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Abstract—In the uplink of multiuser multiple input multiple
output (MU-MIMO) systems operating over aging channels,
pilot spacing is crucial for acquiring channel state information
and achieving high signal-to-interference-plus-noise ratio (SINR).
Somewhat surprisingly, very few works examine the impact of
pilot spacing on the correlation structure of subsequent channel
estimates and the resulting quality of channel state information
considering channel aging. In this paper, we consider a fast-
fading environment characterized by its exponentially decaying
autocorrelation function, and model pilot spacing as a sampling
problem to capture the inherent trade-off between the quality of
channel state information and the number of symbols available
for information carrying data symbols. We first establish a quasi-
closed form for the achievable deterministic equivalent SINR
when the channel estimation algorithm utilizes multiple pilot
signals. Next, we establish upper bounds on the achievable SINR
and spectral efficiency, as a function of pilot spacing, which helps
to find the optimum pilot spacing within a limited search space.
Our key insight is that to maximize the achievable SINR and the
spectral efficiency of MU-MIMO systems, proper pilot spacing
must be applied to control the impact of the aging channel and
to tune the trade-off between pilot and data symbols.

Index terms— autoregressive processes, channel estima-
tion, estimation theory, multiple input multiple output,
receiver design

I. INTRODUCTION

In wireless communications, pilot symbol-assisted channel
estimation and prediction are used to achieve reliable coherent
reception, and thereby to provide a variety of high quality
services in a spectrum efficient manner. In most practical
systems, the transmitter and receiver nodes acquire and pre-
dict channel state information by employing predefined pilot
sequences during the training phase, after which information
symbols can be appropriately modulated and precoded at the
transmitter and estimated at the receiver. Since the elapsed
time between pilot transmissions and the transmit power level
of pilot symbols have a large impact on the quality of channel
estimation, a large number of papers investigated the optimal
spacing and power control of pilot signals in both single and
multiple antenna systems [1]–[12].

Specifically in the uplink of multiuser multiple input mul-
tiple output (MU-MIMO) systems, several papers proposed
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pilot-based channel estimation and receiver algorithms assum-
ing that the complex vector channel undergoes block fading,
meaning that the channel is constant between two subsequent
channel estimation instances [13]–[16]. In the block fading
model, the evolution of the channel is memoryless in the sense
that each channel realization is drawn independently of pre-
vious channel instances from some characteristic distribution.
While the block fading model is useful for obtaining analytical
expressions for the achievable signal-to-interference-plus-noise
ratio (SINR) and capacity [15], [17], it fails to capture the
correlation between subsequent channel realizations and the
aging of the channel between estimation instances [6], [7],
[11], [12].

Due to the importance of capturing the evolution of the wire-
less channel in time, several papers developed time-varying
channel models, as an alternative to block fading models,
whose states are advantageously estimated and predicted by
means of suitably spaced pilot signals. In particular, a large
number of related works assume that the wireless channel can
be represented as an autoregressive (AR) process whose states
are estimated and predicted using Kalman filters, which exploit
the correlation between subsequent channel realizations [3],
[4], [6], [10], [12]. These papers assume that the coefficients
of the related AR process are known, and the current and
future states of the process (and thereby of the wireless
channel) can be well estimated. Other important related works
concentrate on estimating the coefficients of AR processes
based on suitable pilot-based observations and measurements
[18]–[20]. In our recent work [12], it was shown that when an
AR process is a good model of the wireless channel and the AR
coefficients are well estimated, not only the channel estimation
can exploit the memoryful property of the channel, but also a
new MU-MIMO receiver can be designed, which minimizes
the mean squared error (MSE) of the received data symbols by
exploiting the correlation between subsequent channel states.
It is important to realize that the above references build on
discrete time AR models, in which the state transition matrix
is an input of the model and can be estimated by some suitable
system identification technique, such as the one proposed
in [20]. However, these papers do not ask the question of
how often the channel state of an aging channel should be
observed by suitably spaced pilot signals to realize a certain
state transition matrix in the AR model of the channel.



Specifically, a key characteristic of a continuous time
Rayleigh fading environment is that the autocorrelation func-
tion of the associated stochastic process is a zeroth-order
Bessel function, which must be properly modelled [21], [22].
This requirement is problematic when developing discrete-time
AR models, since it is well-known that Rayleigh fading cannot
be perfectly modelled with any finite order AR process (since
the autocorrelation function of discrete time AR processes does
not follow a Bessel function), although the statistics of an AR
process can approximate those of Rayleigh fading [23], [24].

Recognizing the importance of modeling fast fading, in-
cluding Rayleigh fading, channels with proper autocorrelation
function as a basis for pilot spacing optimization, papers [25],
[26] use a continuous time process as a representation of the
wireless channel, and address the problem of pilot spacing
as a sampling problem. According to this approach, pilot
placement can be considered as a sampling problem of the
fading variations, and the quality of the channel estimate is
determined by the density and accuracy of channel sampling
[26]. However, these papers consider single input single output
(SISO) systems, and are not applicable to MU-MIMO systems
employing a minimum mean squared error (MMSE) receiver,
which was proposed in, for example, [12]. On the other
hand, paper [6] analyzes the impact of channel aging on
the performance of multiple input multiple output (MIMO)
systems, without investigating the interplay between pilot
spacing and the resulting state transition matrix of the AR
model of the fast fading channel. Since that paper proposes
three important channel estimation and prediction schemes and
establishes closed forms for the deterministic equivalent SINR
[6], it serves as the benchmark for the pilot spacing algorithm
proposed in the present paper.

In this paper, we are interested in determining the average
SINR in the uplink of MU-MIMO systems operating in fast
fading as a function of pilot spacing, pilot/data power allo-
cation, number of antennas and spatially multiplexed users.
Specifically, we ask the following two important questions,
which are not answered by previous works:

• What is the average SINR in a closed or quasi-closed
form in the uplink of MU-MIMO systems in fast fading
in the presence of antenna correlation? How does the
average SINR depend on pilot spacing and pilot/data
power control?

• What is the optimum pilot spacing and pilot/data power
allocation as a function of the number of antennas and the
Doppler frequency associated with the continuous time –
modeled as a piece-wise constant – fast fading channel?

In the light of the above discussion and questions, the
main contributions of the present paper, which are provided
in Sections IV and V, are as follows:

• Theorem 1 and Proposition 2 establish an upper bound
on the achievable SINR as a function of pilot spacing,
which is instrumental for determining the optimum pilot
spacing.

• Proposition 3, building on Proposition 2, provides an
upper bound on the average achievable spectral efficiency,

which is instrumental in limiting the search space for the
optimal frame size as a function of the Doppler frequency.

In addition, we believe that the engineering insights drawn
from the numerical studies are useful when designing pilot
spacing, for example in the form of determining the number of
reference signals in an uplink frame structure, for MU-MIMO
systems.

