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Abstract—In systems employing pilot-symbol aided channel
estimation, the pilot-to-data power ratio is known to have alarge
impact on performance. Therefore, previous works proposed
methods setting the pilot power such that either the weighte
sum of the mean squared error (MSE) of the estimated data
symbols is minimized or the overall spectral efficiency (SE)s
maximized. However, previous works did not take into accouh
the impact of correlated antennas and channel state informon
(CSl) errors on the optimal pilot power setting. In this paper
we consider the uplink of a multi-user multiple-input multi ple-
output (MU MIMO) system employing a receiver that minimizes

error rate can increase capacity by 10-20%, as compared with
a system using a suboptimal pilot power setting.
Subsequently, the work reported in [7] provided a unified
treatment of the optimum pilot overhead in multipath fading
channels and gave closed form expressions for the fracfion o
the power budgethat must be devoted to pilots, explicitly
considering the dependence of the pilot overhead on the
Doppler frequency and other factors. The impact of tranemit
and receiver in-phase and quadrature imbalances and aésidu

the MSE of the received data symbols in the presence of CSI capacity offset on the pilot-to-data power allocation was
errors and derive closed form expressions for the MSE and the analyzed, and a capacity bound maximizing power allocation

achievable SE. These expressions take into account the inmgtaf
antenna correlation and CSI errors, and are a function of pilot
power and the number of receive antennasThe analytical and
numerical results can help set the pilot power, minimizing he
MSE in multiple antenna systems.

Keywords: multi-antenna systems, channel state informatn,
estimation techniques, receiver algorithms

I. INTRODUCTION

was found in [8]. More recently, the pilot power ratio that
maximizes the uplink sum-rate in zero-forcing based multi-
user MIMO (MU MIMO) systems with a large number of

antennas was studied in [9].

Along a related line of research, the results of [10],[11]
and [12] indicate that the performance of MMSE receivers
is sensitive to channel estimation errors. In particulag t
often-used classical onaive MMSE receiver does not, in

Communicating over an unknown wireless channel is sufact, minimize theMSE of the estimated data symbols in
ject to a penalty of channel uncertainty, sometimes in theafo the presence of CSI errors [12], [13]. It turns out that the
of training costs [1}. As it has been shown by [3] and [4],difference between the naive receiver and regularize@)tru
this penalty depends on the knowledge the receiver has of MMSE receiver, in terms of the achieved MSE, is significant
channel and the rate of change of the channel, as well asinnhe large antenneegime[12].
the number of transmit antennas. On the other hand, reducinghese two lines of works suggest that for the purpose of
this penalty by sending over only a fraction of the availablgetermining the optimal pilot power setting it is importdat
degrees of freedom results in a loss of spectral efficienisis T take into account the operation of practical channel esiima
fundamental insight has generated significant interestein cand receiver algorithms. To the best of our knowledge, exact

signing channel state information (CSI) acquisition teéghas
and channel estimation algorithms since the late 1990s.

expressions for the achieved MSE and SE when using practical
channel estimation (such deast squares, DSand receiver

For example, the results of [5] and [6] established a loweatgorithms (such as MMSE), and accounting for the pilot-to-

bound for multiple-input multiple-output (MIMO) orthogah
frequency division multiplexing systems withinimum mean

data power ratio and antenna correlation, are not availale
this paper, we address this problem and derive closed form

squared error (MMSEghannel estimation. It was also showrexpressions for the uplink of a MU MIMO system, in which

that the optimal pilot-to-data power ratio (PDPR) settihgtt

the base station (BS) uses LS or MMSE channel estimation

maximizes this lower bound or minimizes the average symbamhd MMSE receiverThroughout, we assume that the output
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1Some parts of the model used in this paper have appeared @oofarence
paper [2]. However, the material presented in Sections IN-ahd the related
Appendices are novel contributions.

of the MMSE detector, the residual signal plus interference
from other spatial streams as well as the estimation error of
the received data symbols can be approximated as Gaussian
[10]. Because in practice the CSI estimation error is likely

be bounded, our design can be regarded as a worst-case design
approach.Thereby, our contributions (detailed in Sections 1V-

VII and the Appendices) to the lines of works above can be



summarized afollows: estimates to communicate coherently after the estimate®n p
« We derive closed form exact expressions for both ttiéd, as well as to achieve performance close to the fully
MSE and the SE taking into account the CSI errogoherent case (as emphasized in [1]).
that are specific to the employed channel estimation Reference [17] studies the connection between the channel

technique; uncertainty penalty and the coherence length of the channel
« We explicitly take into account the impact of antenndIMO systems. A key observation is that in the low signal-
correlation on these performance measures. to-noise ratio (SNR) regime, estimating the channel at the

These formulas are then used to compare the performah@eeiver may not be possible and hence communication may
of MU MIMO systems employing the naive and MMSEDe desirable without training. More exactly, if the chance
receivers. An interesting insight is that when the systeesudierence length is above a certain antenna- and SNR-deptenden
the MMSE receiver, the PDPR minimizing the MSE does néreshold, the noncoherent and coherent capacities beiteme
depend on the number of receive antennas at the BS but rag@fpe in the low-SNR regime.
is dependent on the large-scale fading. This is in contrastThe above results suggest that, depending on the SNR and
to a system that employs the naive receiver, for which tige number of antennas, there may be a large gap between
pilot power minimizing the MSE depends on the number dhe coherent and noncoherent extremes in terms of acheevabl
receive antennas. We believe that this insight can helphset spectral efficiency, and channel learning is key in bridghig
pilot power almost optimally in practical systems in whitiet gap. Therefore, it is interesting to consider the ultrawbded
number of BS antennas can depend on the actual deploym@&ht/B) regime and focus on the case when training signals are
scenario [14], [15]In particular, our results show that wheruised for channel estimation at the receiver. The capacityiof
the optimal pilot power setting is employed at the terming&cheme is studied in [18] to investigate the impact of mattip
side, and the true MMSE receiver is used at the base statfirsity on achieving coherent capacity. The key resultsisf
side, the system’s performance is close to that of a hypictiiet Paper are a lower bound on the capacity of the training-based
system that would have access to the perfect CSI. communication scheme and the coherence level that can be

