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Abstract—We consider the uplink of a single cell multi-user
multiple input multiple output (MU-MIMO) system, in which
the base station acquires channel state information at the receiver
by means of uplink pilot signals. Since each mobile station has
a sum power budget that is used to transmit pilot and data
symbols, the pilot power ratio (PPR) has a large impact on the
system performance in terms of spectral and energy efficiency.
We formulate the problem of PPR setting as a non-cooperative
game, in which each mobile station aims at minimizing the mean
squared error of the uplink received data symbols at the base
station. We show that in this game a unique Nash equilibrium
exists, and propose an iterative decentralized algorithm – termed
Best PPR Algorithm (BPA) – that is guaranteed to converge
to that Nash equilibrium. Since BPA dynamically responds to
the measured interference, it outperforms widely used schemes
that use a predetermined PPR. BPA also performs close to the
global optimum, especially when mobile stations with similar path
loss values are co-scheduled in the MU-MIMO system. Based on
these insights, we propose a practical signalling mechanism for
implementing BPA in MU-MIMO systems.

I. INTRODUCTION

In the uplink of multi-user multiple input multiple output
(MU-MIMO) systems, the base station (BS) typically acquires
channel state information (CSI) by means of uplink pilot or
reference signals that are orthogonal in the code domain. For
example, mobile stations (MSs) in long term evolution (LTE)
systems use cyclically shifted Zadoff-Chu sequences to form
demodulation reference signals allowing the BS to acquire
channel state information at the receiver (CSIR), which is
necessary for uplink data reception [1].

In general, in systems employing pilot aided channel esti-
mation the number of pilot symbols and the pilot power ratio
(PPR) play a crucial role in optimizing the system performance
in terms of spectral and energy efficiency [2]–[6]. The seminal
work by [2] evaluated the difference between the mutual
information when the receiver has only an estimate of the
channel and when it has perfect knowledge of the channel.
It also established upper and lower bounds – related to the
variance of the channel measurement error – on this difference.
Subsequently, the results in [3] showed how training based
channel estimation affects the capacity of the fading channel,
recognizing that training imposes a substantial information-
theoretic penalty, especially when the coherence interval T is
only slightly larger than the number of transmit antennas M ,
or when the SNR is low. In these regimes, learning the entire
channel is highly suboptimal. Conversely, if the SNR is high,

and T is much larger than M , training-based schemes can
come very close to achieving capacity. Therefore, the power
that should be spent on training and data transmission depends
on the relation between T and M . Subsequently, references
[4], [5] established a lower bound specifically for multiple
input multiple output (MIMO) orthogonal frequency division
multiplexing (OFDM) systems with minimum mean squared
error (MMSE) channel estimation. It was also shown that the
optimal PPR that maximizes this lower bound or minimizes the
average symbol error rate can increase the capacity by 10-20%
as compared with a system using suboptimal PPR setting.

As the number of antennas and the number of simultane-
ously served users by a single BS increases, decentralized
algorithms for MU-MIMO systems become important, because
they help to reduce the required processing power. Therefore,
there is an increasing interest in decentralized optimization
schemes for MU-MIMO systems, see for example [7]–[10].
These papers either assume the availability of perfect CSI,
or incorporate CSI errors, but do not address the joint opti-
mization of setting the pilot and the data power. A different
line of work proposed a game theoretic approach for decen-
tralized power control and resource allocation in multi-user
(MU) systems in which some form of "performance coupling"
[11] exists among the users, as the increase of one user’s
performance degrades the performance of others, e.g., [12]
and [13]. These references suggest that game theoretic ap-
proaches in MU systems are appealing, because they naturally
admit decentralized algorithms that can be easily deployed by
both network nodes and MSs. It is, however, unclear whether
a game theoretic treatment could be used for designing low
complexity decentralized algorithms for setting the PPR in MU
cellular systems.

In this paper we address this problem. We propose a game
theoretic approach to setting the PPR in the uplink (UL) of
MU-MIMO systems and propose a decentralized algorithm that
can be implemented in practice and converges to a unique Nash
equilibrium. Thereby, the main contribution of the present
paper is a decentralized MU (pilot and data) power allocation
algorithm, which we refer to as Best pilot-to-data power ratio
(PDPR) Algorithm (BPA). The numerical results obtained by
testing BPA in a MU-MIMO system employing an increasing
number of receive antennas yield several unique insights. Our
results show that BPA performs close to the globally optimal



solution, which minimizes the sum of mean squared errors
(MSEs) in MU-MIMO systems, and outperforms the tradi-
tional pilot power setting scheme that uses a fixed, predefined
PPR.

The rest of the paper is organized as follows. Section II
discusses related work and highlights the contributions of our
paper with respect to these work. The subsequent section
describes the system and channel estimation models. Section
IV describes the receiver model and, for completeness, rewrites
the closed form expression for the MSE of the uplink received
data symbols as a function of the pilot and data transmit power
levels. Section V derives the best response power allocation
function that minimizes the MSE of the received data sym-
bols. Based on the best response, we develop a decentralized
algorithm called the BPA, which is executed by each MS and
the BS in the system and, as its output, allocates transmit power
to each MS. Section VI presents numerical results. Section VII
concludes the paper.

II. RELATED WORK AND CONTRIBUTIONS

Due to its central role in the performance of MIMO systems,
many recent work investigated the performance impact of the
PPR and proposed optimal or near-optimal schemes for setting
the PPR [14]–[21]. The MU-MIMO scenario is analyzed
in [14], in which the coherence interval of T symbols is
spent for channel training, channel estimation, and precoder
computation for downlink (DL) transmission. Specifically, the
optimum number of terminals in terms of the DL spectral
efficiency is determined for a given coherence interval, num-
ber of base station antennas, and signal-to-interference-plus-
noise ratio (SINR). There is no receiver design involved and
the pilot-to-data power trade-off is out of the scope of the
considered optimization problem. The joint power loading of
data and pilot symbols for the purpose of acquiring channel
state information at the transmitter (CSIT) for precoding is
considered in [15], but the impact of setting the PPR at the
MU-MIMO receiver is not considered. In contrast, the UL
sum-rate maximization problem by tuning the training period
in a frequency-flat fading channel is considered in [18], without
modeling the receiver structure at the BS. Reference [20]
proposes a pilot design that maximizes the spectral efficiency
of high mobility wireless communication systems that use
pilot-assisted MMSE channel estimation. That work does not
explicitly model the impact of CSI errors on MU-MIMO re-
ceivers, such as an MMSE receiver. Reference [16] investigated
the optimization of the pilot overhead for single-user wireless
fading channels, and the dependencies of this pilot overhead
on various system parameters of interest (e.g. fading rate,
SNR) were quantified. By finding an expansion of the spectral
efficiency for the overhead optimization in terms of the fading
rate around the perfect-CSI point, the square root dependence
of both the overhead and the spectral efficiency penalty was
clearly identified. More recently, references [17], [19], and [22]
considered the uplink power control and PPR setting problem
in MU-MIMO systems assuming practical (zero-forcing (ZF)
and MMSE based) multiantenna receiver structures rather than

using information theoretic capacity as a basis for performance
evaluations. However, the papers mentioned above do not
develop decentralized algorithms for PPR setting.

Another set of related papers develop decentralized opti-
mization schemes for MIMO systems, either assuming the
availability of perfect channel state information, or incorpo-
rating channel state information errors, but do not address
the joint optimization of pilot and data power setting, see for
example [7]–[10].

