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Abstract—In systems employing pilot-symbol aided channel
estimation, the pilot-to-data power ratio is known to have alarge
impact on performance. Therefore, previous works proposed
methods setting the pilot power such that either the weighted
sum of the mean squared error (MSE) of the estimated data
symbols is minimized or the overall spectral efficiency (SE)is
maximized. However, previous works did not take into account
the impact of correlated antennas and channel state information
(CSI) errors on the optimal pilot power setting. In this paper
we consider the uplink of a multi-user multiple-input multi ple-
output (MU MIMO) system employing a receiver that minimizes
the MSE of the received data symbols in the presence of CSI
errors and derive closed form expressions for the MSE and the
achievable SE. These expressions take into account the impact of
antenna correlation and CSI errors, and are a function of pilot
power and the number of receive antennas.The analytical and
numerical results can help set the pilot power, minimizing the
MSE in multiple antenna systems.

Keywords: multi-antenna systems, channel state information,
estimation techniques, receiver algorithms

I. I NTRODUCTION

Communicating over an unknown wireless channel is sub-
ject to a penalty of channel uncertainty, sometimes in the form
of training costs [1]1. As it has been shown by [3] and [4],
this penalty depends on the knowledge the receiver has of the
channel and the rate of change of the channel, as well as on
the number of transmit antennas. On the other hand, reducing
this penalty by sending over only a fraction of the available
degrees of freedom results in a loss of spectral efficiency. This
fundamental insight has generated significant interest in de-
signing channel state information (CSI) acquisition techniques
and channel estimation algorithms since the late 1990s.

For example, the results of [5] and [6] established a lower
bound for multiple-input multiple-output (MIMO) orthogonal
frequency division multiplexing systems withminimum mean
squared error (MMSE)channel estimation. It was also shown
that the optimal pilot-to-data power ratio (PDPR) setting that
maximizes this lower bound or minimizes the average symbol
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1Some parts of the model used in this paper have appeared in ourconference
paper [2]. However, the material presented in Sections IV-VIII and the related
Appendices are novel contributions.

error rate can increase capacity by 10-20%, as compared with
a system using a suboptimal pilot power setting.

Subsequently, the work reported in [7] provided a unified
treatment of the optimum pilot overhead in multipath fading
channels and gave closed form expressions for the fraction of
the power budgetthat must be devoted to pilots, explicitly
considering the dependence of the pilot overhead on the
Doppler frequency and other factors. The impact of transmitter
and receiver in-phase and quadrature imbalances and residual
capacity offset on the pilot-to-data power allocation was
analyzed, and a capacity bound maximizing power allocation
was found in [8]. More recently, the pilot power ratio that
maximizes the uplink sum-rate in zero-forcing based multi-
user MIMO (MU MIMO) systems with a large number of
antennas was studied in [9].

Along a related line of research, the results of [10],[11]
and [12] indicate that the performance of MMSE receivers
is sensitive to channel estimation errors. In particular, the
often-used classical ornaïve MMSE receiver does not, in
fact, minimize theMSE of the estimated data symbols in
the presence of CSI errors [12], [13]. It turns out that the
difference between the naïve receiver and regularized (true)
MMSE receiver, in terms of the achieved MSE, is significant
in the large antennaregime[12].

These two lines of works suggest that for the purpose of
determining the optimal pilot power setting it is importantto
take into account the operation of practical channel estimation
and receiver algorithms. To the best of our knowledge, exact
expressions for the achieved MSE and SE when using practical
channel estimation (such asleast squares, LS) and receiver
algorithms (such as MMSE), and accounting for the pilot-to-
data power ratio and antenna correlation, are not available. In
this paper, we address this problem and derive closed form
expressions for the uplink of a MU MIMO system, in which
the base station (BS) uses LS or MMSE channel estimation
and MMSE receiver.Throughout, we assume that the output
of the MMSE detector, the residual signal plus interference
from other spatial streams as well as the estimation error of
the received data symbols can be approximated as Gaussian
[10]. Because in practice the CSI estimation error is likelyto
be bounded, our design can be regarded as a worst-case design
approach.Thereby, our contributions (detailed in Sections IV-
VII and the Appendices) to the lines of works above can be



summarized asfollows:
• We derive closed form exact expressions for both the

MSE and the SE taking into account the CSI errors
that are specific to the employed channel estimation
technique;

• We explicitly take into account the impact of antenna
correlation on these performance measures.

These formulas are then used to compare the performance
of MU MIMO systems employing the naïve and MMSE
receivers. An interesting insight is that when the system uses
the MMSE receiver, the PDPR minimizing the MSE does not
depend on the number of receive antennas at the BS but rather
is dependent on the large-scale fading. This is in contrast
to a system that employs the naïve receiver, for which the
pilot power minimizing the MSE depends on the number of
receive antennas. We believe that this insight can help set the
pilot power almost optimally in practical systems in which the
number of BS antennas can depend on the actual deployment
scenario [14], [15].In particular, our results show that when
the optimal pilot power setting is employed at the terminal
side, and the true MMSE receiver is used at the base station
side, the system’s performance is close to that of a hypothetical
system that would have access to the perfect CSI.

The paper is structured as follows. The next section dis-
cusses related works. Section III describes the system model
and summarizes preliminaries needed for development of the
contributions of this paper. Sections IV and V analyze the
MSE in the case of uncorrelated and correlated antennas
at the receiver, respectively. Section VI derives closed form
expressions for the MSE and SE when the receiver uses the
MMSE receiver. Section VII presents numerical results on the
MSE and SE, and Section VIII concludes the paper.

II. RELATED WORKS

In this section we review some of the relevant literature
in the areas of information theoretical aspects of wideband
communications, MIMO transceiver design in the presence of
CSI errors and training based channel estimation techniques.
We also point out our contributions to this line of research.
A. Information Theoretical Aspects of Wideband Communica-
tions and Capacity Analysis

An important insight from the works reported in [16] and
[17] is that there is a continuum between the extremes of
communicating in non-coherent (without CSI availability)and
coherent (perfect CSI) fashions over wireless channels in terms
of the achieved spectral efficiency. Specifically, communicat-
ing over a completely unknown channel is subject to a penalty
of the channel uncertainty, sometimes in the form of training
costs. (This penalty depends on the knowledge the receiver
has of the channel and on the channel’s rate of change.) On
the other hand, reducing this penalty by sending over only a
fraction of the available degrees of freedom results in a loss
of spectral efficiency.

In practice, the channel coherence time might be long
enough to both estimate the fading coefficients and use such

estimates to communicate coherently after the estimation pe-
riod, as well as to achieve performance close to the fully
coherent case (as emphasized in [1]).

Reference [17] studies the connection between the channel
uncertainty penalty and the coherence length of the channelin
MIMO systems. A key observation is that in the low signal-
to-noise ratio (SNR) regime, estimating the channel at the
receiver may not be possible and hence communication may
be desirable without training. More exactly, if the channelco-
herence length is above a certain antenna- and SNR-dependent
threshold, the noncoherent and coherent capacities becomethe
same in the low-SNR regime.