The paper is structured as follows. The next section digchieved, and the insights into the impact of channel dparsi
cusses related works. Section Ill describes the system Imo@e the achievable capacity in the UWB regime.
and summarizes preliminaries needed for development of thelhe work in [19] studies the impact of channel state
contributions of this paper. Sections IV and V analyze tHeedback on the achievable rates in sparse wideband chan-
MSE in the case of uncorrelated and correlated antenri¥@s. A key insight is that a partial and/or limited feedback
at the receiver, respectively. Section VI derives closeunfo scheme, where only one bit per independent DoF is available
expressions for the MSE and SE when the receiver uses #iethe transmitter, can nearly achieve the performance of a
MMSE receiver. Section VII presents numerical results an tigystem in which perfect CSI is available at the transmitter.

MSE and SE, and Section VIII concludes the paper. References [20] and [21] focus on acquiring channel state
information at the transmitter in multi-user systems where

the feedback from each user terminal must be limited. It is
shown that the combination of long term channel statistick a
In this section we review some of the relevant literaturi@stantaneous norm feedback provides sufficient inforonat
in the areas of information theoretical aspects of widebaqgk transmitter for efficient scheduling, beamforming and |
communications, MIMO transceiver design in the presence gfiaptation in wide-area scenarios. More recently, the virork
CSl errors and training based channel estimation techsiqug2] considers a case in which a transmitter with two antenna
We also point out our contributions to this line of research.prgadcasts to two single-antenna users. It is assumedhthat t
A. Information Theoretical Aspects of Wideband Communicggo receiving users have perfect channel information, eher
tions and Capacity Analysis the transmitter has only statistical information of eackriss
An important insight from the works reported in [16] andink (covariance matrix of the vector channel). The paper
[17] is that there is a continuum between the extremes fafcuses on the design of beamforming vectors that depend on
communicating in non-coherent (without CSI availabilignd such statistical information and maximize the ergodic sate-
coherent (perfect CSI) fashions over wireless channetring delivered to the two users.
of the achieved spectral efficiency. Specifically, commatic ) _
ing over a completely unknown channel is subject to a penaffy MIMO Transceiver Design
of the channel uncertainty, sometimes in the form of trajnin Reference [23] deals with robust MIMO precoding design
costs. (This penalty depends on the knowledge the receivéth deterministic imperfect channel state informationtfae
has of the channel and on the channel’s rate of change.) @ansmitter (CSIT) such that the worst-case received SNR is
the other hand, reducing this penalty by sending over onlynaaximized, or the worst-case error probability is minindize
fraction of the available degrees of freedom results in a loReference [4] is concerned with the design of linear MIMO
of spectral efficiency. transceivers that are robust to CSI perturbations at bao#ssi
In practice, the channel coherence time might be lorgf the link that is to errors in CSIT and channel state
enough to both estimate the fading coefficients and use steformation at the receiver (CSIR). In this work, the design

Il. RELATED WORKS



of the transceiver is based on minimizing the average sum Contributions

MSE of all data streams and users. This paper assumes @,  contributions to the above referenced works are estab-
perturbation error (modelled as a Gaussian additive te”ﬂ)shing the pilot power when the receiver employs the regu-

but this CSI error is not controlled by pilot power or th§,j;eq MMSE receiver for both uncorrelated and correlated
training scheme. Therefore, the pilot-data trade-off id NQ,.qive antenna cases. specifically:

considered in this paper. The model used in [24] builds on the For th f lated . i t th
uplink-downlink duality in sum MSE under imperfect CSI. * B%r € case o Iunccc)jrrfeae receive anf enr;;;is SISEe
In this work, the imperfectness of the channel knowledge , WE gVE a closed form expression Ior the

of the estimated data symbols and for the pilot power

is taken into account in the joint MMSE design. The sum o . -
MSE minimization problem for the UL and DL is subject to 22;2;3\2';?3 this MSE. (Lemma 2 and Proposition 3,

ower constraints. However, the aspect of pilot power is not .
P b P P For the case of correlated receive antennas at the BS,

considered and the MSE is not derived as a function of the® first identify th larized MMSE . fruct

pilot power under a constrained pilot-data budget. we first identify the regu arizec receiver structure
(Lemmas 4 and 5) and then give closed form expressions
for the achieved MSE (Section VI).

C. Channel Estimation and the Pilot-Data Power Ratio These results allow us to study numerically the gains ofgisin
the regularized MMSE receiver and optimal pilot power lsvel
The seminal work reported in [25] evaluates the differeneger schemes that use the naive receivers and/or suboptimal
between the mutual information when the receiver has orfylot power levels. A key insight is that the pilot power
an estimate of the channel and when it has perfect knowledgat minimizes the MSE does not depend on the number of
of the channel. Upper and lower bounds are established atennas, but heavily depends on the path loss between the
this difference and are related to the variance of the cHanBs and the mobile terminal.
measurement error. In [3] it is shown how training based
channel estimation affects the capacity of the fading cehnn  1ll. CHANNEL ESTIMATION AND RECEIVER MODEL
recognizing that training imposes a substantial inforovati o channel Estimation Model
theoretic penalty, especially when the coherence intéfviasl . . . .
only slightly larger than the number of transmit antennas rWe co_n5|der.the uplink of a MU MIMO systgm, in which
when the SNR is low. In these regimes, learning the entiﬂée mobile stations (MS) traTnsmlt orzh(_)gonall pilot squasnc
channel is highly suboptimal. Conversely, if the SNR is higl?f 1€ngth 7, s = [s1, "'72‘9%] € €™, in which each pilot
and T’ is much larger thanV, training-based schemes carpyMPO! is scaled ass;|* = 1, for i = 1,..,7,. The pilot
come very close to achieving capacity. Therefore, the powduences are constructed such that they remain orthog®nal