Also, a number of recent work proposed a game theoretic
approach for power control and resource allocation in MU
systems in which performance coupling exists among the users,
as the increase of one user’s performance degrades the perfor-
mance of others [11], [23], [12], [13], [24], [25] and [26].
The MU power control problem for the Gaussian frequency-
flat relay channel is modelled as a Gaussian interference relay
game (GIRG) in [11]. In the GIRG, instead of allocating the
power budget across the set of sub-channels, each player aims
to decide the optimal power control strategy across a set of
hops. For cooperative cognitive radio networks, a coalitional
game theoretic approach is proposed in [23]. The coalitional
game model captures a cooperative secondary spectrum access
scenario, and involves primary and secondary spectrum users
such that the secondary users can act as cooperative relays
for the primary users. A non-cooperative feedback-rate control
game with pricing is considered in [12], as a model of the
downlink transmission of a closed-loop wireless network, in
which a multi-antenna BS utilizes CSI feedback to properly
set linear precoders to communicate with multiple users. Ref-
erence [13] proposes a distributed power splitting scheme for
simultaneous wireless information and power transfer in relay
interference channels, where multiple source-destination pairs
communicate through energy harvesting relays. Authors in [24]
model power control as a non-cooperative game between
transmitter-receiver pairs and show the existence of equilibria
using quasi-variational inequality theory. Reference [25] for-
mulates the problem of downlink power control of small cell
base stations under a total power constraint as a generalized
Nash equilibrium problem and proves the existence of equilib-
ria. The authors in [26] consider a game theoretical formulation
of the improper graph multicoloring problem as a model of
resource allocation between transmitter-receiver pairs, prove
the existence of equilibria and provide polynomial complexity
algorithms for computing equilibria.

A powerful game theoretic framework for the noncoopera-
tive maximization of mutual information assuming Gaussian
interference channels in MU-MIMO systems is developed in
[27]. As it is pointed out by [27], the main difficulty in
the MIMO case as compared with single input single output
(SISO) systems is that the optimal transmit directions of each
MS change with the strategies of the other users, as opposed
to the SISO case, where only the power allocation depends
on the strategies of the other MSs. However, this framework
assumes the availability of perfect CSI and does not address the
trade-off between data transmission and channel estimation. In
contrast, the work reported in [28] develops a game theoretic
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approach to maximizing the own information rates subject to
transmit power and robust interference constraints allowing for
non-perfect CSI availability at the transmitters and receivers
specifically in a cognitive radio environment. However, the
aspect of tuning the pilot and data power levels subject to a
sum power constraint is not considered. For the DL, reference
[29] assumes perfect CSIT at the BS and proposes a partially
asynchronous distributed algorithm based on a non-cooperative
game to find the DL precoders in MU-MIMO systems.

Closest to our work is [21], which considers the problem
of joint pilot and data power control for the MU-MIMO UL.
However, the model of [21] uses a receiver that minimizes the
MSE of the estimated data symbols only when perfect CSI is
available. As it has been shown in our previous work [22],
the performance of this naive receiver can be significantly
improved by regularizing the receiver with respect to the
statistics of the CSI estimation errors.

Thus, to the best of our knowledge, our paper is the first to
propose dynamic and/or decentralized algorithms for setting
the pilot-to-data power ratio in multi-user cellular systems
based on game-theoretical foundations. Our main contribution
is the decentralized PPR computation and the associated BPA
algorithm, which incorporates several important and practically
useful results. Specifically, the following are important parts of
BPA:

• Proposition 2 shows that the MSE of a tagged MS is
quasi-convex with respect to its data power and derives
the unique MSE minimizer data power. This result is non-
trivial, and interestingly, has not been derived previously
in the literature. This result can be useful on its own
for other research work in the area of multi-user MIMO
receiver design and power allocation.

• We prove that a unique Nash equilibrium exists when the
mobile stations use the above unique MSE minimizer as
their best response function. This is a highly non-trivial
result, whose proof involves a number of important steps,
including Theorem 1, Lemmas 4-5, Proposition 3, and
Theorem 2. Each of these steps, and especially the proof
of Theorem 2, requires careful considerations that jointly
lead to the practically useful BPA algorithm.

• The practical signalling mechanism proposed in Section
VI helps the reader to put BPA into a system design
context.

III. SYSTEM AND CHANNEL ESTIMATION MODEL

We consider the uplink of a MU-MIMO system, in which the
MSs transmit orthogonal pilot sequences s =

[
s1, ..., sτp

]T ∈
Cτp×1, in which each pilot symbol is scaled as |si|2 = 1, for
i = 1, .., τp. The pilot sequences are constructed such that
they remain orthogonal as long as the number of spatially
multiplexed users is maximum τp. Specifically, without loss
of generality, we assume that the number of MU-MIMO MSs
is K ≤ τp. In practice, K � Nr, where Nr is the number of
antennas at the BS. Also, we use the K = {1, . . . ,K} set to
denote the set of MSs.

We assume a frequency flat (narrow band) channel, within
which the subcarriers can be considered having the same
channel coefficient in the frequency domain. This is a realistic
assumption considering, for example, a 3GPP LTE system
based on OFDM, in which a channel (a physical resource
block [1]) consists of 12 subcarriers corresponding to 180 kHz
channel bandwidth, while the coherence bandwidth even in
relatively large outdoor cells can be assumed to be at least
Bc = c

∆ = 300 kHz, where c is the speed of light and ∆ is the
maximum difference in length between different propagation
paths from the transmitter to the receiver. Typical values for
∆ are 30 meters (indoors) and 1000 meters (outdoors) [30,
Chapter 2].

Specifically, given F subcarriers in the coherence band-
width, a fraction of τp subcarriers are allocated to the pilot
and τd , F − τp subcarriers are allocated to the data symbols.
Each MS may transmit using its full power budget Ptot, such
the transmission power can be distributed unequally over the
subcarriers. In particular, considering a transmit power P (p)

for each pilot symbol and P for each data symbol, the sum
constraint of

τpP
(p) + τdP = Ptot (1)

is enforced, where 1 ≤ τp, τd < F . Thus, the Nr × τp matrix
of the received pilot signal from a specific MS at the BS can
be conveniently written as:

Yp = α
√
P (p)hsT + N, (2)

where we assume that h ∈ CNr×1 is a circular symmetric
complex normal distributed column vector with mean vector
0 and covariance matrix C (of size Nr), denoted as h ∼
CN (0,C), α accounts for the propagation loss, N ∈ CNr×τp
is the spatially and temporally additive white Gaussian noise
(AWGN) with element-wise variance σ2

p, where the index p
refers to the noise power on the received pilot signal.

We assume that the BS uses either the least squares (LS)
or the MMSE estimator to obtain an estimate of the channel
at the receiver, and based on the below summarized results of
[31] we show that our methodology to determine the MSE of
the received data symbols is applicable in both cases.

A. LS Channel Estimation
For each MS, the BS utilizes pilot sequence orthogonality

and estimates the channel based on (2) assuming:

ĥLS =
1

α
√
P (p)

Yps∗(sT s∗)−1 = h +
1

α
√
P pτp

N s∗ (3)

= h +
1

α
√
Ptot − τdP

√
τp

N s∗,

where s∗ =
[
s∗1, ..., s

∗
τp

]T
∈ Cτp×1 denotes the vector of

pilot symbols, s∗ denotes the complex conjugate of s, and
(sT s∗) = τp. By considering h ∼ CN (0,C), it follows that
the estimated channel ĥLS is a circular symmetric complex
normal distributed vector ĥLS ∼ CN (0,RLS), with
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RLS , E{ĥLSĥ
H
LS} = C +

σ2
p

α2P (p)τp
INr

= C +
σ2
p

α2(Ptot−τdP )
INr . (4)

B. MMSE Channel Estimation

In the case of MMSE channel estimation, it is useful to
define the training matrix S = s ⊗ INr (of size τpNr × Nr),
so that SHS = τpINr and the τpNr × 1 vector of the received
signal (2) can be conveniently rewritten as

Ỹp = α
√
PpSh + Ñ,

where Ỹp, Ñ ∈ CτpNr×1.
The MMSE channel estimator aims at minimizing the MSE
between the estimate ĥMMSE , HỸp and the actual channel
h.

