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Abstract—The performance of the uplink of single and mul-
tiuser multiple input multiple output (MIMO) systems depends
crucially on the receiver architecture and the quality of channel
state information at the receiver. Therefore, several previous
works have developed minimum mean squared error (MMSE)
receivers and proposed balancing the resources spent on acquir-
ing channel state information and transmitting the payload of
data packets. Somewhat surprisingly, the most popular MIMO
linear MMSE receivers do not exploit the correlation structure
that is present in autoregressive Rayleigh fading environments.
Therefore, in this paper we first develop a new linear receiver
that not only takes channel state information errors into account
in minimizing the MSE of the received data symbols, but it
also utilizes that the subsequent noisy channel coefficients are
correlated. For this new linear MMSE receiver, we derive the
achieved MSE as a function of the number of receive antennas
and the pilot-to-data power ratio. Interestingly, we find that the
pilot power that minimizes the MSE of the data symbols does not
depend on the number of antennas and that the new linear MMSE
receiver outperforms previously proposed MIMO receivers when
the autocorrelation coefficient of the channel is high.

Index terms— multiple input multiple output, estimation
theory, autoregressive processes, receiver design

I. INTRODUCTION

In multi-user multiple input multiple output (MU-MIMO)
systems, the base station (BS) usually estimates the state of the
channels by means of reference or pilot signals transmitted by
mobile stations (MSs) in the uplink. For example, MSs in long
term evolution (LTE) systems use cyclically shifted Zadoff-
Chu sequences to form demodulation reference signals that are
orthogonal in the code domain. These reference signals enable
the BS to obtain channel state information at the receiver
(CSIR), which is necessary for uplink data reception [1]. In
general, in systems that employ pilot aided CSIR acquisition,
determining the number of pilot symbols and tuning the pilot
power ratio (PPR) are important for optimizing the system
performance, see [2]–[13], and more recently [14].

The seminal work by [2] evaluated the difference between
the mutual information when the receiver has only an estimate
of the channel and when CSIR is perfect. The results in [3]
showed that training based channel estimation significantly
affects the capacity and that training imposes a substantial
information-theoretic penalty.

Subsequently, references [4], [5] established a lower bound
specifically for multiple input multiple output (MIMO) or-
thogonal frequency division multiplexing (OFDM) systems

employing minimum mean squared error (MMSE) channel
estimation. It was also shown that the optimal PPR that
minimizes the mean symbol error rate increases the capacity
by 10-20% as compared with a system using suboptimal PPR
setting. Reference [7] optimized the pilot overhead for single-
user fading channels in the case of block-fading and continuous
fading wireless channels.

In our previous work, we analysed the performance of a
receiver that minimizes the mean squared error (MSE) of
the uplink received data symbols and treats the estimated
channel as if it was the actual channel, and consequently min-
imizes the MSE only when perfect channel state information
is available at the receiver [15]. The MU-MIMO setting is
analyzed in [6], in which the coherence interval of T symbols
is expended for transmitting pilot symbols (channel training),
CSIR acquisition, and precoder computation for downlink (DL)
transmission. More recently, references [10], [11] and [12]
considered the uplink power control and PPR setting problem
in MU-MIMO systems assuming practical (zero-forcing (ZF)
and MMSE-based) multiantenna receiver structures, while
the fundamental limits of training-based uplink MU-MIMO
systems are established in [13]. The results of [13] determine
upper and lower bounds of the mutual information in training-
based uplink MU-MIMO systems and propose the optimal
training design for the maximization of the lower bound
of the mutual information. For multi-cell massive MIMO
systems, paper [16] developed and analysed a pilot power
allocation scheme through user grouping, and derived closed-
form expressions for a relative channel estimation error metric
and the achievable uplink rate. Notice that none of the above
papers developed a MU-MIMO receiver that minimizes the
expectation of the data symbol error in the presence of CSIR
errors.

In contrast, papers [17]–[19] and more recently [20] pro-
posed linear MMSE receivers that take into account the statis-
tical properties of CSIR errors when minimizing the MSE of
the estimated uplink data symbols. Consequently, the specific
structure of the MU-MIMO MMSE receiver depends on both
the channel estimation scheme (e.g. MMSE used in [17],
[21] or least squares (LS) used in [19], [20]) and whether
the regularization takes into account the channel estimates
of interfering users [18], [20] or is based on the covariance
matrices of the interfering users [19]. In either of these cases,



the linear MMSE receiver shows significant gains over naive
receivers, which minimize the MSE of the received data
symbols only when perfect CSIR is assumed.

A promising technique for large antenna systems employs
data-aided channel estimation, according to which partially de-
coded data are used to aid pilot-based channel state acquisition
[22], [23]. Paper [22] proposes an analytical approach that
can predict the performance of data-aided channel estimation
schemes with good accuracy, especially for matched filter
detectors. An iterative data-aided channel estimation receiver
is designed in [23], whose performance is analysed using
orthogonal or superimposed pilots. However, these papers do
not address autoregressive wireless channels. Also, iterative
linear MMSE detection has been proposed in [24], and more
recently in [25]. In the latter, it was proved that a matched
iteative linear MMSE detector achieves the capacity of MIMO
non-orthogonal multiple access systems with any number of
users. The analysis of these papers focuses on block-fading
channels rather than assuming autoregressive fading processes.

Along a closely related line of research, several important
contributions showed that exploiting the correlation between
the subsequent complex channel coefficients in time-variant
Rayleigh fading environments is important. This is because
when the channel can be modeled as an autoregressive (AR)
process with Gaussian process noise, its state can be better
estimated when the correlation between subsequent channel
realizations is taken into account [26]–[28]. In fact, this
correlation between subsequent channel realizations can also
be used to predict the evolution of channel parameters in
time, which helps overcome channel aging affects [29]–[33].
However, the receiver design is out of the scope of these
papers. Papers [29] and [31], for example, use maximum
ratio combining, while papers [32] and [33] focus on channel
prediction and are not concerned with receiver design. In
contrast, equalizer and receiver algorithms for single input
single output (SISO) and MIMO systems are studied in [34],
[35] and [36]–[38], respectively. Unfortunately, the algorithms
developed for SISO systems do not aim to minimize the MSE
of the data symbols and do not easily generalize to MIMO
systems. Likewise, the design of an MMSE receiver is not the
topic of papers [36], [37] and [38].

Although it is intuitively appealing that an MMSE receiver
design should take into account both the CSIR errors and
the memoryfull property of the AR Rayleigh channel, to the
best of our knowledge, such a receiver has not been designed
and analyzed previously. More specifically, knowing that the
linear MMSE receiver far outperforms the naive receiver (see
[18], [19], [39]) in terms of the achieved MSE, in this paper,
we ask the question if is it possible to further improve the
performance by regularizing the linear MMSE receiver by
means of the correlation structure of the time-variant channel.
We will assume that the system can implement a state of the
art scheme, such as those developed in [40] or more recently in
[41] for estimating the AR parameter of the wireless channel,
as it evolves in time. This is an important question, because
it gives an indication to system designers on the potential
of exploiting the evolution of the channel in time and also

of tuning the PPR when using the optimal linear MMSE
receiver. Indeed, we intuitively expect that when the channel
is memoryfull, capturing its correlation structure in time can
lead to spending a smaller proportion of the time and power
resources on CSIR acquisition, which leaves more resources
to improve the signal-to-interference-plus-noise ratio (SINR)
of the transmitted data symbols. However, to the best of our
knowledge, this intuition has not been rigorously examined
previously.