that should be spent on training and data transmission depel?nd s the number of spatially multiplexed users is maximum
on the relation betweefl and M. The work in [26] can 7» [28]. In practice, such pilot sequences can be defined us-

be seen as a sequel of [3], taking into account intersymtgf the populaZadoff-Chu sequences [29],[30Bpecifically,
interference and the receiver technique (equalizer) used Without loss of generality, we assume that the number MU
the receiver side. However, none of these works consider MO users isK < 7,. In practice, K’ < N, whereN, is
regularized MMSE receiver, and therefore the pilot powdP€ number of antennas at the BX].

setting that minimizes the MSE of a regularized MMSE AS émphasized in [31], MU MIMO differs from point-to-
receiver is not discussed in these papers. point MIMO in two respects: first, the terminals are typigall

The MU MIMO setting is the focus of [27], in which separated by many wavelengths, and second, the terminals

the coherence interval af symbols is expended for channeFannm collaborate among themselves, either to transnii or

- L . receive data. That is, in MU MIMO systems, the terminals
training, channel estimation, and precoder computatiofo .
T - . . __are autonomous so that we can assume that the transmit
transmission. Specifically, the optimum number of termgna

in terms of the DL spectral efficiency is determined for grray 1 uncorrelated. However, it is important to captire t

. . . carrelation structure at the receiver side so that we calnaia
given coherence interval, number of base station antennas,

and DL/UL signal-to-interference-plus-noise ratio. Téés no the impact of CSIR errors on the optimal pilot power and

. 2 . the achieved MSE. In this paper we assume a comb type
receiver design involved and the pilot-to-data power traffe . . L
. Co T arrangement of the pilot symbols. Givénsubcarriers in the
is out of the scope of the optimization process.

. . S . coherence bandwidth, a fractiongf subcarriers are allocated
Reference [7] investigates the optimization of the pilgf, yhe pilot andry = F — 7, subcarriers are allocated to the
overhead for single-user wireless fading channels, and a symbols. Each MS tz;ansmits at a constant paer

dependencflgs of this pllc;t dqverhead on various System Qa5 ever, this transmission power can be distributed urigqua
rameters of interest (e.g. fading rate, SNR) are quantiBgd. among the subcarriers. In particular, considering Useith a

flnd_lng an expansion of the spe_ctral efficiency for the ovadhe, .\ mitted power, ; for each pilot symbol and” for each
optimization in terms of the fading rate around the perfest- ;o symbol transmission. the sum constraint of:

point, the square root dependence of both the overhead an
the spectral efficiency penalty is cleanly identified. TpFpe + TaPy = Prot (1)



is enforcedln practice, this type of arrangement is suitable faransmit power of Usek, xj is the transmitted data symbol
time varying channels, so that channel estimation is fatdd by Userk andn, denotes the Gaussian noise on the received
at the same time instant that is used for data transmissidata signal.
Thus, theN, x 7, matrix of the received pilot signal from
User# at the BS can be conveniently written as:
C. Employing an MMSE Receiver at the BS
Y? =/ PpygthT + I\I7 (2)

In this paper the BS employs an MMSE recei@y €
where we assume thdi, € C"*'is a circular sym- @IxN- {5 estimate the data symbol transmitted by User-
metric complex normal distributed column vector with meaps it was shown in [12], in the case of a linear receiver
vector 0 and covariance matridXC, (of size N,), denoted @, that requires the estimated channel of only Uses its
ashy ~ CN(0,Cy), a, accounts for the large scale fadinpyt, the MSE of the estimated data symbols of Uean

ing_, N € Cf\’r”p _is the spatial_ly and temp(_)rally additivebe conveniently expressed in the following quadratic form:
white Gaussian noise (AWGN) with element-wise vanange

where the index refers to the noise power on the received MSE(GZ,BZ) =
pilot signal. X«
In this paper we assume that the BS uses the popular LS 2 N HNH 2 2 H
estimator?hgt relies on correlating the received signF:?d F\:t)vie Ge|ai by (D’Zhlhe Dy +Qe)+z 2. P Cr+oal | Gy
known pilot sequence. Note that our methodology to detegmin . R
the MSE of the received data is not confined to the LS — e/ Pi(GeDehy +h{'D{'G{') + 1. (7)
estimator, but is directly applicable to an MMSE or otheeln . .
channel estimation techniques as well. For each MS, the B s we shall see later, our analysis allows for an arbitrary

utilizes pilot sequence orthogonality and estimates tlznhbl channel covariance matrix at the receiver sidg)(in (7) that
L allows us to analyze the impact of CSI errors on the MSE
based on (2) assuming:

R . ) performance with arbitrary correlation structure of thesda
hy=h/+w, = ﬁY§S*(S s*)” station antennas.We recall that the MMSE receiver aims
VIRt at minimizing the MSE between the estimaByy and the

1 .
— —  Ns*, (3) transmitted symbot,:
o/ Py ety

wheres* = [s7, ...,s:p]T € C™»*! denotes the vector of pilot
symbols ands”'s*) = 7,. By consideringa, ~ CA(0, Cy), it
follows that the estimated channie} is a circular symmetric
complex normal distributed vectdr, ~ CN(0,Ry), with

kAL

=h,+

G; & argmin E{MSE} = argmin E{|Gry — z¢]*}. (8)

When the BS employs a naive receiver, the estimated
channel is taken as if it was the actual channel:

