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A Game Theoretic Approach to Uplink Pilot and
Data Power Control in Multi-Cell Multi-User MIMO

Systems
Peiyue Zhao, Gábor Fodor, György Dán, Miklós Telek

Abstract—In multi-user multiple input multiple output (MU-
MIMO) systems that employ pilot-symbol aided channel estima-
tion, the pilot-to-data power ratio (PDPR) has a large impact on
the system performance. In this paper we consider the problem
of setting the PDPR in multi-cell MU-MIMO systems in the
presence of channel estimation errors, intercell interference and
pilot contamination. To analyze and address this problem, we first
develop a model of the multi-cell MU-MIMO system and derive a
closed-form expression for the mean squared error of the uplink
received data symbols. Building on this result, we then propose two
decentralized PDPR-setting algorithms based on game theoretic
approaches that are applicable in multi-cell systems. We find
that both algorithms converge to a Nash equilibrium and provide
performance improvements over systems that do not properly set
the PDPR, while they maintain different levels of fairness.

Keywords: multi-antenna systems, channel state information,
estimation techniques, receiver algorithms

I. INTRODUCTION

In the uplink of multi-user multiple input multiple output
(MU-MIMO) systems, the base station (BS) typically acquires
channel state information (CSI) by means of uplink pilot or
reference signals that are orthogonal in the code domain. long
term evolution (LTE) systems, for example, use the cyclically
shifted Zadoff-Chu sequences to acquire CSI at the receiver
for uplink data reception [1]. It has been pointed out by several
related works that in systems employing pilot aided channel
estimation, the pilot-to-data power ratio (PDPR) plays a crucial
role in optimizing the inherent trade-off between sharing the
available resources between pilot and data symbols [2]–[5].

The seminal work by [2] established lower and upper bounds
on the difference between the mutual information when the
receiver has only an estimate of the channel and when it has
perfect knowledge of the channel. Subsequently, the results
in [3] showed how training-based channel estimation affects
the capacity of the fading channel, recognizing that training
imposes a substantial information-theoretic penalty, especially
when the coherence interval T (measured in terms of the
number of symbols available for pilot and data transmission)
is only slightly larger than the number of transmit antennas
M , or when the SNR is low. Subsequently, the authors in
[4] and [6] established a lower bound specifically for MIMO
orthogonal frequency division multiplexing (OFDM) systems

P. Zhao and G. Dán are with the KTH Royal Institute of Technology, 11428
Stockholm, Sweden (e-mail : peiyue@kth.se; gyuri@kth.se).

G. Fodor is with the KTH Royal Institute of Technology, 11428 Stockholm,
Sweden and also with Ericsson Research, 16480 Stockholm, Sweden (e-mail:
gabor.fodor@ericsson.com).

M. Telek is with the Budapest University of Technology and Economics,
H-1117 Budapest, Hungary and also with the MTA-BME Information Systems
Research Group, H-1117 Budapest, Hungary (e-mail: telek@hit.bme.hu).

with minimum mean squared error (MMSE) channel estima-
tion. It was also shown that the optimal PDPR that maximizes
this lower bound or minimizes the average symbol error rate
can significantly increase the capacity compared to a system
using a suboptimal PDPR setting. More recently, specifically
for MU-MIMO systems, the trade-off between pilot and data
symbols was analyzed in [7].

While the above references focused on a single cell sys-
tem, a series of other works developed models for multi-cell
MU-MIMO systems and proposed multi-cell pilot and/or data
power control schemes that aim to maximize some system-wide
utility functions [8]–[10]. In particular, the results in [8] and [9]
indicate that in multi-cell MU-MIMO systems controlling the
transmit power of both the pilot and data symbols can drasti-
cally improve the spectral and energy efficiency of the system.
Those papers, however, do not develop a decentralized scheme
that could be used for multi-cell power control. In contrast, the
work by [10] proposes a multi-cell game theoretic approach for
pilot contamination avoidance, but does not consider the power
control problem and that of setting the PDPR.

In this paper we argue that in multi-cell MU-MIMO systems,
the PDPR must be set in such a way that multi-cell interference
on the data signals as well as on the pilot signals (that is
pilot contamination) must be taken into account. Compared to
a single-cell system, in a multi-cell system there are new im-
portant interdependencies due to the finite sum-power budget,
since setting the pilot power for a given user not only affects
its own channel estimation and the power left for own data
transmission, but it also affects the pilot contamination and
the level of inter-cell interference on the data channels. The
authors in [11] analyze the impact of pilot contamination on the
performance of time division duplexing (TDD) cellular systems,
and they show that the pilot contamination causes saturation of
the signal-to-interference-plus-noise ratio (SINR) as the number
antennas at the BSs increases. To our knowledge, there is no
efficient algorithm proposed that takes into account these trade-
offs and can be executed in a decentralized fashion in a multi-
cell MU-MIMO system.

To address the problem of PDPR-setting in multi-cell sys-
tems, we first derive a closed-form expression of mean squared
error (MSE) for uplink (UL) received data symbols, and then
we use this expression for determining the unique data power
that minimizes the individual MSEs. Building on these results,
we develop PDPR-setting games that are applicable in multi-
cell MU-MIMO systems. The first game is the non-cooperative
game G1, in which each mobile station (MS) has the objective
to minimize its own MSE. We prove the existence of a
Nash equilibrium of G1, provide the condition for uniqueness,
and propose an algorithm, termed Local Best PDPR (LBP),



that converges to this unique equilibrium. Although the LBP
algorithm is attractive thanks to its fast convergence, the selfish
behavior of the MSs may lead to a relatively high interference
level, which negatively affects the sum MSE performance of
the system. Therefore, we also propose the non-cooperative
game G2, in which the MSs are aware of the data interference
that they generate to each other, and use that for setting their
PDPR. We show that G2 is a potential game, and we propose a
decentralized algorithm, termed the data interference avoidance
(DIA) algorithm, for computing a Nash equilibrium of G2.
Numerical results show that DIA improves the fairness among
the MSs and the multi-cell sum MSE performance significantly,
while the LBP algorithm allows the MSs with good channel
condition to achiever lower MSE values.

The rest of the paper is structured as follows. Section II
reviews related work and summarizes the contribution of this
paper. We introduce the system model and provide a closed-
form MSE expression for UL in multi-cell MU-MIMO systems
in Sections III and IV. Section V introduces the problem
formulation. Sections VI and VII present the LBP algorithm and
the DIA algorithm, respectively. Finally, Section VIII discusses
numerical results, and Section IX concludes the paper.

II. RELATED WORKS

Due to the importance of PDPR in the performance of
MU-MIMO systems, there is a significant interest in investi-
gating the impact of PDPR-setting, and in proposing schemes
for optimal or near-optimal PDPR setting.

A. PDPR in MU-MIMO Systems

Problems related to PDPR setting in MU-MIMO systems are
addressed in [7], [8], [12]–[17]. The authors in [7] consider a
MU-MIMO scenario with time-division duplex operation, and
a coherence interval of T symbols spent for channel training,
channel estimation, and precoder computation for downlink
(DL) transmission. The optimum number of pilot symbols
is determined for maximizing the lower bound of the sum-
throughput. However, receiver design and the PDPR-setting
are out of the scope of that paper. The problem of joint
power loading of data and pilot symbols for the purpose of
maximizing sum spectral efficiency is addressed in [12], but
the impact of PDPR setting at the MU-MIMO receiver is
not considered. In contrast, the problem of optimal training
period and update interval for maximizing the UL sum-rate is
addressed in [15], whereas the receiver structure at the BS is not
considered. The authors in [13] consider single-user wireless
fading channels, and optimize the pilot overhead. That paper
also identifies that the pilot overhead, as well as the spectral
efficiency penalty, depends on the square root of the normalized
Doppler frequency. More recently, uplink power control and the
PDPR-setting problem in MU-MIMO systems are addressed in
[14], [8], and [18], assuming practical (zero-forcing (ZF) and
MMSE based) multiantenna receiver structures. However, the
papers mentioned above focus on centralized approaches, and
may not scale well in multi-cell multi-user systems in prac-
tice. Scalable decentralized schemes with low complexity are
appealing for PDPR setting in multi-cell MU-MIMO systems,
and are proposed in [19]–[22]. However, these papers either
assume perfect channel state information or they incorporate

CSI errors, but do not address the problem of joint optimization
of setting the pilot and data power.