To summarize the contributions of the present paper, we
highlight the following main results: Our main contribution
is thus the identification of a linear MMSE receiver that
minimizes the MSE of the received data symbols if the channel
can be modelled by an AR(1) process, and the quantitative
(closed) form analysis of the mean squared error of the data
symbols when such a receiver is employed. Specifically, the
following are important and highly non-trivial new results,
compared with the current state of the art literature:
• Propositions 1 and 2: Give the optimum MIMO receiver

when the channel realizations are correlated.
• Theorem 1: Gives the MSE in a closed form, which allows

to calculate the MSE without lengthy simulations.
• Proposition 3 and Remark 2: Give the optimum pilot

power and help determine the potential gain that comes
from tuning the pilot power, rather than using a fixed
predetermined pilot power.

We believe that the proposed receiver and the insights
obtained in the performance analysis section are useful in the
design of MU-MIMO cellular systems and for tuning the pilot
and data transmit power levels in single and multiuser MIMO
systems.

The next section describes our system model, which com-
prises the channel model and the received data signal model.
Section III provides the analytical description of the channel
estimation procedure. Section IV develops the optimal linear
MMSE receiver for AR time-variant Rayleigh fading channels
and shows that the previously derived linear MMSE receivers
are special cases of this general receiver structure. Section
V calculates the MSE assuming independent antennas when
using the proposed receiver, as a function of the number of
antennas and the PPR. Again, we show that previously derived
MSE formulas are special cases of this more general formula.
Section VI generalizes the results of the previous section
for the case when the channel coefficients at the different
antennas are correlated. Section VII presents numerical results
and highlights engineering insights. Finally, Section VIII draws
conclusions and discusses open questions for future work.

II. SYSTEM MODEL

A. General Considerations and Pilot Signal Model

We focus on the uplink of a cellular MU-MIMOs system,
in which the MSs transmit orthogonal pilot sequences

s ,
[
s1, ..., sτp

]T ∈ Cτp×1 (1)

to facilitate CSIR acquisition at the BS. Each pilot symbol is
scaled appropriately according to |si|2 = 1, for i = 1, .., τp. To
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insure spatial separability, the pilot sequences are constructed
such that they remain orthogonal as long as the number of
spatially multiplexed users is maximum τp [1]. Specifically,
without loss of generality, we assume that the number of
MU-MIMO users is K ≤ τp.

In this paper we assume a comb type arrangement of the
pilot symbols [26], [42], which is an appropriate pilot symbol
arrangement if the coherence bandwidth of the channel accom-
modates multiple coherent frequency channels or subcarriers,
as noted in [29]. In the comb type pilot arrangement, pilot and
data symbols are sent in the same time slot using different
subcarriers within the coherence bandwidth. In LTE systems,
for example, a 180 kHz chunk (resource block) can often be
considered coherent, and it carries 12 subcarriers when 15 kHz
subcarrier spacing is used [1].1

Given τp + τd subcarriers in the coherence bandwidth,
a fraction of τp subcarriers are allocated to construct the
pilot sequences, while τd subcarriers are reserved for data
symbols. Each MS transmits at a constant total power Ptot,
where this power budget can be distributed unequally among
the subcarriers. Specifically, for each user, the sum power
constraint of

τpPp + τdP = Ptot

is enforced, where Pp denotes the pilot power and P denotes
the transmit power used for data transmission. (Since the
notation P frequently appears in the sequel, we use notation P
instead of Pd.) That is, when employing τp pilot symbols and
a total of τpPp pilot power for channel estimation, the transmit
power for each data symbol is limited to:

P =
Ptot − τpPp

τd
. (2)

As (2) suggests, the trade-off between pilots and data signals
includes both the transmit power and time (or number of pilot
and data symbols), as it was examined by several papers, see
for example [9], [42]. For ease of presentation, and without loss
of generality, we refer to User-1 as the tagged user, and avoid
indexing the users unless such indexing is necessary to avoid
confusion. Thus, the Nr×τp matrix of the received pilot signal
from the tagged user at the BS can be conveniently written as:

Yp = α
√
PphsT + N ∈ CNr×τp , (3)

where we assume that h ∈ CNr×1 is a circular symmetric
complex normal distributed column vector with mean vector
0 and covariance matrix C (of size Nr), denoted as h ∼
CN (0,C), α accounts for the large scale fading, N ∈ CNr×τp
is the spatially and temporally additive white Gaussian noise
(AWGN) with element-wise variance σ2

p, where the index p
refers to the pilot signal.

B. Channel Model

As an extension of the memoryless channel model, in this
paper we assume that in the consecutive CSIR acquisition
periods (denoted as . . . , t−1, t, t+1, . . .) the complex channel

1In this paper, we do not study the situation in which the channel changes
both in time and frequency on a symbol-by-symbol level.

vector evolves according to the following discrete time AR(1)
equation [26], [34]:

h = h(t) = Ah(t− 1) + ϑ(t) ∈ CNr×1, (4)

where ϑ(t) ∼ CN (0,Θ) is a complex normal distributed
process noise vector with zero mean and covariance matrix Θ,
which is identically and independently distributed in consecu-
tive CSIR acquisition periods, and A is the transition matrix
of the AR(1) process, which characterizes the dependence of
the consecutive channel vectors [37]. We recall that Nr is the
number of antennas at the BS. Altough Rayleigh fading cannot
be perfectly modelled with any finite order AR process, the
coefficients of the AR models can be determined such that the
statistics of the AR model closely match those of the Rayleigh
fading [43], [44]. In this paper, we assume that the AR(1)
model in (4) is a good model of the wireless fading channel,
and that the model parameters can be determined by existing
system identification techniques (see for example [43], [45]
and more recently [46]).

In this model we assume that h(t) is stationary, implying
that its mean vector and covariance matrix are constant:

h(t) ∼ CN (0,C) ∀t,

which, according to (4), leads to

C = ACAH + Θ ∈ CNr×Nr . (5)

C. Received Data Signal Model

Assuming K spatially multiplexed users, the MU-MIMO
received data signal at the BS at time t can be written as:

y(t) = αh(t)
√
Px(t)︸ ︷︷ ︸

tagged user

+

K∑
k=2

αkhk(t)
√
Pkxk(t)︸ ︷︷ ︸

other users

+nd(t), (6)

where y(t) ∈ CNr×1; and αk hk(t) denotes the Nr×1 vector
channel including large and small scale fading between User-k
and the BS, Pk is the data transmit power of User-k, xk(t) is
the transmitted data symbol by User-k and nd(t) denotes the
AWGN on the received data signal with element-wise variance
σ2
d.
The most important system parameters are summarized in

Table I.

III. CHANNEL ESTIMATION

A. Least Squares Channel Estimation

For benchmarking purposes, we first assume that the BS uses
the popular LS channel estimator, which relies on correlating
the received signal with the known pilot sequence. Note that
our methodology to determine the MSE of the received data
is not confined to the LS estimator, but is directly applicable
to an MMSE or other linear channel estimation techniques as
well. For each MS, the BS utilizes pilot sequence orthogonality
and estimates the channel based on (3) assuming:

ĥ =
1

α
√
Pp

Yps∗(sT s∗)−1,
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Table I
NOTATION AND TERMINOLOGY

Notation Meaning
K Number of single-antenna users
Nr Number base station antennas
τp, τd Number of pilot and data sym-

bols, respectively, within a coherent
block of symbols

s ∈ Cτp×1 Sequence of pilot symbols
x Data symbol
Pp, P, Ptot Pilot power per symbol, data power

per symbol, and total transmit
power

Yp ∈ CNr×τp , y(t) ∈ CNr Received pilot and data signal, re-
spectively

N,nd(t) Additive white Gaussian noise at
the received pilot and data signal,
respectively

α Large scale fading between the mo-
bile station and the base station

h(t), ĥ(t) ∈ CNr Fast fading channel and estimated
channel

σ2
pINr , σ

2
dINr ,C ∈ CNr×Nr Covariance of N, nd, h(t), respec-

tively
A ∈ CNr×Nr State transition matrix of the fast

fading channel as an AR process
parameter

ϑ(t) ∈ CNr ,Θ ∈ CNr×Nr Process noise of the channel AR
process and its covariance matrix

w(t) ∈ CNr ,Σ ∈ CNr×Nr Channel estimation error (measure-
ment noise) and its covariance ma-
trix

G,Gnaive,Gconv,G? Generic, naive, conventional and
optimal (i.e. minimum MSE) re-
ceiver

that is:

ĥ = h + w = h +
1

α
√
Ppτp

N s∗, (7)

where s∗ =
[
s∗1, ..., s

∗
τp

]T ∈ Cτp×1 denotes the vector of
conjugate pilot symbols and (sT s∗) = τp.

