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Abstract—Previous works in array processing have proposed
two types of snapshot models for the angle of arrival (AoA)
estimation problem in multi-antenna systems. The deterministic
model assumes that the source waveforms are non-random,
while the random sensor noise is white Gaussian with a known
covariance matrix. The stochastic model assumes that both the
waveforms and the noise are zero-mean Gaussian. Interestingly,
the performance of these two models have rarely been com-
pared in integrated sensing and communication (ISAC) systems.
Therefore, in this paper, we consider the uplink of a bistatic
ISAC system that uses unitary constant envelope signaling and
pilot-based channel estimation while transmitting a sensing signal
simultaneously with the communication signals. The base station
uses both the pilot and data signals to estimate the angle of
a passive source and the transmitted data symbol by an active
(connected) user equipment device. For this system, we derive the
classical Cramér-Rao bound for unbiased estimators of the AoA
and the transmitted symbol, along with the Bayesian Cramér-
Rao bound, which bounds the error of all estimators. We also
derive the ISAC-aware minimum mean squared error receiver for
both the deterministic and stochastic models. We study the trade-
off between sensing and communication under the deterministic
and stochastic waveform assumptions. Specifically, we show that
the fundamental trade-off between sensing and communication
power allocations is expressed differently in the deterministic
and stochastic models and argue that the results serve as basic
considerations when designing pilot and sensing signals for ISAC
systems.

Index terms— angle of arrival estimation, Cramér-Rao
bound, integrated sensing and communication.

I. INTRODUCTION

The emerging sixth generation (6G) of mobile networks is
expected to be a multi-functional network that integrates com-
munications, localisation, sensing, computation and security to
offer a wide range of services in a spectral efficient fashion
[1]-[3]]. Integrated sensing and communication (ISAC) has
recently emerged as one of the key 6G enabling technolo-
gies, which extends the capabilities of traditional localisation
schemes by the ability of detecting, tracking and estimating
the parameters of both active (connected) user equipment (UE)
devices and passive objects in the environment [4]|—[|6]. In fact,
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recently, several research projects have demonstrated that 5G
pilot signals, designed for synchronisation and channel state
information (CSI) acquisition — such as the synchronisation
signal block (SSB) and demodulation reference signal (DMRS)
of 5G New Radio systems — can be used as sensing signals in
integrated passive radar and communication systems [7], [8].

Recognizing the advantages of reusing pilot and communi-
cation signals as illuminators of opportunity in passive radars
[9], recent works have studied the fundamental trade-offs
between communication and sensing in terms of the achiev-
able spectral and energy efficiency, detection probability and
accuracy of parameter estimation of target objects [3f], [10]—
[12]. In particular, establishing Cramér-Rao Bounds (CRBs)
for parameter estimation has provided valuable insights in
some of the inherent trade-offs in ISAC systems operating
as either monostatic, bistatic or multistatic radars [[10], [13]],
[14]. Specifically, when the signals of UE devices are used for
sensing purposes (as illustrated in Figure[I)), there is a trade-off
not only between allocating transmit power to pilot and data
symbols — which has been studied for long [[15]], [16], albeit not
in ISAC systems — but also between the energy dedicated for
CSI acquisition, and maintaining appropriate levels of signal-
to-noise ratio (SNR) for both communications and sensing [8]],
(2], [17].

Several papers have proposed mechanisms whereby the total
available power at an ISAC transmitter can be either used
jointly for sensing and communications or split between gen-
erating the sensing and communication signals [[10], [[19]—[23].
Such a power split can be achieved in the frequency domain
[10], [19] or in the spatial domain using multiple antennas [4],
[20]-[23]]. Specifically, in analog beamforming architectures,
the multibeam technique to generate suitable communication
and sensing beams was proposed in, for example, [[14], [20],
[21]. When hybrid and fully digital architectures are available,
suitable precoding techniques for generating ISAC signals was
studied in [4], [22]-[24]]. When such techniques are employed
at a UE device, the UE can allocate a certain portion of
its transmit power resources to generating a sensing signal,
while using the remaining power to transmit suitable uplink
pilot (reference) signals and information-carrying data signals
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Figure 1. A simple bistatic ISAC system consisting of a multi-antenna
user equipment (UE) that transmits a pilot and a unitary constant envelope
data signal in two subsequent time instances, a passive object (referred to as
the source of the sensing signal, see |18, Chapter 12], and a multiantenna
base station equipped with NV, receive antennas. We assume that the UE
utilizes multi-antenna transmission to transmit the pilot/data symbols and
simultaneously the sensing symbols, as proposed in, for example, [4].