B. Game Theoretic Approaches for Resource Management and
Power Control Problems

In addition to the papers mentioned above, a number of game
theoretic approaches are applied to power control and resource
allocation problems in multi-user systems. The paper [23] uses
a Gaussian interference relay game to model the multi-user
power control problem for the Gaussian frequency-flat relay
channel in the uplink. However, the aspect of PDPR setting
under a sum power budget is not considered. Authors in [24]
consider the DL transmission of a closed-loop wireless network,
while [25] considers the problem of DL power control of small
cell base stations under a total power constraint.

Game theoretic approaches are also applied to transmitter-
receiver pairs by [26], [27]. The authors in [26] use a non-
cooperative game to address the problem of power control, and
prove the existence of equilibria by quasi-variational inequality
theory. The problem of resource allocation between transmitter-
receiver pairs is modeled as player-specific graphical resource
allocation games in [27], where equilibria exist and can be
computed by polynomial complexity algorithms.

C. Contributions

Based on the above literature survey, we believe that our pa-
per is among the first to propose dynamic and decentralized al-
gorithms for setting the PDPR in multi-cell MU-MIMO systems
based on a game-theoretic approach. Our main contributions
include the two decentralized PDPR-setting algorithms, which
incorporate several important and practically useful results.
Specifically, the contributions of this paper are as follows:
• We derive a closed-form expression of the MSE in multi-

cell MU-MIMO systems in Proposition 1. We use this
expression to derive the unique minimizer of the individual
MSEs in Lemma 1.

• We model the PDPR-setting problem for the multi-cell
MU-MIMO system as a non-cooperative game G1, in
which the MSs minimize their own MSE in a non-
cooperative (selfish) manner, and we propose the LBP al-
gorithm to compute a Nash equilibrium. We prove that the
LBP algorithm converges in a finite number of iterations
given a convergence threshold in Proposition 2, and we
provide a sufficient condition for the uniqueness of the
equilibrium in Lemma 5.

• As an alternative to the game G1, we propose the game
G2, which makes each MS aware of the impact of its
own power setting on the other MSs. We prove that G2

is a potential game in Lemma 7, we propose the DIA
algorithm to compute a Nash equilibrium of the game,
and we prove the convergence of the proposed algorithm
in Proposition 3.

III. SYSTEM MODEL

We consider a multi-cell MU-MIMO system with L cells and
K MSs per cell. We assume that the number of antennas at each
BS is Nr, and Nr � K in practice. Generally, we consider
that there are F subcarriers in the coherence bandwidth, and
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τp and τd = F − τp subcarriers are allocated to the pilot
and data symbols, respectively. Specifically, for the kth MS in
cell l, considering a total power budget Ptot, and transmit power
P

(p)
l,k and Pl,k for each pilot and data symbol, respectively, we

enforce the constraint

τpP
(p)
l,k + τdPl,k = Ptot, (1)

where 1 ≤ τp, τd < F . The Nr×τp matrix of the received pilot
signal of the (tagged) κth MS in cell λ at the serving BS λ can
be written as

Y
(p)
λ,κ =

√
P

(p)
λ,καλ,λ,κhλ,λ,κs

T
κ︸ ︷︷ ︸

MS (λ,κ)′s pilot signal at BS-λ

+

L∑
l 6=λ

√
P

(p)
l,κ αλ,l,κhλ,l,κs

T
κ +Np

λ,κ︸ ︷︷ ︸
Pilot contamination plus noise to MS (λ, κ)

,

(2)

where sκ ∈ CNr×1 is the pilot sequence of the tagged
MS (λ, κ), and the product αλ,l,κhλ,l,κ ∈ CNr×1 charac-
terizes the large (αλ,l,κ) and small (hλ,l,κ) scale fading of the
wireless channel between MS (l, κ) and BS λ. Notice that in
every neighbor cell l 6= λ, there is exactly one MS (namely
MS (l, κ)) that uses the same pilot sequence as MS (λ, κ) and
thereby contaminates the pilot signal.

With the least squares channel estimation, the Nr × Nr
covariance matrix of the estimated channel ĥλ,λ,κ of the tagged
user is [28]

Rλ,λ,κ(P) = Cλ,λ,κ +
σ2

pc,λ,κ

(
P−(λ,κ)

)
α2
λ,λ,κ(Ptot−τdPλ,κ)

, (3)

where P , [P1,1, . . . , PL,K ] ∈ R1×LK is the vector of
data powers of all MSs, P−(λ,κ) is the vector of data powers
of all MSs except of MS (λ, κ). In the following, depending
on the context, we interchangeably use the notation P and
(Pλ,κ,P−(λ,κ)). In the case of perfectly uncorrelated antennas,
Cλ,l,κ = cλ,l,κINr can be assumed, while σ2

pc,λ,κ

(
P−(λ,κ)

)
,

the aggregate pilot contamination plus noise (σ2
p) power affect-

ing the pilot signal of MS (λ, κ) at BS λ, can be written as

σ2
pc,λ,κ

(
P−(λ,κ)

)
=

 L∑
l 6=λ

(Ptot−τdPl,κ)
τp

α2
λ,l,κcλ,l,κ + σ2

p


︸ ︷︷ ︸

,σ2
pc,λ,κ

INr .

The conditional distribution of the channel given its estima-
tion ĥ is [28]

(h|ĥ) ∼ CN (Dĥ,Q), (4)

where D = CR−1 and Q = C −CR−1C with R in (3). In
this paper we assume proper antenna spacing and the definition
of D and Q implies Rλ,λ,κ(P) = rλ,λ,κ(P) · I, Dλ,λ,κ(P) =
dλ,λ,κ(P) ·I, Qλ,λ,κ(P) = qλ,λ,κ(P) ·I, where the dependence
of rλ,λ,κ, dλ,λ,κ and qλ,λ,κ on P has been emphasized.

IV. LINEAR MMSE RECEIVER AND THE MSE

The received data signal from the tagged MS (λ, κ) at the
serving BS λ can be written as

yλ,κ = αλ,λ,κhλ,λ,κ
√
Pλ,κxλ,κ︸ ︷︷ ︸

MS (λ, κ)

+

K∑
k 6=κ

αλ,λ,khλ,λ,k
√
Pλ,kxλ,k︸ ︷︷ ︸

Other MSs in cellλ

+

L∑
l 6=λ

K∑
k

αλ,l,khλ,l,k
√
Pl,kxl,k︸ ︷︷ ︸

MSs in other cells except cell λ

+nd. (5)

xl,k is the transmitted data symbol by MS (l, k) and the notation
nd emphasizes the noise on the received data signal.

Due to the power budget constraint, the pilot and data power
allocation is constrained such that for the data power levels
Pl,k ∈ Pd =

(
0, Ptotτd

)
holds, where τd (as well as τp) are

identical for all users.
Furthermore, according to [9], [29] and [30] the MMSE

receiver Gλ,κ ∈ R1×Nr minimizes the MSE of the received
data symbols in the presence of CSI errors and takes into
account the MU-MIMO interference,

Gλ,κ = gλ,κ · ĥHλ,λ,κ, (6)

where,

gλ,κ (P) ,

αλ,λ,κ
√
Pλ,κdλ,λ,κ ·

(
α2
λ,λ,κPλ,κ

(
d2λ,λ,κ||ĥλ,λ,κ||2 + qλ,λ,κ

)
+

+

K∑
k 6=κ

α2
λ,λ,kPλ,kcλ,λ,k +

L∑
l 6=λ

K∑
k

α2
λ,l,kPl,kcλ,l,k + σ2

d︸ ︷︷ ︸
,σ2

λ,κ(P−κ)

)−1

. (7)

Accordingly, σ2
λ,κ = σ2

λ,κ

(
P−(λ,κ)

)
captures the multi-cell

MU-MIMO interference to MS (λ, κ) plus noise. The short
notation, σ2

λ,κ, is used occasionally for notational convenience.
Based on the data signal model (5) and the receiver Gλ,κ

(7), we consider the MSE of the estimated data symbols of the
tagged MS (λ, κ),

MSEλ,κ(P) = E{|Gλ,κyλ,κ − xλ,κ|2}. (8)

Furthermore, in this case, we can obtain the unconditional MSE
as a function of the data power P of all the MSs as follows:

Proposition 1. In a multi-cell MU-MIMO system with pilot
contamination, the unconditional MSE of the received data
symbols of MS (λ, κ) when BS λ uses MMSE receiver Gλ,κ is

MSEλ,κ(P) = µλ,κe
µλ,κEin (Nr, µλ,κ) , (9)

where µλ,κ, is a function of P, and is defined by

µλ,κ = µλ,κ(P) ,
qλ,λ,κ (Pλ,κ)α

2
λ,λ,κPλ,κ + σ2

λ,κ

(
P−(λ,κ)

)
d2λ,λ,κ (Pλ,κ)α

2
λ,λ,κPλ,κrλ,λ,κ (Pλ,κ)

,

(10)

and Ein(n, z) ,
∫∞

1
e−zt

tn dt is the standard exponential
integral function.