Specifically, to answer the above questions, we proceed as
follows. In the next section, we present our system model,
which admits correlated wireless channels between any of the
single-antenna mobile terminal and the receive antennas of
the base station (BS). Next, in Section III, we apply well-
known results developed for block fading channels in [15],
[27]–[30] to the system model developed in Section II. Section
IV studies the impact of pilot spacing on the achievable
SINR and the spectral efficiency (SE) of all users in the
system, and establishes an upper bound on this SINR. We
show that this upper bound is monotonically decreasing as
the function of pilot spacing. This property is very useful,
because it enables to limit the search space of the possible
pilot spacings when looking for the optimum pilot spacing in
Section V. That section also considers the special case when
the channel coefficients associated with the different receive
antennas are uncorrelated and identically distributed. It turns
out that in this special case a simplified SINR expression can
be derived. Section VI presents numerical results and discusses
engineering insights. Finally, Section VII draws conclusions.

In this paper we use the notation [v]n = wn and
[A]n,m = Bn,m to denote the elements of the block vectors

and block matrices v =


w1

...
wN

, A =


B1,1 . . . B1,M

...
. . .

...
BN,1 . . . BN,M

,

respectively.

II. SYSTEM MODEL

A. Uplink Pilot Signal Model

By extending the single antenna channel model of [25], each
transmitting mobile station (MS) uses a single time slot to send
F pilot symbols, followed by ∆ time slots, each of which
containing F data symbols according to Figure 1. Each symbol
is transmitted within a coherent time slot of duration T . Thus,
the total frame duration is (1 + ∆)T , such that each frame
consists of 1 pilot and ∆ data time slots, which we will index
with i = 1 . . .∆. User-k transmits each of the F pilot symbols
with transmit power Pp,k, and each data symbol in slot-i with
transmit power Pk(i), k = 1 . . .K. To simplify notation, in
the sequel we tag User-1, and will drop index k = 1 when
referring to the tagged user.

Assuming that the coherence bandwidth accommodates at
least F pilot symbols, this system allows to create F or-
thogonal pilot sequences. To facilitate spatial multiplexing and
channel state information at the receiver (CSIR) acquisition at
the BS, the MSs use orthogonal complex sequences, such as
shifted Zadoff-Chu sequences of length τp = F , which we
denote as:
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Figure 1. Pilot (P) and data (D) symbols in the time-frequency domains of the
system in the (0, (∆+1)T ) interval. The solid line above the time-frequency
resource grid represents the piece-wise constant complex channel h(t), while
the dashed line represents the MMSE channel estimate ĥ(t). Notice that in
each time slot of length T all symbols are either pilot or data symbols. This
arrangement is used by the block type pilot allocation in 4G and 5G systems.

s ,
[
s1, ..., sτp

]T ∈ Cτp×1, (1)

whose elements satisfy |si|2 = 1. Under this assumption, the
system can spatially multiplex K ≤ F MSs. Focusing on
the received pilot signal from the tagged user at the BS, the
received pilot signal takes the form of [12]:

Y(t) = α
√
Pph(t)sT + N(t) ∈ CNr×τp , (2)

where h(t) ∈ CNr×1 ∼ CN (0,C), that is, h(t) is a complex
normal distributed column vector with mean vector 0 and
covariance matrix C ∈ CNr×Nr . Furthermore, α denotes large
scale fading, Pp denotes the pilot power of the tagged user, and
N(t) ∈ CNr×τp is the additive white Gaussian noise (AWGN)
with element-wise variance σ2

p.
It will be convenient to introduce Ỹ(t) by stacking the

columns of Y(t) as:

Ỹ(t) = vec
(
Y(t)

)
= α

√
PpSh(t) + Ñ(t) ∈ CτpNr×1, (3)

where vec is the column stacking vector operator, Ỹ(t),
Ñ(t) ∈ CτpNr×1 and S , s ⊗ INr

∈ CτpNr×Nr is such that
SHS = τpINr

, where INr
is the identity matrix of size Nr.

B. Channel Model

In (2), the channel h(t) evolves according to a multivariate
complex stochastic process with stationary covariance matrix
C. That is, for symbol duration T , the channel (h(t)) evolves
according to the following AR process:

h(t+ T ) = Ah(t) + ϑ(t), (4)

where the transition matrix of the AR process is denoted
by A, and ϑ(t) ∼ CN (0,Θ) denotes the random process
noise vector with zero mean and Θ covariance matrix. This
AR model has been commonly used to approximate Rayleigh

fading channels in e.g. [31]. Equation (4) implies that the
autocorrelation function of the channel process is:

E
(
h(t)hH(t+ iT )

)
= C

(
AH

)i
, ∀i. (5)

Consequently, the autocorrelation function of the fast fading
channel (h(t)) is modelled as:

R(i) , E
(
h(t)hH(t+ iT )

)
=

{
CeQ

H iT if i ≥ 0,

Ce−QiT if i < 0,

(6)

where matrix Q describes the correlation decay, such that:
eQT = A. From (6), we have R(i) = RH(−i). Similarly, for
user k,

Rk(i) , E
(
hk(t)hHk (t+ iT )

)
=

{
Cke

QH
k iT if i ≥ 0,

Cke
−QkiT if i < 0,

(7)

In each pilot slot, the BS utilizes MMSE channel estimation
to obtain the channel estimate of each user, as it will be
detailed in Section III. Without loss of generality, to simplify
the notation, hereafter we assume that the time unit is T and
iT = i.

C. Data Signal Model

When spatially multiplexing K MU-MIMO users, the re-
ceived data signal at the BS at time t is [12]:

y(t) = αh(t)
√
Px(t)︸ ︷︷ ︸

tagged user

+

K∑
k=2

αkhk(t)
√
Pkxk(t)︸ ︷︷ ︸

co-scheduled MU-MIMO users

+nd(t), (8)

where y(t) ∈ CNr×1; and xk(t) denotes the transmitted data
symbol of User-k at time t with transmit power Pk. Further-
more, nd(t) ∼ CN

(
0, σ2

dINr

)
is the AWGN at the receiver.

Since each slot contains either only pilot or data symbols, the
pilot and data power levels can be set independently.

III. OVERVIEW OF PREVIOUS RESULTS AND
PREREQUISITES

In this section, we are interested in
• calculating the MMSE estimation of the channel in each

data slot 1 ≤ i ≤ ∆, based on received pilot signals, as a
function of the frame size corresponding to pilot spacing
(see ∆ in Figure 1), and

• determining the slot-by-slot SINR of a tagged user (γ̄(i))
of a MU-MIMO system operating over fast fading chan-
nels modelled as AR processes.

To this end, we apply well-known results developed for
block fading channels in [15], [27]–[30] to the system model
developed in the previous section.

Estimating the channel at the receiver can be based on
multiple received pilot signals both before and after the actual
data slot i. While using pilot signals that are received before
data slot i requires to store the samples of the received
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pilot, using pilot signals that arrive after data slot i requires
to store the received data signals and necessarily induces
some delay in estimating the transmitted data symbol. In
the sequel we use the general case of "p before, q after"
to illustrate the operation of the MMSE channel estimation
scheme, that is when the receiver uses the p pilot signals Ỹ(0),
Ỹ
(
−(∆+1)

)
. . . Ỹ

(
−(p−1)(∆+1)

)
before the data slot and the

q pilot signals Ỹ(∆ + 1), Ỹ
(
2(∆ + 1)

)
. . . Ỹ

(
q(∆ + 1)

)
after

the data slot for CSIR acquisition. We are also interested in
determining the distribution of the resulting channel estimation
error, whose covariance matrix, denoted by Z(∆, i), will play
an important role in subsequently determining the deterministic
equivalent of the SINR in each slot i.