The above results suggest that, depending on the SNR and
the number of antennas, there may be a large gap between
the coherent and noncoherent extremes in terms of achievable
spectral efficiency, and channel learning is key in bridgingthis
gap. Therefore, it is interesting to consider the ultrawide-band
(UWB) regime and focus on the case when training signals are
used for channel estimation at the receiver. The capacity ofthis
scheme is studied in [18] to investigate the impact of multipath
sparsity on achieving coherent capacity. The key results ofthis
paper are a lower bound on the capacity of the training-based
communication scheme and the coherence level that can be
achieved, and the insights into the impact of channel sparsity
on the achievable capacity in the UWB regime.

The work in [19] studies the impact of channel state
feedback on the achievable rates in sparse wideband chan-
nels. A key insight is that a partial and/or limited feedback
scheme, where only one bit per independent DoF is available
at the transmitter, can nearly achieve the performance of a
system in which perfect CSI is available at the transmitter.
References [20] and [21] focus on acquiring channel state
information at the transmitter in multi-user systems where
the feedback from each user terminal must be limited. It is
shown that the combination of long term channel statistics and
instantaneous norm feedback provides sufficient information at
the transmitter for efficient scheduling, beamforming and link
adaptation in wide-area scenarios. More recently, the workin
[22] considers a case in which a transmitter with two antennas
broadcasts to two single-antenna users. It is assumed that the
two receiving users have perfect channel information, whereas
the transmitter has only statistical information of each user’s
link (covariance matrix of the vector channel). The paper
focuses on the design of beamforming vectors that depend on
such statistical information and maximize the ergodic sum-rate
delivered to the two users.

B. MIMO Transceiver Design

Reference [23] deals with robust MIMO precoding design
with deterministic imperfect channel state information atthe
transmitter (CSIT) such that the worst-case received SNR is
maximized, or the worst-case error probability is minimized.
Reference [4] is concerned with the design of linear MIMO
transceivers that are robust to CSI perturbations at both sides
of the link that is to errors in CSIT and channel state
information at the receiver (CSIR). In this work, the design
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of the transceiver is based on minimizing the average sum
MSE of all data streams and users. This paper assumes a
perturbation error (modelled as a Gaussian additive term),
but this CSI error is not controlled by pilot power or the
training scheme. Therefore, the pilot-data trade-off is not
considered in this paper. The model used in [24] builds on the
uplink-downlink duality in sum MSE under imperfect CSI.
In this work, the imperfectness of the channel knowledge
is taken into account in the joint MMSE design. The sum
MSE minimization problem for the UL and DL is subject to
power constraints. However, the aspect of pilot power is not
considered and the MSE is not derived as a function of the
pilot power under a constrained pilot-data budget.

C. Channel Estimation and the Pilot-Data Power Ratio

The seminal work reported in [25] evaluates the difference
between the mutual information when the receiver has only
an estimate of the channel and when it has perfect knowledge
of the channel. Upper and lower bounds are established on
this difference and are related to the variance of the channel
measurement error. In [3] it is shown how training based
channel estimation affects the capacity of the fading channel,
recognizing that training imposes a substantial information-
theoretic penalty, especially when the coherence intervalT is
only slightly larger than the number of transmit antennas or
when the SNR is low. In these regimes, learning the entire
channel is highly suboptimal. Conversely, if the SNR is high,
and T is much larger thanM , training-based schemes can
come very close to achieving capacity. Therefore, the power
that should be spent on training and data transmission depends
on the relation betweenT and M . The work in [26] can
be seen as a sequel of [3], taking into account intersymbol
interference and the receiver technique (equalizer) used on
the receiver side. However, none of these works consider the
regularized MMSE receiver, and therefore the pilot power
setting that minimizes the MSE of a regularized MMSE
receiver is not discussed in these papers.

The MU MIMO setting is the focus of [27], in which
the coherence interval ofT symbols is expended for channel
training, channel estimation, and precoder computation for DL
transmission. Specifically, the optimum number of terminals
in terms of the DL spectral efficiency is determined for a
given coherence interval, number of base station antennas,
and DL/UL signal-to-interference-plus-noise ratio. There is no
receiver design involved and the pilot-to-data power trade-off
is out of the scope of the optimization process.

Reference [7] investigates the optimization of the pilot
overhead for single-user wireless fading channels, and the
dependencies of this pilot overhead on various system pa-
rameters of interest (e.g. fading rate, SNR) are quantified.By
finding an expansion of the spectral efficiency for the overhead
optimization in terms of the fading rate around the perfect-CSI
point, the square root dependence of both the overhead and
the spectral efficiency penalty is cleanly identified.

D. Contributions

Our contributions to the above referenced works are estab-
lishing the pilot power when the receiver employs the regu-
larized MMSE receiver for both uncorrelated and correlated
receive antenna cases. Specifically:

• For the case of uncorrelated receive antennas at the
BS, we give a closed form expression for the MSE
of the estimated data symbols and for the pilot power
that minimizes this MSE. (Lemma 2 and Proposition 3,
respectively.)

• For the case of correlated receive antennas at the BS,
we first identify the regularized MMSE receiver structure
(Lemmas 4 and 5) and then give closed form expressions
for the achieved MSE (Section VI).

These results allow us to study numerically the gains of using
the regularized MMSE receiver and optimal pilot power levels
over schemes that use the naïve receivers and/or suboptimal
pilot power levels. A key insight is that the pilot power
that minimizes the MSE does not depend on the number of
antennas, but heavily depends on the path loss between the
BS and the mobile terminal.

III. C HANNEL ESTIMATION AND RECEIVER MODEL

A. Channel Estimation Model

We consider the uplink of a MU MIMO system, in which
the mobile stations (MS) transmit orthogonal pilot sequences
of lengthτp: s =

[
s1, ..., sτp

]T ∈ Cτp×1, in which each pilot
symbol is scaled as|si|2 = 1, for i = 1, .., τp. The pilot
sequences are constructed such that they remain orthogonalas
long as the number of spatially multiplexed users is maximum
τp [28]. In practice, such pilot sequences can be defined us-
ing the popularZadoff-Chu sequences [29],[30]. Specifically,
without loss of generality, we assume that the number MU
MIMO users isK ≤ τp. In practice,K ≪ Nr, whereNr is
the number of antennas at the BS[31].