The proof is provided in Appendix A.

V. PROBLEM FORMULATION

Now we are ready to formulate the MU-MIMO PDPR setting
(MPS) problem in multi-cell systems. Due to the sum power
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constraint (1), setting PDPR of a MS is equivalent to setting
its data power Pλ,κ. Therefore we formulate the MPS problem
as to compute a data power allocation P to minimize the sum
MSE of MSs,

minimize
P

L∑
l=1

K∑
k=1

MSEl,k(P)

subject to τdPl,k > 0, ∀l, k
τdPl,k < Ptot, ∀l, k

(P1)

Problem (P1) is difficult to solve in general. Though later we
show that MSEl,k(P) of MS (l, k) is quasi-convex with respect
to its own data power, the objective function of (P1) is not
necessarily quasi-convex with respect to P, which is required to
solve (P1) as a quasi-convex optimization problem. Even if (P1)
can be solved as a quasi-convex optimization problem, general
techniques, for example, cutting plane methods and bisection
search may not scale well for a large sized system [31, Chapter
4]. More importantly, due to practical real-world constraints we
are interested in decentralized PDPR setting algorithms that
operate in multi-cell MU-MIMO systems. For these reasons, in
this work we propose game theoretic approaches to developing
decentralized algorithms, which, as the numerical results show,
approximate the optimal solution very well.

VI. LOCAL BEST PDPR ALGORITHM

Game theory considers the decision making of a set of
individuals, referred to as players, that interact with each other
to optimize their own objectives (e.g., utilities or payoffs),
for which each player can choose from a set of available
decisions, referred to as an action set. It is appealing to use
game theory to model decentralized PDPR setting, where the
MSs have conflict of interest in terms of data interference
and pilot contamination. We are interested in computing a
Nash Equilibrium as a solution, in which no player can further
improve its objective by changing its action.

In this section we develop a game theoretic algorithm for
decentralized PDPR setting in multi-cell MU-MIMO systems.
To start with, we first explore the existence and two important
properties of the unique minimizer of the individual MSE,
which allows us to develop an iterative decentralized algorithm
to compute the PDPR of each MS. In the proposed algorithm,
termed LBP, each MS updates its data power iteratively to
minimize its own MSE until the improvement of MSE falls
below a threshold. Further results show that LBP converges,
and the convergence is unique if a well-defined condition is
satisfied.

A. The Unique Minimizer of Individual MSE
As a first step, we introduce the minimizer of the MSE of

each MS (λ, κ).

Lemma 1. In a multi-cell MU-MIMO system with pilot contam-
ination, given the data power allocation P−(λ,κ) of the other
MSs, the data power P ?λ,κ

(
P−(λ,κ)

)
that minimizes the MSE

of MS (λ, κ) is

P ?λ,κ
(
P−(λ,κ)

)
=

Ptot

τd +M
(
P−(λ,κ)

) , (11)

Algorithm 1: Local Best PDPR Algorithm
Input: MSE improvement threshold ε

1 Initial data power P (0)
λ,κ = P ?λ,κ(0)

2 i = 0

3 while P (i)
λ,κ 6= P

(i−1)
λ,κ , ∀κ ∈ K do

4 BS sends σ2
pc,λ,κ

(
P−(λ,κ)

)
and σ2

λ,κ

(
P−(λ,κ)

)
to

MS (λ, κ)
5 for κ ∈ K and λ ∈ L do
6 if MSEλ,κ

(
P

(i−1)
λ,κ ,P

(i−1)
−(λ,κ)

)
−

MSEλ,κ

(
P ?λ,κ

(
P

(i−1)
−(λ,κ)

)
,P

(i−1)
−(λ,κ)

)
> ε then

7 P
(i)
λ,κ = P ?λ,κ

(
P

(i−1)
−(λ,κ)

)
8 else P (i)

λ,κ = P
(i−1)
λ,κ

9 i = i+ 1

Output: Data power allocation P.

where M
(
P−(λ,κ)

)
=

√√√√√τd

cλ,λ,κPtotα
2
λ,λ,κ

σ2
λ,κ(P−(λ,κ))

+τd

cλ,λ,κPtotα
2
λ,λ,κ

σ2pc,λ,κ(P−(λ,κ))
+1

.

The proof is provided in Appendix B. For convenience, we
refer to (11) as the best response function. Further investigation
shows two important properties of the best response function,
which are useful for the development of LBP.

Lemma 2. The best response function P ?λ,κ
(
P−(λ,κ)

)
of the

data power for MS (λ, κ) is a strictly increasing function of
the data power ∀Pl,j 6= ∀Pλ,κ.

The proof of Lemma 2 is in Appendix C. Furthermore,
P ?λ,κ

(
P−(λ,κ)

)
is bounded, as stated in the next lemma.

Lemma 3. The best response function P ?λ,κ
(
P−(λ,κ)

)
of the

data power for MS (λ, κ) is bounded by

0 < Pλ,κ ≤ P ?λ,κ
(
P−(λ,κ)

)
< Pλ,κ <

Ptot
τd

, (12)

where Pλ,κ = lim∆→0 P
?
κ (∆e) and Pλ,κ =

lim
∆→Ptot

τd

P ?κ (∆e).

The proof is provided in Appendix D. Furthermore, we prove
the following results.

Lemma 4. |∂MSEλ,κ(P)
∂Pλ,κ

| is a bounded function on [Pλ,κ, Pλ,κ],

and max{|∂MSEλ,κ(P)
∂Pλ,κ

|} exists on [Pλ,κ, Pλ,κ] .

The proof is provided in Appendix E . The lemmas above
show that when the data power setting of the other MSs is
fixed, a MS can minimize its own MSE by setting its own data
power independently, which provides the basis to model the
PDPR problem as a non-cooperative game.

B. Local Best PDPR Algorithm

We model the problem of setting the data power as a non-
cooperative game G1, where the players are the MSs, and the
action of each player is to set its data power Pλ,κ. In G1 the
payoff function of each MS (λ, κ) is MSEλ,κ(P). We are
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Table I: Numerical Example for Contractivity Based on (16)

Parameter or
Expression Value

L 2
K 2
c1,l,j , ∀j, l 1
τd 6
Ptot 24 dBm ≈ 250 mW
Pl,j , ∀j, l 120 mW
Ptot/τd 25 mW
σ2

1,1

(
P−(1,1)

)
1.6360 · 10−12

σ2
pc,1,1

(
P−(1,1)

)
7.3110 · 10−13

∂P?λ,κ(P−(λ,κ))
∂Pl,j

∂P?λ,κ(P−(λ,κ))
∂P1,2

= 1.4302 · 10−10

∂P?λ,κ(P−(λ,κ))
∂P2,1

= 1.9141 · 10−12

∂P?λ,κ(P−(λ,κ))
∂P2,2

= 2.7992 · 10−13

∑L
l

∑K
j

∂P?λ,κ(P−(λ,κ))
∂Pl,j

2.8433 · 10−10

interested in a data power setting in which no MS has an
incentive to change its data power, i.e., a Nash equilibrium
of the game, defined as follows.

Definition 1. An ε-Nash equilibrium of the strategic game G1

is a data power allocation profile P such that for all MS (λ, κ),

MSEλ,κ(Pλ,κ,P−(λ,κ)) ≤ MSEλ,κ(P
′
λ,κ,P−(λ,κ))+ε, ∀P ′λ,κ ∈ Pd.

(13)

A pure strategy Nash equilibrium is an ε-Nash equilibrium
for ε = 0.

Based on the results in Lemmas 2 and 3, we propose the
LBP algorithm to compute a data power allocation for G1, as
described in Algorithm 1. Line 1 initializes the algorithm by
setting the data power of each MS (λ, κ) as their best response
data power with respect to the noise power to BS λ. Then, in
iteration i, the BSs measure and send σ2

pc,λ,κ

(
P−(λ,κ)

)
and

σ2
λ,κ

(
P−(λ,κ)

)
to each MS, which allows them to compute

their best response data power P ?λ,κ
(
P

(i−1)
−(λ,κ)

)
according to

(4). If the MSE improvement MSEλ,κ

(
P

(i−1)
λ,κ ,P

(i−1)
−(λ,κ)

)
−

MSEλ,κ

(
P ?λ,κ

(
P

(i−1)
−(λ,κ)

)
,P

(i−1)
−(λ,κ)

)
by P ?λ,κ

(
P

(i−1)
−(λ,κ)

)
is higher

than a threshold ε, then MS (λ, κ) updates its data power P (i)
λ,κ

to P ?λ,κ
(
P

(i−1)
−(λ,κ)

)
, otherwise it keeps its current data power.