By considering h ∼ CN (0,C), it follows that the estimated
channel ĥ is a circular symmetric complex normal distributed
vector ĥ ∼ CN (0,R), with

R , E{ĥĥH} = C +
σ2
p

α2Ppτp
INr , (8)

where INr is the identity matrix of size Nr. The channel
estimation error is defined as

w , ĥ− h,

so that w ∼ CN (0,Σ) with

Σ =
σ2
p

α2Ppτp
INr , sINr (9)

and the MSE of the least squares channel estimation is derived
as

εLS , Eh,N{||w||2F } = Tr {Σ} =
Nrσ

2
p

α2Ppτp
, (10)

where Tr denotes the trace operation and ||·||2F is the Frobenius

norm. As it was shown in [19], [39], the distribution of the
channel realization h conditioned on the estimate ĥ is normally
distributed as follows:

(h | ĥ) ∼ Dĥ + CN
(
0,Q

)
︸ ︷︷ ︸

channel estimation noise

, (11)

where D , CR−1 and Q , C − CR−1C. Equation (11)
suggests that when using LS channel estimation, increasing
the pilot power improves the quality of the acquired CSIR by
reducing the channel estimation noise Q. As we will see in the
sequel, reducing the channel estimation noise is also possible
by exploiting the dependency in the evolution of the channel.

B. Kalman Filtering Assisted Channel Estimation

As described in (4), in this paper we model the wireless
channel as a stochastic time-variant linear system. The state of
the channel is estimated in the form of the observation vector
as follows:

ĥ(t) = h(t) + w(t), (12)

where the estimation error w(t) can be thought of as measure-
ment noise or observation error. In this paper we assume that
the channel estimator at the BS uses Kalman filtering, as an
alternative to LS channel estimation, to forecast the channel
as:

hf (t) = Aha(t− 1),

where ha(t− 1) , Eh(t−1){h(t− 1)|ĥ(t− 1)} = Dĥ(t− 1)
is the best estimate of h(t − 1) based only on the current
observation ĥ(t − 1) at time instance (t − 1). When using
Kalman filtering, the best estimate of the channel state at t
combines the channel forecast and the channel observation at
t, that is:

ha(t) = hf (t) + K
(

ĥ(t)− hf (t)︸ ︷︷ ︸
innovation

)
, (13)

where K is the Kalman gain matrix, and ha(t) is the optimal
estimate of h(t) at time t. The Kalman gain matrix K is
determined according to:

Pf = AΣAT + Θ,

K = Pf
(
Pf + Σ

)
, (14)

where Pf is the forecast error covariance matrix.

C. Some Useful Properties of h(t), ĥ(t) and ĥ(t − 1) When
Using Kalman Filtering

According to (4) and (12), the random vector composed of
h(t), ĥ(t), ĥ(t−1) is multivariate zero-mean complex normal
distributed. Consequently, its distribution is determined by the
joint covariance matrix. Since the joint distribution will be
needed in the subsequent MSE calculation, the following two
lemmas will be useful to determine the structure of the MMSE
receiver.
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Lemma 1. The covariance matrix of the[
ĥ(t), ĥ(t− 1),h(t)

]T
complex normal distributed random

vector is

Ψ =

 C + Σ AC C
CAH C + Σ CAH

C AC C

 . (15)

The proof is in Appendix I. Lemma 1 is useful, because
according to Theorem 10.2 of [47], if we know the joint
probability density function of multivariate complex Gaussian
vectors, which in our case is completely determined by the
above covariance matrix, the conditional probability density
functions can be easily determined. This is important, because
it will help us to eliminate the dependence of the MSE (G,h)
expression on h in the sequel. We can now state the following
lemma, which will be important in determining the MMSE
receiver and the achieved MSE.

Lemma 2. The channel realization h(t) conditioned on the
current and previous estimates ĥ(t) and ĥ(t− 1) is normally
distributed as follows:(

h(t)
∣∣∣ĥ(t), ĥ(t− 1)

)
∼ Eζ(t) + CN

(
0,Z

)
︸ ︷︷ ︸

channel estimation noise

, (16)

where

ζ(t) ,

[
ĥ(t)

ĥ(t− 1)

]
∈ C2Nr×1,

E ,
[

C AC
] [ C + Σ AC

CAH C + Σ

]−1
∈ CNr×2Nr ,

(17)

Z , C−E

[
C

CAH

]
∈ CNr×Nr . (18)

The proof is in Appendix II. Comparing (11) and (16), notice
that Lemma 2 suggests that when channel estimation utilizes
both ĥ(t) and ĥ(t− 1), that is when we use Kalman filtering,
the channel estimation noise is characterized by the covariance
matrix Z rather than by Q.

Remark 1. In the special case when A = 0, it holds that
E = D and Z = Q and:

E
(
h(t)

∣∣ĥ(t), ĥ(t− 1)
)
= CR−1ĥ(t),

and

C
h(t)
∣∣ĥ(t),ĥ(t−1) = C−CR−1C. (19)

Note that Lemma 2 suggests that when the channel follows
an AR(1) process, and the channel estimator uses Kalman
filtering, the receiver structure should be adjusted as compared
with the case when the channel estimator uses LS channel
estimation based only on the currently received pilot signal.
That is, to fully take advantage of the memory of the channel,
not only the channel estimator should be modified (using
Kalman filtering), but also the receiver should be adjusted.
We elaborate more on this idea in the next section.

IV. DERIVING THE OPTIMAL MMSE RECEIVER FOR
AUTOREGRESSIVE RAYLEIGH CHANNELS

A. Employing an MMSE Receiver at the BS

In this paper the BS employs an MMSE receiver G ∈
C1×Nr to estimate the transmitted data symbols. We recall
that the MMSE receiver aims to minimize the MSE between
the estimate Gy and the transmitted symbol x:

G? , argmin
G
Eh|ĥ,n,x{|Gy − x|2} ∈ C1×Nr . (20)

When the BS employs a naïve receiver, the estimated channel
is taken as if it was the actual channel:

Gnaive = α
√
P ĥH(α2P ĥĥH + σ2

dINr )
−1. (21)

As we shall see, this receiver does not minimize the MSE.
For block fading channels, the conventional receiver that uses
a single channel estimate (ĥ) and minimizes the MSE of the
received data symbols can be written as [19]:

Gconv = α
√
P ĥHDH

(
α2P

(
DĥĥHDH + Q

)
+ σ2

dINr

)−1
.

(22)

This receiver will serve as an important benchmark to the
MMSE receiver that we develop in the sequel.