As emphasized in [31], MU MIMO differs from point-to-
point MIMO in two respects: first, the terminals are typically
separated by many wavelengths, and second, the terminals
cannot collaborate among themselves, either to transmit orto
receive data. That is, in MU MIMO systems, the terminals
are autonomous so that we can assume that the transmit
array is uncorrelated. However, it is important to capture the
correlation structure at the receiver side so that we can evaluate
the impact of CSIR errors on the optimal pilot power and
the achieved MSE. In this paper we assume a comb type
arrangement of the pilot symbols. GivenF subcarriers in the
coherence bandwidth, a fraction ofτp subcarriers are allocated
to the pilot andτd = F − τp subcarriers are allocated to the
data symbols. Each MS transmits at a constant powerPtot,
however, this transmission power can be distributed unequally
among the subcarriers. In particular, considering User-ℓ with a
transmitted powerPp,ℓ for each pilot symbol andPℓ for each
data symbol transmission, the sum constraint of:

τpPp,ℓ + τdPℓ = Ptot (1)
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is enforced.In practice, this type of arrangement is suitable for
time varying channels, so that channel estimation is facilitated
at the same time instant that is used for data transmission.
Thus, theNr × τp matrix of the received pilot signal from
User-ℓ at the BS can be conveniently written as:

Y
p
ℓ = αℓ

√

Pp,ℓhℓs
T +N, (2)

where we assume thathℓ ∈ CNr×1 is a circular sym-
metric complex normal distributed column vector with mean
vector 0 and covariance matrixCℓ (of size Nr), denoted
as hℓ ∼ CN (0,Cℓ), αℓ accounts for the large scale fad-
ing, N ∈ C

Nr×τp is the spatially and temporally additive
white Gaussian noise (AWGN) with element-wise varianceσ2

p,
where the indexp refers to the noise power on the received
pilot signal.

In this paper we assume that the BS uses the popular LS
estimator that relies on correlating the received signal with the
known pilot sequence. Note that our methodology to determine
the MSE of the received data is not confined to the LS
estimator, but is directly applicable to an MMSE or other linear
channel estimation techniques as well. For each MS, the BS
utilizes pilot sequence orthogonality and estimates the channel
based on (2) assuming:

ĥℓ = hℓ +wℓ =
1

αℓ

√
Pp,ℓ

Y
p
ℓ s

∗(sT s∗)−1

= hℓ +
1

αℓ

√
Pp,ℓτp

Ns∗, (3)

wheres∗ =
[
s∗1, ..., s

∗
τp

]T ∈ Cτp×1 denotes the vector of pilot
symbols and(sT s∗) = τp. By consideringhℓ ∼ CN (0,Cℓ), it
follows that the estimated channelĥℓ is a circular symmetric
complex normal distributed vector̂hℓ ∼ CN (0,Rℓ), with

Rℓ , E{ĥℓĥ
H
ℓ } = Cℓ +

σ2
p

α2
ℓPp,ℓτp

INr
. (4)

By recognizing thath and ĥ are jointly circular symmetric
complex Gaussian (multivariate normal) distributed random
variables, the distribution of the channel realizationhℓ con-
ditioned on the estimatêhℓ is normally distributed as follows
[32], [33]:

(hℓ | ĥℓ) ∼ CN
(

Dℓĥℓ,Qℓ

)

, (5)

whereDℓ , CℓR
−1
ℓ andQℓ , Cℓ −CℓR

−1
ℓ Cℓ.

B. Received Data Signal Model

The MU MIMO received data signal at the BS can be
written as:

y = αℓhℓ

√

Pℓxℓ
︸ ︷︷ ︸

User-ℓ

+

K∑

k 6=ℓ

αkhk

√

Pkxk

︸ ︷︷ ︸

Other users

+nd, (6)

whereαk hk is theM × 1 vector channel including large and
small scale fading between User-k and the BS,Pk is the data

transmit power of User-k, xk is the transmitted data symbol
by User-k andnd denotes the Gaussian noise on the received
data signal.

C. Employing an MMSE Receiver at the BS

In this paper the BS employs an MMSE receiverGℓ ∈
C

1×Nr to estimate the data symbol transmitted by User-ℓ.
As it was shown in [12], in the case of a linear receiver
Gℓ that requires the estimated channel of only User-ℓ as its
input, the MSE of the estimated data symbols of User-ℓ can
be conveniently expressed in the following quadratic form:

MSE
(

Gℓ, ĥℓ

)

=

Gℓ



α2
ℓPℓ

(

Dℓĥℓĥ
H
ℓ DH

ℓ +Qℓ

)

+

K∑

k 6=ℓ

α2
kPkCk+σ2

dI



GH
ℓ

− αℓ

√

Pℓ(GℓDℓĥℓ + ĥH
ℓ DH

ℓ GH
ℓ ) + 1. (7)

As we shall see later, our analysis allows for an arbitrary
channel covariance matrix at the receiver side (Cℓ) in (7) that
allows us to analyze the impact of CSI errors on the MSE
performance with arbitrary correlation structure of the base
station antennas.We recall that the MMSE receiver aims
at minimizing the MSE between the estimateGℓy and the
transmitted symbolxℓ:

G⋆
ℓ , argmin

G

E{MSE} = argmin
G

E{|Gℓy − xℓ|2}. (8)

When the BS employs a naïve receiver, the estimated
channel is taken as if it was the actual channel:

Gnaïve
ℓ = αℓ

√

Pℓĥ
H
ℓ (α2

ℓPℓĥℓĥ
H
ℓ + σ2

dI)
−1. (9)

As it was shown in [12], this receiver does not minimize
the MSE. Using the quadratic form in (7), it can be shown
that the receiver that minimizes the MSE of the received data
symbols, is constructed as:

G
⋆
ℓ = αℓ

√
Pℓĥ

H
ℓ D

H
ℓ · (10)

·



α
2

ℓPℓ

(

Dℓĥℓĥ
H
ℓ D

H
ℓ +Qℓ

)

+

K
∑

k 6=ℓ

α
2

kPkCk + σ
2

dI





−1

.

D. Calculating the MSE When Employing the MMSE Receiver

In [12] it was shown that for the special case when the
channel covariance matricesCℓ and consequently the matrices
Rℓ, Dℓ and Qℓ are proportional to the identity matrixINr

with diagonal elementscℓ, rℓ, dℓ and qℓ respectively, the
unconditional MSEℓ of the uplink estimated data symbols of
User-ℓ when employing theG⋆

ℓ receiver can be calculated as
follows.
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Proposition 1. The unconditionalMSEℓ of the received data
symbols of User-ℓ when the BS uses the optimalG⋆

ℓ receiver
is as follows:

MSEℓ =

bℓ

(

e
bℓ

sℓrℓ

(
bℓ +Nrsℓrℓ

)
Ein

(

Nr,
bℓ

sℓrℓ

)

− sℓrℓ

)

s2ℓr
2
ℓ

+

Nr

(

e
bℓ

sℓrℓ

(

bℓ+(1+Nr)sℓrℓ

)

Ein

(

1+Nr,
bℓ

sℓrℓ

)

− sℓrℓ

)

sℓrℓ

− 2 · e
bℓ

sℓrℓ NrEin

(

1 +Nr,
bℓ
sℓrℓ

)

+ 1, (11)

whereEin(n, z) ,
∫∞

1
e−zt/tn dt is a standard exponential

integral function,sℓ , d2ℓpℓ, bℓ , qℓpℓ + σ2
d with pℓ , α2

ℓPℓ.