9 G?a]‘ve = Quy/ Pgljlf (a?Pgﬁgﬁf + 0‘(211)_1. (9)
A noRHY 4
R, = B{hehy} = Ce + Oé?Pp,[TpINT' “) As it was shown in [12], this receiver does not minimize

the MSE. Using the quadratic form in (7), it can be shown

By recognizing thath and h are jointly circular symmetric {ha¢ the receiver that minimizes the MSE of the received data
complex Gaussian (multivariate normal) distributed ra"dosymbols is constructed as:

variables, the distributign of the channel realization con-
ditioned on the estimath, is normally distributed as follows

[32], [33]: G, = an/Ph'D{- (10)
-1
~ ~ K
(he | he) ~ CN(Dehe, Qe), (5) . (am (Dgflzflfo + Qz) +> aiPCi + aﬁl) .
k#L
whereD, 2 C,R,; ' andQ, £ C, — C,R; ' C,.
B. Received Data Signal Model D. Calculating the MSE When Employing the MMSE Receiver
The MU MIMO received data signal at the BS can be ) )
written as: In [12] it was shown that for the special case when the
K channel covariance matric€%y and consequently the matrices
_ Ry, D, and Q, are proportional to the identity matriky
= ashy/ P, T/ Py 6 6 =L ¢ r
Y w+zak BV Dk 0, © with diagonal elements,, r,, d, and ¢, respectively, the

k#L L . .
User£ ” unconditional MSE of the uplink estimated data symbols of

) Other users ) r¢ when emplovying theaG* r iver can lcul
whereqy, hy, is the M x 1 vector channel including large and}%?livfs en employing the; receiver can be calculated as

small scale fading between Uskrand the BS Py is the data




Proposition 1. The unconditionaMSE, of the received data Proposition 3. When employing the MMSE receiv&ly, in
symbols of Usef-when the BS uses the optinf@l; receiver the case ofC, = ¢/I,, the pilot power that minimizes the

is as follows: MSE is independent of the number of receive anteiaand
5 is given by:
e b
be (GSW (be + Nysere) Ein, (Nr, ﬁ) - SN“@)
MSE, =
sir? . 0aop \/(cthotal% + 02)(ceProta] 4 057a)Ta
_be by Pl = cea21y(027q — 02)
N, [ esere (bg-ﬁ-(l—i—N,.)Sng)Ein(1—|—N,-, m) — SyTy Ly Tp\O,4Td P
+
b SeTe o2(ct Protaf + 057a) 15
e be - 2 2. oy (15)
—2.€% e Ny Eip (1 4+ Ny, — ) + 1, (11) ceaymy(0gTa — 07)
SpTy

50 . _ The proof is in Appendix III.
where E;,,(n, z) £ [[“ e *'/t" dt is a standard exponential P PP

integral function,s; = d2py, by = qupe + o2 with p, 2 o?P,.  Remark 1. In the case oby = 0, = o, expressior(15) can

be further simplified
The proof is in Appendix I. € turiher simpiiied as

Notice that specifically in the case of LS channel estimation \/(1 - Td) (1+ o2 )Td
;g :Ptot

and whenC, is of the form ofc,Iy,, from (4)-(5) we have: ceProrag ceProtary
o2 e ' Tp(Ta — 1)
re=co+ 55— di=—; q=co—cedp. (12)
@y Pp ety Te ) o2
IV. ANALYSIS OF THEMSE IN THE CASE OF ( + ceProtag Td)

UNCORRELATEDANTENNAS Tp(Td —1)

This section presents the optimal pilot power setting fofpe optimal pilot power is a fraction of the power budget
the case wherC, is proportional to the identity matrix that p, , that depends on the number of pilot symbolsand data
is C; = ¢/Ly,. We start with a further simplified version of sympolsr,. It is also easy to verify that in the case of perfect
Proposition 1. channel knowledge (i.e., assumiag = 0), expression(15)

Lemma 2. When the BS uses the optim@}; receiver and retumsr;, =0.
the channel can be assumé&dy = c¢/Iy,., the MSE of the

estimated data symbols of each user can be calculated as
follows: V. ANALYSIS OF THEMSE IN THE CASE OF CORRELATED

ANTENNAS

MSEe) = pee! Ein (N, pue) (13) o
whereyi; = u(P,.¢) is defined by A. DeterminingG

We now consider the general case when the channel covari-
ance matrices@;) are not diagonal, that is when we allow
for an arbitrary correlation structure between the BS amden
o . We assume that the BS employs the optimal MMSE equalizer
The_ proof is in the Appendix II. _ according to (10) and write

As it was underscored by [16] and [18], there is a gap in i
spec_tral_ efficiency between cqherent and n.oncoherent coM-G» — ay\/P/h} DY (‘Pe+a?PeDeﬁeﬁfo) ., (16)
munications and channel learning plays an important role in
bridging this gap. Lemma 2 captures the training cestf, ) Where

N 030Ta + oo (Uz%Ptot + 7Py (0dma — 012’))
o 2 . (14)

Gl
iy Py omp(Prot — TpPp,t)

of communicating over an unknown channel specifically in the K
case of an uplink of MU MIMO system employing an MMSE U, 2 a?PQ + Z @2 PyCy + 02Iy,, (17)
receiver. ke

For the rla'l'v_e G as well as for the optimal MMSE s 5 positive definite matrix which contains the covariance
receiver (G7), it is important to find the pilot power thatom |l intra- and intercell interference sources thatseau

minimizes the MSE. For the naive receiver we obtain thgierference to the signal of Usérand the self covariance
optimal pilot power by numerical optimization, whereas fofo;m related WithQy.

the optimal MMSE receiver the pilot power that minimizes the . . explicit inversion in (16) we introduce the SVD of

MSE has aclosed_ form expressioffhe foI_Iowing proposition ¥, that is ¥, = ©/S,0,. Since ¥, is positive definite, it
presents the optimal PDPR as a function of the total power -1 singular and we can therefore define:

and coherence budget and the large scale fading between the A
MS and the BS. v 28;20,D/h,, (18)



which is a linear transformed version bf. It will be useful
to notice that:

hi'D ;! = h/D/'©/'S; 'O, = v['s;"?er  (19)
and
b’ D U7 Dby = [|v|?, (20)
and note that from (18) we have
D/h, = 7S} v, (21)

With these notations, it is straightforward to prove thédat
ing useful lemma.