(Figure [T).

Previous works in array processing have proposed two types
of snapshot models of the angle of arrival (AoA) estimation
problem in multi-antenna systems. The deterministic model
assumes that the source (sensing) waveforms are nonrandom,
while the stochastic model assumes that both the waveforms
and the noise are zero-mean Gaussian, as discussed in details
in [|18, Chapter 12], and illustrated in Figure|l| It is interesting
to note that the rigorous analysis, including establishing CRBs
for deterministic (also called "conditional") and stochastic (also
called "unconditional") waveforms dates back to the 90’s, see
[25], [26], and briefly discussed in [[18, Chapter 12], while
more recent works on sensing with random signals include
[27]I, [28]].

It is important to distinguish these two models, since
they result in different AoA CRBs, and different maximum
likelihood (ML) direction finding techniques [26], [29]. As
discussed also in [18]], the stochastic model is applicable
for cases of Gaussian waveforms and a great number of
snapshots, while the deterministic model is more suitable in
scenarios with unknown statistics of the source waveforms and
small sample size, where it is natural to treat the waveforms
as unknown deterministic variables. While both models are
insightful, and have been widely used for both establishing
CRBs and developing practical AoA estimation methods —
including multiple signal classification (MUSIC) or estimation
of signal parameters via rotational invariance (ESPRIT)-based
algorithms — the performance of these two models have not
been compared in bistatic ISAC systems, where both the AoA
and the transmitted communication symbol must be estimated
and the transmit power resources must be split between pilot
signaling, data transmission and sensing. The most important
related works are summarized in Table [l

In this paper, we argue that — using a high level of ab-
straction, as in [18, Chapter 12] and assuming a single radar
target, as illustrated in Figure [I|- studying and deriving CRBs

for estimating the AoA and the transmitted communication
symbol in the uplink of a simple ISAC system are conceptually
insightful and practically useful. Since the classical CRB
provides a bound for unbiased estimators only, it has limited
use when studying e.g minimum mean squared error (MMSE)
estimators, which may be biased. For this reason we also derive
the Bayesian Cramér-Rao Bound (BCRB), which bounds the
error of all estimators [33]]. In particular, we assume unitary
constant envelope signaling — that is the data symbols are zero-
mean non-correlated unitary normalized symbols, as in e.g.
341, 135, 136], [37] — for communication and aim to derive
and compare the sensing and communication CRBs in the
following four cases, which capture the aspects of the sensing
waveform being deterministic or stochastic and whether the
bound is the classical CRB or the BCRB:

e Case 1 (CRB) and Case 2 (BCRB): In these cases,
we use the deterministic waveform assumption, which
is applicable for cases, in which the source signal is
predefined and known by the receiver [[18].

e Case 3 (CRB) and Case 4 (BCRB): In these cases,
the sensing waveform is a zero-mean complex Gaussian
random variable, which is a suitable model for a priori
unknown sensing signals with known second-order statis-
tics.

Arguably, these CRBs remain valid for any M-ary phase-
shift keying (PSK) signaling, where the possible values of
the ¢ are selected from a predetermined set. In practice, the
estimation error of ¢ incurs symbol errors, which depend on
the signal constellation used in the system, see for example see
for example [38], [39], and more recently [40], [41]], However,
the connection between the CRBs established in this paper and
the symbol error is out of the scope of this paper.

The scenario, in which we study the above four cases differ
from that studied in [[12] to establish some fundamental trade-
offs of ISAC systems in the following aspects:

o Reference [[12] considers the scenario in which the com-
munication and sensing receivers are separate, and there-
fore, there is no interference between the communication
and sensing signals.

o Additionally, reference [12] assumes that the sensing
receiver knows the transmitted communications symbol,
while the ISAC receiver studied in this paper estimates
the transmitted symbol and the AoA from a passive object
simultaneously.

e Our paper uses a separate communication and sensing
symbol, which will be later denoted by p and x respec-
tively.