A. MMSE Channel Estimation and Channel Estimation Error

In each data slot i, the BS utilizes the pilot signals obtained
in the pilot slots. The BS waits for q pilot slots to occur before
calculating this estimation, and uses the pilot signals from
these later pilot slots and p previous pilot slots to estimate
the channel during the data slot. Since there are ∆ data
slots between two pilot slots, the utilized pilot signals are
Ỹ(n(∆ + 1)) where n runs from −(p− 1) to q.

Lemma 1. The MMSE channel estimator approximates the
autoregressive fast fading channel in time slot i based on the
received pilots at n(∆ + 1), n = −(p− 1), . . . , q as

ĥMMSE(∆, i) = H?(∆, i)Ŷ(∆), (9)

where

H?(∆, i) =
1

α
√
Ppτp

E(∆, i)
(
M(∆) + Σp+q

)−1

.
(
sH ⊗ I(p+q)Nr

)
,[

Ŷ(∆)
]
n
, Ỹ

(
n(∆ + 1)

)
,

Σp+q ,
σ2
p

α2Ppτp
I(p+q)Nr

,[
E(∆, i)T

]
m

, R
(
m(∆+1)−i

)
, (10)[

M(∆)
]
n,m

, R
(
(m−n)(∆+1)

)
, (11)

where n and m run from −(p− 1) to q.

Proof. The lemma can be established using standard tech-
niques for deriving the MMSE estimator [12], [27], and
rewriting Ŷ(∆) as Ŷ(∆) = (Ip+q ⊗ S)h̄(∆) + ˜̄N, where[
h̄(∆)

]
n
, h

(
n(∆+1)

)
and

[
˜̄N(∆)

]
n
, Ñ

(
n(∆+1)

)
.

From Lemma 1, it follows that the MMSE estimate of the
channel is expressed as:

ĥMMSE(∆, i) = H?(∆, i)Ŷ(∆)

= H?(∆, i)
(
α
√
Pp(Ip+q ⊗ S)h̄(∆) + ˜̄N(∆)

)
=

1

α
√
Ppτp

E(∆, i) (M(∆) + Σp+q)
−1

.
(
α
√
Ppτph̄(∆) +

(
Ip+q ⊗ SH

) ˜̄N(∆)
)
. (12)

Next, we are interested in deriving the distribution of the
estimated channel and the channel estimation error, since
these will be important for understanding the impact of pilot
spacing on the achievable SINR and spectral efficiency of the
MU-MIMO system. To this end, the following two corollaries
of Lemma 1 – which follow directly from the Lemma and (12)
– will be important in the sequel.

Corollary 1. The estimated channel ĥMMSE(∆, i) is a circular
symmetric complex normal distributed vector ĥMMSE(∆, i) ∼
CN
(
0, Φ̂MMSE(∆, i)

)
, with

Φ̂MMSE(∆, i) ,Eh,n{ĥMMSE(∆, i)ĥHMMSE(∆, i)}

=E(∆, i)
(
M(∆) + Σp+q

)−1
EH(∆, i). (13)

An immediate consequence of Corollary 1 is the following
corollary regarding the covariance of the channel estimation
error, as a function of pilot spacing.

Corollary 2. The channel estimation error in slot i,
ĥMMSE(∆, i)−h(∆, i), is complex normal distributed with zero
mean vector and covariance matrix given by:

Z(∆, i) , C−E(∆, i)
(
M(∆) + Σp+q

)−1
EH(∆, i). (14)

In the following section we will calculate the SINR of
the received data symbols. For simplicity of notation, we use
ĥMMSE(∆, i) = ĥ(∆, i), and introduce

b(∆, i) , α
√
P (i)ĥ(∆, i), (15)

with covariance matrix

Φ(∆, i) , E
(
b(∆, i)bH(∆, i)

)
= α2P (i)(C− Z(∆, i)). (16)

To summarize, this subsection derived the MMSE channel
estimator (Lemma 1) that uses the received pilot signals both
before and after a given data slot i and depends on the frame
size ∆ (pilot spacing). As important corollaries of the channel
estimation scheme, we established the distribution of both the
estimated channel (Corollary 1) and the associated channel
estimation error in each data slot i (Corollary 2), as functions of
both the employed pilot spacing and pilot power. These results
serve as a starting point for deriving the achievable SINR and
spectral efficiency in the next subsection.

B. SINR Calculation

We start with recalling an important lemma from [30], which
calculates the per-slot SINR in an AR fast fading environment
when the BS uses the MMSE estimation of the fading channel,
and employs the optimal linear receiver:

G?(∆, i) = bH(∆, i)J−1(∆, i), (17)

where J(∆, i) ∈ CNr×Nr is defined as

J(∆, i) ,
K∑
k=1

bk(∆, i)bHk (∆, i) + β(∆, i),
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where

β(∆, i) ,
K∑
k=1

α2
kPkZk(∆, i) + σ2

dINr
. (18)

When using the above receiver, which minimizes the MSE of
the received data symbols in the presence of channel estimation
errors, the following result from [30] will be useful in the
sequel:

Lemma 2 (See [30], Lemma 3). Assume that the receiver
employs MMSE symbol estimation, that is it employs the
optimal linear receiver G?(∆, i) given in (17). Then the per-
slot SINR of the estimated data symbols of the tagged user,
γ(∆, i) is given as:

γ(∆, i) = bH(∆, i)J̄−1(∆, i)b(∆, i), (19)

where
J̄(∆, i) , J(∆, i)− b(∆, i)bH(∆, i). (20)

For the AR fading case considered in this paper, based on
the definitions of b(∆, i), J(∆, i) and J̄(∆, i), the per-slot
SINR of the tagged user is then expressed as:

γ(i) = bH(∆, i)J̄−1(∆, i)b(∆, i)

= tr
(
b(∆, i)bH(∆, i)J̄−1(∆, i)

)
. (21)

C. Slot-by-Slot Deterministic Equivalent of the SINR as a
Function of Pilot Spacing ∆

We can now state the following important proposition that
gives the deterministic equivalent of the SINR in data slot i,
γ̄(∆, i), when the number of antennas Nr approaches infinity.
This deterministic equivalent SINR gives a good approxima-
tion of averaging the per-slot SINR of the tagged user, and can
be proved by invoking [28, Theorem 1] or [15, Theorem 1].

Proposition 1. Assuming, 1 ≤ limNr,K→∞Nr/K ≤ ∞ and
Ck/Nr,Zk(∆, i)/Nr have uniformly bounded spectral norms,
the deterministic equivalent SINR of the tagged user in data

slot i can be calculated as:

γ̄(∆, i) = tr
(
Φ(∆, i)T(∆, i)

)
, (22)

where T(∆, i) is defined as:

T(∆, i) ,

(
K∑
m=2

Φm(∆, i)

1 + δm(∆, i)
+ β(∆, i)

)−1

, (23)

and δm(∆, i) are the solutions of the following system of K
equations

δm(∆, i) = tr

Φm(∆, i)

(
K∑
l=2

Φl(∆, i)

1 + δl(∆, i)
+ β(∆, i)

)−1


(24)

for ∀m = 1, . . . ,K.