Lemma 4. Given a channel estimate instanbg, the MMSE

weight matrix Gy, as a function of the number of receive

antennas at the BS\{.) can be expressed as follows:

gV Py Ha—1/2
G =———"———v,/S Oy, 22
AP P+ ‘ (22)
where||v,||? = vy, = SN v,
The proof is in Appendix IV.
To simplify the discussion we introduce
P

ag Pollvel]? + 17
B. Determining the MSE When Usirg*

It is now straightforward to prove the following lemma.

Lemma 5. The MSE of Usef-as a function ofv,, as defined
in (18), is as follows.

1

MSE(v)) = ————
W) = Rl + 1

(29)

The proof is in Appendix V.

Remark 2. It is insightful to compare(29) with the MSE

of a system with uncorrelated antennas and perfect channel
estimation, that is whe = I, Q = 0 and h = h. In this
case, from(43) we get:

1

MSE(h) = ——m—0m—0r,
a? P A5 11

(30)

which indicates that, can be seen as an "equivalent channel"
in the system of correlated antennas and partial CSl inferma
tion, that isv, captures the impact of both antenna correlation
and CSI estimation errors on the MSE.

V1. CALCULATING THE UNCONDITIONAL MSE AND SE
Recall from Lemma 4 thaffv,||*> = viv, = S0 (v |?,
where thevy,-s (¢ = 1,...,N,) are, in general, not inde-

pendent random variables. However, according to (28), the

To determine the MSE, we first need to find the distributiopovariance matrix otv, — that isSq — is diagonal, with not

of v,. The distribution ofv, is readable from (18)nptice
that ¥, and therebyS, are not random variablgsand recall
thathy is complex normal distributed withh, ~ CN(0,Ry).
Therefore, forv, we have

ve ~ CN(0,9), (24)
where
2 2 Bwwf) = E((S,/*0Dh)(S; ' *0,Dh)")
—s, 0,0 (hh{") D Of's;
=s,'’e,D,R,DI OIS, /?.
We will need the SVD ofQ2,:
Q = 0g,50,0q,, (25)

where®q, is an orthogonal matrix®g ©q, = Ix,).
Furthermore we will need the linear transform mf, which
we denote withw, whose covariance matrix is diagonal:

Wy = eﬂzVé . (26)
Notice that (for ease of notation dropping the indgx

v =y

||w||2:wHw:1/H®g®Qu:V (27)

and
E, (ww') =E, (@quv?0§) = O, (vw”)eg =
= 0n03Sa0aOf = Sq. (28)

necessarily equal diagonal elements. Therefore, eagh?
(denoted bylw;|? in the sequel) is exponentially distributed.

Assume that the variance of; is ¢?, and consequently
lwi|? is exponentially distributed with parametey = 1/£2.
Therefore,>" ", |w;|? is the sum of N, independent expo-
nentially distributed random variables. The set of disitiins
composed by independent exponentially distributed phaises
referred to as phase type distributions [34] and has a closed
form description with matrix exponential functions. That i
the density function o7, |w;|? is

_ T Ax
=e€e

f(x)

wheree; is thei-th unit vector (whose only nonzero element
is 1 at position i) and the matriA is:

EN, AN, (31)

-1 A

—A2 A2

| (32)
v,

Based onf (z) and (29) the MSE and the SE can be
calculated as follows:

MSE = E, (MSE(v)) = E., (MSE(w)) =

1
= [ f)d
/xaﬁpﬂﬂf(m) z,

(33)



n = —E, (log MSE(v)]) = —E, (log [MSE(w)])

1
=— [ log | —— . 4
This general case simplifies to the following two specialson

A. Case 1: Distinct Variances

We will now assume thatV is the number of non-zero
singular values ir8g, and all non-zerg; (and);) are distinct
(different). In this case

o= NiT
O Pp—"— , (35)

i—1 i
(- rj)

j=1,j#i

and for the MSE we get:

N
N —)\? €7 Ep (1, =2
MSE=Y" — ; m( F ) (36)
i=1 i
1 (-3)
Jj=1,j#i

where recall from Proposition 1 that= o?P,. For the SE
we get:

. ; (37)
i=1 i
10 (-3
J=1,j#i

B. Case 2: All Variances ab are Equal

Table |
SYSTEM PARAMETERS

| Parameter | Value |
Number of antennas N, = 4,16, 20, 64, 100, 500
Path Loss ap = 40,45,50 dB
Power budget TpPp o + 74Py = Piot = 250

mW, as in Eq. (1).
Total number of symbols (per tim¢ F = 12

slot)

Antenna spacing D/X\=0.15,...,1.5
Mean Angle of Arrival (AoA) 0 = 70°

Angular spread 2.0a =5,...,45°

channel estimation process is independent for each MS and we
can therefore focus on a single user. The covariance m@trix
of the channeh, as the function of the antenna spacing, mean
angle of arrival and angular spread is modeled as by the well
known spatial channel model, which is known to be accurate
in non-line-of-sight environment with rich scattering aafd
antenna elements identically polarized, see [35]. Foroumify
distributed angle of arrivals, then,n) (m,n € {1,...,N,})
element of the covariance matrof User< C, is given by
1 /N b _
Cm n = — ej~27r~7(n—m) COS(0+$)d$, (41)
’ 20 N

where the system parameters are given in Table |. The
covariance matrixC, becomes practically diagonal as the
antenna spacing and the angular spread grows bejond 1
and 6, > 30°. In contrast, with critically spaced antennas
DX = 0.5 andfda < 10°, the antenna correlation in terms

Suppose; = & = A~1/2, Vi < N. In this case, the phaseof the off-diagonal elements df, can be considered strong.

type distribution simplifies to the Erlang distribution:

)\NIN—le—AI

f($7N7A>:Wa (38)
and we get:
MSE = 2e3 g, (N, 3) : (39)
p p
__9G)
= aN(N-1)!"
where
e _Nr;_ Nr_l
G(x) £ Mel,]eI‘Gi(l) < N, _(N“ 0. ) z> , (40)

is the Meijer G function.