For these cases, we derive CRBs for both the transmitted
communication symbol and the AoA. Note that under the
unitary constant-envelope communication assumption, estimat-
ing the symbol is equivalent to estimating the phase of the
complex symbol (whose magnitude is assumed to be 1) [35],
[36], [37]. Interestingly, in all four cases, closed forms of the
associated CRBs can be derived. As the symbolic expressions
for the CRBs and the numerical examples illustrate, various
engineering insights can be derived. One of the important



Table I

OVERVIEW OF RELATED LITERATURE

Reference Main Addressed ISAC Are CRB or Deterministic or Key performance Comment
scope/contribution trade-offs Bayesian CRB stochastic sensing indicators
(BCRB) derived? signal
Chiriyath Bounds on the perf. Multiple access rate CRB for Stochastic sensing Achievable rate AoA is out of scope
et al., of joint radar and region vs. Fisher time-delay signal region, Fisher due to single-antenna
[10] comm. co-existence information when estimation, data information, model.
dividing the total BW | rate and estimation estimation rate
and power rate bounds
Liu et al., Adaptive OFDM Trade-off between No Stochastic sensing SNR, data rate, Transmit power and
[19] integrated waveform data inf. rate and signal mutual waveform are adap-
mutual information information tive, AoA is out of
for radar target scope.
identification and
classificiation
Liu et al., Joint radar and UL/DL Spectral No Stochastic sensig SNR, data rate, Pilot/data/sensing
[4] communication efficiency vs. signal spectral efficiency, | trade-off in bi-
(comprehensive) parameter (e.g. parameter static sensing is not
design, Integrating delay/Doppler) estimation MSE modelled.
radar sensing in estimation
MIMO UL/DL
communication
systems
Huang et Multiple ISAC Communication SNR CRB for location Stochastic sensing CRB for location AoA and pilot model-
al., [30] transmitters vs. CRB for target estimation is used signal estimation, SNR ing are out of scope.
coordinated by a location estimation as a constraint in for
central controller various opt. communication,
problems total transmit
power
Behdad Comm. and Detection probability No Stochastic sensing Detection AoA and CRB deriva-
et al., multistatic sensing in vs. used power via signal probability, total tions are out of scope.
[31] a cloud radio access power allocation for power
network ISAC using a consumption
maximum a posteriori
ratio test detector
Liu et al., Several performance Various trade-offs at CRB for delay Deterministic and SNR, parameter The three-way
[32] trade-offs and the PHY layer and estimation is stochastic sensing estimation, trade-off between
theoretical limits, cross-layers discussed/derived signals are detection pilot/data/sensing
signal processing discussed (not probability, data power and comparing
aspects and relation systematically rate, etc. CRB/BCRB are out
of ISAC to overall compared) of scope.
6G network design
Baig et Bistatic BS-to-BS Communication rate Classical CRB for Stochastic sensing Data rate, AoA Pilot signals are not
al., [14] ISAC system, SNR vs. AoA estimation AoOA estimation is signal estimation error modelled. Simulation
and CRB are derived performance in the derived study: No analytical
time and power derivations of perfor-
domains mance metrics.

Xu et al., Cellular SINR achieved for No Stochastic sensing Achieved quality AoA and CRB cal-
[23] network-based ISAC, communication vs. signal of service for culations are out of
where several cells reliability of detection communication scope.

are coordinated in a under power budget users and target
coordinated constraint sensing/detection
multipoint fashion to
minimize the beam
pattern mismatch
error.
Xiong et Fundamental Achievable CRBs for various Both stochastic Achievable data Pilot/data signals are
al., [12] trade-offs in communication rate estimated and deterministic rate, CRB for not modelled. ISAC-
point-to-point ISAC vs. CRB for sensing parameters based sensing signals are various sensing aware MIMO receiver
systems under on sensing considered parameters is out of scope.
Gaussian channels
Present CRB and BCRB for CRB for symbol CRB and BCRB Deterministic and CRBs and CRB, BCRB and esti-
paper both the deterministic estimation vs CRB with varying stochastic sensing variances of mate variances are in-
and the stochastic for AoA estimation degree of available signals estimates vestigated as the func-

sensing models

prior information

tion of the allocated
power levels to sens-
ing vs. communica-
tion




insights is that the inherent ISAC trade-off is much more artic-
ulated in the random waveform case, while the deterministic
waveform allows for an almost independent allocation of the
sensing and communication resources, since the impact of the
communication and sensing signals on each other is much less
in the deterministic model than when using random waveforms
for sensing.