When all MSs stop updating their data power, respectively, LBP
terminates. Since the MSs update their data powers simultane-
ously, LBP allows fast operation at the cost of synchronizing all
the MSs, and thus the computation time of LBP in each iteration
remains the same as the number of cells and MSs increase. To
implement LBP, a practical signaling scheme can be that each
BS executes line 4 of Algorithm 1 periodically, and then each
MS executes lines 6-8 simultaneously during each interval.

C. Convergence of LBP and Equilibrium Uniqueness

The proposed LBP algorithm is a decentralized algorithm
with simple operations, and would be appealing if it converged
to a Nash equilibrium of G1. In what follows, we first prove
the convergence of LBP to an equilibrium, and then we derive
a condition for the unique convergence of LBP.

Proposition 2. For any ε > 0 LBP converges to an ε-Nash
equilibrium in a finite number of iterations. Furthermore, for
ε = 0 it converges to a pure Nash equilibrium.

Proof. According to Algorithm 1, P (0)
λ,κ > 0, thus P (1)

λ,κ ≥ P
(0)
λ,κ.

Consider now iteration i, and assume that P(i)
−(λ,κ) ≥ P

(i−1)
−(λ,κ)

holds for i = 1. Then, by Lemma 2 we have P (i+1)
λ,κ ≥ P (i)

λ,κ, and
P

(i+1)
−(λ,κ) ≥ P

(i)
−(λ,κ) for all MSs. Thus, the sequence {P (i)

λ,κ} is
a monotone increasing sequence. Besides, as Lemma 3 shows
{P (i)

λ,κ} is bounded. By the monotone convergence theorem,
{P (i)

λ,κ} is convergent, which proves that the LBP converges.
By Lemma 4 max{|∂MSEλ,κ(P)

∂Pλ,κ
|} exists, and according to the

mean value theorem [32, Chapter 6.3], if MS (λ, κ) updates
its data power at iteration i, it increases its data power by at
least ε·(max{|∂MSEλ,κ(P)

∂Pλ,κ
|})−1. Since {P (i)

λ,κ} is bounded, LBP
converges in a finite number of iterations. Furthermore, when
LBP terminates, the criteria in line 6 of Algorithm 1 satisfies
(13) of Definition 1, and therefore the resulting PDPR forms
an ε-Nash equilibrium. Following the same argument it is easy
to see that LBP converges to a pure Nash equilibrium when
ε=0.

In what follows, we continue with proving the uniqueness of
the convergence of LBP. To start with, we define f : R1×KL 7→
R1×KL as a mapping from P to P? and prove that f is a
contraction mapping in P1×KL

d if an easy to check condition
holds. Consequently, it has a unique fixed point and LBP
converges to this unique fixed point.

f(P) ,
[
P ?1,1(P1,1,P−(1,1)), . . . , P

?
K,L(PK,L,P−(K,L))

]
, (14)

where P ?λ,κ
(
Pλ,κ,P−(λ,κ)

)
is independent of Pλ,κ. Further-

more, define the KL × KL matrix F(P) so that its (i, j)th

element is

F(P)ij ,
∂

∂pi(P)
fj(P), (15)

where fj(P) and pj(P) denotes the jth element of row vector
f(P) and P, respectively. Note that F(P)ii = 0.

Lemma 5. The best response power allocation as defined by
(14) is a contraction mapping if the following condition holds
for ∀κ and ∀ P ∈ P1×KL

d ,

L∑
l=1

K∑
k=1

∂P ?λ,κ
(
P−(λ,κ)

)
∂Pl,k

≤ η< 1, ∀λ, κ, (16)

where η < 1 is a number arbitrarily close to 1.

The proof is provided in Appendix F. Note that the condition
stated in Lemma 5 is mild in the sense that it is always fulfilled
in practice. As an example, Table I shows the parameters for a
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2-cell system with 2 MSs in each cell; the evaluated left hand
side of condition (16) is 2.8433 · 10−10 � 1.

VII. DATA INTERFERENCE AVOIDANCE ALGORITHM

According to Lemma 2, the behavior of a MS in LBP is
selfish in the sense that a MS increases its data power whenever
the data power of any other MS increases, and the increased
data interference may further harm the MSE of the other MSs.
Therefore, it is appealing to develop an approach where each
MS also considers the impact of its power setting on the
other MSs. We address this in the following by proposing an
alternative cost function for the MSs.

A. Non-selfish Data Power Setting Game

To consider an alternative cost function, we define the non-
cooperative game G2, in which the players are the MSs, and
the action of each player is to set its data power Pλ,κ, like in
game G1. Nonetheless, in game G2 the cost function uλ,κ(P)
of each MS (λ, κ) is defined as

uλ,κ(P) = γλ,κ(P) + θλ,κ(P), (17)

where γλ,κ(P) is the reciprocal of the signal-to-interference
ratio (SIR) of the tagged MS (λ, κ),

γλ,κ(P) =

(
α2
λ,λ,κPλ,κ∑K

k 6=κ α
2
λ,λ,kPλ,k +

∑L
l 6=λ
∑K
k α

2
λ,l,kPl,k

)−1

, (18)

and θλ,κ(P) is the SIR of other MSs that are affected by MS
(λ, κ),

θλ,κ(P) = Pλ,κ

 K∑
k 6=κ

α2
λ,λ,κ

α2
λ,λ,kPλ,k

+

L∑
l 6=λ

K∑
k

α2
l,λ,κ

α2
λ,l,kPl,k

 . (19)

In game G2 each MS sets its data power to minimize its cost
function uλ,κ(P). The cost function (17) makes each MS set
its data power in a non-selfish way such that when MS (λ, κ)
increases its data power to improve its own SIR, MS (λ, κ)
receives a punishment for interfering with the data signal of
other MSs.

The following important result shows that the cost function
uλ,κ(P) is convex, and there exists a unique minimizer of
uλ,κ(P), referred to as the best response function of an MS
in G2.

Lemma 6. uλ,κ(P) is a convex function over Pλ,κ, and there
exists a unique PM

λ,κ ∈ Pd that minimizes uλ,κ(P), for a given
P−(λ,κ).

PM
λ,κ

(
P−(λ,κ)

)
= min

(
aM,

Ptot
τd

)
, (20)

where

aM =

√√√√√∑K
k 6=κ α

2
λ,λ,kPλ,k +

∑L
l 6=λ
∑K
k α

2
λ,l,kPl,k∑K

k 6=κ
α4
λ,λ,κ

α2
λ,λ,kPλ,k

+
∑L
l 6=λ
∑K
k

α2
l,λ,κα

2
λ,λ,κ

α2
λ,l,kPl,k

.

Proof. First we prove the convexity of uλ,κ(P) by noticing that
the second derivative of uλ,κ(P),

∂2uλ,κ(P)

∂P 2
λ,κ

=
2
(∑K

k 6=κ α
2
λ,λ,kPλ,k +

∑L
l 6=λ
∑K
k α

2
λ,l,kPl,k

)
α2
λ,λ,κP

3
λ,κ

(21)

is larger than zero and therefore uλ,κ(P) is a convex function
over Pλ,κ. Solving ∂uλ,κ(P)

∂Pλ,κ
= 0 shows that there is only one

solution, which is aM, thus PM
λ,κ is the unique minimizer of

uλ,κ(P) in Pd, for a given P−(λ,κ).

For a fair comparison with the LBP algorithm we introduce

P+
λ,κ

(
P−(λ,κ)

)
, min

(
PM
λ,κ

(
P−(λ,κ)

)
, max
l∈L,k∈K

Pl,k

)
. (22)

B. Data Interference Avoidance (DIA) Algorithm

We are now ready to introduce the DIA algorithm. The
pseudo-code of the algorithm is shown in Algorithm 2. In
line 1, every MS sets its data power to half of the full power,
which is reasonable since the MSs have no knowledge about
the power setting of the other MSs in the initialization stage.
Next, in lines 5-9, every MS updates its data power iteratively.
Specifically, in line 5, each BS sends the data power setting
P

(i−1)
−(λ,κ) of all the other MSs to MS (λ, κ) to compute its best

response data power P+
λ,κ

(
P

(i−1)
−(λ,κ)

)
. If P+

λ,κ

(
P

(i−1)
−(λ,κ)

)
improves

the cost function of MS (λ, κ) by at least ε, MS (λ, κ) updates
its data power according to line 7. If P+

λ,κ

(
P

(i−1)
−(λ,κ)

)
improves

the cost function of MS (λ, κ) by less than ε, MS (λ, κ) keeps
its current data power setting. DIA terminates when no MS
updates its data power. Since MSs in DIA update their data
power simultaneously, the complexity of DIA in each iteration
does not increase with the number of cells and MSs.