The above system of K equations gives the deterministic
equivalent of the SINR of the tagged user, and a different set
of K equations must be used for each user.

To summarize, this section established the slot-by-slot SINR
of a tagged user (γ̄(i)) of a MU-MIMO system operating
over a fast fading channels modelled as AR processes, by
applying our previous result obtained for discrete-time AR
channels reported in [12]. Next, we invoked [28, Theorem
1], to establish the deterministic equivalent SINR for each
slot, as a function of the frame size (pilot spacing) ∆, see
Proposition 1. These results serve as a basis for formulating
the pilot spacing optimization problem over the frame size and
pilot power as optimization variables.

IV. IMPACT OF PILOT SPACING ON THE SINR AND
SPECTRAL EFFICIENCY

In this section, we study the impact of pilot spacing on the
achievable SINR and the SE of all users in the system. The
approximate SE, based on the deterministic equivalent SINR,
associated with the i-th data symbol of user k is

SEk(∆, i) , log
(

1 + γ̄k(∆, i)
)
, (25)

where γ̄k(∆, i) denotes the average SINR of user k when
sending the i-th data symbol, and when ∆ data symbols are
sent between every pair of pilot symbols. Consequently, the
average SE of user k over the (∆ + 1) slot long frame is∑∆

i=1 SEk(∆, i)

∆ + 1
, (26)

which can be optimized over ∆. More importantly, the aggre-
gate average SE of the MU-MIMO system for the K users can
be expressed as:

SE(∆) =

∑K
k=1

∑∆
i=1 SEk(∆, i)

∆ + 1
. (27)

A. An Upper Bound of the Deterministic Equivalent SINR and
the SE

Let us assume that Qk = qkINr
, that is the channel vector

hk(t) consists of independent AR processes in the spatial
domain, implying that:

Rk(i) , E
(
hk(t)hHk (t+ i)

)
= Cke

q∗ki, (28)

where qk is a scalar, q∗k denotes complex conjugation, and let
q̄k , Re(qk) < 0.

Note that the exponential approximation of the autocorre-
lation function of the fast fading process expressed in (28) is
related to the Doppler frequency of Rayleigh fading through:

CJ0(2πfDi)︸ ︷︷ ︸
True autocorrelation of Rayleigh fading

≈ R(i), (29)

where J0(.) is the zeroth order Bessel function [32]. Based on
the exponential approximation of this Rayleigh fading process
in (28), the Doppler frequency of the approximate model is
obtained from 2πfDi = Re(q∗ki), i.e. fD = 2π/q̄k.

To optimize (27), we first find an upper bound of SEk(∆, i)
via an upper bound of γ̄k(∆, i). To simplify the notation, the
following discussion refers to the tagged user, and later we

5



utilize that the same relations hold for all users. We introduce
the following upper bound of γ̄(∆, i):

γ̄(u)(∆, i), tr

Φ(u)(∆, i)

(
K∑
l=1

α2
l PlZ

(u)
l (∆, i)+σ2

dINr

)−1
,

(30)

where Z(u)(∆, i) and Φ(u)(∆, i) are given by

Z(u)(∆, i) , C− ρ(∆, i)C (ηC + Σ)
−1

C, (31)

Φ(u)(∆, i) , α2Pρ(∆, i)C (ηC + Σ)
−1

C, (32)

with η being a properly set constant (see Theorem 1), Σ ,
σ2
p

α2Ppτp
INr

, and

ρ(∆, i) ,
q∑

`=−(p−1)

e2q̄|i−`(∆+1)|. (33)

As mentioned, for γ̄(u) defined in (30) to be a suitable upper
bound of γ̄, we need to set the constant η in (31) and (32)
properly. To this end, the following theorem is helpful.

Theorem 1. If q̄ < 0, and

p+ q = 1 and 0 < η < 1, or
p+ q = 2 and 0 < η < 1− a, or

p+ q = 3 and 0 < η < 1− a(
√

8+a2−a)
2 , or

p+ q = 4 and 0 < η < 1− a(a2+1+(a−1)
√

5−2a+a2)
2 ,

(34)

with a , e2q̄(∆+1) then γ̄(∆, i) ≤ γ̄(u)(∆, i).

Proof. We prove the theorem based on the following inequal-
ities

γ̄(∆, i)
(a)

≤ tr
(
Φ(∆, i)β(∆, i)−1

)
(b)

≤ tr
(
Φ(u)(∆, i)β(∆, i)−1

) (c)

≤ γ̄(u)(∆, i), (35)

which are proved in consecutive lemmas, that is Lemmas 3-6
below.

Remark 1. While Theorem 1 is not possible to generalize
symbolically for cases when p + q > 4, by numerical ex-
periments we found that when 0 < η < L(a), and L(a) =
c3a

3 + c2a
2 − c1a + c0 with c3 = −0.329, c2 = 1.154,

c1 = −1.810 and c0 = 0.985, then γ̄(∆, i) ≤ γ̄(u)(∆, i) holds
at least for the cases when p+ q ≤ 50, that is for virtually all
practically relevant cases.

Lemma 3. Let A, B and C be positive definite matrices and
D be any matrix, such that A � B (i.e. B−A is a positive
semidefinite matrix), then

A−1 � B−1, (36)

tr
(
DHAD

)
≤ tr

(
DHBD

)
(37)

tr (AC) ≤ tr (BC) (38)

tr
(
CA−1

)
≥ tr

(
CB−1

)
. (39)

Proof. A−1 � B−1 is given in [33, p. 495, Corollary 7.7.4(a)].
(37) follows from the fact that DH(B − A)D is a positive
semidefinite matrix since B − A is a positive semidefinite
matrix and for any x

xHDH(B−A)Dx = yH(B−A)y ≥ 0 (40)

where y , Dx. Let C = DHD be the Cholesky decomposi-
tion of C then (38) and (39) follows from (37), by utilizing
the cyclic property of the trace operator.

Lemma 4. For q̄ < 0 and η satisfying (34), the following
relation holds

E(∆, i)
(
M(∆) + Σp+q

)−1
EH(∆, i)

� ρ(∆, i)C (ηC+Σ)
−1

C (41)

Proof. The proof for the case p = 2 and q = 1 is in Appendix
A, the proof of the general case is analogous.

Having prepared with Lemma 3 and Lemma 4, we can prove
the (a), (b) and (c) inequalities in (35) by Lemma 5 ((a) part)
and Lemma 6 ((b) and (c) parts) as follows.

Lemma 5. The deterministic equivalent SINR of the tagged
user satisfies

γ̄(∆, i) ≤ tr
(
Φ(∆, i)β(∆, i)−1

)
.

Proof. The proof is in Appendix B.