The paper is structured as follows. The next section de-
scribes the system and signal models. Next, Section and
Section [[V] derive CRBs for the deterministic and stochas-
tic models respectively. Section develops the maximum
likelihood symbol and AoA estimators, while Section
describes the MMSE channel and symbol estimators. Section
discusses numerical results, and Section summarizes
the most important insights, draws conclusions and proposes
open research questions.

II. SYSTEM MODEL

We consider a single-user multiple input multiple output
(SU-MIMO) bistatic ISAC system, in which the UE device
transmits both sensing and communication (i.e. pilot or data)
signals [3]], [4], [20]], see Figure In general, there are P
objects that reflect the sensing signals.

In this paper, we assume unitary constant envelope signaling,
that is the communication symbol x is uniformly distributed
over the complex unit circle, z = e'? where ¢ is a random
variable with support [—7, 4+7]. Furthermore, we will denote
the transmitted sensing symbol by 7, where both = and 7 are
scalars.

As proposed by e.g. [20], [14] and [42], the transmitter node
can use proper precoding to spatially separate the communi-
cation and sensing symbols and avoid or minimize the effect
that the communication signal has on the sensing process. The
combined transmitted symbol then becomes (see e.g. [42] for
a combined transmitted symbol model):

W + Wgn e CNe, (1)

where w and w, denote the CVt* precoding vectors for the
communication and sensing symbols respectively, and the
scalars « and 7 denote the transmitted communication symbol
and sensing symbol respectively and V; denotes the number
of transmit antennas.

The received pilot and data signals at the BS then become:
¥p =A(6) D_H, (ws" + w.n)
N,.xpPxP Px1
+ay/P, H(ws* +wn)+n, € CV", and
vi =A(0)DH; (wz + w,n)

+ a/PiH (wz 4+ wen) +ng € CVr, )

respectively, where the diagonal sensing matrix, which collects
the sensing path loss «,; (which includes the radar cross
section of the object), and the sensing power P, for each

Table II
SYSTEM PARAMETERS
l Notation Meaning
N, Number of receive antennas at BS
Pp, Py, Ps; Pror = | Transmit power of pilot, data and

max(Pp, Pg) + Ps

sensing signals respectively, and
their total sum.

P

Number of objects (targets).

pecCt

Sensing signals from the P objects
(referred to as sources in [18, Chap-
ter 12].

0p € [—7/2,7/2]

Angle of arrival of object p, p =
1...P

Dc CPXP

Diagonal sensing matrix.

. s T
a(ep) A |:“.6112w3€sm(9p).“1| c
CNr

Steering vector associated with
Op, j = 0..N, — 1, where
¢ denotes the antenna spacing per
wavelength ratio.

0:[91,...,0p]T

Vector of AoA-s from the P objects.

AG) £ [3(91) . a(ep)] € | Steering matrix [|18].
CNT X P
s; s Transmitted uplink pilot symbol and

its complex conjugate.

z=e® |z|=1;¢¢€ [=m, +m7]

Transmitted unitary normalized up-
link data symbol.

H ¢ CNrxNt; where vec(H) ~
CN (0, Cov(vec(H)))

Communication channel matrix be-
tween the UE equipped with Ny
transmit antennas and the BS
equipped with N, receive antennas.

w e CNe

Transmit precoder at the UE.

h £ Hw € CNr; h ~ CN(0,C)

Complex (effective) channel be-
tween UE-BS.

« Path loss between the UE and the
BS.
Qs Aggregate path loss between (1) the

UE and the object and (2) the object
and the BS, including the (complex)
radar cross section (RCS) of the
object.

np, ng € CNr

Additive white Gaussian noise
(AWGN) at the receiver when
receiving the pilot and data signals.