The proof is in Appendix I.
Notice that specifically in the case of LS channel estimation

and whenCℓ is of the form ofcℓINr
, from (4)-(5) we have:

rℓ = cℓ +
σ2
p

α2
ℓPp,ℓτp

; dℓ =
cℓ
rℓ
; qℓ = cℓ − cℓdℓ. (12)

IV. A NALYSIS OF THE MSE IN THE CASE OF

UNCORRELATEDANTENNAS

This section presents the optimal pilot power setting for
the case whenCℓ is proportional to the identity matrix that
is Cℓ = cℓINr

. We start with a further simplified version of
Proposition 1.

Lemma 2. When the BS uses the optimalG⋆
ℓ receiver and

the channel can be assumedCℓ = cℓINr
, the MSE of the

estimated data symbols of each user can be calculated as
follows:

MSE(µℓ) = µℓe
µℓEin (Nr, µℓ) , (13)

whereµℓ = µ(Pp,ℓ) is defined by

µℓ ,
σ2
dσ

2
pτd + cℓα

2
ℓ

(

σ2
pPtot + τpPp,ℓ

(
σ2
dτd − σ2

p

))

c2ℓα
4
ℓPp,ℓτp(Ptot − τpPp,ℓ)

. (14)

The proof is in the Appendix II.
As it was underscored by [16] and [18], there is a gap in

spectral efficiency between coherent and noncoherent com-
munications and channel learning plays an important role in
bridging this gap. Lemma 2 captures the training cost (τpPp,ℓ)
of communicating over an unknown channel specifically in the
case of an uplink of MU MIMO system employing an MMSE
receiver.

For the naïve (Gnaïve
ℓ ) as well as for the optimal MMSE

receiver (G⋆
ℓ ), it is important to find the pilot power that

minimizes the MSE. For the naïve receiver we obtain the
optimal pilot power by numerical optimization, whereas for
the optimal MMSE receiver the pilot power that minimizes the
MSE has aclosed form expression. The following proposition
presents the optimal PDPR as a function of the total power
and coherence budget and the large scale fading between the
MS and the BS.

Proposition 3. When employing the MMSE receiverG⋆
ℓ , in

the case ofCℓ = cℓINr
, the pilot power that minimizes the

MSE is independent of the number of receive antennasNr and
is given by:

P ⋆
p,ℓ =

σdσp

√

(cℓPtotα2
ℓ + σ2

p)(cℓPtotα2
ℓ + σ2

dτd)τd

cℓα2
ℓτp(σ

2
dτd − σ2

p)

− σ2
p(cℓPtotα

2
ℓ + σ2

dτd)

cℓα2
ℓτp(σ

2
dτd − σ2

p)
. (15)

The proof is in Appendix III.

Remark 1. In the case ofσd = σp = σ, expression(15) can
be further simplified as

P ∗
p,ℓ =Ptot







√
(

1 + σ2

cℓPtotα2
ℓ

τd

)(

1 + σ2

cℓPtotα2
ℓ

)

τd

τp(τd − 1)

−

(

1 + σ2

cℓPtotα2
ℓ

τd

)

τp(τd − 1)



 .

The optimal pilot power is a fraction of the power budget
Ptot that depends on the number of pilot symbolsτp and data
symbolsτd. It is also easy to verify that in the case of perfect
channel knowledge (i.e., assumingσp = 0), expression(15)
returnsP ∗

p,ℓ = 0.

V. A NALYSIS OF THE MSE IN THE CASE OFCORRELATED

ANTENNAS

A. DeterminingG⋆

We now consider the general case when the channel covari-
ance matrices (Ck) are not diagonal, that is when we allow
for an arbitrary correlation structure between the BS antennas.
We assume that the BS employs the optimal MMSE equalizer
according to (10) and write

G⋆
ℓ = αℓ

√

Pℓĥ
H
ℓ DH

ℓ

(

Ψℓ+α2
ℓPℓDℓĥℓĥ

H
ℓ DH

ℓ

)−1

, (16)

where

Ψℓ , α2
ℓPℓQℓ +

K∑

k 6=ℓ

α2
kPkCk + σ2

dINr
, (17)

is a positive definite matrix which contains the covariance
from all intra- and intercell interference sources that cause
interference to the signal of User-ℓ and the self covariance
term related withQℓ.

For an explicit inversion in (16) we introduce the SVD of
Ψℓ, that isΨℓ = ΘH

ℓ SℓΘℓ. SinceΨℓ is positive definite, it
is non singular and we can therefore define:

νℓ , S
−1/2
ℓ ΘℓDℓĥℓ, (18)
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which is a linear transformed version ofĥℓ. It will be useful
to notice that:

ĥH
ℓ DH

ℓ Ψ−1
ℓ = ĥH

ℓ DH
ℓ ΘH

ℓ S−1
ℓ Θℓ = ν

H
ℓ S

−1/2
ℓ Θℓ, (19)

and

ĥH
ℓ DH

ℓ Ψ−1
ℓ Dℓĥℓ = ||νℓ||2, (20)

and note that from (18) we have

Dℓĥℓ = ΘH
ℓ S

1/2
ℓ νℓ. (21)

With these notations, it is straightforward to prove the follow-
ing useful lemma.

Lemma 4. Given a channel estimate instanceĥℓ, the MMSE
weight matrixGℓ, as a function of the number of receive
antennas at the BS (Nr) can be expressed as follows:

G⋆
ℓ =

αℓ

√
Pℓ

α2
ℓPℓ||νℓ||2 + 1

ν
H
ℓ S

−1/2
ℓ Θℓ, (22)

where||νℓ||2 = ν
H
ℓ νℓ =

∑Nr

i=1 |νℓi |2.

The proof is in Appendix IV.
To simplify the discussion we introduce

gℓ ,
αℓ

√
P ℓ

α2
ℓPℓ||νℓ||2 + 1

. (23)

B. Determining the MSE When UsingG⋆

To determine the MSE, we first need to find the distribution
of νℓ. The distribution ofνℓ is readable from (18) (notice
thatΨℓ and therebySℓ are not random variables), and recall
that ĥℓ is complex normal distributed with,̂hℓ ∼ CN (0,Rℓ).
Therefore, forνℓ we have

νℓ ∼ CN (0,Ωℓ), (24)

where

Ωℓ , E(νℓν
H
ℓ ) = E

(

(S
−1/2
ℓ ΘℓDℓĥℓ)(S

−1/2
ℓ ΘℓDℓĥℓ)

H
)

= S
−1/2
ℓ ΘℓDℓE

(

ĥℓĥ
H
ℓ

)

DH
ℓ ΘH

ℓ S
−1/2
ℓ

= S
−1/2
ℓ ΘℓDℓRℓD

H
ℓ ΘH

ℓ S
−1/2
ℓ .