Lemma 1. [10], [31] The optimal MMSE decoder is

H =arg min
H
E{||HỸp − h||2F } =

=α
√
P (p)(σ2

pINr + α2P (p)CSHS)−1CSH ,

where H ∈ CNr×τpNr , and the MMSE channel estimate is
expressed as

ĥMMSE = α
√
Pp(σ

2
pINr + α2PpτpC)−1CSH(α

√
PpSh+ Ñ) =

=

(
σ2
p

α2Ppτp
INr +C

)−1

C

(
h+

1

α
√
Ppτp

SHÑ

)
. (5)

The covariance matrix of the estimated channel in the case of
MMSE channel estimation is captured in the following lemma.

Lemma 2. [31] The covariance matrix of the estimated
channel with MMSE estimation is given as:

RMMSE , E{ĥMMSEĥHMMSE} (6)

= C2.

(
σ2
p

α2(Ptot − τdP )
INr + C

)−1

.

C. Conditional Distribution of the Channel

Equations (4) and (6) can be used to calculate the conditional
distribution of the channels, which in turn plays an important
role to determine the MSE of the uplink received data symbols.

Lemma 3. [31] The conditional distribution of the channel
given its estimation ĥ is

(h|ĥ) ∼ CN (Dĥ,Q), (7)

where

D =

{
CR−1

LS for LS estimation
INr for MMSE estimation

Q =

{
C−CR−1

LS C for LS estimation
C−RMMSE for MMSE estimation

with RLS and RMMSE given in (4) and (6), respectively.

We emphasize here that for the subsequent optimal power
allocation it has crucial importance that matrices R,D,Q of
a given MS depend on its data power (due to (1)).

IV. LINEAR MMSE RECEIVER

A. Received Data Signal Model

The MU-MIMO received data signal at the BS can be
written as:

y = ακhκ
√
Pκxκ︸ ︷︷ ︸

User-κ

+

K∑
k 6=κ

αkhk
√
Pkxk︸ ︷︷ ︸

Other users

+nd, (8)

where K is the number of users, αkhk is the M × 1 vector
channel including large (αk) and small scale (hk) fading
between User-k and the BS, Pk is the data power per symbol
of User-k, xk is the transmitted data symbol by User-k and the
notation nd emphasizes the noise on the received data signal.
We denote the row vector of the data power levels of the K
MSs by P , {P1, . . . , PK} ∈ R1×K .

B. Employing the Naive and the MMSE Receivers at the BS

We start by comparing the structures and resulting MSE
expressions of two linear receivers.

Notice that when using the MMSE receiver, the MSE is
a natural performance metric, since it is directly related to
the objective function of the multi-user MIMO receiver. More
importantly, several related works showed that in the case
of the MMSE receiver, minimizing the MSE of the received
data symbols is equivalent to maximizing the SINR of the
received signal, and thereby maximizing the per-user data rate,
see for example [32]–[34]. Moreover, as we shall see, in the
case of a non-cooperative game, from each user’s perspective,
minimizing the MSE is a meaningful and useful basis for best
response due to the above mentioned rate-MSE equivalence.

The naive receiver uses the estimated channel ĥκ as if it
was the actual channel to estimate the data symbol transmitted
by User-κ [35]:

Gnaive
κ =ακ

√
Pκĥ

H
κ ·

·
(
α2
κPκĥκĥ

H
κ +

K∑
k 6=κ

α2
kPkCk + σ2

dI︸ ︷︷ ︸
MU-MIMO

interference plus noise

)−1

, (9)

where Gnaive
κ ∈ R1×M and it can be assumed that σ2

d = σ2
p.

This assumption is justified, because any subcarrier can be
used for pilot and data symbols, and we assume AWGN on all
subcarriers. In the sequel Gnaive

κ and the associated MSEnaive

are used as a point of reference, because the naive receiver
does not take into account the impact of channel estimation
errors.

As it has been pointed out by [36]–[38], this above receiver
structure needs to be regularized to obtain the MMSE receiver
Gκ that minimizes the MSE of the received data symbols in the
presence of CSI errors and takes into account the MU-MIMO
interference:
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Gκ = ακ
√
Pκĥ

H
κ DH

κ · (10)

·

(
α2
κPκ

(
Dκĥκĥ

H
κ DH

κ + Qκ

)
+

K∑
k 6=κ

α2
kPkCk + σ2

dINr︸ ︷︷ ︸
MU-MIMO

interference plus noise

)−1

.

Notice that in the case of a single user (K = 1) and
perfect channel estimation, σ2

κ = σ2
d, Dk = INr , Qk = 0

and Gnaive
k = Gk. In practice, the pilot and data power

allocation is constrained such that for the data power levels
Pk ∈ Pd =

(
0, Ptotτd

)
∀k ∈ {1, 2, ...,K} hold, where τd (as

well as τp) are identical for all users.
As a remark, set Pd has to be an open set, since (3) and

(5) indicate that ĥLS and ĥMMSE are not defined for Pκ = 0,
and (4) and (6) indicate that RLS and RMMSE are not defined
for Pκ = Ptot

τd
. Therefore the MMSE receiver Gκ in (10) does

not exist for Pκ ∈ {0, Ptotτd
}. At the same time, setting the

data power Pκ to zero or Ptot
τd

means that no data symbol or
no pilot symbol is transmitted, neither of which is of practical
interest.

C. Determining the MSE With Identical Uncorrelated Receiver
Antennas

In the case of proper antenna spacing, the channel covariance
matrices can be modeled as Cκ = cκI, which by (4) and
the definition of Dκ and Qκ implies Rκ (P) = rκ (P) · I,
Dκ (P) = dκ (P) · I, Qκ (P) = qκ (P) · I, where the
dependence of rκ, dκ and qκ on P has been emphasized.
Furthermore, Gnaive

κ = gnaive
κ · ĥHκ , and Gκ = gκ · ĥHκ , where:

gnaive
κ (P) ,

ακ
√
Pκ

α2
κPκ||ĥκ||2 +

K∑
k 6=κ

α2
kPkck + σ2

d︸ ︷︷ ︸
,σ2

κ(P−κ)

,

. (11)

and

gκ (P) ,
ακ
√
Pκdκ

α2
κPκ

(
d2
κ||ĥκ||2 + qκ

)
+

K∑
k 6=κ

α2
kPkck + σ2

d︸ ︷︷ ︸
σ2
κ(P−κ)

, (12)

where P−κ ∈ R1×(K−1) denotes the power vector containing
the transmit data powers of all except the κ-th MS. In the
following, depending on the context, we interchangeably use
the notation P and (Pκ,P−κ). Accordingly,

σ2
κ = σ2

κ (P−κ) ,
K∑
k 6=κ

α2
kPkck + σ2

d (13)

captures the MU-MIMO interference to MS-κ plus noise as
highlighted in (9) and (10). The short notation, σ2

κ, is used
occasionally for notational convenience. Notice that in a multi-
user system, where K ≥ 2, σ2

κ (P−κ) is greater than the

pilot noise power σ2
p, since – according to (13) – σ2

κ (P−κ)
incorporates the multi-user interference in addition to the
thermal noise. Furthermore, in this case, the MSE as a function
of the estimated channel can be obtained as follows:

Proposition 1. [22], [39] The unconditional MSE of the
received data symbols of User-κ when the BS uses the naive
and optimal Gκ receivers respectively are as follows.