B. Determining the Actual MMSE Receiver Vector

This section is concerned with determining the MMSE
receiver vector G that the BS should use to demodulate the
received data signal such that the data symbol estimation error
for the tagged user is minimized. This minimization should
take explicitly account that the BS has access only to the
estimated channels ĥ(t) and ĥ(t − 1). This receiver can be
opposed to the naïve receiver that minimizes the MSE only
when perfect channel estimation is assumed. To this end, we
consider the MSE of the estimated data symbols of the tagged
user, obtained from the signal model of (6) using a receiver
vector G:

MSE (G,h(t),h2(t) . . . ,hK(t)) = Ex,nd{|Gy − x|2} =

= Ex,nd

∣∣∣(Gαh(t)
√
P − 1)x+

K∑
k=2

Gαkhk(t)
√
Pkxk +

+ Gnd

∣∣∣2 = Ex,nd

∣∣∣(Gαh(t)
√
P − 1)x

∣∣∣2 +
+

K∑
k=2

PkEx,nd |Gαkhk(t)xk|2 + Ex,nd |Gnd|2 , (23)

where we utilized that E{xk} = 0 and E{nd} = 0. Addi-
tionally, utilizing E{xkx∗k} = 1 and E{ndnHd } = σ2

dINr , we
have:

MSE (G,h(t),h2(t), . . . ,hK(t)) =

=
∣∣∣Gαh(t)

√
P − 1

∣∣∣2 + K∑
k=2

Pk|Gαkhk(t)|2 + σ2
dGGH ,

(24)
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from which the MSE of the tagged user can be expressed as
follows:

MSE (G,h(t)) = Eh2(t),...,hK(t)

{
MSE (G,h1(t), . . . ,hK(t))

}
= α2PGh(t)hH(t)GH − α

√
P
(
Gh(t) + hH(t)GH

)
+

K∑
k=2

α2
kPkGCkG

H

︸ ︷︷ ︸
multi-user interference

+σ2
dGGH + 1. (25)

Equation (25) expresses the MSE as a function of the generic
receiver G, the actual channel realization of he tagged user,
and the multiuser interference. In practice, we can only design
a receiver G which is a function of the estimated channels,
and therefore we need an expression for the MSE as a function
of ĥ(t) and ĥ(t − 1), rather than h(t). This is stated in the
following proposition, which invokes Lemma 1:

Proposition 1. The MU-MIMO receiver vector that minimizes
the MSE is as follows.

G?(t) = argmin
G

MSE
(
G, ĥ(t), ĥ(t− 1)

)
= b(t)HF(t)−1,

(26)

where b(t) ∈ CNr×1 and F(t) ∈ CNr×Nr are defined as

b(t) , α
√
PEζ(t), (27)

F(t) ,

(
b(t)b(t)H + α2P

(
Z +

∑
k 6=κ

Ck +
σ2
d

α2P
INr

)
︸ ︷︷ ︸

,M

)
,

(28)

and the ζ(t), E and Z matrices were introduced in Lemma 2.

The proof is in Appendix III. The following remark relates
the proposed MMSE receiver to the traditional receiver, which
was proposed in, for example, [19].

Remark 2. In the special case when A = 0, it holds that
E = D, Z = Q and ζ(t) = ĥ. Therefore, in this special case
it also holds that b(t) = α

√
PDĥ and:

G?(t) = α
√
P ĥHDH

(
α2P

(
DĥĥHDH + Q

)
+

+

K∑
k=2

α2
kPkCk + σ2

dINr

)−1
, (29)

which is identical with the Gconv conventional receiver ex-
pressed in (22).

C. Summary

In this section, we derived the optimal linear receiver
G?(t), which minimizes the MSE of the data symbols if the
wireless channel can be modeled as an AR(1) process, whose
transition matrix A can be estimated by state of the art system
identification methods [27], [48]. Under this assumption, the
MMSE receiver derived in Proposition 1 takes advantage of

(regularized by) the statistical properties of the estimates ĥ(t)
and ĥ(t−1), rather than operating on ĥ(t) only. As we will see,
using Kalman filtering for channel estimation and the proposed
MMSE regularization leads to improved overall performance
in terms of achieved MSE and SINR.

V. CALCULATING THE MSE WHEN USING THE MMSE
RECEIVER WITH UNCORRELATED AND IDENTICAL

CHANNEL COEFFICIENTS

In this section, our goal is to derive a closed form expression
for the MSE, when the receiver uses the MMSE receiver
derived in the preceding section and the antennas are properly
spaced and the channel coefficients at the different antennas
can be assumed uncorrelated and identically distributed. That
is, we consider the case of C = cINr , A = aINr , Σ = sINr =
σ2
p

α2Ppτp
INr according to (9), and Θ = θINr = (c− aca∗)INr

according to (5). These assumptions allow a simplified com-
putation of the MSE based on scalar coefficients. In the next
section, we handle the general case with dependent antennas
using matrix expressions.

To compute the MSE, we first calculate the conditional
expectation of the squared symbol error when using the optimal
G(t)? receiver as a function of the estimated channels ĥ(t−1)
and ĥ(t). Next, utilizing the joint distribution of the estimated
channels, we determine the unconditional MSE of the received
data symbols.

We start by noticing the following corollary of Proposition
1.

Corollary 1. When the receiver uses the G?(t) MMSE re-
ceiver, the achieved MSE is as follows.

min
G

MSE
(
G, ĥ(t), ĥ(t− 1)

)
=

= MSE
(
G?(t), ĥ(t), ĥ(t− 1)

)
=

= 1− b(t)HF(t)−1b(t). (30)

Proof. Substituting G?(t) = b(t)HF(t)−1 into (67) in Ap-
pendix III yields the corollary.

A. Calculating G?(t) in the Case of Uncorrelated and Iden-
tical Channel Coefficients

Recalling the definitions of E in (17) and using the uncor-
related and identically distributed channel coefficients assump-
tion we get:

E =
[
e1INr e2INr

]
∈ CNr×2Nr , (31)

where:

e1 =
c(c+ s− aca∗)

c(c+ s− aca∗) + s(c+ s)
, e2 =

acs

(c+ s)2 − ac2a∗
.

(32)

Furthermore, due to the definition of Z in (18), we have that
Z = zI, where

z =
cs(c+ s− aca∗)
(c+ s)2 − ac2a∗

.
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Likewise, using the definition of b(t) in (27), we get:

b(t) = α
√
P
(
e1ĥ(t) + e2ĥ(t− 1)

)
= α
√
Pv(t) ∈ CNr×1,

(33)

where we introduced:

v(t) , Eζ(t) = e1ĥ(t) + e2ĥ(t− 1). (34)

Finally, using the definition of F(t) in (28), it simplifies to:

F(t) = α2P

(
(e1ĥ(t) + e2ĥ(t− 1))(e1ĥ(t) + e2ĥ(t− 1))H

+

(
z +

∑
k 6=κ

ck +
σ2
d

α2P︸ ︷︷ ︸
,f

)
INr

)

= α2P
(
v(t)v(t)H + fINr

)
. (35)

Using the above assumptions and notation, we can derive
the MMSE receiver for the special case of uncorrelated and
identically distributed channel coefficients at the different
antennas.

Proposition 2. When the channel covariance matrices are
diagonal with equal elements, the MMSE receiver takes the
following form:

G?(t) = b(t)HF(t)−1 =
(α
√
P )−1

f + ||v(t)||2
v(t)H , (36)

where v(t) was introduced in (34) and f was introduced in
(35) above.

The proof is in Appendix IV. From this proposition, recalling
(30), the following corollary directly follows.

Corollary 2. When using the MMSE receiver defined by (36)
in the case of uncorrelated channel coefficients, the MSE can
be calculated as follows.

MSE
(
G?(t), ĥ(t), ĥ(t− 1)

)
= 1− b(t)HF(t)−1b(t) =

=
f

f + ||v(t)||2
. (37)

The proof of this corollary is in Appendix V.

B. Calculating the Unconditional MSE of the Received Data
Symbols

Due to (37), to calculate the unconditional MSE, we first
need to determine the distribution of ||v||2. This is derived in
the following lemma.

Lemma 3. The squared norm of the complex random vector
v(t) follows the Gamma distribution with parameters Nr and
λ, that is, its probability density function is given as:

f||v||2(x) =
λNrxNr−1e−λx

(Nr − 1)!
,

where:

λ ,
1

|e1a2 + e2a|2c+ |e1a+ e2|2θ + |e1|2θ + |e1|2s+ |e2|2s
,

(38)

where s was defined in (9) and θ = c− aca∗ = c(1− |a|2).