C. Convergence of the DIA Algorithm

Before we continue to investigate the convergence of the
DIA algorithm, let us recall the definition of an exact potential
function from (Definition 25, [33]).

Definition 2. Game G2 is an exact potential game, if and only
if there exists a function Ψ : PN → R such that for any data
power Pl,k and P ′l,k ∈ Pd the following holds for any k ∈ K
and for any l ∈ L,

Ψ
(
Pl,k,P−(l,k)

)
−Ψ

(
P ′l,k,P−(l,k)

)
=ul,k

(
Pl,k,P−(l,k)

)
− ul,k

(
P ′l,k,P−(l,k)

)
. (23)

Function Ψ (P) is an exact potential function for G2.

In what follows, we prove that the game G2 is an exact
potential game by showing that G2 has a potential function.

Lemma 7. The game G2 admits the exact potential function

Ψ(P) =
1

2

L∑
l=1

K∑
k=1

ul,k(P), (24)

and thus G2 is an exact potential game.
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Algorithm 2: Data Interference Avoidance (DIA) Al-
gorithm

1 Initial data power P (0)
λ,κ = Ptot

2τd
2 i = 0

3 while P (i)
λ,κ 6= P

(i−1)
λ,κ , ∀κ ∈ K and ∀λ ∈ L do

4 for λ ∈ {1, . . . , L} and κ ∈ {1, . . . ,K} do
5 BS sends P

(i−1)
−(λ,κ) and αi,l,κ to MS (λ, κ)

6 if uλ,κ
(
P

(i−1)
λ,κ ,P

(i−1)

−(λ,κ)

)
−

uλ,κ
(
P+
λ,κ

(
P

(i−1)

−(λ,κ)

)
,P

(i−1)

−(λ,κ)

)
> ε then

7 P
(i)
λ,κ = P+

λ,κ

(
P

(i−1)
−(λ,κ)

)
8 else
9 P

(i)
λ,κ = P

(i−1)
λ,κ

10 i = i+ 1

Output: Data power allocation P.

The proof is provided in Appendix G, and the following
result is immediate.

Proposition 3. The DIA algorithm converges to an ε-Nash
equilibrium of G2 in a finite number of iterations.

Proof. According to Lemma 6, P+
λ,κ(P−(λ,κ)) ∈ Pd is the

unique minimizer of the cost function uλ,κ(Pλ,κ, P−(λ,κ))
according to P−(λ,κ). Therefore, the cost function of MS (λ, κ)
is bounded from below. Thus, G2 is a bounded potential game
(Section 4, [34]). Since G2 is a bounded potential game, G2

possesses an ε Nash equilibrium (Lemma 4.1, [34]), and the
best reply and better reply dynamics converge to an ε-Nash
equilibrium of G2 (Corollary 2.4, [35]). Observe, that the DIA
algorithm lets one MS perform a best response upon every
iteration, if the best response provides an improvement of at
least ε, hence convergence follows. Since uλ,κ(Pλ,κ, P−(λ,κ))
is bounded from below on Pd, Ψ(P) is bounded from below.
Therefore, the DIA algorithm converges in a finite number of
iterations, ∀ε > 0.

VIII. NUMERICAL RESULTS

In this section, we consider various MU-MIMO scenarios,
and present numerical results. We first verify a few important
properties of the MSE with and without pilot contamination,
then evaluate the proposed LBP and DIA algorithms in terms
of the achieved MSE and the corresponding pilot and data
power setting in a three-cell scenario. Finally, we examine the
convergence of the DIA and LBP algorithms. The simulation
parameters are summarized in Table II.

A. Properties of the MSE

We first consider a single cell system with two MSs and
Nr = 100. The pathloss between each MS and the BS is 73.8
dB. Figure 1(a) shows the MSE of MS (1,1) as a function of
its own data power τdP1,1, with τdP1,2 = 10mW, 120 mW,
and 240 mW, respectively. The results show that as the power
of MS (1,2) increases, the MSE of MS (1,1) increases, since
increasing τdP1,2 increases the data interference of MS (1,1).
Next, we consider a two-cell system with one MS per cell. The

Table II: System Parameters

Parameter Value
Number of antennas at the BS Nr = 10, 100, 500

Total number of symbols F = 12
Number of data symbols τd = 8
Number of pilot symbols F − τd
Power budget Ptot = 24 dBm
Thermal noise density −174 dBm/Hz

τd P1,2 = 10 mW

τd P1,2 = 240 mW

τd P1,2 = 120 mW

Optimal MSE
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Figure 1: MSE of MS (1,1) as a function of P1,1, with and without
pilot contamination. Due to the pilot contamination, for the
same P1,1 and data interference, MS (1, 1) achieves a worse
MSE in the two-cell system than in the single cell system.

pathloss between any MS and any BS is again 73.8 dB. To
evaluate the impact of pilot contamination, we assume that the
two MSs are using the same pilot sequence. Figure 1(b) shows
the MSE of MS (1,1) as a function of its own data power,
with τdP2,1 = 10mW, 120 mW, and 240 mW, respectively.
Observe that due to the pilot contamination, with the same data
interference, MS (1,1) achieves a higher MSE in the two-cell
system than in the single cell system. It is also interesting to
see that when τdP1,1 > 220 mW, increasing τdP2,1 from 120
mW to 240 mW reduces MSE1,1, which is in contrast to the
single cell system. The reason for this behavior in the two-
cell system is that when MS (1,1) allocates more power to the
data signal, it allocates less power to the pilot signal and thus
becomes more sensitive to pilot contamination. In Figure 1(a)
and 1(b), the black dot on each curve shows the optimal MSE
that MS (1,1) can achieve and the corresponding data power
setting. We observe in both cases that as the data power of
the other MS increases, the optimal power setting of MS (1,1)
increases, which is consistent with Lemma 2.

B. MSE Performance

To evaluate the performance of the proposed LBP and DIA
algorithms, we consider a three-cell system serving 8 users,
where the BS is equipped with 10, 100, or 500 antennas.
Figure 2 shows the CDF of the sum MSE of the MSs for
the three-cell system. The results show that the DIA algorithm
outperforms the LBP algorithm in terms of the sum MSE by
about 1 dB when Nr = 10. Furthermore, increasing the number
of antennas increases the performance gain of DIA. When
Nr = 500, for example, the DIA brings about 5 dB gains to

7



Figure 2: The CDF of sum MSE for a three-cell system, with Nr =
10, 100, and 500. DIA outperforms LBP at the cost of
requiring more CSI.

Figure 3: The CDF of individual MSE for a three-cell system, with
Nr = 10, 100, and 500. In DIA about 80 percent of the
MSs achieves a lower MSE than in LBP, and DIA also
achieves a better fairness than LBP.

Figure 4: The CDF of sum MSE for a single cell system, with Nr =
10, 100, and 500. The performance gap between DIA and
LBP in single cell system is smaller than that in three-cell
system.
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Figure 5: The CDF of sum MSE for a three-cell system with MSs
placed at the cell edge, K = 2 and 8, and Nr = 100. DIA
performs close to the optimal solution, and both DIA and
LBP outperform the fixed power allocation scheme.

the system. This can be explained by the different behaviors of
the MSs in the two algorithms.

Using LBP, each MS minimizes its own MSE at the cost
of generating interference to the data signal of the other MSs.
Therefore, as LBP progresses, the received data interference of
every MS increases. Although LBP allows each MS to choose
the data power that minimizes its own MSE, the system suffers
from a high level of interference at the data signals. In contrast,
when using DIA, each MS takes into account the interference
that it generates to the other MSs. As a result, the overall level
of interference in the system is relatively low. Thus, although
the MSs do not minimize the own MSE in their best response
function, the system benefits from the low level of interference.
It is worth noting that although DIA achieves a better sum MSE
performance than LBP, LBP requires less CSI than DIA. In
LBP each MS needs to know σ2

d,λ,κ(P) and σ2
p,λ,κ(P), whereas

in DIA each MS also needs to know the received data power
at the BS.