MSEnaive
κ (P) =

d2
κNr

(
eµ

naive
κ

(
µnaive
κ +1+Nr

)
Ein
(
1+Nr, µ

naive
κ

)
− 1

)
+

+

(
qκ
rκ

+ µnaive
κ

)(
eµ

naive
κ
(
µnaive
κ +Nr

)
Ein
(
Nr, µ

naive
κ

)
− 1

)
− 2dκ · eµ

naive
κ NrEin

(
1+Nr, µ

naive
κ

)
+ 1, (14)

MSEκ(P) = µκe
µκEin (Nr, µκ) , (15)

where µnaive
κ and µκ, as functions of the data power vector P,

are defined by

µnaive
κ = µnaive

κ (P) ,
σ2
κ (P−κ)

α2
κPκrκ (Pκ)

, (16)

and µκ = µκ(P) ,
qκ (Pκ)α2

κPκ + σ2
κ (P−κ)

d2
κ (Pκ)α2

κPκrκ (Pκ)
. (17)

Ein(n, z) ,
∫∞

1
e−zt

tn dt is a standard exponential integral
function.

The proofs of the statements are provided in [39, Theorem
1] and [22, Lemma 2], respectively. Note that in (17), µκ(P)
is continuous with respect to Pκ ∈ Pd. Furthermore, as
intuitively expected, in a MU-MIMO system with perfect
channel estimation, that is, when dκ = 1 and qκ = 0, we
have that µκ = µnaive

κ , and the MSEs of the naive and MMSE
receivers coincide, that is MSEκ = MSEnaive

κ .
Notice that according to Proposition 1 MSEκ(P) depends

on qκ(P), dκ(P) and rκ(P), which only depend on the second
order statistics of the channel and the data power, by Lemma
2 and 3. Therefore, the MSEκ(P) is more sensitive to the path
loss ακ, and is less sensitive to the channel coherence time.

V. DECENTRALIZED PILOT POWER RATIO COMPUTATION

In this section we develop a decentralized algorithm exe-
cuted by the MSs based on concepts from non-cooperative
game theory [40]. The key tenet of the proposed algorithm,
which we call BPA, is that MSs iteratively update their PPRs
such that the updated PPRs minimize their own MSEs, until the
data power update falls below a predefined threshold. Notice
that because of the power constraint in equation (1), setting
the data power is equivalent to setting the PPR.

A. Best Response Power Allocation

As a first step, observe that MSEκ(P) given in (15) depends
on the data power Pκ of MS-κ and on the data power allocation
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P−κ of the other MSs. For notational convenience, let us
rewrite

MSEκ(P) = MSEκ(Pκ,P−κ), (18)

which makes this dependence explicit, and allows us to define
the best response of MS-κ.

Definition 1. The best response of MS-κ to the data power
allocation P−κ of the other MSs is a data power allocation
P ?κ that satisfies

MSEκ(P ?κ ,P−κ) ≤ MSEκ(Pκ,P−κ), ∀Pκ ∈ Pd. (19)

Clearly, P ?κ ∈ Pd, but for a given P−κ the best response
need not be unique in general. The following important result
shows that in the PPR selection problem the best response is
unique, and can be expressed in closed form.

Proposition 2. For an arbitrary data power allocation P−κ ∈
PK−1
d , the function MSEκ(P) is quasiconvex with respect to

Pκ ∈ Pd. Furthermore, P ?κ (P−κ) is the unique minimizer of
MSEκ(Pκ,P−κ), where:

P ?κ (P−κ) =
Ptot

τd +

√
τd
cκPtotα2

κ
1

σ2κ(P−κ)
+τd

cκPtotα2
κ

1
σ2p

+1

. (20)

The proof of the proposition is given in the Appendix. Since
the best response is unique, we use the notation P ?κ (P−κ) to
denote the best response data power of MS-κ in the sequel.

From Proposition 2, the following corollary is immediate.

Corollary 1. Under the constraint of the power budget in (1),
the pilot power allocation of MS-κ by its best response function
is

P (p)?

κ =
Ptot − τdP ?κ (P−κ)

τp
. (21)

We are now ready to formulate the BPA algorithm.

B. The Best Pilot Power Ratio Algorithm

The proposed best PPR algorithm operates by iteratively
computing the best response power allocation of each MS.
The pseudo-code of the algorithm is shown in Algorithm 1.
P

(i)
κ denotes the data power computed by MS-κ in iteration
i, which is the best response power allocation with respect to
the data power P

(i−1)
−κ of the other MSs.

BPA takes two parameters as input: the MSE improvement
threshold ε ≥ 0 and the mode of operation, which determines
the initial data power.

If the mode of operation is MIN, then, MS-κ initializes its
data power according to (20) in Line 2 of BPA assuming that
the data power of the other MSs is zero, that is assuming
P−κ = 0, where 0 is the vector of zeros of appropriate size.
Although P−κ cannot be set to zero in practice, MS-κ can
initialize P (0)

κ using the assumption that P−κ = 0. Note that
after executing Line 2 of BPA, P (0)

κ > 0.
If the mode of operation is MAX, then, MS-κ initializes

its data power according to (20) in Line 4 of BPA assuming
that the data power of the other MSs is Ptot

τd
e, where e is the

Algorithm 1: Best PPR Algorithm (BPA)
Input: MSE improvement threshold ε,

Mode ∈ {MIN,MAX}
1 if Mode == MIN then
2 Initial data power P (0)

κ = P ?κ (0), ∀κ ∈ K
3 else
4 Initial data power P (0)

κ = P ?κ

(
Ptot
τd

e
)

, ∀κ ∈ K
5 end
6 i = 0
7 repeat
8 BS sends σ2

p and σ2
κ

(
P

(i−1)
−κ

)
to MS-κ, κ ∈ K

9 for κ ∈ K do
10 if then
11 P

(i)
κ = P ?κ

(
P

(i−1)
−κ

)
12 else
13 P

(i)
κ = P

(i−1)
κ

14 end
15 end
16 i = i+ 1

17 until P (i)
κ == P

(i−1)
κ , ∀κ ∈ K;

Output: Data power allocation P.

vector of ones of appropriate size. Although P−κ cannot be
set to Ptot

τd
e in practice, MS-κ can initialize P (0)

κ using the
assumption that P−κ = Ptot

τd
e. Note that after executing Line

4 of BPA, P (0)
κ < Ptot

τd
.

The initial setting in both modes ensures the convergence of
BPA, as it will be shown in the proof of Theorem 1.

Then, in iteration i, all MSs compute their best response
data powers according to equation (20) with the parameters
(σ2
p and σ2

κ

(
P

(i−1)
−κ

)
) received from the BS. Recall from

(13) that the P−κ and AWGN are incorporated in σ2
κ (P−κ),

which is the received noise-plus-interference at the BS on
the received signal of MS-κ. Furthermore, in practice, the BS
continuously measures σ2

κ (P−κ) [1], which would allow the
smooth integration of BPA into the existing radio measurement
and resource management algorithms executed by the BS.

If the MSE improvement MSEκ

(
P

(i−1)
κ ,P

(i−1)
−κ

)
−

MSEκ

(
P ?κ

(
P

(i−1)
−κ

)
,P

(i−1)
−κ

)
exceeds the improvement

threshold ε, MS-κ updates its data power P (i)
κ to P ?κ

(
P

(i−1)
−κ

)
,

otherwise it keeps its current data power. The algorithm
terminates if no MS updates its data power in an iteration. Note
that in BPA the MSs update their data powers simultaneously,
which allows for a fast operation at the expense of maintaining
synchronization among the MSs.

C. Fixed Point and Convergence of BPA

In this section, we show hat BPA converges to a data
power allocation at the MSs such that the PPR of each MS
corresponds to its best response to P−κ. In this allocation,
no MS has an incentive to change its PPR, and, consequently,
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BPA does not update the data power allocations, even when δ
is set to zero.

