) = x/Tx(k) defines theconditional throughputof the class-k elastic flow

during the transmission ofx data unit. Note thatθx(k) is a continuous random
variable.

– θ̂(k) =
∫∞
0

θ̂x(k) dG(x) = µ(k)/Rp(k)
∫∞
0

θ̂x(k) e−x µ(k)/Rp(k) dx (random
variable) defines thethroughputof the class-k elastic flow, where the amount of
transmitted data is exponentially distributed with parameterµ(k)/Rp(k).

We note that from a user’s perspective, it is in fact not the throughput, but the time
it takes to transfer a file (image, email, etc) that has an impact on the perceived QoS.
Therefore, in the numerical section we will focus on this performance measure.

In addition, we are interested in finding the blocking probabilities for all service
classes i.e.,B(k), k = 1, . . . , K.

The instantaneous and averageutilizationof the system are defined as follows:

U(t) =
K∑

k=1

M(t, k) ·∆a(t)(k); E[U(t)] =
∫ ∞

0

τ dFU (τ),

whereFU (τ) denotes the stationary distribution ofU(t). In the above definitions it is
emphasized that bothM(k) anda(k) evolve in time.

3 Determining the Steady State of the System

3.1 Determining the System State Space

The maximum number of sessions from each class can be calculated as follows:

Mmax(k) = b(∆â(k))−1c, k = 1, . . . , K

Recall that in eachM state of the system, the inequality
∑

k M(k) ·∆a(k) < 1/(1+ i)
must hold. The states that satisfies this inequality are thefeasible statesand constitute
the state space of the system which we will denote byΓ . The feasible states, in which
the acceptance of an additional class-k session would result in a state outside of the
state space are the class-k blocking states. The set of the blocking states is denoted by
ΓB . Due to the ”Poisson Arrivals See Time Averages” (PASTA) property, the sum of
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the class-k blocking state probabilities gives the (overall) class-k blocking probability
[8].

In each feasible state, it is the task of the bandwidth sharing policy to determine the
∆a(k) = f(M) values for each class. From these, the class-wise slow down factors
and the instantaneous bit-rates of the individual sessions can be calculated as follows:

a(k) =
∆(k) · (1−∆a(k))
∆a(k) · (1−∆(k))

; Ra(k) = Rp(k)/a(k) (7)

3.2 Determining the Generator Matrix

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

1,4

2,4

1,5 1,6

(3,0)

(3,1)

(2,2) (2,3)
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(0,7)(0,6)(0,5)(0,4)(0,3)(0,2)(0,1)

(1,2)(1,1) (1,3)

(2,1)

(x,y): Parent state that the tagged flow finds the system in at arrival instant

z,w : Child state that the tagged flow brings the system into after arrival

Trapping state
P

P

(2,0)P

(1,0)P

(0,0)P

P P P P P P P

P P
P

P P P
P P

Entrance
probabilities

Fig. 1. Modified State Space with Trapping State

For ease of presentation, but without loosing generality, we use the example illus-
trated by Figure 1 to develop the generator matrix of the state space. Assume thati = 0,
â(1) = 1, â(2) > 1 andâ(3) > 1. In this case, the task of the bandwidth sharing policy
simplifies to determining∆a(2) and∆a(3) for each state, from whicĥa(2) and â(3)
follows immediately.

We now make use of the assumptions that the arrival processes is Poisson and the
nominal holding times are exponential. The system under these assumptions is a con-
tinuous time Markov chain (CTMC) whose state is uniquely characterized by the state
vectorM . In order to arrive at the performance measures of interest, we need to deter-
mine the CTMC’s generator matrixQ and its steady state solutionP .
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Based on the considerations of the preceding subsections, we see that the generator
matrix Q possesses a nice structure, because only transitions between ”neighboring
states” are allowed in the following sense. Letq(m1,m2,m3 → m′

1,m
′
2,m

′
3) denote

the transition rate from state(m1,m2,m3) to state(m′
1, m

′
2, m

′
3). Then the non-zero

transition rates between the feasible states are:

q(m1, m2, m3 → m1 + 1, m2, m3) = λ1

q(m1, m2, m3 → m1, m2 + 1, m3) = λ2

q(m1, m2, m3 → m1, m2, m3 + 1) = λ3

q(m1, m2, m3 → m1 − 1, m2, m3) = m1 · µ1

q(m1, m2, m3 → m1, m2 − 1, m3) = m2 · µ2/a2

q(m1, m2, m3 → m1, m2, m3 − 1) = m3 · µ3/a3

The first three equations represent the state transitions due to session arrivals, while
the second three equations represent the transitions due to session departures. Here we
utilized the fact that class-1 sessions cannot be slowed down, while class-2 and class-3
sessions can be slowed with a maximum ofâ2 andâ3 factor respectively.