Lemma 6. When the conditions of Theorem 1 hold, we have

tr
(
Φ(∆, i)β(∆, i)−1

)
≤ tr

(
Φ(u)(∆, i)β(∆, i)−1

)
(42)

tr
(
Φ(u)(∆, i)β(∆, i)−1

)
≤ γ̄(u)(∆, i). (43)

Proof. When the conditions of Theorem 1 hold, Lemma 4
implies that Φ(∆, i) � Φ(u)(∆, i) and Z(∆, i) � Z(u)(∆, i).
Using the first relation and the Lemma 3 gives (42), while
using the second relation and Lemma 3 gives (43).

B. Useful Properties of the Upper Bounds on the Deterministic
Equivalent SINR and Overall System Spectral Efficiency

Theorem 1 is useful, because it establishes an upper bound,
denoted by γ̄(u)(∆, i), of the deterministic equivalent of the
SINR, γ̄(∆, i).

To use the γ̄(u)(∆, i) upper bound for limiting the search
space for an optimal γ̄(∆, i) in Section V, we need the
following properties of the upper bound.

Proposition 2. The γ̄(u)(∆, i) upper bound has the following
properties: ∂γ̄(u)(∆, i)/∂ρ(∆, i) ≥ 0 and ρ(∆, i) → 0 ⇒
γ̄(u)(∆, i)→ 0.

Proof. The proof is in Appendix C.
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Similarly, the SINR of user k satisfies the inequality
γ̄k(∆, i) ≤ γ̄

(u)
k (∆, i) where γ̄

(u)
k (∆, i) is defined in a

similar way as γ̄
(u)
1 (∆, i). The γ̄

(u)
k (∆, i) upper bound is

such that ∂γ̄(u)
k (∆, i)/∂ρk(∆, i) ≥ 0 and ρk(∆, i) → 0 ⇒

γ̄
(u)
k (∆, i)→ 0.
Since our most important performance measure is the overall

SE, we are interested in establishing a corresponding upper
bound on the overall SE of the system. To this end, we
introduce the related upper bound on the SE of user k:

SE(u)
k (∆) ,

∑∆
i=1 log

(
1 + γ̄

(u)
k (∆, i)

)
∆

. (44)

and bound the aggregate average SE of the MU-MIMO system
(c.f. (27)). Notice that the denominator in SE(u)

k is ∆ while
the denominator in SEk is ∆ + 1. This will be necessary for
the monotonicity property in Proposition 3.

Proposition 3.

SE(u)(∆) ,
K∑
k=1

SE(u)
k (∆) ≥ SE(∆), (45)

and SE(u)(∆) decreases with ∆ and approaches 0 when ∆
approaches infinity.

Proof. The proof is in Appendix D.

C. Summary

This section first established an upper bound on the deter-
ministic equivalent SINR in Theorem 1. Next, Proposition 2
and Proposition 3 have stated some useful properties of this
upper bound and a corresponding upper bound on the overall
system spectral efficiency. Specifically, Proposition 3 suggests
that the upper bound on the spectral efficiency of the system
is monotonically decreasing in ∆ and tends to zero as ∆
approaches infinity. As we will see in the next section, this
property can be exploited to limit the search space for finding
the optimal ∆.

V. A HEURISTIC ALGORITHM TO FIND THE OPTIMAL
FRAME SIZE (PILOT SPACING)

A. A Heuristic Algorithm for Finding the Optimal ∆

In this section we build on the property of the system-wide
spectral efficiency, as stated by Proposition 3, to develop a
heuristic algorithm to find the optimal ∆. While we cannot
prove a convexity or non-convexity property of SE(∆), we
can utilize the fact that SE(∆) ≤ SE(u)(∆) as follows. As
Algorithm 1 scans through the possible values of ∆, it checks
if the current best ∆ (that is ∆opt) is one less than the currently
examined ∆ (Line 17). As it will be exemplified in Figure 6
in the numerical section, the key is to notice that the SE upper
bound determines the search space of the possible ∆ values,
where the associated SE can possibly exceed the currently
found highest SE. Specifically, the search space can be limited
to (Line 18):

∆max = SE(u)−1

(SE∆), (46)

Algorithm 1: Optimum frame size algorithm using an SE
upper bound

Input: Q, C, Σ, α2, Ptot

1 SE1 = SE(1) using (27), ∆max = SE(u)−1
(SE1)

2 ∆ = 1, ∆opt = ∆max, SEopt = SE(∆opt) using (27)
3 while ∆ < ∆max do
4 for k = 1 . . .K do
5 for i = 1 . . .∆ do
6 Calculate Rk(i),Rk(∆ + 1),
7 Rk(∆ + 1± i),Rk(2∆ + 2) using (7)
8 Calculate Ek(∆, i) using (10)
9 Calculate Zk(∆, i) using (14)

10 Calculate Φk(∆, i) using (16)
11 Calculate βk(∆, i) using (18)
12 Calculate γ̄k(∆, i) using (22)
13 Calculate SEk(∆, i) using (25)

14 SE∆ = SE(∆) using (27)
15 if SE∆ > SEopt then
16 ∆opt = ∆, SEopt = SE∆

17 if ∆opt = ∆− 1 then
18 ∆max = SE(u)−1

(SE∆)

19 ∆ = ∆ + 1

Output: ∆opt

where SE(u)−1

denotes the inverse function of SE(u)(.) and
SE∆ , SE(∆) as calculated in (27). The computational
complexity of Algorithm 1 is O(∆maxK((p+q)Nr)

3), where
the complexity of the matrix inversion in computing Z(∆, i)
is O(((p+ q)Nr)

3).

B. The Case of Independent and Identical Channel Coefficients

In the special case where the elements of the vector h(i)
are independent stochastically identical stochastic processes,
the covariance matrices become real multiples of the identity
matrix C , cINr , Σ = sINr , R(i) = r(i)INr , Z(i) =
z(i)INr , Φ(i) = φ(i)INr , β(i) = β(i)INr , further more
E(i) = e(i)⊗ INr

, with:

s ,
σ2
p

α2Ppτp
, (47)

r(i) ,

{
ceq

∗i if i ≥ 0,

ce−qi if i < 0,
(48)

e(∆, i) ,
[
r(i+(p−1)(∆+1)) . . . r(i−q(∆+1))

]
(49)

m(∆) , (50)
c r(∆ + 1) . . . r((∆+1)(p+q−1))

r(∆ + 1)
∗

c
. . .

...
...

. . . c r(∆ + 1)

r((∆+1)(p+q−1))
∗
. . . r(∆ + 1)

∗
c
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z(i) , c− e(∆, i)(m(∆) + sI)−1eH(∆, i), (51)

φ(i) , α2P (i)(c− z(i)), (52)

β(i) ,

(
K∑
k=1

α2
kPkzk(i) + σ2

d

)
. (53)

In this special case, calculating the deterministic equivalent
of the SINR by Proposition 1 simplifies to solving a set of
scalar equations as stated in the following corollary.

Corollary 3. In this special case, the deterministic equivalent
of the SINR in slot i, γ̄(i), can be obtained as the solution of
the scalar equation

β(i) =
Nrφ(i)

γ̄(i)
−

K∑
k=2

φk(i)

1 + γ̄(i)φk(i)
φ(i)

. (54)

Proof. The proof follows from [28] and [29]. Since the matri-
ces Φk(i) and Zk(i) are constant multiple of identity matrices,
(24) can then be rewritten as

δk(i) = Nrφk(i)

(
K∑
l=2

φl(i)

1 + δl(i)
+ β(i)

)−1

(55)

for k = 1, . . . ,K. Using γ̄(i) = δ1(i) and comparing (55) for
different values of k we get

δk(i) =
φk(i)

φ1(i)
δ1(i) =

φk(i)

φ1(i)
γ̄(i). (56)

Substituting the rightmost expression of (56) into (55) with
k = 1 and rearranging gives the corollary.