In order to prove the existence of such an allocation, it is
convenient to model the data power allocation problem as a
non-cooperative strategic game (Chapter 2.1, [40]):

G ,< K, (Pd), (MSEκ(P)) >, (22)

where the set of players is the set of MSs K, the action set of
MS-κ is the set of possible data power allocations Pd, and the
cost function of MS-κ is MSEκ(P). Showing that there is a
data power allocation from which no MS has an incentive to
deviate is equivalent to showing that the game G has a pure
strategy Nash equilibrium, defined as follows.

Definition 2. For some ε ≥ 0 an ε-Nash equilibrium of the
strategic game G is a data power allocation profile P such
that for all κ ∈ K

MSEκ(Pκ,P−κ) ≤ MSEκ(P ′κ,P−κ) + ε, ∀P ′κ ∈ Pd. (23)

A pure strategy Nash equilibrium is an ε-Nash equilibrium for
ε = 0.

We can now state the following important property of G.

Theorem 1. BPA with ε = 0 converges to a pure strategy Nash
equilibrium of G.

Before we prove the theorem, let us recall that, by Propo-
sition 2, the function MSEκ(Pκ,P−κ) is continuous and
quasiconvex on Pd. Since the action set Pd is an open set, it
is not compact, and thus the basic results on Nash equilibrium
existence do not hold (e.g., Theorem 1.2 in [41], [42]). To
prove that even though the action set Pd is open, an equilibrium
exists, we first formulate a monotonicity result on the best
response function P ?κ (P−κ) as follows.

Lemma 4. The best response function P ?κ (P−κ) of the data
power for MS-κ is a strictly increasing function of the data
power Pj ∀j ∈ K \ κ.

Proof. Taking the derivative of P ?κ (P−κ) with respect to Pj
we obtain

∂P ?κ (P−κ)

∂Pj
=
∂P ?κ (P−κ)

∂σκ (P−κ)

∂σκ (P−κ)

∂Pj
=

=
cκP

2
totUα

2
καjσκ (P−κ)

√
UV σ2

κ (P−κ)σ2
pτd

V
(
Uσ2

κ (P−κ) τd +
√
UV σ2

κ (P−κ)σ2
pτd

)2 , (24)

where U = cκPtotα
2
κ+σ2

p, and V = cκPtotα
2
κ+σ2

κ (P−κ)
2
τd.

Observe that ∂P?κ (P−κ)
∂Pj

> 0, which shows that P ?κ (P−κ) is
a strictly increasing function of the data power of the other
MSs. Thus, the best response of MS-κ increases as the other
MSs increase their data powers.

In addition to Lemma 4, the following lemma will be useful
for the proof of Theorem 1.

Lemma 5. The best response function P ?κ (P−κ) of the data
power for MS-κ is bounded by

Pκ ≤ P ?κ (P−κ) < Pκ, (25)

where Pκ = lim∆→0 P
?
κ (∆e) and Pκ = lim∆→∞ P ?κ (∆e).

Furthermore, 0 < Pκ and Pκ < Ptot
τd

.

Proof. Because the best response P ?κ (P−κ) is strictly mono-
tonically increasing in the data power Pj of the other MSs (by
Lemma 4), it is sufficient to show that Pκ and Pκ exist by
substitution into (20).

Pκ = lim
∆→0

P ?κ (∆e) =
Ptot

τd +

√√√√√τd

(
cκPtotα2

κ+σ2
dτd

)
σ2
p(

cκPtotα2
κ+σ2

p

)
σ2
d

, (26)

from which 0 < Pκ.

Pκ = lim
∆→∞

P ?κ (∆e) =
Ptot

τd +

√
τ2
dσ

2
p

cκPtotα2
κ+σ2

p

. (27)

Since the second term in the denominator is positive, it follows
that Pκ < Ptot

τd
.

We note that limP−κ→∞ is not feasible in practice since it
is out of the action set Pd, but it suffices for the purpose of
the mathematical proof.

We are now ready to prove Theorem 1.

Proof. We use induction to show that BPA converges. The
proof is presented for the case of Mode = MIN; the proof for
Mode = MAX is analogous.

Recall that BPA starts with the initial power allocation
P

(0)
κ = P ?κ (0), and after the first iteration we have P

(1)
κ =

P ?κ

(
P

(0)
−κ

)
. Since P

(0)
−κ > 0, according to Lemma 4, we have

P
(1)
κ > P

(0)
κ for all κ ∈ K.

Consider now iteration i, and assume that P
(i)
−κ > P

(i−1)
−κ ,

which holds for i = 1. Then, by Lemma 4 we have P (i+1)
κ >

P
(i)
κ , and P

(i+1)
−κ > P

(i)
−κ for all κ ∈ K. Thus, the sequence

{P (i)
κ } is a strictly monotone increasing sequence.
To show convergence, recall that by Lemma 5, the best

response data power satisfies

0 < Pκ ≤ P ?κ (P−κ) < Pκ <
Ptot
τd

for each MS-κ, and thus the sequence is bounded. By the
monotone convergence theorem, it is convergent, which proves
the convergence of BPA.

The above result shows that there is a data power allocation
P(∞) to which BPA converges. We can now state the following
proposition.

Proposition 3. The strategic game G has a pure strategy Nash
equilibrium. Specifically, the power allocation P(∞), to which
BPA converges, is a pure strategy Nash equilibrium of G when
ε = 0.
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Proof. The BPA sets P (∞)
κ = P ?κ

(
P

(∞)
−κ

)
and by Proposition

2 and Definition 1 for all κ ∈ K, it holds that:

MSEκ

(
P (∞)
κ ,P

(∞)
−κ

)
≤ MSEκ

(
P ′κ,P

(∞)
−κ

)
∀P ′κ ∈ Pd.

(28)

By Definition 2, P(∞) is a pure Nash equilibrium of the
strategic game G.

Clearly, in practice BPA would be used with a MSE
improvement threshold ε > 0, and {P (i)

κ } is an increasing
sequence with P

(i+1)
k ≥ P

(i)
k ∀i. Thus, similarly to the

proof of Theorem 1, BPA converges to an approximate Nash
equilibrium when ε > 0, as stated by the following observation.

Observation 1. For ε > 0, BPA converges to a ε-Nash
equilibrium power allocation profile.

D. Uniqueness of the Fixed Point of BPA

According to (20), the best response power allocation
P ?κ (P−κ) of MS-κ is a function of the currently used transmit
power of all other MSs. In this section we define f : R1×K 7→
R1×K as a mapping from P to P? and prove that f is a
contraction mapping in P1×K

d and consequently has a unique
fixed point, and BPA converges to this unique fixed point, if
an easy to check condition holds.
Define

f(P) , [P ?1 (P1,P−1), . . . , P ?K(PK ,P−K)] , (29)

where P ?κ (Pκ,P−κ) is independent of Pκ. Furthermore, define
the K ×K matrix F(P) so that its (i, j)th element is:

F(P)ij ,
∂

∂Pi
fj(P) =

∂

∂Pi
P ?j (P), (30)

where fj(P) = P ?j (P−j) denotes the jth element of row
vector f(P). Note that F(P)ii = 0.

Theorem 2. The best response power allocation as defined by
(29) is a contraction mapping if the following condition holds
for ∀κ and ∀P ∈ P1×K

d :

Ptot
τd
·

cκα
2
κ

√
uκσ2

κ (P−κ)

2
(√

uκσ2
κ (P−κ) +

√
cκα2

κ + τd
Ptot

σ2
κ (P−κ)

)2 ·

· 1√
cκα2

κ + τd
Ptot

σ2
κ (P−κ) · σ2

κ (P−κ)
·

K∑
k=1,k 6=κ

ckα
2
k ≤ η < 1,

(31)

where η is a number arbitrarily close to one and

uκ ,
cκα

2
κτd
σ2
p

+
τd
Ptot

.