The proof of this lemma is in Appendix VI. Using the MSE
expression (30) and invoking Lemma 3, we can prove the
following theorem.

Theorem 1. When using the MMSE receiver, the unconditional
MSE is

MSE = fλefλEin(Nr, fλ), (39)

where Ein(n,w) ,
∫∞
t=1

e−wt/tndt is the standard exponen-
tial integral function.

The proof is in Appendix VII.

C. Optimum Pilot Power

According to Theorem 1, the MSE for a given number of
antennas Nr is fully determined by the product fλ. The defi-
nition of F(t) in (35) suggests that the multiuser interference
is captured in the term

∑
k 6=κ ck. Since in this section we

are interested in determining the optimal pilot power in the
single user case, we start with rewriting the product fλ for
the single user case, that is when the multiuser interference is
zero. Determining the optimum PPR in the multiuser case is
an important topic, which is left for future work. In order to
preserve symbolic tractability, and to gain engineering insights,
in this subsection we assume that the AR parameter a, that is
the diagonal elements of A are real, in which case aa∗ = a2.
Under this assumption, and using the definition of f in (35)
and λ in (38), let us write fλ in the following form:

fλ =
a2P

2
p + a1Pp + a0

b3P 3
p + b2P 2

p + b1Pp + b0
, (40)

where after some algebraic manipulation, it is straightforward
to see that:

a0 = cα2σ4Ptot + τdσ
6

a1 = c2α4σ2τpPtot + cα2σ4(2τd − 1)τp

a2 = c2α4σ2(τd − 1)τp(1− a2) (41)

and

b0 = 0

b1 = c2α4σ2τpPtot

b2 = c3α6τ2pPtot − c2α4σ2τ2p (a
2 + 1)

b3 = c3α6τ3p (a
2 − 1). (42)

Now we can state the following proposition, which, together
with the subsequent remark, provides a useful engineering
insight.
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Proposition 3. In a single user MIMO system, when a ∈ R, if
the following quartic equation has positive real roots, then the
optimal pilot power is in the set of such positive real roots:

c0 + c1Pp + c2P
2
p + c3P

3
p + c4P

4
p = 0, (43)

where

c0 = (cα2Ptot + σ2
dτd)σ

6
pPtot(1 + a2)

c1 = 2
(
cα2Ptot(1− a2)− (a2 + 1)σ2

p

) (
cα2Ptot + σ2

dτd
)
σ4
pτp

c2 = cα2σ2
pτ

2
p

(
c2α4P 2

tot(a
2 − 1)2+

+ cα2Ptot(a
2 − 1)

(
4σ2

p + (a2 − 1)σ2
dτd
)
+

− σ2
pσ

2
dτd
(
5− a2

)
+ (1 + a2)σ4

p

)
.

c3 = 2c2α4σ2
pτ

3
p (1− a2)·

·
(
σ2
p − 2σ2

dτd − cα2Ptot(1− a2)
)
.

c4 = (1− a2)2c3α6
(
σ2
p − σ2

dτd
)
τ4p . (44)

The proof is in Appendix VIII. Finding the roots of (43) is
straightforward both symbolically and numerically. Notice that
a direct consequence of Proposition 3 is that the optimal pilot
power does not depend on the number of antennas (Nr), since
the coefficients of (43) and (44) do not contain Nr. On the
other hand, the coefficients clearly depend on the large scale
fading α and AR parameter a. As expected, the achieved MSE
clearly depends on Nr, through the fλ term as expressed in
(40).

Remark 3. The number of real roots and their respective signs
of the real-coefficient quartic equation is determined by its
discriminant [49], [50], and it is difficult to show symbolically
that (43) has exactly one positive root. However, notice that
c0 is positive, implying that the quartic polynomial in (43)
is positive when Pp = 0. Furthermore, c4 is negative, since
σp ≈ σd and τd > 1, implying that the quartic polynomial
tends to negative infinity when Pp tends to the negative or
positive infinity. This in turn implies that (43) has at least one
negative and at least one positive root.

Furthermore, by numerical experiments we found that the
discriminant of the first derivative of the polynomial in (43)
with respect to Pp, which is a cubic polynomial, is negative
in all cases that are meaningful from an engineering point
of view. This implies that the quartic polynomial in (43)
has only one extreme value, which is a maximum due to
the fact the polynomial tends to negative infinity in both
the negative and the positive infinities. This suggests that the
quartic in (43) has one negative, one positive and two complex
roots (which are conjugate complex pairs). This finding, using
numerical experiments, is also confirmed by observing that the
second derivative of the quartic in equation (43) is negative
in practically relevant cases. This implies that it is always
concave, which, together with Remark 3, implies that it has
two distinct real roots, one of which is positive, giving the
optimum pilot power.

VI. CALCULATING THE MSE IN THE CASE OF
CORRELATED CHANNEL COEFFICIENTS

A. Calculating the MSE as a Function of the Estimated
Channels

To calculate the MSE when the channel coefficients are
correlated, that is when the covariance matrix of h contains
off-diagonal elements, the following corollary of Proposition
1 will be useful.

Corollary 3. When the receiver uses the G?(t) MMSE re-
ceiver, the achieved MSE is as follows.

min
G

MSE
(
G, ĥ(t), ĥ(t− 1)

)
=

= MSE
(
G?(t), ĥ(t), ĥ(t− 1)

)
=

1

1 + ω(t)
, (45)

where ω(t) = b(t)HM−1b(t).

Proof. Substituting G?(t) = b(t)HF(t)−1 into (67) in Ap-
pendix III, and using (28) we get:

MSE
(
G?(t), ĥ(t), ĥ(t− 1)

)
=

= 1− b(t)HF(t)−1b(t) =

= 1− b(t)H
(
b(t)b(t)H + M

)−1
b(t). (46)

Using the Sherman-Morrison formula, we further have

MSE
(
G?(t), ĥ(t), ĥ(t− 1)

)
=

= 1− b(t)H
(
b(t)b(t)H + M

)−1
b(t)

= 1− b(t)H
(

M−1 − M−1b(t)b(t)HM−1

1 + b(t)HM−1b(t)

)
b(t)

= 1−
(
ω(t)− ω(t)2

1 + ω(t)

)
=

= 1−
(

ω(t)

1 + ω(t)

)
=

1

1 + ω(t)
. (47)

Remark 4. We can rewrite (47) in the following form:

MSE
(
G?(t), ĥ(t), ĥ(t− 1)

)
=

=
1

1 + α2P (Eζ(t))H(α2PZ + σ2
dINr )

−1(Eζ(t))
=

=
1

1 + α2P ||ν(t)||2
, (48)

where

ν(t) ,
(
α2PZ + σ2

dINr
)−1/2

Eζ(t). (49)

Notice that in the case of perfect channel estimation (i.e.
Eζ(t) = h(t) and Z = 0), from (48) we get:

MSE(h(t)) =
1

1 + α2P ||h(t)||
2

σ2
d

, (50)

which indicates that ν(t) in (49) can be considered an
equivalent channel and is in line with our expectation that
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α2P ||ν(t)||2 is an equivalent signal-to-noise ratio (SNR) when
using the proposed G?(t) receiver.