In case of identical variances i, (39) gives the same
expression as (13) in accordance with the fact t8at is
proportional to the identity matrix.

VIl. NUMERICAL ANALYSIS OF THEMSE
A. Channel Model and Covariance Matrix

Note that modeling the correlation matrices at the receiver
side according to (41) corresponds to using the one-sided
narrowband Kronecker model with receiver-side correfgtio
which is an appropriate model for the uplink of MU MIMO
systems [31].

B. Numerical Results

In this section we consider a single cell single user MIMO
system, in which the mobile terminal is equipped with a
single transmit antenna, whereas the BS emplSyseceive
antennas. Note that the performance characteristics of the
proposed MMSE receiver as compared with the naive receiver
are similar in the multi-user MIMO case from the perspective
of the tagged user, since the proposed receiver treats the
multi-user interference as noise according to (10). The key
input parameters to this system that are necessary to obtain
numerical results using the MSE derivation in this paper are
listed in Table I.

Figure 1 shows the cumulative distribution function (CDF)
of the squared error of the estimated data symbols at the BS,
i.e. the CDF of||Gy — z||? using the naive and the MMSE
receiver when the number of antennas at the BS,is= 500.

In this section we consider a single cell system, in whicim all three cases in terms of path loss, (= 40, ay = 45
MSs use orthogonal pilots to facilitate the estimation af thand o, = 50 dB), the gain of the MMSE receiver is large in
uplink channel by the BS. Recall from Section Il that théhe entire region of the CDF. For example, @t = 40, the
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Figure 3. Comparing the MSE performance of the naive and M8Eivers

with that of a receiver that uses perfect CSlI. As the pilot @oimcreases, the
MSE achieved by the receiver that uses perfect CSI increaseause due to
the sum power constraint the transmit power available ferdhta symbols
decreases.

Figure 1. Cumulative distribution function of the squaretoein a single
user MIMO scenario when the path loss between the UE and thés B8t
to 40 and 50 dB when using the naive receiver, the MMSE receind the
receiver which has access to the perfect CSI with= 500 antennas.

MSE[dB]

50 100 150 200 PImw]
Correlated Figure 3 compares the performance of the naive and the

—Nr=4 MMSE receivers with that of a receiver that has access to
the perfect CSI, that is assuming tHat = h,. This situation
-~ Nr=16 corresponds td, = I and Q, = 0 and the structure of the
naive and the MMSE receivers coincide. Indeed, we recall
that the naive receiver does minimize the MSE in the case
_Nr=64 of perfect CSI. The key aspect to observe in Figure 3 is
i that the gap between the MMSE receiver and the receiver
operating with perfect CSI does not depend ®n. This is
Uncorrelated in sharp contrast with the gap between the naive receiver and
e — the receiver with perfect CSI, which largely increases a&s th
number of antennas gets large.

—5}--

-10

R — oonmnzzznE Uncorrelated

__________

Figure 2. Comparing the performance of the naive and the MMSEiver
in the case of correlated (solid lines) and uncorrelateghed lines) antennas
(with N, = 4, 16, 64). Opt P

120

median of the CDF is -21 dB with the naive receiver and - 110
dB with the MMSE receiver. This result indicates that usi 100
the MMSE receiver is advantageous not only in the aver
sense, but in virtually all channel states. 90
Figure 2 examines the impact of antenna correlation on  gg
MSE with the naive and the MMSE receivers. The impact

antenna correlation in terms of the achievable MSE decse 70.
as the number of antennas increases figm= 4 to N,. = 64. 60! : : : :
An intuitive explanation of this insight is that the impadt 30 40 50 60 20 Path Loss

correlation can be thought of as a factor that decreases

effective number of antennas, that is the number of anter Figure 4. Optimum pilot power as a function of the path legs The red
which contribute to the estimation of the transmitted datt indicates the optimum pilot power when using the MMSEenexr at
symbol. As the number of antennas grows large, antenfia= 40 dB, which is~ 68 mw.

correlation decreases the effective number of antennds, bu

the loss due to this is not as significant as this loss whenFigure 4 shows the optimum pilot power as the function
the number antennas is low. Instead, as the figure showsthe path loss when using the MMSE receiver. Recall that
at large number of antennas tuning the pilot power playstlae optimum pilot power is independent of the number of
more important role in minimizing the MSE than the effect odntennas. This figure suggests that the pilot power should be
antenna correlation. tuned based on large scale fading. Although the optimunt pilo



power is independent a¥.., the previous figures show that theand pilot signals are equal, setting the pilot power by the
importance of proper PDPR tuning increases when the numl@minal is easy, because the terminals continuously measu
of antennas gets larg&his is because, as visible in Figures 2the path loss to the serving BS.