Notice that calculations inside the inner for loop of Al-
gorithm 1, that is the calculations in Lines 6-13 can be
substituted by equations (48), (49), (51), (52) and (53). Since
these substitutions eliminate the step of inverting a (p+ q)Nr
size matrix, the time complexity of Algorithm 1 decreases to
O(∆maxK(p+q)3).

VI. NUMERICAL RESULTS

Table I
SYSTEM PARAMETERS

Parameter Value

Number of receive antennas at the
BS antennas

Nr = 10, 100

Path loss of the tagged MS α = 90 dB
Frame size ∆ = 2 . . . 50

Pilot and data power levels Pp = 50...125 mW; P = 125
mW

MIMO receivers MMSE receiver given by (17)
Channel estimation MMSE channel estimation given

by Lemma 1
Maximum Doppler frequency fD = 50, 500, 1500 Hz
Slot duration (T ) 32µs
Number of users K = 2

Noise variance σ2
p = σ2

d = −121.45 dBm

In this section, we consider a single cell of a MU-MIMO
(K = 2) system with Nr = 10 and Nr = 100 receive antennas,
in which the wireless channel between the served MS and the
BS is modelled as (4) and (28).

The MU-MIMO case with greater number of users (K > 2)
gives similar results albeit with somewhat lower SINR values
from the point of view of the tagged user. The BS estimates the
state of the wireless channel based on the properly (i.e. ∆ ×
T ) spaced pilot signals using MMSE channel estimation and
interpolation according to Lemma 1, and uses MMSE symbol
estimation employing the optimal linear receiver G?(iT ) in
each slot as given in (17). Specifically, in each time slot i =
1 . . .∆, the BS uses p ≥ 1 pilot signals transmitted by the
MS prior to the data symbols and q pilot symbols sent after
the data symbols, where q = 0 or q = 1. That is, we study
the performance of the "p before, q after" schemes, where q
is either zero or one. In practice, when q = 1, the BS can
store the received data signals until it receives the pilot signal
in slot i = ∆ + 1 before using an MMSE interpolation of the
channel states between i = 0 and i = ∆ + 1. Furthermore, we
will assume that the BS estimates perfectly the autocorrelation
function of the channel, including the associated maximum
Doppler frequency and, consequently, the characterizing zeroth
order Bessel function. The most important system parameters
are listed in Table I. Here we assume that the slot duration (T )
corresponds to a symbol duration in 5G orthogonal frequency
division multiplexing (OFDM) systems using 122 MHz clock
frequency, which can be used up to 20 GHz carrier frequencies
[34]. Note that the numerical results presented below – except
for the benchmarking results in Figures 8 and 9 – are obtained
by the analytical calculation and numerical evaluation of the
deterministic equivalent of the SINR and the corresponding
average spectral efficiency. The benchmarking results shown
in Figures 8 and 9 are obtained by Monte Carlo simulations.

Figure 2 shows the achieved spectral efficiency averaged
over the data slots i = 1 . . .∆, that is averaged over the
data slots of a frame of size ∆ + 1 when using the 2 before
1 after scheme (p = 2, q = 1). Short frames imply that
the pilot overhead is relatively large, which results in poor
spectral efficiency. On the other hand, too large frames (that
is when ∆ is too large) make the channel estimation quality
in the "middle" time slots poor, since for these time slots
both available channel estimates ĥ(0) and ĥ(∆ + 1) convey
little useful information, especially at high Doppler frequencies
when the channel ages rapidly. Indeed, as seen in Figure 2,
the frame size has a large impact on the achievable spectral
efficiency, suggesting that the optimum frame size depends
critically on the Doppler frequency. As we can see, the spectral
efficiency as a function of the frame size is in general neither
monotone nor concave, and is hence hard to optimize.

The average spectral efficiency as a function of the pilot/data
power ratio and the frame size is shown in Figure 3. This figure
clearly shows that setting the proper frame size and tuning
the pilot/data power ratio are both important to maximize
the average spectral efficiency of the system. The optimal
frame size and power configuration are different for different
Doppler frequencies, which in turn emphasizes the importance
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Figure 2. Spectral efficiency as a function of frame size (∆) with maximum
Doppler frequency fD = 50, 500, 1500 Hz with Nr = 10 (lower three
curves) and Nr = 100 (upper three curves). At higher maximum Doppler
frequency, the optimum frame size is smaller than at low Doppler frequency.
(The red dot indicates the optimal spectral efficiency for the 2 before 1 after
scheme with Nr = 10 receive antennas when fD = 500 Hz.)

Figure 3. Spectral efficiency with the 2 before 1 after method as a function
of the pilot/data power ratio and the frame size with Doppler frequency fD =
50Hz, fD = 500 Hz and fD = 1500 Hz when Nr = 10. In all three cases,
the spectral efficiency depends heavily on the employed pilot power and pilot
spacing (frame size).

of accurate Doppler frequency estimates.
Figure 4 shows the optimal frame size as a function of

the maximum Doppler frequency, and 5 shows the achieved
spectral efficiency when using the optimal frame size. At
fD = 500 Hz, for example, when the optimal frame size is 6,
the achieved spectral efficiency when using Nr = 10 antennas
is a bit below 1 bps/Hz. We can see that setting the optimal
frame size is indeed important, because it helps to make the
achievable spectral efficiency quite robust with respect to even
a significant increase in the Doppler frequency.

Figure 6 illustrates the upper bounds on spectral efficiency as
a function of the frame size for different Doppler frequencies.
Recall from Figure 2 that the spectral efficiency of the system
is a non-concave function of the frame size. Therefore, limiting
the possible frame sizes that can optimize spectral efficiency is
useful, which can be achieved by the upper bounds shown in
the figure. Since the upper bound is monotonically decreasing,
finding a point of the spectral efficiency curve (see the curve
marked with fD = 500 Hz and its upper bounding curve)
with a negative derivative helps to find the range of possible

1 before 1 after

1 before

2 before 1 after

3 before 1 after

2 before

3 before

Figure 4. Optimal frame size as a function of the maximum Doppler
frequency, and the channel estimation scheme employed.

3 before 1 after2 before 1 after

3 before1 before 1 after

2 before

1 before

Figure 5. Optimal spectral efficiency as a function of the maximum Doppler
frequency, that is the spectral efficiency when using the optimal frame size.

frame sizes that maximize spectral efficiency. For fD = 500
Hz, as illustrated in the figure, larger frame sizes than ∆ = 34
would lead to a lower upper bound than the spectral efficiency
achieved at ∆ = 6. Therefore, when searching for the optimal
∆, once we found that the spectral efficiency at ∆ = 7 is less
than at ∆ = 6 (negative derivative), the search space is limited
to [6, 34].