The proof is in the Appendix.
Note that the condition stated in Theorem 2 is mild in the

sense that it is always fulfilled in practice. This is illustrated
in Table I, in which the parameters of a system of 10 users are

shown. The last row of the Table shows the value that must be
less than 1 for the uniqueness of the Nash equilibrium. In this
example the condition could be violated by letting the power
budget Ptot grow to ∼ 6 · 106 mW, which can clearly not be
the case in practice.

Table I
NUMERICAL EXAMPLE FOR CONTRACTIVITY BASED ON (31)

Parameter or Expression Value
K 10
ck, ∀k 1
Path Loss (PL)k, ∀k 42.5 dB
αk = 10−

PL
10 , ∀k 5.6234 · 10−5

τd 10
Ptot 24 dBm ≈ 250 mW
Pk, ∀k 200 mW
Ptot/τd 25 mW

uκ =
cκα

2
κτd
σ2
p

+ τd
Ptot

4.0032 · 10−2

σ2
κ =

∑K
k 6=κ ckα

2Pk + σ2
d 1.0057 · 10−3

Uκ ,
√
uκσ2

κ 6.3450 · 10−3

Sκ ,
√
cκα2

κ + τd
Ptot

σ2
κ 6.3428 · 10−3

NUM , cκα
2
κ

√
uκσ2

κ 2.0065 · 10−11

DEN , 2 · (Uκ + Sκ)2 3.2196 · 10−4

NUM
DEN ·

1
Sκ·σ2

κ
9.7698 · 10−3∑K

k 6=κ ckα
2
k 2.8461 · 10−8∑K

k=1
∂P?κ (P−κ)

∂Pk
6.9513 · 10−9 � 1

Recall from Proposition 3 that BPA converges to a Nash
equilibrium. Since the best response power allocation is a
contraction mapping, and BPA implements the best response
power allocation, it follows that BPA converges to the fixed
point of f . The convergence to the fixed point and Proposition 3
imply that the fixed point is the unique Nash equilibrium.

VI. NUMERICAL RESULTS

In this section we consider a MU-MIMO system and present
the numerical results. First, we verify the properties of the
MSEκ(P) and the best response function P ?κ (P−κ). Next,
we analyze the convergence of BPA. Finally, we investigate

Table II
SYSTEM PARAMETERS

Parameter Value
Number of antennas at the BS Nr = 8, . . . , 80

Number of MSs K = 2, 6
Total number of symbols (per time slot) F = 12
Number of data symbols (per time slot) τd = 6
Number of pilot symbols (per time slot) F − τd
Power budget Ptot = 24 dBm
Thermal noise density −174 dBm/Hz

8



Nr = 64

Nr = 8 22.4 dBm

17.8 dBm
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τd P2 =22.4 dBm

τd P2 =17.8 dBm
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Figure 1. MSE of MS 1 as a function of data power of MS 1 in a two-MSs
system. MSE1 suffers from higher data power of MS 2 and benefits from
deploying more antennas at the BS.

the performance of BPA in several scenarios, in which the
number of MSs, and the number of antennas at BS vary. These
scenarios are characterized in terms of the parameters listed in
Table II.

A. Fundamental Properties of MSE

To examine fundamental properties of the MSEκ(P) and the
best response function P ?κ (P−κ), we first consider a system
that consists of two MSs with fixed path loss values of
α1 = 50 dB and α2 = 42.5 dB, respectively. Figure 1 shows
the MSE performance of MS 1 as a function of the data power
of MS 1 P1, while setting τdP2 = 7.8 dBm, 17.8 dBm, and
22.4 dBm and employing Nr = 8 and Nr = 64 receive
antennas at the BS. First, notice that the MSE of MS 1 is
quasiconvex with respect to P1. In all three cases of P2, there
exists a unique best response data power, which is marked by
a dot in the figure. An important observation is that as the
data power of MS 2 increases, the best response data power
of MS 1 also increases. As an example, for the three cases of
P2 with Nr = 8, the best response data powers of MS 1 are
21.85 dBm, 21.93 dBm and 22.00 dBm, respectively.

Figure 2 shows the best response curves for a system of
two MSs, that is when K = 2 in two cases. In case 1,
we consider the same path loss allocation as those used in
Figure 1. In case 2, the two MSs have equal path loss values
of α1 = α2 = 35 dB. The curves show the best response
data power for each MS with respect to the data power of the
other MS. For example, in case 1, when τdP1 = 21 dBm,
the best response of MS 2 is to use a data power level of
τdP2 ≈ 22.4dBm, since this data power level minimizes
its own MSE. In both cases, MS 1 sets its data power as
its best response to the current interference situation. Since
the best response data power level increases with increasing
interference power (that is with increasing P2), MS 1 causes
higher interference to MS 2. In turn, MS 2 increases its data
power until they reach the Nash equilibrium point as illustrated
by the intersection points in the figure. In consistence with the

Figure 2. Illustration of the best response dynamics in a two-MSs system.
The best response data power is an increasing function of the interference.
The two MSs increase their data power until they reach a Nash equilibrium
point.
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Figure 3. The normalized convergence distance in systems with 2, 6 and 18
MSs with different initial data power values. BPA converges within 4 iterations
and the MIN mode has a shorter convergence distance.

previous result, the best response data power increases as the
data power of the other MS increases.

B. Convergence of BPA

To evaluate the convergence of BPA, we define the nor-
malized convergence distance NCD(i) for each iteration as
follows:

NCD(i) ,

∑
k∈K P

(∞)
k −

∑
k∈K P

(i)
k∑

k∈K P
(∞)
k

, (32)

where P (∞)
k is the data power of MS k in the Nash equilibrium.

The algorithm converges as NCD(i) approaches zero.
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Figure 4. Individual MSE performance in a two-MSs system, where the path
loss of MS 2 is fixed while the path loss of MS 1 is shown by the horizontal
axis.

Figure 3 shows the NCD for systems with K = 2, 6 and
18 MSs with BPA initialized in modes MIN and MAX, and
for two cases when the data powers are chosen uniform at
random. The results show that for all three system sizes BPA
converges uniquely within four iterations, but the convergence
performance of random initialization is unpredictable and
hence randomly chosen data powers are not a good choice.
For example, when there are 6 MSs the random case 1 has
the largest convergence distance while the random case 2 has
the shortest convergence distance. The results also show that
after one iteration the convergence distance of MIN mode is
lower than 0.02 for all three system sizes. This means that
BPA achieves close-to-equilibrium performance and benefits
the analyzed system already after a single iteration. In practical
deployment one may thus apply the data power allocations
obtained after a single iteration; such a solution would lead
to close-to-equilibrium performance with very little overhead
in terms of signaling traffic and in terms of delay. Since the
MIN mode has a relatively shorter convergence distance than
the MAX mode, we use the MIN mode in the rest of the
simulations.

C. MSE Performance

To further evaluate the MSE performance of BPA, we
compare its performance with that of a system that minimizes
the sum of the individual MSEs. This minimum of the sum
of the individual MSEs is obtained by Mathematica 10.0 [43]
using exhaustive search.