Note that the derivation of the generator matrix relies on the fact that the system is
Markovian. This is not trivial because one could intuitively argue that since the elastic
flows bring with themselves a certain amount of workload, the memoryless property
does not hold, even if this workload is exponentially distributed. However, the Marko-
vian property for such systems was independently of one another observed and formally
proven by Altmanet al. [9], Andersenet al. [5] and Nunez Queijaet al. [10].

3.3 Deriving the Performance Measures

With the generator matrix in hand, we now need to solve the equationP ·Q = 0 (taking
into account thatP · e = 1, wheree = (1, . . . , 1)). From the steady state distribution
P (M), the performance measures of interest (except the second moments) immedi-
ately follow.

The blocking probabilities and the mean number of class-k sessions in the system
are straightforward to derive (recall thatM(k) = M [k]) :

B(k) =
∑

M∈Γ B

P (M), E[M(k)] =
∑

M∈Γ

M(k) · P (M).

From this and Little’s theorem we obtain the mean time that a class-k session spends
in the system and the average resource utilization:

T (k) =
E[M(k)]

λ(k) · (1−B(k))
, E[U ] =

∑

M∈Γ

K∑

k=1

M(k) ·∆a(k).

From the steady state, the average class-wise throughput also follows:

θ̂(k) =
∑

M∈Γ M(k) · P (M) · (1/a(M))∑
M M(k) · P · (M)

, (8)

which provides an easy way to check and verify results, since the normalized throughput
(to Rp(k)) is the reciprocal of the normalized mean holding time (to1/µ(k)), which is
indeed the case as we will see in the numerical section.
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4 Solution Approach Based on a Markov Model with a Trapping
State

The higher moments of the time spent in the system by the elastic sessions requires
additional effort, which is the topic of this section.

4.1 Session Tagging and Modifying the State Space

We will continue to think of an elastic session as one that brings with itself an exponen-
tially distributed amount of work and, if admitted into the system, stays in the system
until this amount of work is completed. The method we follow here is based on (1)
tagging an elastic session arriving to the system, which, at the time of arrival is in one
of the feasible states; and (2) carefully examining the possible transitions from the mo-
ment this tagged call enters the system until it acquires the required service and leaves
the system. Finally, un-conditioning on all possible entrance state probabilities, and ap-
plying results from [12], the moments of the best effort service time can be determined.

In this modified state space, we also define atrapping (absorbing) state, which
corresponds to the state where the tagged session has acquired the requested amount of
service and leaves the system. In this expanded state space the time until absorption [12]
corresponds to the time the tagged session spends in the system. Indexing the modified
state space in a similar manner as the original state space in Section 3, the new generator
matrix,Q̃, will have the following structure:

Q̃ =
[

B T
0 w

]
(9)

where theB matrix represents the transitions between the non-trapping states, theT
vector contains the transitionsto the trapping state, the0 vector indicates that no tran-
sitions are allowedfrom the trapping state, andw = 0. Once the structure of the
expanded state space and the associated transition rates together with the initial prob-
ability vector,PR(0), are determined, we can apply the result of [13] (proved also in
[14]) for the determination of therth moment ofTx:

T (r) = r! · PT
R (0) · (−B)−r · e (10)

and specifically for the mean:

E[T ] = PT
R (0) · (−B)−1 · e, (11)

which provides a natural way to check the results on the mean holding times nu-
merically that are derived from the steady state as described in Section 3.

5 Numerical Results

5.1 Implementation

We have implemented the method described in Section 3 and Section 4 in aMathemat-
ica script [15]. It takes the input parameters as described in Section 2 and generates the
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Table 2. Input Parameters for Case I and Case
II

Parameter Case I Case II
∆(1) 2 ·∆ 4 ·∆
∆(2) 3 ·∆ 4 ·∆
∆(3) 3 ·∆ ∆

â(1) 1 1
â(2) 3 3
â(3) 1 . . . 6 1 . . . 6

λ(1) 2 · λ λ

λ(2) 1.333 · λ λ

λ(3) 1.333 · λ 4 · λ

Table 3. Common Parameters for Case I and
Case II

Parameter Value
∆ 0.049
λ 29.16

µ(1) = µ(2) = µ(3) 32.03

original and the modified state space and the corresponding generator matrixes. On a
750 MHz Compaq ArmadaPC with 256 MB RAM, this script (using Mathematica’s
LinearSolvefunction) is able to solve systems of around 4000 states in about 15 min-
utes.

5.2 Input Parameters

The input parameters for the two example cases that we study are summarized in Tables
3 and 2. We leti = 0. Class-1 is a ”rigid” class in the sense that class-1 sessions cannot
be slowed down once they admitted into the system. The maximum slow down value for
class-2 sessions is kept fixed atâ(2) = 3, while we varyâ(3) = 1 . . . 6. In Case I, the
class-wise load is:ρ(k) = (λ(k)/µ(k)) ·∆(k) = 4 · λ·∆

µ and note that∆(2) = ∆(3),
that is the (peak) resource requirement of the two elastic classes are the same. In Case
II, the class-wise load is the same as in Case I, but now∆(2) = 4 ·∆(3).