Figure 7 shows the maximum achievable spectral efficiency
by setting the optimum frame size as a function of the utilized
pilots when using the "p before" and "p before 1 after" schemes
for channel estimation. (For an easy reference, in this figure
the "2 before 1 after" scheme for the case when fD is 500 Hz,
is represented by the red dot.) At a high Doppler frequency,
the optimal spectral efficiency is practically insensitive to
increasing p beyond 5, while at a lower Doppler frequency,
the optimal spectral efficiency by setting the frame size to its
optimal value benefits from utilizing a greater number of past
pilots. Since using a Kalman filter gives the same performance
as when p → ∞, we see that setting p to a large finite
number achieves practically identical performance as that of
the Kalman filter.

Figure 8 compares the "1 before", "2 before" and the "2
before, 1 after" schemes with the three schemes ("current",
"aged" and "predicted") proposed in [6]. The "current" channel
estimation method of [6] uses a pilot in each data slot, and
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Upper bound

Upper 
bound

Figure 6. Upper bounding the achievable spectral efficiency as a function of
the frame size (∆) at fD = 500 Hz and fD = 1500 Hz. Note that the upper
bound is monotonically decreasing, which helps to limit the search space for
the optimum frame size.

p before 1 after

p before

p before 1 after

p before

(p)

2 before 1 after

Figure 7. Maximum achievable spectral efficiency vs p when using the "p
before" and "p before 1 after" schemes for channel estimation at fD = 100
Hz and fD = 500 Hz Doppler frequency. At a high Doppler frequency, the
optimal spectral efficiency is practically insensitive to increasing p beyond 5.
(The red dot indicates the 2 before 1 after scheme.)

therefore, it achieves the same SINR in each slot. The "aged"
and "predicted" methods use only the pilot at the beginning of
each frame. All three methods proposed in [6] use maximum
ratio combining for data estimation. In contrast, the "2 before
1 after" scheme uses three pilots and achieves higher SINR in
the beginning and at the end of each frame. The "aged" and
"predicted" methods reach their respective highest SINR at the
beginning of the frame, after which both the channel estimation
quality and consequently the achieved SINR degrades due to
channel aging.

Figure 9 shows the CDF of the achieved SINR in slot 1
when the frame size is set to 20. The 2 before 1 after scheme
produces a somewhat higher SINR in the entire support of the
SINR, while the Truong-Heath schemes achieve lower SINR
values due to employing maximum ratio combining reception
as opposed to the MMSE reception used by the p before q
after schemes used in this paper.

VII. CONCLUSIONS

This paper investigated the fundamental trade-off between
using resources in the time domain for pilot signals and data
signals in the uplink of MU-MIMO systems operating over

Truong-Heath current

2 before, 1 after

Truong-Heath
aged

Truong-Heath
predicted

2 before

1 before

Figure 8. Benchmarking some of the "p before q after" schemes with the
three channel estimation and prediction schemes proposed in [6] in terms of
the achieved per-slot SINR. Since the Truong-Heath "current" scheme uses
a pilot in each slot, it can achieve higher SINR in between pilots when the
frame size is set suboptimally (here ∆ = 30 instead of the optimal ∆ = 6.)

2 before 1 after

2 before

1 before

Deterministic 
equivalent of 
2 before 1 after

Truong-Heath current

Truong-Heath predicted

Truong-Heath aged

Slot 1 of 20

Figure 9. Benchmarking in terms of the CDF of the achieved SINR in slot
1 when the frame size is set to 20. Notice that the deterministic equivalent of
the SINR for the 2 before 1 after scheme is an approximation of the average
SINR over the channel realizations.

fast fading wireless channels that age between subsequent
pilot signals. While previous works indicated that when the
autocorrelation coefficient between subsequent channel real-
ization instances in discrete time is high, both the channel
estimation and the MU-MIMO receiver can take advantage
of the memoryful property of the channel in the time domain.
However, previous works do not answer the question how often
the channel should be observed and estimated such that the
subsequent channel samples are sufficiently correlated while
taking into account that pilot signals do not carry information
bearing symbols and degrade the overall spectral efficiency. To
find the optimal pilot spacing, we first established the deter-
ministic equivalent of the achievable SINR and the associated
overall spectral efficiency of the MU-MIMO system. We then
used some useful properties of an upper bound of this spectral
efficiency, which allowed us to limit the search space for the
optimal pilot spacing (∆). The numerical results indicate that
the optimal pilot spacing is sensitive to the Doppler frequency
of the channel and that proper pilot spacing has a significant
impact on the achievable spectral efficiency.
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APPENDIX A
PROOF OF LEMMA 4

Proof. Notice that

[M(∆)]n,m =

{
eq(∆+1)(m−n)C if n ≤ m
eq(∆+1)(n−m)∗C if n > m

(57)

that is

M(∆) = (58)
1 eq(∆+1) . . . eq(∆+1)(p+q−1)

(eq(∆+1))
∗

1
. . .

...
...

. . . 1 (eq(∆+1))
∗

eq(∆+1)(p+q−1)∗ . . . (eq(∆+1))
∗

1


︸ ︷︷ ︸

,Mp+q(∆)

⊗C.

The smallest eigenvalue of Mp+q(∆) is analytical for p +
q ≤ 4 and it is provided in (34). For p + q > 4, it is not
analytical and Remark 1 provides an order 3 polynomial lower
bound of the smallest eigenvalue, which is numerically tested
up to p+ q = 50. Let

M(u)(∆) ,


η 0 · · · 0

0 η · · · 0
...

. . .
...

0 0 · · · η


︸ ︷︷ ︸

,M
(u)
p+q(∆)

⊗C. (59)

When η satisfies to (34), we have

M
(u)
p+q(∆) �Mp+q(∆). (60)

Utilizing that the spectrum of a Kronecker product σ(A⊗B)
is [35]

σ(A⊗B) = {µAµB | µA ∈ σ(A), µB ∈ σ(B) }, (61)

we further have

M(u)(∆) �M(∆), (62)

which implies(
M(u)(∆) + Σp+q

)−1 �
(
M(∆) + Σp+q

)−1
, (63)

according to (36). The statement of the lemma comes from
(63) using (37), M(u)(∆) = ηIp+q ⊗C, and noting that

E(∆, i)
(
M(u)(∆) + Σp+q

)−1
EH(∆, i)

= E(∆, i)


ηC + Σ

. . .

ηC + Σ


−1

EH(∆, i)

=

q∑
`=−(p−1)

R(i−`(∆+1))(ηC + Σ)−1RH(i−`(∆+1))

= ρ(∆, i)C (ηC + Σ)
−1

C, (64)

where R(i) and ρ(∆, i) are defined in (28) and (33).

APPENDIX B
PROOF OF LEMMA 5

Proof.

γ̄(∆, i)

= E

tr

Φ(∆, i)

(
K∑
k=2

bl(∆, i)b
H
l (∆, i) + β(∆, i)

)−1


=

∫
v2∈RNr

. . .