B. Calculating the Unconditional MSE

Due to (45), to calculate the unconditional MSE, we first
need to determine the distribution of ω(t). This is derived in
this section. As it was introduced in (16), we have that:

E =
[

E1 E2

]
=
[

C AC
] [ C + Σ AC

CAH C + Σ

]−1
. (51)

Then, considering (27),

b(t) = α
√
PEζ(t) = α

√
P
(
E1ĥ(t) + E2ĥ(t− 1)

)
, (52)

and

E1ĥ(t) + E2ĥ(t− 1)

= E1(h(t) + s(t)) + E2(h(t− 1) + s(t− 1))

= E1(Ah(t− 1) + ϑ(t) + s(t))+

+ E2(Ah(t− 2) + ϑ(t− 1) + s(t− 1))

= E1(A
2h(t− 2) + Aϑ(t− 1) + ϑ(t) + s(t))+

+ E2(Ah(t− 2) + ϑ(t− 1) + s(t− 1))

= (E1A2 + E2A)h(t− 2) + (E1A + E2)ϑ(t− 1)+

+ E1ϑ(t) + E1s(t) + E2s(t− 1). (53)

From this expression, the covariance of b(t), denoted as B,
can be obtained as

B(α2P )−1 = E(b(t)b(t)H)(α2P )−1

= (E1A2 + E2A)C(E1A2 + E2A)H+

(E1A + E2)Θ(E1A + E2)
H+

+ E1ΘE1
H + E1ΣE1

H + E2ΣE2
H . (54)

Since B is Hermitian positive definite, we can use its Cholesky
decomposition as B = UUH , and write:

ω(t) = b(t)HM−1b(t) = v(t)HUHM−1Uv(t), (55)

where the elements of v(t) are independent complex normal
random variables, i.e., v(t) ∼ CN (0, INr ). However, M in
general is not diagonal. We would like to write ω(t) as the
sum of (the squared norms of) independent random variables.
Therefore, let

UHM−1U = VHΓV (56)

be the singular value decomposition of UHM−1U, i.e. V is
unitary and Γ is diagonal. Then

ω(t) = v(t)HUHM−1Uv(t) = v(t)HVHΓVv(t), (57)

where the elements of Vv(t) are independent complex normal
random variables:

Vv ∼ CN
(
0,VVH︸ ︷︷ ︸

INr

)
, (58)

Therefore,

ω(t) =

Nr∑
i=1

γi

∣∣∣(Vv(t))i

∣∣∣2︸ ︷︷ ︸
,|ω(t)i|2

, (59)

where γi is the ith singular value (diagonal element) in Γ and
each |ω(t)i|2 is exponentially distributed with parameter 1.

C. Calculating the Unconditional MSE
Since |ω(t)i|2 is exponentially distributed with parameter

1, γi|ω(t)i|2 is exponentially distributed with parameter λi ,
1/γi, and

∑Nr
i=1 γi|ω(t)i|2 follows the phase type distribution

with density function

f (x) = eT1 e
AxeNrλNr ,

where ei is the i-th unit vector (whose only nonzero element
is 1 at position i), and the matrix A is given as:

A =


−λ1 λ1

−λ2 λ2

. . .
. . .

−λNr

 .

In the special case when all singular values are identical (γi =
γ), ω(t) is Gamma distributed with parameters Nr and λ =
1/γ, as in (38). In the other special case when all singular
values are distinct, ω(t) is hypo-exponentially distributed with
parameters λi = 1/γi, (i = 1, . . . , Nr) and

f(x) =

Nr∑
i=1

ciλie
−λix, (60)

where ci =
∏j=Nr
j=1,j 6=i

λj
λj−λi .

Based on f (x) and (59), the MSE can be calculated as
follows:

MSE =

∫
x

1

α2Px+ 1
f(x)dx, (61)

which has the form of (39) if all singular values are identical,
and the form of

MSE =

Nr∑
i=1

ci
λi
α2P

e
λi
α2P Ein

(
1,

λi
α2P

)
, (62)

if all singular values are distinct.

VII. NUMERICAL RESULTS

Table II
SYSTEM PARAMETERS

Parameter Value
Autoregressive parameter a = 0, 0.1, . . . 0.95
Number of antennas Nr = 20, 100
Path Loss of tagged user α = 90 dB
Number of pilot and data symbols τp = 1; τd = 11
Power budget τpPp + τdP = Ptot =250 mW.
MIMO receivers Naive, conventional [19]

and proposed MMSE, see (26)

In this section we consider a single cell single user MIMO
system, in which the mobile terminal is equipped with a single
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transmit antenna, whereas the BS employs Nr receive anten-
nas and we assume the case of independent and identically
distributed channel coefficients from Section V. Note that the
performance characteristics of the proposed MMSE receiver
operating with Kalman filtering assisted channel estimation as
compared with the naïve receiver are similar in the multi-
user MIMO case from the perspective of the tagged user,
since the proposed receiver treats the multi-user interference
as noise according to (28). The key input parameters to this
system that are necessary to obtain numerical results using the
MSE derivation in this paper (ultimately relying on Theorem
1 and Proposition 3) are listed in Table II. For benchmarking
purposes, we also examine the performance of the conventional
MMSE receiver that does not take advantage of autoregressive
property of the channel, that is it relies on the current estimate
ĥ(t) [19], as opposed to the proposed MMSE receiver that uses
Kalman filtering and thereby it utilizes both ĥ(t) and ĥ(t−1).
In this section, we refer to these three receiver structures as the
’naive’, ’conventional’ and the proposed ’MMSE’ receivers.
According to Remarks 1 and 2, ’MMSE’ is identical with
’conventional’ when a = 0.

Nr=20

Nr=20, perfect CSI, optimal pilot

Nr=100, perfect CSI, optimal pilot

Naive

Conventional
MMSE

Naive

ConventionalMMSE

MSE

Pilot P [mW]

Nr=100

Figure 1. MSE as a function of the pilot power (Pp) when using the naive and
conventional receivers and the proposed MMSE receiver. As a benchmark, the
figure also indicates the MSE that is achieved when using perfect CSI with
Nr = 20 and Nr = 100 antennas and assuming a = 0.95.

Figure 1 shows the MSE as a function of the pilot power
under the constraint of (2). The upper 3 curves, marked with
Nr = 20 show the performance with Nr = 20 receive
antennas, while the lower 3 curves show the results obtained
with Nr = 100 antennas. Notice that the gain by using the
proposed MMSE receiver is much higher when the number of
antennas is large. This result may be counterintuitive at first
sight, since the performance gain by employing sophisticated
precoders in massive MIMO transmissions in the downlink
decreases with an increasing number of antennas. However, as
it is clearly visible in Figure 1, in the presence of CSIR errors,
a receiver that compensates for the CSIR errors is increasingly
superior to poor receiver designs. This figure also shows the
’ultimate’ MSE performance with a given number of antennas,
that is when perfect CSIR is available and the pilot power is
set to its optimal value (discussed further in conjunction with
Figures 3-4).

Figure 2 focuses on the performance of the proposed MMSE

Nr=20a=0

a=0.95

a=0

a=0.95

Nr=100

MSE

Pilot P [mW]

Figure 2. MSE as a function of the pilot power (Pp) when using the proposed
MMSE receiver. withNr = 20 andNr = 100 antennas. As the autoregressive
parameter increases from 0 (upper curve) to 0.5 (middle curve) and 0.95 (lower
curve), the MSE decreases in both cases.

receiver when the autoregressive parameter of the channel is
a = 0, a = 0.5 and a = 0.95. When a = 0, the MMSE
receiver performance is identical with that of the conventional
MMSE receiver. Similarly to Figure 1, we are interested in the
MSE performance as a function of the pilot power under the
constraint of (2). Here we can observe that higher a values,
which characterize the memoryfull property of the evolution
of the channel, enable to reduce the MSE. This MSE gain is
present with both Nr = 20 and Nr = 100 number of antennas.

a

Nr=100, Naïve

Nr=20, Naïve

Nr=20 and Nr=100 
(coinciding)

Optimal 
pilot P [mW]

Conventional

MMSE

Figure 3. Optimum pilot power as a function of the autoregressive parameter
when using the naive, conventional and MMSE receivers. with Nr = 20
and Nr = 100 antennas. Notice that in the case of the conventional and
MMSE receivers, the optimum pilot power curves for Nr = 20 and Nr =
100 overlap. When a = 0, the optimum pilot setting of the MMSE receiver
becomes identical with those of the conventional receiver.