We will need the SVD ofΩℓ:

Ωℓ = ΘH
Ωℓ

SΩℓΘΩℓ, (25)

whereΘΩℓ is an orthogonal matrix (ΘH
Ωℓ

ΘΩℓ
= INr

).
Furthermore we will need the linear transform ofνℓ, which
we denote withωℓ whose covariance matrix is diagonal:

ωℓ , ΘΩℓνℓ . (26)

Notice that (for ease of notation dropping the indexℓ):

||ω||2 = ω
H
ω = ν

HΘH
Ω
ΘΩν = ν

H
ν = ||ν||2 (27)

and

Eω

(
ωω

H
)
= Eν

(
ΘΩνν

HΘH
Ω

)
= ΘΩEν

(
νν

H
)
ΘH

Ω =

= ΘΩΘ
H
Ω
SΩΘΩΘ

H
Ω

= SΩ. (28)

It is now straightforward to prove the following lemma.

Lemma 5. The MSE of User-ℓ as a function ofνℓ, as defined
in (18), is as follows.

MSE(νℓ) =
1

α2
ℓPℓ||νℓ||2 + 1

(29)

The proof is in Appendix V.

Remark 2. It is insightful to compare(29) with the MSE
of a system with uncorrelated antennas and perfect channel
estimation, that is whenD = I, Q = 0 and ĥ = h. In this
case, from(43) we get:

MSE(h) =
1

α2
ℓPℓ

||hℓ||2

σ2
d

+ 1
, (30)

which indicates thatνℓ can be seen as an "equivalent channel"
in the system of correlated antennas and partial CSI informa-
tion, that isνℓ captures the impact of both antenna correlation
and CSI estimation errors on the MSE.

VI. CALCULATING THE UNCONDITIONAL MSE AND SE

Recall from Lemma 4 that||νℓ||2 = ν
H
ℓ νℓ =

∑Nr

i=1 |νℓi |2,
where theνℓi-s (i = 1, . . . , Nr) are, in general, not inde-
pendent random variables. However, according to (28), the
covariance matrix ofωℓ – that isSΩ – is diagonal, with not
necessarily equal diagonal elements. Therefore, each|ωℓi |2
(denoted by|ωi|2 in the sequel) is exponentially distributed.

Assume that the variance ofωi is ξ2i , and consequently
|ωi|2 is exponentially distributed with parameterλi = 1/ξ2i .
Therefore,

∑Nr

i=1 |ωi|2 is the sum ofNr independent expo-
nentially distributed random variables. The set of distributions
composed by independent exponentially distributed phasesare
referred to as phase type distributions [34] and has a closed
form description with matrix exponential functions. That is,
the density function of

∑Nr

i=1 |ωi|2 is

f(x) = eT1 e
AxeNr

λNr
, (31)

whereei is the i-th unit vector (whose only nonzero element
is 1 at position i) and the matrixA is:

A =








−λ1 λ1

−λ2 λ2

. . .
. . .

−λNr








. (32)

Based onf (x) and (29) the MSE and the SE can be
calculated as follows:

MSE= Eν (MSE(ν)) = Eω (MSE(ω)) =

=

∫

x

1

α2
ℓPℓx+ 1

f(x)dx, (33)
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η = −Eν (log [MSE(ν)]) = −Eω (log [MSE(ω)])

= −
∫

x

log

[
1

α2
ℓPℓx+ 1

]

f(x)dx. (34)

This general case simplifies to the following two special ones.

A. Case 1: Distinct Variances

We will now assume thatN is the number of non-zero
singular values inSΩ and all non-zeroξi (andλi) are distinct
(different). In this case

f(x) =

N∑

i=1

λie
−λix

N∏

j=1,j 6=i

(

1− λi

λj

) , (35)

and for the MSE we get:

MSE=
N∑

i=1

−λ
−N
2

i e
λi
p Ein

(

1, −λi

p

)

p

N∏

j=1,j 6=i

(

1− λi

λj

) , (36)

where recall from Proposition 1 thatp = α2Pℓ. For the SE
we get:

η =

N∑

i=1

−λ
2−N

2

i e
λi
p Ein

(

1, −λi

p

)

N∏

j=1,j 6=i

(

1− λi

λj

) . (37)

B. Case 2: All Variances ofω are Equal

Supposeξi = ξ = λ−1/2, ∀i ≤ N . In this case, the phase
type distribution simplifies to the Erlang distribution:

f(x,N, λ) =
λNxN−1e−λx

(N − 1)!
, (38)

and we get:

MSE=
λ

p
e

λ
p Ein

(

N,
λ

p

)

, (39)

η =
G
(
λ
p

)

aN(N−1)!
,

where

G(x) , MeijerG
3,1
1,0

(
−Nr;−(Nr − 1)
−Nr,−Nr, 0; .

∣
∣
∣
∣
x

)

, (40)

is the Meijer G function.
In case of identical variances inω, (39) gives the same

expression as (13) in accordance with the fact thatSΩ is
proportional to the identity matrix.

VII. N UMERICAL ANALYSIS OF THE MSE

A. Channel Model and Covariance Matrix

In this section we consider a single cell system, in which
MSs use orthogonal pilots to facilitate the estimation of the
uplink channel by the BS. Recall from Section III that the

Table I
SYSTEM PARAMETERS

Parameter Value

Number of antennas Nr = 4, 16, 20, 64, 100, 500
Path Loss αℓ = 40, 45, 50 dB
Power budget τpPp,ℓ + τdPℓ = Ptot = 250

mW, as in Eq. (1).
Total number of symbols (per time
slot)

F = 12

Antenna spacing D/λ = 0.15, ...,1.5
Mean Angle of Arrival (AoA) θ̄ = 70◦

Angular spread 2 · θ∆ = 5, ...,45◦

channel estimation process is independent for each MS and we
can therefore focus on a single user. The covariance matrixCℓ

of the channelhℓ as the function of the antenna spacing, mean
angle of arrival and angular spread is modeled as by the well
known spatial channel model, which is known to be accurate
in non-line-of-sight environment with rich scattering andall
antenna elements identically polarized, see [35]. For uniformly
distributed angle of arrivals, the(m,n) (m,n ∈ {1, . . . , Nr})
element of the covariance matrixof User-ℓ Cℓ is given by

Cm,n =
1

2θ∆

∫ θ∆

−θ∆

ej·2π·
D
λ
(n−m) cos(θ̄+x)dx, (41)

where the system parameters are given in Table I. The
covariance matrixCℓ becomes practically diagonal as the
antenna spacing and the angular spread grows beyondDλ > 1
and θ∆ > 30◦. In contrast, with critically spaced antennas
Dλ = 0.5 and θ∆ < 10◦, the antenna correlation in terms
of the off-diagonal elements ofCℓ can be considered strong.
Note that modeling the correlation matrices at the receiver
side according to (41) corresponds to using the one-sided
narrowband Kronecker model with receiver-side correlation,
which is an appropriate model for the uplink of MU MIMO
systems [31].