Figure 3 shows the CDF of the individual MSEs of the MSs
for the same scenario as considered in Figure 2. The results
for Nr = 10 show that the individual MSE achieved by the
DIA algorithm is distributed within [−5dB, 0dB], while that by
the LBP algorithm is within [−25dB, 0dB]. This observation
shows that DIA balances the MSE performance of the MSs and
achieves better fairness, while LBP allows the MSs in favorable
conditions (e.g., close to the cell center) to achieve a lower
MSE. This phenomenon can be explained by the difference
between LBP and DIA as discussed above. Also, it is interesting

to see that in the scenario in which Nr = 10, about 80 percent
of the MSs achieve a lower MSE with the DIA algorithm
than with the LBP algorithm. This shows that the majority
of the MSs benefit from being less greedy. The results for
Nr = 100 and Nr = 500 also show similar behavior as
those for Nr = 10. Finally, comparing the performance of the
algorithms with different number of antennas also shows the
benefits of deploying more antennas at the BS.

To benchmark the performance of the algorithms, we also
consider a single cell system serving 8 MSs, where there is
no pilot contamination and intercell data interference. Figure 4
shows the CDF of the sum MSE of the MSs for the single
cell system. Similarly to the three-cell scenario, the DIA
outperforms the LBP algorithm, while varying the number of
antennas. Comparing Figures 4 and 2 shows that the perfor-
mance gap between DIA and LBP is larger in the three-cell
system than that in the single cell system. For example, when
Nr = 100, the performance gap between DIA and LBP is at
least 3 dB for 40% of the MSs, while it is about 1 dB in the
single cell scenario. This shows that setting the data power in
a non-selfish way brings more gain to the three-cell system, in
which the data interference is more severe than in the single
cell system.

In what follows we compare DIA and LBP to the op-
timal solution and to a fixed power allocation scheme. We
obtain the optimal solution by using the optimization solver
in Mathematica to solve problem (P1) numerically. The fixed
power allocation scheme is motivated by conventional PDPR
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Figure 6: The CDF of sum MSE for a three-cell system, Nr = 100,
and Ptot = 220 mW, 250 mW and 280 mW. DIA achieves
better performance with higher Ptot, whereas LBP is less
sensitive to Ptot.

Figure 7: The CDF of individual data power for a three-cell system,
with Nr = 10, 100, and 500. DIA has a larger spread of
the data power across the MSs than LBP.

settings in wireless networks. As an example, in the uplink
of 3GPP LTE systems 1 out of 7 OFDM symbols are used
for pilot signals, and the rest OFDM symbols are used for
data transmission. In accordance with this, in the fixed power
allocation scheme we allocate 1

7 of the total power budget Ptot
to the pilot symbols of each MS, and allocate the rest of Ptot to
the data symbols. Figure 5 shows the CDF of sum MSE for a
three-cell system with MSs placed at the cell edge, K ∈ {2, 8},
and Nr = 100. When K = 2 DIA performs close to the optimal
solution, with a performance gap of about 0.5 dB (due to the
complexity of the MSE expression, we were unable to compute
an optimal solution for K > 2). The results also show that DIA
and LBP outperform the fixed power allocation for both values
of K, as DIA and LBP allow MSs to adapt their data power
with respect to noise and interference.

Furthermore, the scenarios in Figure 5 allow us to investigate
the impact of the location of the MSs on the MSE performance.
Opposite to intuition, the results for K = 8 and Nr = 100
in Figures 4 and 5 show that DIA and LBP achieve lower
sum MSE when MSs are placed at the cell edge. This is
because in interference-limited systems, the MS in the cell
center generates higher received power at the serving BS, than
the received power from a cell-edge MS. This high received
power from a cell center MS at the BS corresponds to a high
MU-MIMO interference to the simultaneously served MSs, and
thus systems with only edge MSs benefit from a relatively low
level of data interference, which compensates the relatively high
pathloss of the edge MSs.

To investigate the impact of the total power budget Ptot on
the MSE performance, in Figure 6 we compare the CDF of sum
MSE of a three-cell system for Ptot = 220 mW, 250 mW and
280 mW, with Nr = 100. The figure shows that the sum MSE
of DIA decreases as Ptot increases, while increasing Ptot from
220 mW to 280 mW results in limited improvement for LBP.
This can be explained as follows. A higher Ptot can benefit a
MS by increasing the received pilot and data signal strengths,
but also harms the other MSs by higher interference. Compared
to LBP, MSs in DIA can benefit more from the increased Ptot,
as in DIA each MS takes into account the data interference that
it generates to the other MSs.

Table III: Average pilot and data power levels (mW)

DIA LBP

τdP̄λ,κ τpP̄
(p)
λ,κ τdP̄λ,κ τpP̄

(p)
λ,κ

Single Cell 113.002 136.978 199.369 50.631
Three Cells 111.940 138.060 198.524 51.476

C. PDPR Performance

Figure 7 shows the CDF of the individual data power of
the MSs for the same scenario as considered in Figure 2. The
results show that in general, DIA has a larger spread of the
data power across the MSs than LBP. This is because the
DIA algorithm sets very low data power to the MSs with good
channel conditions, while it sets high data power to MSs with
poor channel conditions. Furthermore, note that the curves for
the same algorithm with different number of antennas are very
close to each other. This is because DIA only considers the
data interference, and the data power is therefore independent
of the number of antennas. Similarly, the best response (11) of
LBP is also independent of Nr.

To compare the data power setting of DIA and LBP in single
cell and three-cell systems, Table III shows the average pilot and
data power level of those two algorithms with Nr = 100. The
table indicates that on average, DIA allocates a higher portion
of the power budget to pilot symbols, while LBP allocates
higher power levels to data symbols. We can also see that
both algorithms allocate more power to pilot symbols in the
three-cell scenario. This is because for the three-cell scenario
DIA reduces the data power level to mitigate inter-cell data
interference, and LBP also increases the pilot power level in
response to pilot contamination.

D. Convergence

Figure 8 shows the average number of iterations to conver-
gence as a function of the number of MSs per cell for systems
with 1, 2 and 3 cells, with Nr = 500. The confidence intervals
of the results are shown at the 95% confidence level. The results
show that the average number of iterations for DIA increases
linearly as the number of cells or MSs increases. At the same
time, the number of iterations for LBP also increases linearly as
the number of cells increases, however, the number of iterations
for LBP is not sensitive to the number of MSs when K ≥ 3.
The observations show that both LBP and DIA scale well when
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Figure 8: The average number of iterations for convergence for L =
1, 2, and 3 with Nr = 500. LBP converges faster than DIA.

the number of cells and MSs increases. It is interesting to see
that LBP converges much faster than DIA. For example, for
a three-cell system with 8 MSs, LBP converges in average in
about 3 iterations, while DIA converges in about 13 iterations.
This observation allows to trade off the convergence speed for
the MSE performance by deploying DIA or LBP. Finally, recall
that in each iteration the execution time of DIA and LBP is
independent of the number of cells and MSs, and thus the
execution times of DIA and LBP are proportional to the number
of iterations for convergence.

IX. CONCLUSIONS

In this paper we considered the uplink of a multi-cell
MU-MIMO system, where each MS divides its total power
budget between transmitting pilot and data symbols. In this
system, the coexistence of pilot contamination and data in-
terference makes the PDPR setting challenging. Furthermore,
we argued that due to deploying large scale antenna systems,
decentralized PDPR setting schemes are desirable. To this
end, we derived a closed form MSE expression for multi-cell
MU-MIMO systems, and showed that there exists a unique
data power setting for each MS to minimize its own MSE,
when the data power setting of all the other MSs is fixed.
Based on these results, we modeled the PDPR setting as a
non-cooperative game G1, that allows each MS to minimize
its own MSE by setting its data power. We proposed the
decentralized LBP algorithm to compute the Nash equilibrium
of G1. Due to the selfish behaviors of the MSs in G1, the
sum MSE performance of the system suffers from a relatively
high level of data interference. Motivated by this observation,
we further modeled the PDPR setting problem as a game G2,
where the MSs are aware of the data interference in the system.
We proposed the decentralized DIA algorithm to compute a
data power allocation, and proved that it converges to a Nash
equilibrium of G2. Simulation results showed that the DIA
algorithm provides better fairness, while the LBP algorithm
allows the MSs with good channel condition to achieve lower
MSE.