3, and 5, the gap between the naive and the MMSE receiveiThe simulation results provide the following insights:

increases with the number of antennas. « The performance difference between the naive and the
MMSE receiver increases with an increasing number of

,SE antennas. H_owever, the perfor_mance gap between the
0 i i :\\ MMSE receiver and the receiver that has access to
SEESL a perfect CSI does not increase with the number of

e ey _;E“:zw antennas.
10 i \ « When the number of antennas is large, the impact of
’ Naive receiver MMSE B

antenna correlation on the MSE is relatively small as

; compared with the impact of appropriately tuning the

\ pilot power. When using the MMSE receive&f), the
optimal pilot power does not depend on the number
of receive antennas, but is quite sensitive to large-scale
fading.

« When the number of antennas is large, the gain of using
the MMSE receiver over using the naive receiver is large,

Nr=10,100,500 Nr=10,100,500 ~

U

N

™

0 2 4 6 8 10 not only in terms of MSE, but also in the entire CDF of
the squared error of the estimated data symbols.
Figure 5. Spectral efficiency as a function of the employéat giymbolsr;,. We also showed that the well known relation between the

that % we Bosume that the nLmber of users that can be spanaliplecd MSE and the SE that holds for the case when perfect CSI at
equals the pilot sequence length. the MMSE receiver is available is valid also for the case of
imperfect CSI at the regularized MMSE receiv€i*). The
deeper analysis of the impact of CSI errors in the case of
%on-separable channel models is an important topic fordutu

research.

Figure 5 shows the SE of a MU MIMO system, in which th
number of spatially multiplexed users is equal to the lertdth
the employed pilot sequeneg. Figure 5 illustrates the trade-
off between increasing the number of MU MIMO users and the ACKNOWLEDGMENTS
necessary number of pilot symbols used to create orthogonal
pilot sequences. A greater number of users increases the S
of the system at the expense of spending more symbols on
pilot signals. Therefore, we can see that aroune- 6 the SE
reaches its highest value. The gain in terms of SE of using
MMSE receiver is around 25% when the number of antenn&g
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Is large. APPENDIX |
VIIl. CONCLUSIONS Proof of Proposition 1.If C, = ¢/I, implying D, = d/I,
In this paper, we first derived an analytical expressian) Q¢ = /I and the optimalG} of (10) can be written as:
of a linear receiver structure that minimizes the MSE of
_ : _ N apy/ Pedyg -
the uplink estimated data symbols when the receive antenfas = 5 o 112 K 5 hy’
possess a known correlation structure. We then deriveedlos ag P (de||he|| + Qe) + 2 kse OB + 04
form expressions for the MSE and the achievable SE when  {H (42)
employing this MMSE receiver as a function of the pilot and o _
data power, number of antennas, and path loss. We used MdpstitutingG; into (7) we get:
Carlo simulations to verify the analytical results and tanga
insight into the system behavior when usi@y. MSE (fl() — 200V Pagedi|[e|? + 1+
From the analysis we conclude that when employing the .
true MMSE receiver G*) at the BS in a MU MIMO system, - 25 21 (4 2 2 2 2
. L L ' . Pdi||h P P h .
the pilot power that minimizes the MSE is independent of = | “*"" lhel 4| et W+§ak ker + 0 | [l
the number of receive antennas. This implies that the optima (43)

training does not need to be adjusted for sites with differen

numbers of antennas or when upgrading existing antenrs sRecognizing thatp, £ ||f14||2 is Gamma distributed, the
to a larger number of antennas. In the special, (but in magctidensity function ofy, V¢ is given by (dropping the index
typical) case when the thermal noise power levels on the ddtéor convenience):



—N, Nr—le—w/r

T T

—(Nrfl)! x> 0.

fo(z) = (44)

Proposition 1 follows from Lemma (43) by taking the average

of MSE (fl@) using the the following integrals:

')

| Tisein =
=0

Proof of Lemma 6Recalling the basic relationship between
the incomplete Gamma function and the exponential integral

function:
Ein(n,z) = ac"_ll"(l —n,x), (52)

and using the following expansion formula that is valid for
large values of: (see [38]):

)>F(1 —n,x) ~

_bo b
N < — SeTe F et (bz +(1+ Nr)Sm)Em (1 +No, 5
Sy -
¢ s2rg
(45)
| Tafowyin =
x=0
_be b
—sere + €07 (b + Nysere) Bin (Nm e
bZ ‘ 2 92 5
SeTy
(46)
el by bl
/ TSﬁP(x)dx:2'€S£T€N1"Ein(1+Nm_)7
=0 SeTe
(47)

where E;y,(n, z) £ [ e™*/t" dt is a standard exponential

integral function. O

APPENDIXII

Proof of Lemma 2We rewrite the MSE expression in (11),
by making use of the following recursive relation, from [36}

(also available at [37, 8.19.12]):

peEin(Ny, i) + Ny Ein (N + 1, pg) = e H. (48)

Substitutingu, =
MSE in (11) and rearranging, we obtain:

ey,

TeS¢
where, similarly to the notation used in Propositionbl,2
qepe + o2 with p, = 2P, and s, = d?p, andr, d, and gy
are defined in (12).
Finally, recognizing that:

by
TeSe

MSE =

b
e Bin (N, (49)

by _ qgang +U§ _

B TSy d?o&?Png (50)
B J?iJZTd + Cla?(ggptot + 1Py o(037q — JZQ,))
; C?Q?PP;ZTP(PtOt — Ppemyp)

and substituting (1) int@® the lemma follows. O

APPENDIX I

We first prove the following lemma that will be useful for

the proof of Proposition 3.
Lemma 6. For n > 0 and z > 0, the following limit holds:

lim 2°(1— e*(n + 2)En(n,z)) = —n. (51)

T—r00

in this relation, using the terms of the

’ -n —n(—n—1
Nx_ne_z(l_’___i_%_i_
T T
—n(—-n—1)(—n—2
(n=Un=2)
x

+

(53)
we have:

2°(1 - €*(n + z)En(n,z)) ~ z° (1 —e'(n+a)z" aT e

-n  —n(-n—-1 —n(—n—-1)(—n—2
R SR S S )
(54)
Rearranging terms, we finally get, for large
2% (1 —e*(n + z)Ein(n,z)) ~
N 2n(1+n)  3n(l+ n2)(2 + n)+
x X
+4n(1 + n)(i;r n)(3+n) -
(55)
rom which it follows:
IILH;O 1:2(1 —e*(n+ x)Fin(n, ac)) = —n. (56)
O

We can now prove Proposition 3.