We test BPA in a two-MSs system, as an extension of the
scenario studied in Figure 1. The path loss of MS 2 is still
fixed at 42.5 dB, while the path loss of MS 1 varies. Figure 4
shows the individual MSEs in different path loss settings of MS
1, while Figure 5 shows the corresponding data power levels.
When using BPA, the MSs maximize their own MSE values at
the expense of generating interference to the other MS, which
has a negative impact on the overall system performance. When
the path loss of the two MSs is different, both BPA and the
system that minimizes the sum of the individual MSE values
tend to be unfair in the sense of setting data power levels that
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Figure 5. The individual data power levels of the two-MS system as set by
BPA and in a system that minimizes the sum MSE.
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Figure 6. The sum-MSE performance in a system in which the co-scheduled
MSs have equal or different path loss values when the BS is equipped
with different number of antennas. BPA achieves near optimal sum-MSE
performance in the system with symmetric (equal path loss) MSs, and
outperforms the fixed PPR scheme.

yield unequal MSE values. For example, when MS 1 has lower
path loss than MS 2 (e.g, α1 = 35 dB), the performance gap
between the optimal and BPA is large. Due to the low path
loss, MS 1 achieves a better MSE performance with BPA than
with a sum-MSE minimizing algorithm. On the other hand,
MS 2 suffers from the selfish behaviour of MS 1 in BPA.
When the path loss values of the MSs are close to each other
(e.g, α1 = 40 dB, 42.5 dB), the performance gap between
BPA and optimal solution, and the performance gap between
different MSs becomes smaller. When the path loss of MS 1
becomes large, MS 1 generates less interference, consequently
the system performance is less sensitive to the interference, and
the performance gap between the BPA and optimal solution
remains small.

In currently deployed wireless systems, including LTE cel-
lular networks, MU-MIMO schemes employ fixed (standard-
ized) PPR setting for all MSs. Therefore, for benchmark-
ing purposes, we simulate a regular scheme, which assigns
6
7Ptot ≈ 23.31 dBm power as the data transmission power for
the MSs. This data power setting corresponds to the case of
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using 6 out of 7 OFDM symbols for data transmission and
1 OFDM symbol for the pilot signal [1]. Figure 6 compares
the performance of BPA with the optimal (i.e. sum-MSE
minimizing) scheme and the regular scheme, when employing
different number of antennas at the BS.

Figure 6 compares the performance of BPA with the optimal
solution. For the system with 2 symmetric MSs (with equal
path loss), the performance gap is always less than 0.5 dB. In
a system with 2 MSs with different path losses (asymmetric
setting), the performance gap of the two algorithms increases
as the number of antennas increases. The largest gap is about
1.2 dB. A similar observation can be made for the system with
8 MSs. These results indicate that BPA performs close to the
optimal solution when two MSs with similar path loss values
are co-sheduled for MU-MIMO transmission. As expected, in
all three cases, the system benefits from an increasing number
of antennas at the BS.

As can also be seen in Figure 6, BPA outperforms the regular
scheme with about 0.5 ∼ 1 dB in all three cases. The inferior
performance of the regular scheme is due to using a fixed
rather than adaptive data power. For example, in the system
with 2 symmetric (equal path loss) MSs, the path loss values
of the MSs are α1 = α2 = 42.5 dB. As Figure 5 shows in the
two symmetric MSs case, BPA and the optimal solution set the
data power as τdP1 = τdP2 = 22.67 dBm and τdP1 = τdP2 =
21.89 dBm, respectively. Since the regular scheme deploys
unnecessarily high data power in this case, the performance
suffers from high MU-MIMO interference.

D. A Practical Signalling Mechanism for BPA

In a real system, BPA can be performed periodically by the
MSs assisted by a central entity such as a cellular BS. Based
on the pseudo code description of Algorithm 1, we propose the
following signalling mechanism for each PPR setting interval:

1) BS: broadcasts the data power update threshold δ, the
mode of operation (i.e. MIN or MAX), and noise mea-
surements σ2

p, and σ2
d to the MSs.

2) Each MS: executes line 1-5 in BPA to initiate its data
power P (0)

κ .
3) BS: sends σ2

p and σ2
κ

(
P

(i−1)
−κ

)
to each MS.

4) Each MS: executes line 10-14 in BPA to update its data
power.

5) Repeat 3) and 4) until the system reaches the Nash
equilibrium.

VII. CONCLUDING REMARKS

In this paper, we considered the uplink of a MU-MIMO
system, in which the BS acquires CSIR by means of uplink
pilot signals. Although it is well known, that in such systems
setting the PPR for the MSs that are co-scheduled for uplink
MU-MIMO transmission has a large impact on the perfor-
mance, distributed PPR-setting schemes are not available in
the literature. Given the growing interest in large scale antenna
systems, there is a need for distributed schemes that scale
well with both the number of receive antennas at the BS
and the number of co-scheduled MU-MIMO users. This key

observation motivated employing a game theoretic approach,
in which MSs aim at minimizing the MSE of their own data
symbols by adjusting their PPR under a fixed transmit power
budget.

We first showed that there is a data power allocation at the
MSs such that the PPR of each MS corresponds to its best
response that minimizes its own MSE. We then developed a
game theoretic decentralized algorithm – termed BPA – to set
the PPR in MU-MIMO systems. Both the analytical and the
numerical results showed the existence of a Nash equilibrium
and the convergence of the proposed BPA to this equilibrium.
We benchmarked BPA with respect to two reference schemes:
the global optimum and a scheme that uses a fixed PPR.

The numerical results indicate that BPA converges after a
few iterations even when the number of antennas and co-
scheduled MU-MIMO users is set to realistic numbers. The
achieved MSE performance is close to the global optimum
that minimizes the sum of the individual MSE values when the
co-scheduled users are similar in terms of large scale fading.
Furthermore, BPA outperforms a PPR setting scheme that uses
a predetermined (fix) pilot-data power ratio. We believe that
these findings will be important in future MU-MIMO systems,
in which distributed PPR setting schemes will be needed.

As a subject of future work, we plan to extend BPA to
multi-cell MU-MIMO systems, in which the impact of pilot
contamination on the quality of channel estimation must be
taken into account.

APPENDIX: PROOF OF PROPOSITION 2

The first derivative of the MSEκ(P) with respect to Pκ is:

∂MSEκ(P)

∂Pκ
=
∂MSEκ(P)

∂µκ
· ∂µκ(P)

∂Pκ
. (33)

>From [22, Appendix III], ∂MSEκ(P)
∂µκ

is positive ∀µκ(P) >
0. According to the power budget defined in equation (1), when
Pκ ∈ Pd, Ptot−Pκτd > 0 and thus µκ(P) is always positive.
Thus the sign of ∂MSEκ(P)

∂µκ
in (33) only depends on the sign

of ∂µκ(P)
∂Pκ

.

∂µκ(P)

∂Pκ
=

1

c2κP
2
κα

4
κ(Ptot − τdPκ)2

·

·
(
σ2
κ (P−κ)σ2

p

(
2Pκτd − Ptot

)
+ cκα

2
κ·

·
(
P 2
κτd
(
σ2
p − σ2

κ (P−κ) τd
)

+ 2PκPtotσ
2
κ (P−κ) τd−

− σ2
κ (P−κ)P 2

tot

))
. (34)

The denominator of (34) is positive. The numerator
is a second order polynomial of Pκ with the
coefficients a2 = cκα

2
κτd(σ

2
p − τdσ

2
κ (P−κ)),

a1 = 2σ2
κ (P−κ) τd

(
cκα

2
κPtot + σ2

p

)
, and a0 =

−Ptotσ2
κ (P−κ)

(
cκPtotα

2
κ + σ2

p

)
. According to the system
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model, a0 and a2 are negative, and a1 is positive. Thus the
numerator of (34) has two positive roots P ∗κ,1 and P ∗κ,2:

P ∗κ,1 =
−a1 +

√
a21 − 4a2a0

2a2
< P ∗κ,2 =

−a1 −
√
a21 − 4a2a0

2a2
.

(35)
Comparison between the upper bound of the available data

power of MS-κ and P ∗κ,2 indicates that

Ptot
τd

<
Ptot

τd −

√√√√√τd

(
cκPtotα2

κ+σ2
κ(P−κ)τd

)
σ2
p(

cκPtotα2
κ+σ2

p

)
σ2
κ(P−κ)

= P ∗κ,2. (36)

Thus,
1) when Pκ ∈ (0, P ∗κ,1], ∂µκ(P)

∂Pκ
and ∂MSEκ(P)

∂Pκ
are negative,

2) when Pκ ∈ [P ∗κ,1,
Ptot
τd

), ∂µκ(P)
∂Pκ

and ∂MSEκ(P)
∂Pκ

are
positive.