APPENDIX A
PROOF OF PROPOSITION 1

Following the definition of MSE in (8), we obtain the MSE
of the estimated data symbols of the tagged MS (λ, κ) by using
the receiver Gλ,κ as follows,

MSEλ,κ(Gλ,κ,h1,1,1, . . . ,hλ,L,K)

=Ex,nd
∣∣∣(Gλ,καλ,λ,κhλ,λ,κ

√
Pλ,κ − 1

)
xλ,κ

∣∣∣2
+

K∑
k 6=κ

Pλ,kEx,nd |Gλ,καλ,λ,khλ,λ,kxλ,k|2

+

L∑
l 6=λ

K∑
k

Pl,kEx,nd |Gλ,καλ,l,khλ,l,kxl,k|2

+ Ex,nd |Gλ,κnd|2. (25)

By utilizing that E{xλ,κx∗λ,κ} = 1 and E{ndnd∗} = σ2
dI,

we obtain

MSEλ,κ(Gλ,κ,h1,1,1, . . . ,hλ,L,K)

=
∣∣∣(Gλ,καλ,λ,κhλ,λ,κ

√
Pλ,κ − 1

)∣∣∣2
+

K∑
k 6=κ

Pλ,k|Gλ,καλ,λ,khλ,λ,k|2+

+

L∑
l 6=λ

K∑
k

Pl,k|Gλ,καλ,l,khλ,l,k|2 + σ2
dGλ,κG

H
λ,κ. (26)

Assuming perfect CSI at the BS λ, i.e., hλ,λ,κ is known, the
MSE of the estimated data symbols of the tagged MS (λ, κ)
by using the receiver Gλ,κ is

MSEλ,κ(Gλ,κ,hλ,λ,κ)

= Eh1,1,1,...,hλ,L,K{MSEλ,κ(Gλ,κ,h1,1,1, . . . ,hλ,L,K)}
= α2

λ,λ,κPλ,κGλ,κhλ,λ,κh
H
λ,λ,κG

H
λ,κ

− αλ,λ,κ
√
Pλ,κ

(
Gλ,κhλ,λ,κ + hHλ,λ,κG

H
λ,κ

)
+

L∑
l 6=λ

K∑
k

α2
λ,l,kPl,kGλ,κCλ,l,kG

H
λ,κ

+
K∑
k 6=κ

α2
λ,λ,kPλ,kGλ,κCλ,λ,kG

H
λ,κ + σ2

dGλ,κG
H
λ,κ + 1. (27)

By applying the result that (h|ĥ) ∼ CN (Dĥ,Q), the MSE
of the estimated data symbols of the tagged MS (λ, κ) as a
function of the estimated channel ĥλ,λ,κ is

MSEλ,κ(Gλ,κ, ĥλ,λ,κ)

= Ehλ,λ,κ|ĥλ,λ,κ{MSEλ,κ(Gλ,κ,hλ,λ,κ)}

= α2
λ,λ,κPλ,κGλ,κ

(
Dλ,λ,κĥλ,λ,κĥ

H
λ,λ,κD

H
λ,λ,κ + Qλ,λ,κ

)
GH
λ,κ

− αλ,λ,κ
√
Pλ,κ

(
Gλ,κDλ,λ,κĥλ,λ,κ + ĥHλ,λ,κD

H
λ,λ,κG

H
λ,κ

)
+

L∑
l 6=λ

K∑
k

α2
λ,l,kPl,kGλ,κCλ,l,kG

H
λ,κ

+

K∑
k 6=κ

α2
λ,λ,kPλ,kGλ,κCλ,λ,kG

H
λ,κ + σ2

dGλ,κG
H
λ,κ + 1. (28)

Since we assume the proper antenna spacing, substituting
Gλ,κ = gλ,κ · ĥHλ,λ,κ, Rλ,λ,κ(P) = rλ,λ,κ(P) · I, Dλ,λ,κ(P) =
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dλ,λ,κ(P) · I, Qλ,λ,κ(P) = qλ,λ,κ(P) · I into (28) yields

MSEλ,κ(Gλ,κ, ĥλ,λ,κ) (29)

=1− 2αλ,λ,κ
√
Pλ,κgλ,κdλ,λ,κ||ĥλ,λ,κ||2

+ g2
λ,κ

(
α2
λ,λ,κPλ,κd

2
λ,λ,κ||ĥλ,λ,κ||4

+
(
α2
λ,λ,κPλ,κqλ,λ,κ + σ2

λ,κ

(
P−(λ,κ)

))
||ĥλ,λ,κ||2

)
.

For convenience, we define

T1 = g2
λ,κ α

2
λ,λ,κPλ,κd

2
λ,λ,κ||ĥλ,λ,κ||4,

T2 = g2
λ,κ

(
α2
λ,λ,κPλ,κqλ,λ,κ + σ2

λ,κ

(
P−(λ,κ)

))
||ĥλ,λ,κ||2,

T3 = 2αλ,λ,κ
√
Pλ,κgλ,κdλ,λ,κ||ĥλ,λ,κ||2, (30)

and therefore MSEλ,κ(Gλ,κ, ĥλ,λ,κ) = T1 + T2− T3 + 1.

In what follows, we derive the unconditional MSE of the
estimated data symbols of the tagged MS (λ, κ) for multi-
cell MU-MIMO with pilot contamination, and the proof is an
extension of the proof of MSE in single cell without pilot
contamination in [ Proposition 1, Lemma 2, [18] ]. We denote
by MSEλ,κ(P) the unconditional MSE of the estimated data
symbols of the tagged MS (λ, κ), which emphasizes fact that
the unconditional MSE is a function of the data power of all
MSs.

We define sλ,λ,κ = d2
λ,λ,κPλ,λ,κ and bλ,λ,κ = q2

λ,λ,κPλ,λ,κ+
σ2
λ,κ, and drop the indices of sλ,λ,κ, bλ,λ,κ, rλ,λ,κ in the

following proof for simplicity.
Recognizing that ||ĥλ,λ,κ||2 follows the Gama distribution,

the density function of ||ĥλ,λ,κ||2 is

f||ĥλ,λ,κ||2(x) =
r−NrxNr−1e−

x
r

(Nr − 1)!
, x > 0. (31)

To obtain MSEλ,κ(P), we take the average of
MSEλ,κ(Gλ,κ, ĥλ,λ,κ) by using the following integrals,∫ ∞

x=0

T1f||ĥλ,λ,κ||2(x)dx (32)

= Nr

(
e
b
sr (b+ (1 +Nr) sr)Ein

(
1 +Nr,

b

sr

)
− sr

)/
(sr),

∫ ∞
x=0

T2f||ĥλ,λ,κ||2(x)dx (33)

= b

(
e
b
sr (b+Nrsr)Ein

(
Nr,

b

sr

)
− sr

)/(
s2r2

)
,∫ ∞

x=0

T3f||ĥλ,λ,κ||2(x)dx = 2 · e
b
srNrEin

(
Nr,

b

sr

)
, (34)

where Ein(n, z) ,
∫∞

1
e−zt/tndt is the standard exponential

integral function. Therefore, the unconditional MSE is

MSEλ,κ(P) =
Nr
(
e
b
sr (b+ (1 +Nr) sr)Ein

(
1 +Nr,

b
sr

)
− sr

)
sr

+
b
(
e
b
sr (b+Nrsr)Ein

(
Nr,

b
sr

)
− sr

)
s2r2

− 2 · e
b
srNrEin

(
Nr,

b

sr

)
+ 1. (35)

Now we rewrite the MSE expression in (35) by making use
of the following recursive relation ([8.19.12, [36]]),

µλ,κEin(Nr, µλ,κ) +NrEin(Nr + 1, µλ,κ) = e−µλ,κ . (36)

Define µλ,κ = b
rs , and we obtain (10) by substituting b,

r, and s into µλ,κ. Substituting µλ,κ in (10) into (36), and
rearranging, we obtain (9).

APPENDIX B
PROOF OF LEMMA 1

The first derivative of the MSEλ,κ(P) with respect to Pλ,κ
is

∂MSEλ,κ(P)

∂Pλ,κ
=
∂MSEλ,κ(P)

∂µλ,κ
· ∂µλ,κ(P)

∂Pλ,κ
. (37)

From [18, Appendix III], ∂MSEλ,κ(P)
∂µλ,κ

is positive ∀µλ,κ(P) >
0.