Figure 3 examines the optimal setting of the pilot power as
a function of a. As it is visible already in Figure 1, when using
the naive receiver, somewhat higher pilot power is needed to
minimize the MSE with Nr = 100 antennas then with Nr = 20
antennas. In this example, we need to increase the pilot power
from around 160 mW to around 180 mW in order to minimize
the MSE when using the naive receiver. In contrast, a much
lower pilot power (around 125 mW at a = 0 and around
110 mW at a = 0.95) is sufficient with the proposed MMSE
receiver. Interestingly, as it was discussed after Proposition
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3, this optimum pilot power does not depend on number of
antennas, therefore the curves for both the conventional and
the MMSE receiver with Nr = 20 and Nr = 100 coincide.

a

Minimum
MSE

Nr=20, Naïve G

Nr=100, Naïve G

Nr=20, conventional receiver (upper) 
and MMSE receiver (lower)

Nr=100, conventional receiver  (upper) 
and MMSE receiver  (lower)

Figure 4. Minimum MSE, that is when using the optimum pilot power, as
a function of the autoregressive parameter and when using Nr = 20 and
Nr = 100 antennas. Notice that at high a, and when using the proposed
MMSE receiver, and the optimum pilot power, the achieved MSE with Nr =
20 antennas is lower than when using the naive receiver with Nr = 100
antennas.

Figure 4 examines the achievable minimum MSE, that is
the MSE that can be achieved by appropriately setting the
pilot power and thereby the PPR. First, notice that the gain
in terms of the achievable minimum MSE when using the
MMSE receiver is larger with Nr = 100 than with Nr = 20.
Also, notice that when using a properly designed receiver, the
minimum achievable MSE with a moderate number of antennas
can be less than the achievable MSE with a large number of
antennas if the autoregressive parameter of the channel is high.
However, even with low a, the system with Nr = 20 antennas
using the proposed MMSE receiver performs similarly to the
system with a large number of antennas using the naive MIMO
receiver. It is very important to realize that this insight applies
to the lowest achievable MSE, that is when the PPR is set
optimally according to Figure 3. When a = 0, the performance
and optimum pilot setting of the MMSE receiver becomes
identical with those of the conventional receiver.

Figure 5 focuses on the impact of improved channel esti-
mation on the channel estimation noise, which is an important
metric of the available CSIR. We can see that when we exploit
the autoregressive evolution of the channel by employing the
proposed MMSE receiver, the channel estimation noise, as
defined in (16), decreases. By way of example, notice that
if the wireless channel evolves with a strong autocorrelation,
we can reduce the channel estimation noise by employing
proper receiver design, which is equivalent with significantly
increasing the pilot power (by around 20-30 mW).

Figure 6 shows the cumulative distribution function (CDF)
of the spectral efficiency that can be achieved when using the
naive, conventional and MMSE receivers at the base station
when it employs Nr = 100 receive antennas. This figure
shows that the MSE gain harvested by the MMSE receiver
when the channel can be modeled as an autoregressive process
carries over to a spectral efficiency gain over the naive and

Pilot = 80 mW

Pilot = 110 mW

Pilot = 140 mW

Pilot = 170 mW

Pilot = 200 mW

[dB]

Figure 5. Channel estimation noise (Z as defined in (16), which can be
compared with Q), as a function of the autoregressive parameter. This figure
indicates that the channel estimation noise (diagonal elements of Z) decreases
at higher a values, which indicates the availability of a higher quality CSIR
as the autoregressive parameter increases.

CDF

Spectral efficiency

Figure 6. Cumulative distribution function (CDF) of the achievable spectral
efficiency with Nr = 100 antennas when the AR parameter of the channel is
a = 0.9 and the pilot power is set to 125 mW. The proposed MMSE receiver
achieves higher spectral efficiency over the entire CDF region than previously
proposed schemes, including the schemes proposed by Truong and Heath in
[29].

conventional receivers.
In some settings the parameters of the AR process might

not be known by receiver and some estimation of a must
be used [40], [41]. It is therefore a question of interest how
robust the performance of the MMSE receiver is to estimation
errors. Figure 7 shows the average spectral efficiency of the
MMSE receiver as a function of both the actual AR parameter
and the estimated value of the parameter. It is compared to
the average spectral efficiency of the conventional receiver,
that is when the estimated value of a is equal to 0. Notice
that for any value of a the marginal distribution of h(t) is
CN (0,C). Hence the achieved spectral efficiency does not
depend on a when the conventional receiver is used, which
motivates the comparison in Figure 7. As expected, when
a = 0 the performances of the conventional and the MMSE
receivers coincide. Furthermore, when a > 0.6, any estimate
of a gives a better performance than the conventional receiver,
and if a = 0.4 any estimate lower than 0.7 also gives a
better performance. Hence, the MMSE receiver is robust to
estimation errors of the AR parameter.
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Figure 7. Achieved spectral efficiency (SE) when the system employs Nr =
100 antennas as a function of the actual AR parameter a and the estimated
a parameter at the receiver. The spectral efficiency is highest when a is close
to 1 and the estimated a is an accurate estimate. The figure also indicates
the achieved spectral efficiency when a = 0 and it is known perfectly at the
receiver (that is when the system employs the conventional receiver).

VIII. CONCLUSIONS AND OUTLOOK

In this paper, we made the point that exploiting the memo-
ryfull property of autoregressive fading channels enables to
reduce the MSE of the received data symbols. To achieve
this MSE reduction, not only the channel estimation process
must be adjusted, but also the receiver structure must take
into account the statistical properties of the estimated channel.
Specifically, when the autoregressive channel is estimated by
a Kalman filter, a linear receiver that minimizes the MSE over
all linear receivers was proposed. This new MMSE receiver
exploits the memoryfull property of the fading channel and
provides better performance than both the naive receiver, which
assumes that the erroneous channel estimate can be used as if
it was the actual channel, and a previously proposed receiver
that does not utilize multiple and correlated channel estimates.
We derived a closed form expression for calculating the MSE,
which helps to properly set the pilot-to-data power ratio,
which is also important for reaching high performance. These
results extend previous results in the literature concerning
receiver designs and tuning the pilot and data power levels. As
noted in Subsection V.C, determining the optimum PPR in the
multiuser case is left for future work. Other important future
works include investigating the performance of the proposed
MMSE receiver in other propagation conditions, determining
the autoregressive model parameters in the presence of user
mobility and analyzing the sensitivity of the performance with
regards to model parameter estimation errors. An important
research direction is to pose the question whether and how
exploiting the memoryfull property can be integrated into
schemes that employ data-aided channel estimation and itera-
tive linear MMSE detection, such as those proposed in [22]–
[25].

APPENDIX I

Proof of Lemma 1. The joint covariance matrix of vectors
h(t), ĥ(t) and ĥ(t− 1) is by definition:

Ψ ,

 Cĥ(t),ĥ(t) Cĥ(t),ĥ(t−1) Cĥ(t),h(t)

Cĥ(t−1),ĥ(t) Cĥ(t−1),ĥ(t−1) Cĥ(t−1),h(t)
Ch(t),ĥ(t) Ch(t),ĥ(t−1) Ch(t),h(t)

 .
(63)

Using the definitions of the respective covariance
matrices, and utilizing that E

(
w(t)ĥ(t− 1)H

)
=

E
(
w(t) (h(t− 1) + w(t− 1))

H
)
= 0, the lemma follows.