1 2 3 4 5 6
ELA2 SLOWDOWN

0

0.02

0.04

0.06

0.08

B
lo

ck
in

g
P

ro
ba

bi
lit

ie
s

Blocking Prob. vs Slowdown

ELA2

ELA1

RIG

Fig. 2. Case I, Blocking Probabilities atFixed
Slow Down Rates:a(2) = 3, a(3) = 1 . . . 6
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Fig. 3. Case 4, Case II, Blocking Probabilities
at FixedSlow Down Rates:a(2) = 3, a(3) =
1 . . . 6
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Fig. 5. Case II, Blocking Probabilities at
State DependentSlow Down Rates:̂a(2) =
3, â(3) = 1 . . . 6

5.3 Blocking Probabilities

Figures 2 and 3 depict the class-wise blocking probabilities when the slow down rates
are kept fixed as in [3] for Case I and II respectively. This fixed slow down rate is
3 for class-2 (”ELA1”) and is set to1 . . . 6 for class-3 (”ELA2”). In Case I, where
resource requirement of the two elastic classes are equal (∆(2) = ∆(3)), the blocking
probabilities are of course also equal when the class-3 slow down rate is also set to 3.
More interestingly, we see that in Case I, allowing for a higher slow down value helps
to reduce the class-3 blocking probability from 8% to around 1%. The class-1 blocking
probabilities are not much affected and stay around above 4% and around 12 % in the
two cases.

It is noteworthy, that just as expected, the blocking rates for the system with dynamic
slow down are lower than with fixed slow down. (Compare Figure 4 with Figure 2 and
Figure 5 and with Figure 3.) This is of course because in the dynamic slow down case
the sessions are not slowed down in the lightly loaded system states. Note also that in
the fixed slow down system there is no need for a resource sharing policy, since the
slow down rates are kept fixed in all system states.

5.4 Mean Time in System

Figure 6 and Figure 7 show the impact of slow down on the mean time spent by elastic
flows in the system in Case I and Case II respectively. In Case I, as expected, the mean
times are equal when̂a(3) = â(2) = 3. In Case II, class-2 sessions need to transmit
significantly more data than class-3 sessions, sinceRp(2) > Rp(3). This clarifies that
class-2 sessions spend somewhat more time in the system for allâ(3) values.

In Figure 6 we notice that when̂a(3) is set to 2, the mean time for class-2 calls
increases somewhat (from roughly 4% to 5%) as compared to the original holding time
1/µ(2), while the blocking probabilities decrease significantly. Whenâ(3) is further in-
creased, the class-2 average time spent in the system decreases ! This seemingly strange
behavior is due to the fact that atâ(3) = 2, â(2) is still greater, and when class-3 ses-
sions make better utilization of the resources, it is at the cost of class-2 resources. As
class-3 sessions become ”more and more elastic”, it is the class-3 sessions that start
spending more time in the system.
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Fig. 6. Case I, Mean Time Spent in the System
at State DependentSlow Down Rates:̂a(2) =
3, â(3) = 1 . . . 6 Normalized to1/µ.
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Fig. 7.Case II, Mean Time Spent in the System
at State DependentSlow Down Rates:̂a(2) =
3, â(3) = 1 . . . 6 Normalized to1/µ.

5.5 Second Moment of the Time Spent in the System
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Down Rates:̂a(2) = 3, â(3) = 1 . . . 6 Nor-
malized to1/µ.
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Fig. 9. Case II, Second Moment of the Time
Spent in the System atState DependentSlow
Down Rates:̂a(2) = 3, â(3) = 1 . . . 6 Nor-
malized to1/µ.

The second moments show similar behavior as the mean time spent in the system
(Figures 8 and 9.) We also see that increasing the maximum slow down factor beyond
relatively small values (i.e. beyond̂a(3) = 4) have only a small impact as compared to
the impact when settinĝa(3) = 3.

6 Conclusions

In this paper we considered an uplink capacity limited CDMA cell, where multiple
service classes receive service. Service classes in this model are characterized by their
Poisson arrival rates and the mean value of their exponentially distributed nominal hold-
ing times. So called rigid service classes occupy a fix amount of resource when they are
admitted into the system. Elastic class sessions rate and thereby instantaneously occu-
pied resources are adaptively adjusted between some minimum and maximum value.
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This rather general flow level model can be seen as an extension of Altman’s rate con-
trolled CDMA model that is described in [3].

This model is analyzed in the paper by means of developing a Markov model and
solving for the steady state. As it could be expected, the dynamic adjustment of the slow
down rates result in significantly smaller blocking probabilities than that of the system
of [3]. That is, the dynamic rate controlling system is expected to have higher Erlang
capacity under the same blocking probability constraints.
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