According to the system model, when Pλ,κ ∈ Pd, Ptot −
Pλ,κτd > 0 and thus µλ,κ(P) is always positive. Thus
the sign of ∂MSEλ,κ(P)

∂µλ,κ
in (37) only depends on the sign

of ∂µλ,κ(P)
∂Pλ,κ

. Further investigation shows ∂µλ,κ(P)
∂Pλ,κ

= 0 has

unique solution P ∗λ,κ in Pd, and ∂µλ,κ(P)
∂Pλ,κ

∂MSEλ,κ(P)
∂Pλ,κ

< 0

for ∀Pλ,κ ∈ (0, P ∗λ,κ], and ∂µλ,κ(P)
∂Pλ,κ

∂MSEλ,κ(P)
∂Pλ,κ

> 0 for
∀Pλ,κ ∈ [P ∗λ,κ,

Ptot
τd

). Therefore, P ∗λ,κ, as shown in (11), is
the unique minimizer of MSEλ,κ(P).

APPENDIX C
PROOF OF LEMMA 2

Taking the first derivative of P ?λ,κ
(
P−(λ,κ)

)
with respect to

the data power Pl,j of MS j in cell l we obtain

∂P ?λ,κ
(
P−(λ,κ)

)
∂Pl,j

= cλ,λ,κP
2
totαλ,l,jτd·(

V α2
λ,λ,κτdτp

U2 + W((
σ2
λ,κ(P−(λ,κ))−Pl,jα2

λ,l,j
cλ,l,j

)
+αλ,l,jPl,j

)2

)

2W 2

√
V τd
W

(
τd +

√
V τd
W

)2 ,

(38)

where

U = αλ,l,j (Ptot − τdPl,j)+(
σ2

pc,λ,κ
(
P−(λ,κ)

)
− (Ptot − τdPl,j)

τp
α2
λ,l,jcλ,l,j

)
τp, (39)

V = τd +
cλ,λ,κPtot(

σ2
λ,κ

(
P−(λ,κ)

)
− Pl,jα2

λ,l,jcλ,l,j
)
+ αλ,l,jPl,j

, (40)

and

W = 1 +
cλ,λ,κPtotα

2
λ,λ,κτp

U
. (41)

Since
∂P?λ,κ(P−(λ,κ))

∂Pl,j
is positive, the best response function

of MS κ in cell λ is an increasing function of the data power
of MS j in cell l.
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APPENDIX D
PROOF OF LEMMA 3

Since σ2
pc,λ,κ

(
P−(λ,κ)

)
> 0 and σ2

λ,κ

(
P−(λ,κ)

)
> 0 holds

for any 0 ≤ P(−λ,κ) ≤ Ptot
τd

e, and thus M(P−(λ,κ)) > 0.
Hence, 0 < Pλ,κ, Pλ,κ <

Ptot
τd

, and we prove the Lemma.

APPENDIX E
PROOF OF LEMMA 4

From [18, Appendix III] ∂MSEλ,κ(P)
∂Pλ,κ

is a product of continu-

ous functions on [Pλ,κ, Pλ,κ], and thus ∂MSEλ,κ(P)
∂Pλ,κ

is a continu-

ous function on [Pλ,κ, Pλ,κ]. Therefore, ∂MSEλ,κ(P)
∂Pλ,κ

is bounded

on the closed interval [Pλ,κ, Pλ,κ], and max{|∂MSEλ,κ(P)
∂Pλ,κ

|}
exists. [32, Chapter 6.2]

APPENDIX F
APPENDIX: PROOF OF LEMMA 5

According to the proof of Theorem 2 in [37], the condition
that f(P) is a contraction mapping in P1×KL

d is

||F(P)||1 = max
j

K∑
i=1

|F(P)ij | ≤ η, (42)

where η < 1 is a number close to one. (42) can be reformulated
as

L∑
l=1

K∑
k=1

L
∂P ?λ,κ

(
P−(λ,κ)

)
∂Pl,k

≤ η< 1, ∀λ, κ. (43)

APPENDIX G
PROOF OF LEMMA 7

We consider two arbitrary data powers Pλ,κ, P ′λ,κ ∈ Pd for
MS (λ, κ). When MS (λ, κ) changes its data power from Pλ,κ
to P ′λ,κ, the change of its cost function is

∆uλ,κ = uλ,κ
(
Pλ,κ,P−(λ,κ)

)
− uλ,κ

(
P ′λ,κ,P−(λ,κ)

)
,

and the change of the function Ψ(P) is

∆Ψ = Ψ
(
Pλ,κ,P−(λ,κ)

)
−Ψ

(
P ′λ,κ,P−(λ,κ)

)
.

According to Definition 2, to prove that Ψ(P) is a potential
function of G2, we only need to prove that ∆Ψ = ∆uλ,κ. We
rewrite ∆O as

∆O =
1

2

L∑
l=1

K∑
k=1

(
γl,k

(
Pλ,κ,P−(λ,κ)

)
− γl,k

(
P ′λ,κ,P−(λ,κ)

))
+

1

2

L∑
l=1

K∑
k=1

(
θl,k

(
Pλ,κ,P−(λ,κ)

)
− θl,k(P ′λ,κ,P−(λ,κ))

)
.

(44)

According to (18), when l 6= λ and k 6= κ we have

γl,k(P) =

∑K
m 6=k α

2
l,l,mPl,m +

∑L
i 6=l
∑K
m α

2
l,i,mPi,m

α2
l,l,kPl,k

. (45)

Since only the data power of MS (λ, κ) is changed, and
therefore for all l 6= λ and k 6= κ,

γl,k
(
Pλ,κ,P−(λ,κ)

)
− γl,k

(
P ′λ,κ,P−(λ,κ)

)
=
α2
l,λ,κPλ,κ − α2

l,λ,κP
′
λ,κ

α2
l,l,kPl,k

. (46)

Further, we have

L∑
l=1

K∑
k=1

(
γl,k

(
Pλ,κ,P−(λ,κ)

)
− γl,k

(
P ′λ,κ,P−(λ,κ)

))
=

K∑
k 6=κ

α2
λ,λ,κPλ,κ − α2

λ,λ,κP
′
λ,κ

α2
λ,λ,kPλ,k

+

L∑
l 6=λ

K∑
k

α2
l,λ,κPλ,κ − α2

l,λ,κP
′
λ,κ

α2
l,l,kPl,k

+
(
γλ,κ(Pλ,κ,P−(λ,κ))− γλ,κ(P ′λ,κ,P−(λ,κ)

)
=θλ,κ(Pλ,κ,P−(λ,κ))− θλ,κ(P ′λ,κ,P−(λ,κ)) (47)

+ γλ,κ(Pλ,κ,P−(λ,κ))− γλ,κ(P ′λ,κ,P−(λ,κ) = ∆uλ,κ.

Similarly, when l 6= λ and k 6= κ we have

θl,k(Pλ,κ,P−(λ,κ))

= Pl,k

 K∑
m 6=k

α2
l,l,k

α2
l,l,mPl,m

+

L∑
i 6=l

K∑
m

α2
i,l,k

α2
i,i,mPi,m

 . (48)

and since only MS (λ, κ) changes its data power, when l 6= λ
and k 6= κ,

θl,k(Pλ,κ,P−(λ,κ))− θl,k(P ′λ,κ,P−(λ,κ))

=
α2
λ,l,kPl,k

α2
λ,λ,κPλ,κ

−
α2
λ,l,kPl,k

α2
λ,λ,κP

′
λ,κ

. (49)

Therefore,
L∑
l

K∑
k

(
θl,k(Pλ,κ,P−(λ,κ))− θl,k(P ′λ,κ,P−(λ,κ))

)
=

K∑
k 6=κ

α2
λ,λ,kPλ,k

α2
λ,λ,κPλ,κ

+

L∑
l 6=λ

K∑
k

α2
λ,l,kPl,k

α2
λ,λ,κPλ,κ

(50)

−
K∑
k 6=κ

α2
λ,λ,kPλ,k

α2
λ,λ,κP

′
λ,κ

−
L∑
l 6=λ

K∑
k

α2
λ,l,kPl,k

α2
λ,λ,κP

′
λ,κ

+ θλ,κ(Pλ,κ,P−(λ,κ))− θλ,κ(P ′λ,κ,P−(λ,κ))

=γλ,κ
(
Pλ,κ,P−(λ,κ)

)
− γλ,κ

(
P ′λ,κ,P−(λ,κ)

)
(51)

+ θλ,κ(Pλ,κ,P−(λ,κ))− θλ,κ(P ′λ,κ,P−(λ,κ) = ∆uλ,κ.

Substituting (47) and (51) in (44) shows that

∆Ψ =
1

2
∆uλ,κ +

1

2
∆uλ,κ = ∆uλ,κ, (52)

which proves the lemma.
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