∫
vK∈RNr

K∏
k=2

Pr(bl(∆, i) = vl)

· tr

Φ(∆, i)

(
K∑
k=2

vlv
H
l + β(∆, i)

)−1
 dvK . . . dv2

≤
∫

v2∈RNr

∫
vK∈RNr

K∏
k=2

Pr(bl(∆, i) = vl)

· tr
(
Φ(∆, i)β(∆, i)−1

)
dvK . . . dv2

= tr
(
Φ(∆, i)β(∆, i)−1

)
,

where we used that
∑K
l=2 vlv

H
l is a positive definite matrix,∑K

l=2 vlv
H
l + β(∆, i) � β(∆, i) and Lemma 3.

APPENDIX C
PROOF OF PROPOSITION 2

Proof. To prove monotonicity in ρ first notice that

ρ(∆1, i1) > ρ(∆2, i2)⇒ Z(u)(∆1, i1) � Z(u)(∆2, i2),

ρ(∆1, i1) > ρ(∆2, i2)⇒ Φ(u)(∆1, i1) � Φ(u)(∆2, i2).

and so

ρ(∆1, i1) > ρ(∆2, i2)

⇓

Φ(u)(∆1, i1)

(
K∑
l=1

α2
l PlZ

(u)
l (∆1, i1) + σ2

dINr

)−1

� Φ(u)(∆2, i2)

(
K∑
l=1

α2
l PlZ

(u)
l (∆2, i2) + σ2

dINr

)−1

⇓

tr

Φ(u)(∆1, i1)

(
K∑
l=1

α2
l PlZ

(u)
l (∆1, i1) + σ2

dINr

)−1


≥ tr

Φ(u)(∆2, i2)

(
K∑
l=1

α2
l PlZ

(u)
l (∆2, i2) + σ2

dINr

)−1
 ,

that is: γ̄(u)(∆1, i1) ≥ γ̄(u)(∆2, i2).

Finally, to prove convergence to 0, notice that
ρ(∆, i)→ 0⇒ Z(u)(∆1, i1)→ C,

ρ(∆, i)→ 0⇒ Φ(u)(∆1, i1)→ 0.
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And so, when ρ(∆, i)→ 0, we have

γ̄(u)(∆, i) =

tr

Φ(u)(∆, i)

(
K∑
l=1

α2
l PlZ

(u)
l (∆, i) + σ2

dINr

)−1


ρ(∆,i)→0→ tr

0

(
K∑
l=1

α2
l PlC + σ2

dINr

)−1
 = 0.

APPENDIX D
PROOF OF PROPOSITION 3

Proof. From Theorem 1 and (44) the inequality follows. For
monotonicity, notice that ρk(∆ + 1, i) < ρk(∆, i) and ρk(∆ +
1, i+ 1) < ρk(∆, i). Since by Proposition 2 the upper bound
of the SINR is increasing with ρk we have

γ̄
(u)
k (∆ + 1, i) ≤ γ̄(u)

k (∆, i)

γ̄
(u)
k (∆ + 1, i+ 1) ≤ γ̄(u)

k (∆, i), (65)

from which it follows that

log
(
1 + γ̄

(u)
k (∆ + 1, i)

)
≤ log

(
1 + γ̄

(u)
k (∆, i)

)
(66)

log
(
1 + γ̄

(u)
k (∆ + 1, i+ 1)

)
≤ log

(
1 + γ̄(u)(∆, i)

)
. (67)

Let ` = arg mini γ̄
(u)
k (∆ + 1, i), we then have

1

∆ + 1
×

∆+1∑
i=1

log
(
1 + γ̄

(u)
k (∆ + 1, i)

)
≤ 1

∆
×

(
`−1∑
i=1

log
(
1 + γ̄

(u)
k (∆ + 1, i)

)
+

∆+1∑
i=`+1

log
(
1 + γ̄

(u)
k (∆ + 1, i)

))
,

since on the right hand side we are removing the smallest term
before calculating the mean. Invoking (66) and (67) on the first
and second sum, respectively, it follows that

1

∆ + 1
×

∆+1∑
i=1

log
(
1 + γ̄

(u)
k (∆ + 1, i)

)
≤ 1

∆ + 1
×

(
`−1∑
i=1

log
(
1 + γ̄

(u)
k (∆, i)

)
+

∆∑
i=`

log
(
1 + γ̄

(u)
k (∆, i)

))

=
1

∆
×

∆∑
i=1

log
(
1 + γ̄

(u)
k (∆, i)

)
. (68)

From which it follows that

SE(u)
k (∆ + 1) =

∑∆+1
i=1 log

(
1 + γ̄

(u)
k (∆ + 1, i)

)
∆ + 1

≤
∑∆
i=1 log

(
1 + γ̄

(u)
k (∆, i)

)
∆

= SE(u)
k (∆), (69)

that is SE(u)
k (∆) is decreasing in ∆.

To prove convergence to zero, recall from Proposition 2 that
∂γ̄

(u)
k (∆, i)/∂ρk(∆, i) ≥ 0 and

ρk(∆, i)→ 0⇒ γ̄
(u)
k (∆, i)→ 0

⇒ log
(
1 + γ̄

(u)
k (∆, i)

)
→ 0, (70)

where

ρk(∆, i) = e2q̄k(∆+1+i) + e2q̄ki + e2q̄k(∆+1−i).

We show that for any ε > 0, there is some M such that

SE(u)(M) < ε. (71)

Due to q̄k < 0, we have ρk(∆, i) < ρk(1, 1), which implies

log
(
1 + γ̄

(u)
k (∆, i)

)
< log

(
1 + γ̄

(u)
k (1, 1)

)
, (72)

for all ∆ and i. Let A , log
(
1 + γ̄

(u)
k (1, 1)

)
and N such that

Nε− 2A > 0, and set

ε ,
Nε− 2A

N − 2
. (73)

Since q̄k < 0, we have

ρk(∆, i)

< (p+ q) max(r(i+(p−1)(∆+1)), . . . , r(i−q(∆+1)))

= (p+ q)e2q̄k min(i,∆+1−i),

and it follows that for ∆
N ≤ i ≤

(N−1)∆
N

ρk(∆, i) < (p+ q)e2q̄k
∆
N . (74)

Notice that by equation (70) we can choose some large M ,
such that

M

N
≤ i ≤ (N − 1)M

N
⇒ log(1 + γ̄

(u)
k (M, i)) < ε. (75)

We can now show that when M = ∆, then SE(u)
k (∆) < ε. To

this end, we split up the sum in the numerator of (69), that
is
∑∆
i=1 log(1 + γ̄(u)(∆, i)), into three terms, and bound the

first and third terms using the general upper bound A, and the
middle term by ε:

SE(u)
k (∆) =

∑∆
i=1 log(1 + γ̄(u)(∆, i))

∆

=

∑∆/N
i=1 log(1 + γ̄(u)(∆, i))

∆

+

∑(N−1)∆/N
i=∆/N+1 log(1 + γ̄(u)(∆, i))

∆

12



+

∑∆
i=(N−1)∆/N+1 log(1 + γ̄(u)(∆, i))

∆

<
(∆/N)A

∆
+

((N − 2)∆/N)ε

∆
+

(∆/N)A

∆

=
2A+ (N − 2)ε

N
= ε, (76)

where the last equation is due to the definition of ε in (73),
which completes the proof.
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