B. Numerical Results

In this section we consider a single cell single user MIMO
system, in which the mobile terminal is equipped with a
single transmit antenna, whereas the BS employsNr receive
antennas. Note that the performance characteristics of the
proposed MMSE receiver as compared with the naïve receiver
are similar in the multi-user MIMO case from the perspective
of the tagged user, since the proposed receiver treats the
multi-user interference as noise according to (10). The key
input parameters to this system that are necessary to obtain
numerical results using the MSE derivation in this paper are
listed in Table I.

Figure 1 shows the cumulative distribution function (CDF)
of the squared error of the estimated data symbols at the BS,
i.e. the CDF of‖Gy − x‖2 using the naïve and the MMSE
receiver when the number of antennas at the BS isNr = 500.
In all three cases in terms of path loss (αℓ = 40, αℓ = 45
andαℓ = 50 dB), the gain of the MMSE receiver is large in
the entire region of the CDF. For example, atαℓ = 40, the

7



PL=

40 dB

PL=

50 dB

Perfect CSI

Perfect CSI

MMSE

MMSENaïve Naïve

Gain Gain

Figure 1. Cumulative distribution function of the squared error in a single
user MIMO scenario when the path loss between the UE and the BSis set
to 40 and 50 dB when using the naïve receiver, the MMSE receiver and the
receiver which has access to the perfect CSI withNr = 500 antennas.

50 100 150 200
P mW

20

15

10

5

MSE dB

Nr=4

Nr=16

Nr=64

Correlated

Uncorrelated

MMSE

Naive

Uncorrelated

Correlated

Uncorrelated

Correlated

Figure 2. Comparing the performance of the naïve and the MMSEreceiver
in the case of correlated (solid lines) and uncorrelated (dashed lines) antennas
(with Nr = 4, 16, 64).

median of the CDF is -21 dB with the naïve receiver and -29
dB with the MMSE receiver. This result indicates that using
the MMSE receiver is advantageous not only in the average
sense, but in virtually all channel states.

Figure 2 examines the impact of antenna correlation on the
MSE with the naïve and the MMSE receivers. The impact of
antenna correlation in terms of the achievable MSE decreases
as the number of antennas increases fromNr = 4 to Nr = 64.
An intuitive explanation of this insight is that the impact of
correlation can be thought of as a factor that decreases the
effective number of antennas, that is the number of antennas
which contribute to the estimation of the transmitted data
symbol. As the number of antennas grows large, antenna
correlation decreases the effective number of antennas, but
the loss due to this is not as significant as this loss when
the number antennas is low. Instead, as the figure shows,
at large number of antennas tuning the pilot power plays a
more important role in minimizing the MSE than the effect of
antenna correlation.

0 50 100 150 200
P mW

20

15

10

5

0
MSE dB

Nr=4

Nr=16

Nr=64

Perfect CSI

Imperfect CSI

MMSE

Naive

Figure 3. Comparing the MSE performance of the naïve and MMSEreceivers
with that of a receiver that uses perfect CSI. As the pilot power increases, the
MSE achieved by the receiver that uses perfect CSI increases, because due to
the sum power constraint the transmit power available for the data symbols
decreases.

Figure 3 compares the performance of the naïve and the
MMSE receivers with that of a receiver that has access to
the perfect CSI, that is assuming thatĥℓ = hℓ. This situation
corresponds toDℓ = I andQℓ = 0 and the structure of the
naïve and the MMSE receivers coincide. Indeed, we recall
that the naïve receiver does minimize the MSE in the case
of perfect CSI. The key aspect to observe in Figure 3 is
that the gap between the MMSE receiver and the receiver
operating with perfect CSI does not depend onNr. This is
in sharp contrast with the gap between the naïve receiver and
the receiver with perfect CSI, which largely increases as the
number of antennas gets large.

30 40 50 60 70
Path Loss

60

70

80

90

100

110

120

Opt P

Figure 4. Optimum pilot power as a function of the path lossαℓ. The red
dot indicates the optimum pilot power when using the MMSE receiver at
αℓ = 40 dB, which is≈ 68 mW.

Figure 4 shows the optimum pilot power as the function
of the path loss when using the MMSE receiver. Recall that
the optimum pilot power is independent of the number of
antennas. This figure suggests that the pilot power should be
tuned based on large scale fading. Although the optimum pilot
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power is independent ofNr, the previous figures show that the
importance of proper PDPR tuning increases when the number
of antennas gets large.This is because, as visible in Figures 2,
3, and 5, the gap between the naïve and the MMSE receiver
increases with the number of antennas.

0 2 4 6 8 10
tp

2

5

10

20

25
SE

MMSE

Nr=10, 100, 500
Naïve receiver

Nr=10, 100, 500

Figure 5. Spectral efficiency as a function of the employed pilot symbolsτp.
In this example, the number of users in MU MIMO system is set equally toτp,
that is we assume that the number of users that can be spatially multiplexed
equals the pilot sequence length.

Figure 5 shows the SE of a MU MIMO system, in which the
number of spatially multiplexed users is equal to the lengthof
the employed pilot sequenceτp. Figure 5 illustrates the trade-
off between increasing the number of MU MIMO users and the
necessary number of pilot symbols used to create orthogonal
pilot sequences. A greater number of users increases the SE
of the system at the expense of spending more symbols on the
pilot signals. Therefore, we can see that aroundτp = 6 the SE
reaches its highest value. The gain in terms of SE of using the
MMSE receiver is around 25% when the number of antennas
is large.

VIII. C ONCLUSIONS

In this paper, we first derived an analytical expression (G⋆
ℓ )

of a linear receiver structure that minimizes the MSE of
the uplink estimated data symbols when the receive antennas
possess a known correlation structure. We then derived closed
form expressions for the MSE and the achievable SE when
employing this MMSE receiver as a function of the pilot and
data power, number of antennas, and path loss. We used Monte
Carlo simulations to verify the analytical results and to gain
insight into the system behavior when usingG⋆

ℓ .
From the analysis we conclude that when employing the

true MMSE receiver (G⋆) at the BS in a MU MIMO system,
the pilot power that minimizes the MSE is independent of
the number of receive antennas. This implies that the optimal
training does not need to be adjusted for sites with different
numbers of antennas or when upgrading existing antenna sites
to a larger number of antennas. In the special, (but in practice,
typical) case when the thermal noise power levels on the data

and pilot signals are equal, setting the pilot power by the
terminal is easy, because the terminals continuously measure
the path loss to the serving BS.

The simulation results provide the following insights:

• The performance difference between the naïve and the
MMSE receiver increases with an increasing number of
antennas. However, the performance gap between the
MMSE receiver and the receiver that has access to
a perfect CSI does not increase with the number of
antennas.

• When the number of antennas is large, the impact of
antenna correlation on the MSE is relatively small as
compared with the impact of appropriately tuning the
pilot power. When using the MMSE receiver (G⋆

ℓ ), the
optimal pilot power does not depend on the number
of receive antennas, but is quite sensitive to large-scale
fading.

• When the number of antennas is large, the gain of using
the MMSE receiver over using the naïve receiver is large,
not only in terms of MSE, but also in the entire CDF of
the squared error of the estimated data symbols.