APPENDIX II

Proof of Lemma 2. Substituting Ψ, as defined in (15) into
equations (10.24) and (10.25) of [47], we get

E
(
h(t)|ĥ(t), ĥ(t− 1)

)
= E (h(t))︸ ︷︷ ︸

0

+

+
[

C AC
] [ C + Σ AC

CAH C + Σ

]−1
︸ ︷︷ ︸

,E ∈CNr×2Nr

.ζ(t),

and

Ch(t)|ĥ(t)ĥ(t−1) = C−E

[
C

CAH

]
, Z ∈ CNr×Nr ,

where E is defined in (64).

APPENDIX III

Proof of Proposition 1. We will make use of the following

E
(
h(t)|ĥ(t), ĥ(t− 1)

)
= Eζ(t), (64)

and

E
(
h(t)h(t)H |ĥ(t), ĥ(t− 1)

)
= Eζ(t)ζ(t)HEH + Z. (65)

Using these expectations and recalling (25), we can calculate
the MSE:

MSE
(
G, ĥ(t), ĥ(t− 1)

)
= Eh|ĥ(t),ĥ(t−1){MSE (G,h)} =

= α2PG
(
Eζ(t)ζ(t)HEH + Z

)
GH+

+ σ2
dGGH +

∑
α2PGCGH + 1−

− α
√
P
(
GEζ(t) + ζ(t)HEHGH

)
, (66)

which can be written in the following quadratic form:

MSE
(
G, ĥ(t), ĥ(t− 1)

)
=

= GF(t)GH − b(t)HGH −Gb(t) + 1. (67)

The G that minimizes this quadratic form is G?(t) =
b(t)HF(t)−1.
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APPENDIX IV

Proof of Proposition 2. Starting from (35) and applying the
Sherman-Morrison formula, we get:

F(t)−1 =
1

α2P

(
f−1INr −

f−1v(t)v(t)H

f + v(t)Hv(t)

)
=

1

α2Pf

(
INr −

v(t)v(t)H

f + ||v(t)||2

)
. (68)

Substituting this F(t)−1 into (26), we get:

G?(t) =
1

α
√
Pf

v(t)H
(

INr −
v(t)v(t)H

f + ||v(t)||2

)
=

1

α
√
Pf

(
v(t)H − ||v(t)||

2v(t)H

f + ||v(t)||2

)

=
1

α
√
Pf

(
1− ||v(t)||2

f + ||v(t)||2

)
v(t)H

=
1

α
√
Pf

(
f

f + ||v(t)||2

)
v(t)H =

(α
√
P )−1

f + ||v(t)||2
v(t)H ,

(69)

where

||v(t)||2 = |e1|2||ĥ(t)||2 + |e2|2||ĥ(t− 1)||2+
+ e1e

∗
2ĥ

H(t− 1)ĥ(t) + e∗1e2ĥ(t)
H ĥ(t− 1). (70)

APPENDIX V

Proof of Corollary 2. Starting from the MSE expression of
(30) and substituting b(t) and F(t)−1 from (33) and (68)
respectively, we get:

MSE
(
G?(t), ĥ(t), ĥ(t− 1)

)
= 1− b(t)H .F(t)−1.b(t)

= 1− f−1v(t)H
(

I− v(t)v(t)H

f + ||v(t)||2

)
v(t)

= 1− f−1
(
||v(t)||2 − ||v(t)||

2||v(t)||2

f + ||v(t)||2

)

= 1− f−1||v(t)||2
(
1− ||v(t)||2

f + ||v(t)||2

)
= 1− f−1||v(t)||2

(
f

f + ||v(t)||2

)
= 1− ||v(t)||2

f + ||v(t)||2
=

f

f + ||v(t)||2

APPENDIX VI

Proof of Lemma 3. To determine the distribution of ||v(t)||,
let us first focus on the distribution of v(t). To this end, we

write:

v(t) = e1ĥ(t) + e2ĥ(t− 1)

= e1(h(t) + s(t)) + e2(h(t− 1) + s(t− 1))

= e1(Ah(t− 1) + ϑ(t) + s(t))+

+ e2(Ah(t− 2) + ϑ(t− 1) + s(t− 1))

= e1(A
2h(t− 2) + Aϑ(t− 1) + ϑ(t) + s(t))+

+ e2(Ah(t− 2) + ϑ(t− 1) + s(t− 1))

= (e1A
2 + e2A)h(t− 2) + (e1A + e2)ϑ(t− 1)+

+ e1ϑ(t) + e1s(t) + e2s(t− 1), (71)

where h(t− 2) ∼ CN (0,C), ϑ(i) ∼ CN (0,Θ), and s(i) ∼
CN (0,Σ) and A = aINr . That is:

v(t) ∼ CN (0, c∗INr )

with

c∗ = |e1a2 + e2a|2c+ |e1a+ e2|2θ + |e1|2θ + |e1|2s+
+ |e2|2s, (72)

where, due to (4) and (5), θ = c(1− |a|2).
Therefore, each |vi|2 is exponentially distributed, with pa-

rameter λ , 1
c∗ , and Therefore, ||v(t)||2 =

∑
i |v(t)i|2, which

is the sum of Nr such independent and identically distributed
random variables follows the Gamma distribution as the lemma
states.

APPENDIX VII

Proof of Theorem 1. Recall that the MSE, when using G?(t),
is given by (30). Due to Lemma 3, we know the distribution
of ||v(t)||2, and we can therefore write:

MSE =

∫ ∞
x=0

g(x)f||v(t)||2(x)dx

=

∫ ∞
x=0

f

f + x

λNrxNr−1e−λx

(Nr − 1)!
dx = fλefλEin(Nr, fλ),

(73)

where Ein(n, z) ,
∫∞
t=1

e−zt/tndt is the standard exponential
integral function.

APPENDIX VIII

Proof of Proposition 3. We start with rewriting the MSE ex-
pression in (39) by introducing µ , fλ and making use of the
following recursive relation from [51] (also available at [52,
8.19.12]):

µEin(Nr, µ) +NrEin(Nr + 1, µ) = e−µ. (74)

We would like to take the first derivative of the MSE as a
function of Pp. To this end, we use (39), and take the derivative
of the MSE with respect to µ

MSE′(µ) =− µeµEin (Nr−1, µ)+
+ eµEin (Nr, µκ) + µκe

µEin (Nr) . (75)

After some algebraic manipulation based on (74), we obtain:

MSE′(µ) = eµ
(
Nr + µ

)
Ein (Nr, µ)− 1. (76)
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From [51] (also available at [52, 8.19.21]) we have

1 < (x+ n)exEin (n, x) <
x+ n

x+ n− 1
. (77)

Substituting x = µ and n = Nr shows that MSE′(µ) 6= 0 if
0 < µ.

Next, we consider the first derivative of µ as defined in (40)
with respect to Pp:

µ′(Pp) =

=
c0 + c1Pp + c2P

2
p + c3P

3
p + c4P

4
p

d0 + d1Pp + d2P 2
p + d3P 3

p + d4P 4
p + d5P 5

p + d6P 6
p

,

(78)

where the coefficients of the numerator are defined in (44),
and the coefficients of the denominator are given as follows:

d0 = 0

d1 = 0

d2 = c2α4σ4τpP
2
tot(a

2 + 1)2

d3 = 2c2α4σ2τ2pPtot(a
2 + 1)

(
cα2Ptot(1− a2)− (a2 + 1)σ2

)
d4 = c2α4τ3p

(
c2α4Ptot(a

2 − 1)2

+4cα2σ2Ptot(a
4 − 1)− σ2(a2 + 1)

)
d5 = 2c3α6τ4p (a

2 − 1)
(
cα2Ptot(1− a2)− (a2 + 1)σ2

)
d6 = c4α8τ5p (a

2 − 1)2. (79)

Finally, the first derivative of the MSE with respect to Pp
is:

MSE′(Pp) = MSE′(µ)︸ ︷︷ ︸
6=0

·µ′(Pp). (80)

Recall that MSE′(µ) 6= 0. Consequently, the roots of
MSE′(Pp) are identical with the roots of the numerator of
(78).
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