MSEκ(P) is continuous in Pd, non-increasing in (0, P ∗κ,1], and
non-decreasing in [P ∗κ,1,

Ptot
τd

), thus MSEκ(P) is quasiconvex
with respect to Pκ in Pd (Chapter 3.4.2, [44]).

Further, as Pκ = P ∗κ,1 is the unique solution for ∂MSEκ(P)
∂Pκ

=
0 in Pd, P ∗κ,1 is the unique minimizer of MSEκ(P), and

P ?κ,1 =
Ptot

τd +

√√√√√τd

(
cκPtotα2

κ+σ2
κ(P−κ)τd

)
σ2
p(

cκPtotα2
κ+σ2

p

)
σ2
κ(P−κ)

. (37)

APPENDIX: PROOF OF THEOREM 2

We prove the theorem in two steps. First we show that f(P)
is a contraction mapping on P1×K

d if its Fréchet derivative
F(P) defined in (30) (i.e., the Jacobian) satisfies ||F(P)||1 ≤
η < 1 on P1×K

d , and then we show that this condition is in
turn equivalent to (31).

For the first step we use the following two properties of the
infinity norm and the Fréchet derivative. First, for an arbitrary
vector ∆

||∆F(P)||∞ ≤ ||∆||∞||F(P)||1.

Second, for any small ε > 0 there exists a ∆̂(P, ε) > 0 such
that ∀∆ ≤ ∆̂(P, ε),

||f(P + ∆)− f(P)||∞ − ||∆F(P)||∞ ≤ ε||∆||∞,

where the < and ≤ relations between vectors are defined as
element-wise relations.

Using the above two properties, and assuming ε = (1−η)/2
we obtain

||f(P + ∆)− f(P)||∞ ≤ ||∆F(P)||∞ + ||∆||∞(1− η)/2

≤ ||∆||∞||F(P)||1 + ||∆||∞(1− η)/2

(a)

≤ ||∆||∞η + ||∆||∞(1− η)/2 = ||∆||∞(1 + η)/2

< ||∆||∞, (38)

where (1 + η)/2 < 1 because η < 1, and ||F(P)||1 ≤ η
is used in inequality (a). Thus, ∀P ∈ P1×K

d there is a

neigborhood given by ∆̂(P, (1 − η)/2) where f(P) is a
contraction mapping.

To conclude the first step of the proof, we now show that
this relation extends to any two points P,P′ ∈ P1×K

d . For
this, let us first define ∆̂min(ε) = infP∈P1×K

d
∆̂(P, ε) and

D = P′ −P. Clearly, for any D there is a positive integer N
such that 1

ND ≤ ∆̂min((1 − η)/2). Using these definitions,
we can write

‖f(P + D)− f(P)‖∞ =∥∥∥∥∥
N∑
n=1

f(P +
n

N
D)− f(P +

n− 1

N
D)

∥∥∥∥∥
∞

≤

N∑
n=1

∥∥∥∥f(P +
n

N
D)− f(P +

n− 1

N
D)

∥∥∥∥
∞

(b)
<

N∑
n=1

1 + η

2
|| 1

N
D||∞ =

1 + η

2
||D||∞< ||D||∞, (39)

where inequality (b) follows from applying (38) with ∆ =
1
ND, for points P + n−1

N D, where n goes from 1 to N . Note
that (39) shows that if ||F(P)||1 ≤ η on P1×K

d then f(P) is
a contraction mapping on P1×K

d .
For the second step of the proof observe that the condition

||F(P)||1 = max
j

K∑
i=1

|F(P)ij | ≤ η, (40)

can be reformulated as:
K∑
k=1

∂P ?κ (P−κ)

∂Pk
≤ η, ∀κ, (41)

since according to the proof of Lemma 4, ∂P
?
κ (P−κ)
∂Pj

> 0. The
left hand side of (41) can be written as
K∑
k=1

∂P ?κ (P−κ)

∂Pk
=
∂P ?κ (P−κ)

∂σ2
κ (P−κ)

·
K∑
k=1

∂σ2
κ (P−κ)

∂Pk
=

=
∂P ?κ (P−κ)

∂σ2
κ (P−κ)︸ ︷︷ ︸
,T1

·
K∑

k=1,k 6=κ

ckα
2
k︸ ︷︷ ︸

,T2

. (42)

To calculate T1, we find it convenient to rewrite P ?κ (P−κ) as
follows:

P ?κ (P−κ) =
Ptot/τd

1 +

√
τdcκα2

κPtotσ
2
p+τ2

dσ
2
pσ

2
κ(P−κ)

τ2
d(cκα2

κPtot+σ
2
p)σ2

κ(P−κ)

=

=
Ptot/τd

1 +

√
1
τd
cκα2

κPtotσ
2
p+σ2

pσ
2
κ(P−κ)(

1
τd
cκα2

κPtotτd+σ2
p

)
·σ2
κ(P−κ)

=

=
Ptot/τd

1 +

√
y
(
σ2
κ (P−κ)

) , (43)
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where we introduced:

y
(
σ2
κ (P−κ)

)
,

1
τd
cκα

2
κPtotσ

2
p + σ2

pσ
2
κ (P−κ)(

1
τd
cκα2

κPtotτd + σ2
p

)
· σ2

κ (P−κ)
=

=
cκα

2
κ + τd

Ptot
σ2
κ (P−κ)(

cκα2
κτd
σ2
p

+ τd
Ptot

)
σ2
κ (P−κ)

=

=
cκα

2
κ + τd

Ptot
σ2
κ (P−κ)

uκσ2
κ (P−κ)

. (44)

and

uκ ,
cκα

2
κτd
σ2
p

+
τd
Ptot

. (45)

With this notation, we can now calculate T1:

∂P ?κ (P−κ)

∂σ2
κ (P−κ)

=
Ptot
τd
· ∂

∂y
(
σ2
κ (P−κ)

) ·
· 1

1 +

√
y
(
σ2
κ (P−κ)

) · ∂y
(
σ2
κ (P−κ)

)
∂σ2

κ (P−κ)
=

=
Ptot
τd
· ∂

∂y
(
σ2
κ (P−κ)

) 1

1 +

√
y
(
σ2
κ (P−κ)

) ·
· ∂

∂σ2
κ (P−κ)

cκα
2
κ + τd

Ptot
σ2
κ (P−κ)

uκσ2
κ (P−κ)

=

=
Ptot
τd
· −1

2
(

1 +

√
y
(
σ2
κ (P−κ)

))2

·
√
y
(
σ2
κ (P−κ)

)
· −cκα2

κ

uκσ4
κ (P−κ)

=
Ptot
τd
· cκα

2
κ

2 ·

(
1 +

√
cκα2

κ+
τd
Ptot

σ2
κ(P−κ)

uκσ2
κ(P−κ)

)2 ·

· 1√
cκα2

κ+
τd
Ptot

σ2
κ(P−κ)

uκσ2
κ(P−κ) · uκσ4

κ (P−κ)

. (46)

>From (46), we finally get:

∂P ?κ (P−κ)

∂σ2
κ (P−κ)

=

Ptot
τd
·

cκα
2
κ

√
uκσ2

κ (P−κ)

2
(√

uκσ2
κ (P−κ) +

√
cκα2

κ + τd
Ptot

σ2
κ (P−κ)

)2 ·

· 1√
cκα2

κ + τd
Ptot

σ2
κ · σ2

κ (P−κ)
. (47)

Substituting this expression into T1 of (42) we obtain the
statement of the theorem.
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