We also showed that the well known relation between the
MSE and the SE that holds for the case when perfect CSI at
the MMSE receiver is available is valid also for the case of
imperfect CSI at the regularized MMSE receiver (G⋆). The
deeper analysis of the impact of CSI errors in the case of
non-separable channel models is an important topic for future
research.
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APPENDIX I

Proof of Proposition 1.If Cℓ = cℓI, implying Dℓ = dℓI,
Qℓ = qℓI and the optimalG⋆

ℓ of (10) can be written as:

G⋆
ℓ =

αℓ

√
Pℓdℓ

α2
ℓPℓ

(

d2ℓ ||ĥℓ||2 + qℓ

)

+
∑K

k 6=ℓ α
2
kPkck + σ2

d

ĥH
ℓ

, gℓ · ĥH
ℓ . (42)

SubstitutingG⋆
ℓ into (7) we get:

MSE
(

ĥℓ

)

= −2αℓ

√
Pℓgℓdℓ||ĥℓ||2 + 1+

g
2

ℓ ·



α
2

ℓPℓd
2

ℓ ||ĥℓ||4 +



α
2

ℓPℓqℓ +
K
∑

k 6=ℓ

α
2

kPkck + σ
2

d



 ||ĥℓ||2


 .

(43)

Recognizing thatϕℓ , ||ĥℓ||2 is Gamma distributed, the
density function ofϕℓ ∀ℓ is given by (dropping the index
ℓ for convenience):
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fϕ(x) =
r−NrxNr−1e−x/r

(Nr − 1)!
x > 0. (44)

Proposition 1 follows from Lemma (43) by taking the average
of MSE

(

ĥℓ

)

using the the following integrals:
∫ ∞

x=0

T1fϕ(x)dx =

sℓ ·
Nr

(

− sℓrℓ + e
bℓ

sℓrℓ

(

bℓ + (1 +Nr)sℓrℓ
)

Ein

(

1 +Nr,
bℓ

sℓrℓ

)

)

s2ℓrℓ
;

(45)

∫ ∞

x=0

T2fϕ(x)dx =

bℓ ·
−sℓrℓ + e

bℓ
sℓrℓ

(

bℓ +Nrsℓrℓ
)

Ein

(

Nr,
bℓ

sℓrℓ

)

s2ℓr
2

ℓ

;

(46)

∫ ∞

x=0

T3fϕ(x)dx = 2 · e
bℓ

sℓrℓ NrEin

(

1 +Nr,
bℓ

sℓrℓ

)

,

(47)

whereEin(n, z) ,
∫∞

1
e−zt/tn dt is a standard exponential

integral function.

APPENDIX II

Proof of Lemma 2.We rewrite the MSE expression in (11),
by making use of the following recursive relation, from [36]
(also available at [37, 8.19.12]):

µℓEin(Nr, µℓ) +NrEin(Nr + 1, µℓ) = e−µℓ . (48)

Substitutingµℓ = b
rs in this relation, using the terms of the

MSE in (11) and rearranging, we obtain:

MSE=
bℓ
rℓsℓ

e
bℓ

rℓsℓ Ein

(

Nr,
bℓ
rℓsℓ

)

, (49)

where, similarly to the notation used in Proposition 1,bℓ ,

qℓpℓ + σ2
d with pℓ , α2

ℓPℓ and sℓ , d2ℓpℓ and rℓ, dℓ and qℓ
are defined in (12).

Finally, recognizing that:

µℓ =
bℓ
rℓsℓ

=
qℓα

2
ℓPℓ + σ2

d

d2ℓα
2
ℓPℓrℓ

= (50)

=
σ2
dσ

2
pτd + cℓα

2
ℓ (σ

2
pPtot + τpPp,ℓ(σ

2
dτd − σ2

p))

c2ℓα
4
ℓPp,ℓτp(Ptot − Pp,ℓτp)

and substituting (1) intoPℓ the lemma follows.

APPENDIX III

We first prove the following lemma that will be useful for
the proof of Proposition 3.

Lemma 6. For n > 0 and x ≥ 0, the following limit holds:

lim
x→∞

x2
(
1− ex(n+ x)Ein(n, x)

)
= −n. (51)

Proof of Lemma 6.Recalling the basic relationship between
the incomplete Gamma function and the exponential integral
function:

Ein(n, x) = xn−1Γ(1− n, x), (52)

and using the following expansion formula that is valid for
large values ofx (see [38]):

Γ(1− n, x) ∼

∼ x−ne−x
(

1 +
−n

x
+

−n(−n− 1)

x2
+

+
−n(−n− 1)(−n− 2)

x3
+ . . .

)

,

(53)

we have:

x
2
(

1− e
x(n+ x)Ein(n, x)

)

∼ x
2

(

1− e
x(n+ x)xn−1

x
−n

e
−x ·

·
(

1 +
−n

x
+

−n(−n− 1)

x2
+

−n(−n− 1)(−n− 2)

x3
+ . . .

)

)

.

(54)

Rearranging terms, we finally get, for largex:

x2
(
1− ex(n+ x)Ein(n, x)

)
∼

−n+
2n(1 + n)

x
− 3n(1 + n)(2 + n)

x2
+

+
4n(1 + n)(2 + n)(3 + n)

x3
∓ . . .

(55)

from which it follows:

lim
x→∞

x2
(
1− ex(n+ x)Ein(n, x)

)
= −n. (56)

We can now prove Proposition 3.

Proof of Proposition 3.We begin by taking the first derivative
of MSE as a function ofPp,ℓ. To this end, we use (11) and
take the derivative of the MSE with respect toµℓ:

MSE′(µℓ) =− µℓe
µℓEin (Nr−1, µℓ)+

+ eµℓEin (Nr, µℓ) + µℓe
µℓEin (Nr) . (57)

After some algebraic manipulation based on (48), we obtain:

MSE′(µℓ) = eµℓ
(
Nr + µℓ

)
Ein (Nr, µℓ)− 1. (58)

From [36] (also available at [37, 8.19.21]) we have

1 < (x+ n)exEin (n, x) <
x+ n

x+ n− 1
.

Substitutingx = µℓ andn = Nr shows that MSE′(µℓ) 6= 0 if
0 < µℓ.

Next, we consider the first derivative ofµ(Pp,ℓ) as defined
in (14) with respect toPp,ℓ:
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µ′(Pp,ℓ) =
σ2
dσ

2
pτd(2Pp,ℓτp − Ptot)

c2ℓP
2
p,ℓα

4
ℓτp(Ptot − τpPp,ℓ)2

+

+
cℓα

2
ℓ

(

P 2
p,ℓτ

2
p

(
σ2
dτd − σ2

p

)
+ 2Pp,ℓPtotσ

2
pτp − σ2

pP
2
tot

)

c2ℓP
2
p,ℓα

4
ℓτp(Ptot − τpPp,ℓ)2

.