Proof of Proposition 3.We begin by taking the first derivative
of MSE as a function off, . To this end, we use (11) and
take the derivative of the MSE with respect jig:
MSE (11¢) = — puee™* Ein (N, —1, i) +
+ e Ein (Ny, pe) + pee!* Ein (N,.) .

After some algebraic manipulation based on (48), we obtain:
MSE (1) = e (N + 1) Ein (Nr, pue) = 1. (58)
From [36] (also available at [37, 8.19.21]) we have

r+n
x+n—1
Substitutingz = p, andn = N,. shows that MSE ) # 0 if
0 < pe.

Next, we consider the first derivative p{ P, ;) as defined
in (14) with respect taP, ;:

(57)

1< (z+n)e"Ein(n,z) <

10



respectively, we have
O’ﬁJZTd(QPpyng — Piot) (A + BCD)_l _

cszeaé}Tp(Ptot — 1 Pp0)? A-l_A-IB (DA‘lB N C_l)fl DA-!
cea; (P2 2(037a — 03) + 2P 4 PiotopT, — aﬁPfot)

H/(Pp-,l) =

+ SubstitutingA = v, B = O(g\/Pngflg, C=1D =

;P2 i mp(Prot — TpPp,e)? " ay/PhPDH we have:
59) 2 N N AN
The numerator of (59) is a second order polynomialRf, (‘I'f +ap PeDehehy’ Dy ) =
with the foIIowing coefficientsiy = — P12, a1 = 27,,2 as = (62)
Cga%TQ(O’de -0 ) wherez = (¢ Pt} + 0374)02 o, ag IS
negQatNeaé is posmve and the S|gn af, _d_epends on the sign _ 11;2—1 _ ‘1,8_10% \/FZDZHZ'
of ogTa—0,.In reasonable cases is positive as well, because R X .
74 > 1 anday ~ 0,. Whena, is positive the numerator of : (a“/Pethf\Il;lam/Pnghg + 1)
(59) has one positive and one negative root, becayse: NN
\/a? — agay and the positive root is cogy/ Pehy Dy W =
a2 P,
—ay ++/a? — 4 v, -
Py, = —EVAL S (60) © T aZPhIDIw; Db+ 1
’ a ~ ~
. o ’ _ ;DAY D W, (63)
Finally, the first derivative of the MSE with respect it ,
is: Substituting (63) into (16) gives:
. / / ~
7, MSE = MSE (ue) 1/ (Fy0) (61) G — /B AHDE.

2P R
-<\I:;1— e \Il[nghgthf\Ilf).
Oz%Pgthg‘I’; D/h,+1
(64)

Recall that MSHy,) # 0, the roots of ¢— d MSE are
identical with the roots of the numerator 01? (59) and the
positive root of 74—MSE is P .

We still need to show thaP*é corresponds to a Iocal mini- Recall that®, = ©;'S,0, is the SVD of ¥,. Substituting
mum. To this end, we study the signlofip, , o+ 72—MSE. (19) - (20), and this SVD into (64) we get:

If the limit is negative then?;, corresponds to a focal min- . Hea—1/2
imum. Unfortunately, (61) is not directly applicable besau Gp = arV/ Py <V€ S, O

limp , o+ p'(Ppe) = 0 andlim,,, oo MSE (p17) = oc. In- a2P, 172
stead, according to (49) we introduén, x) = ze® Fy, (n, ) ﬁ llve|Pvi'S, ®e> =
) ai Pellve|]* +1
and rewrite (50) as 2 byl w2
oy byl |Vye Hag—1/2
by + by P :ag\/l_%(l—e—)us O, =
B= B P STIAESVACES
Ppe(bs — Ppe)’
ca P _ oV nging, (65)
whereb, — % by = % by = Q2P w1 ¢ '
L2 'p L
P;—;t and note thab; andbs are positive. ThIS way MSE O
bi+baPpe iy D b1Ppe(ba—Py )
F(Nr;%)- Introducing P, = =45 5k we APPENDIXV

also have MSE= F (NT, sz ) and can rewrite the limit as Proof of Lemma 5Substituting (17) into (7) with optimal
MMSE receiver, we get:

. . d by + b2 Py

1 MSE =1 ——F (N, ———— )= N SN
P ap, MSE S i op < Pl — M)> MSE (i) = G*¢ (a?PDAAI D, + ;) G
= lim P, lim A g (N,., f’—l) . — ay\/Py(G*Dghy + h{'D,G*]) + 1. (66)

Py =0+ dPp o Pi—0t dPy Pybs

From (22), (21) and the SVD o¥, we have:
The first term converges to 1, while the second term converges
to — 2 pased on (51). O G*Dehy = gvi've = gl vel (67)
G* Z‘I’ZG*e = givi've = gillvel, (68)
APPENDIX IV substituting this into (66) we obtain
) o } MSE (v,) =

Proof of Lemma 4 According to the matrix inversion lemma o o 4 o ) )
for matricesA, B, C, D of sizen xn, nxm, mxm, mxn, oy Pogp||vel|® + gillvel|” = 200v/ Pegellvel|” + 1, (69)

11



whereg, is also a function of|v,||? according to (23). Sub- [21] —, “Utilizing the Spatial Information Provided by Chael Norm
stituting (23) into (69) gives the lemma after some algebrai

manipulations.
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