(59)

The numerator of (59) is a second order polynomial ofPp,ℓ

with the following coefficientsa0 = −Ptotz, a1 = 2τpz, a2 =
cℓα

2
ℓτ

2
p (σ

2
dτd − σ2

p), wherez = (cℓPtotα
2
ℓ + σ2

dτd)σ
2
p. a0 is

negative,a1 is positive and the sign ofa2 depends on the sign
of σ2

dτd−σ2
p. In reasonable casesa2 is positive as well, because

τd > 1 andσd ≈ σp. Whena2 is positive the numerator of
(59) has one positive and one negative root, becausea1 <
√

a21 − a0a2 and the positive root is

P ∗
p,ℓ =

−a1 +
√

a21 − 4a0a2
2a2

. (60)

Finally, the first derivative of the MSE with respect toPp,ℓ

is:
d

dPp,ℓ
MSE= MSE′(µℓ) · µ′(Pp,ℓ). (61)

Recall that MSE′(µℓ) 6= 0, the roots of d
dPp,ℓ

MSE are
identical with the roots of the numerator of (59) and the
positive root of d

dPp,ℓ
MSE isP ∗

p,ℓ.

We still need to show thatP ⋆
p,ℓ corresponds to a local mini-

mum. To this end, we study the sign oflimPp,ℓ→0+
d

dPp,ℓ
MSE.

If the limit is negative thenP ⋆
p,ℓ corresponds to a local min-

imum. Unfortunately, (61) is not directly applicable because
limPp,ℓ→0+ µ′(Pp,ℓ) = 0 and limµℓ→∞ MSE′(µℓ) = ∞. In-
stead, according to (49) we introduceF (n, x) = xexEin(n, x)
and rewrite (50) as

µℓ =
b1 + b2Pp,ℓ

Pp,ℓ(b3 − Pp,ℓ)
,

where b1 =
σ2
dσ

2
pτd+cℓα

2
ℓPtotσ

2
p

c2
ℓ
α4

ℓ
τ2
p

, b2 =
cℓα

2
ℓτp(σ

2
dτd−σ2

p)

c2
ℓ
α4

ℓ
τ2
p

, b3 =
Ptot

τp
and note thatb1 and b3 are positive. This way MSE=

F
(

Nr,
b1+b2Pp,ℓ

Pp,ℓ(b3−Pp,ℓ)

)

. Introducing P̃ℓ =
b1Pp,ℓ(b3−Pp,ℓ)
b3(b1+b2Pp,ℓ)

we

also have MSE= F
(

Nr,
b1

P̃ℓb3

)

and can rewrite the limit as

lim
Pp,ℓ→0+

d

dPp,ℓ
MSE= lim

Pp,ℓ→0+

d

dPp,ℓ
F

(

Nr,
b1 + b2Pp,ℓ

Pp,ℓ(b3 − Pp,ℓ)

)

=

= lim
Pp,ℓ→0+

d

dPp,ℓ
P̃ℓ lim

P̃ℓ→0+

d

dP̃ℓ

F

(

Nr,
b1

P̃ℓb3

)

.

The first term converges to 1, while the second term converges
to −Nrb3

b1
based on (51).

APPENDIX IV

Proof of Lemma 4.According to the matrix inversion lemma
for matricesA, B, C, D of sizen×n, n×m, m×m, m×n,

respectively, we have

(A+BCD)−1 =

A−1 −A−1B
(
DA−1B+C−1

)−1
DA−1 .

SubstitutingA = Ψℓ, B = αℓ

√
PℓDℓĥℓ, C = 1, D =

αℓ

√
Pℓĥ

H
ℓ DH

ℓ we have:
(

Ψℓ + α2
ℓPℓDℓĥℓĥ

H
ℓ DH

ℓ

)−1

=

(62)

= Ψ−1
ℓ −Ψ−1

ℓ αℓ

√

PℓDℓĥℓ·

·
(

αℓ

√

Pℓĥ
H
ℓ DH

ℓ Ψ−1
ℓ αℓ

√

PℓDℓĥℓ + 1
)−1

·

· αℓ

√

Pℓĥ
H
ℓ DH

ℓ Ψ−1
ℓ =

= Ψ−1
ℓ − α2

ℓPℓ

α2
ℓPℓĥ

H
ℓ DH

ℓ Ψ−1
ℓ Dℓĥℓ+1

·Ψ−1
ℓ Dℓĥℓĥ

H
ℓ DH

ℓ Ψ−1
ℓ . (63)

Substituting (63) into (16) gives:

G⋆
ℓ = αℓ

√
P ℓĥ

H
ℓ DH

ℓ ·

·
(

Ψ−1
ℓ − α2

ℓPℓ

α2
ℓPℓĥ

H
ℓ DℓΨ

−1
ℓ Dℓĥℓ+1

Ψ−1
ℓ Dℓĥℓĥ

H
ℓ DH

ℓ Ψ−1
ℓ

)

.

(64)

Recall thatΨℓ = ΘH
ℓ SℓΘℓ is the SVD ofΨℓ. Substituting

(19) - (20), and this SVD into (64) we get:

G⋆
ℓ = αℓ

√
P ℓ

(

ν
H
ℓ S

−1/2
ℓ Θℓ−

α2
ℓPℓ

α2
ℓPℓ||νℓ||2 + 1

||νℓ||2νH
ℓ S

−1/2
ℓ Θℓ

)

=

= αℓ

√
P ℓ

(

1− α2
ℓPℓ||νℓ||2

α2
ℓPℓ||νℓ||2 + 1

)

ν
H
ℓ S

−1/2
ℓ Θℓ =

=
αℓ

√
P ℓ

α2
ℓPℓ||νℓ||2 + 1

ν
H
ℓ S

−1/2
ℓ Θℓ. (65)

APPENDIX V

Proof of Lemma 5.Substituting (17) into (7) with optimal
MMSE receiver, we get:

MSE
(

ĥℓ

)

= G⋆
ℓ

(

α2
ℓPℓDℓĥℓĥ

H
ℓ Dℓ

H +Ψℓ

)

G⋆H
ℓ

− αℓ

√

Pℓ(G
⋆
ℓDℓĥℓ + ĥH

ℓ Dℓ
HG⋆H

ℓ ) + 1. (66)

From (22), (21) and the SVD ofΨℓ we have:

G⋆
ℓDℓĥℓ = gℓν

H
ℓ νℓ = gℓ||νℓ||2, (67)

G⋆
ℓΨℓG

⋆H
ℓ = g2ℓν

H
ℓ νℓ = g2ℓ ||νℓ||2, (68)

substituting this into (66) we obtain

MSE(νℓ) =

α2
ℓPℓg

2
ℓ ||νℓ||4 + g2ℓ ||νℓ||2 − 2αℓ

√

Pℓgℓ||νℓ||2 + 1, (69)

11



wheregℓ is also a function of||νℓ||2 according to (23). Sub-
stituting (23) into (69) gives the lemma after some algebraic
manipulations.
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