C c ¢NrxNr Stationary covariance matrix of the
effective (block-fading) communi-
cation channel.

Yp;¥d € CcNr Received uplink pilot and data sig-
nals at the BS.

o? Variance of the AWGN.

Qe chxr Covariance matrix of the P-

dimensional sensing signal in the
stochastic model.

1(4,0); 1(4,0)

Fisher information matrix in the de-
terministic/stochastic model.

Z(u7 V7 ¢7 9); Z~(u7v7 ¢7 0)

Loglikelihood function in the deter-
ministic/stochastic model.

object, is defined as:
Qs 1V Ps

D4 :

0

c ]RPXP7 (3)

Qs PV Ps

A (0) € CN-*F ig the steering matrix, and s is the uplink




pilot symbol (see also Table [l). Furthermore, H; is the P X
N, transmitter-objects channel matrix, whose p*" row contains
the V; dimensional channel between the transmitter and the
pth object and H is the N, x N, dimensional communication
channel matrix between the transmitter (UE) and the BS, and
o, P, and P; denote the communication path loss, pilot and
data transmit powers respectively.

In this paper, similarly to [20], [[14]] and [42], we assume
that NV; > P, that is the number of transmit antennas must be
greater than the number of objects that we intend to sense and
that the transmitter has perfect CSI so that it can apply proper
precoding such that w is in the null-space of H; (meaning that
the transmitter zero-forces the communication symbol away
from the objects):

H;w =0, and Hw, =~ 0. @)

Indeed, when such transmit precoding is employed, substi-
tuting @) into (), we have:
* N,
Vp = A(O)D(Htwsn) + « Pd(st ) +n, €C",

A
ép =h

ya=A () D(Hyw,n) + ay/Py(Hwz) +ng € C, (5)

where p 2 H;w,n € C7 is the sensing signal, and h 2 Hw €
CN- is the effective communication channel. The parameters
characterizing this system are summarized in Table As
discussed in [18]], given the above definition of the sensing
signal p, the sensing signal can be advantageously modelled
as a zero-mean complex normal random variable if H; contains
complex normal distributed elements. However, p can also be
modeled as a deterministic signal under the assumption that a
good estimate of H; is available at the receiver.

Note that this signal model is an extension of the radar signal
models used in [3]], [S], [14], [18]] by explicitly distinguishing
the received pilot and data signals (y, and yq). We will
assume that the UE is equipped with multiple transmit antennas
that enable it to divide its total transmit power between the
communication (i.e. pilot and data) signals and the sensing
signal, such that their sum Pror = max(P,, Py) + Ps remains
under a power budget dictated by physical limitations and
regulatory constraints on the uplink of cellular systems [43].

III. CRAMER-RAO BOUND IN THE DETERMINISTIC MODEL

To proceed, notice that in a SU-MIMO system, the pilot
symbol can be set, without loss of generality, to s = 1. Also,
recall that the transmitted symbol is of the form of z = ¢'?.
It will be convenient to rewrite (©) as:

yp = A (0) Dp + ay/P,h +n,, (6)
yi = A (0) Dp + ay/Pshe'® + ny. (7

Recalling the system model and Table in the previous
section, notice that in these expressions y,, yq are observed
random variables, h, n,, ng are non-observed random vari-
ables, a, \/P,, /Py, D, p, C and o2 are known parameters,
and A(-) is a known function. In practice, the serving BS
maintains an estimate of the large scale parameters (path loss)
and channel covariance matrices for mobility (handover), and

quality of service (QoS) management [44], [45], link failure
prediction [46] and power control [47] purposes based on mea-
surement reports on reference signals (RSRP) delivered by the
UE. Based on such measurement reports, the BS continuously
can maintain an estimate of the channel covariance matrix
with sophisticated techniques [48]], [49], [50], [51], [52], [53]-
Furthermore, in practice, the BS continuously estimates the
thermal noise variance as well as the total received interference
power, which are often expressed in the form of reference
signal received quality (RSRQ), based on UE measurement
reports and measurements at the BS [54], [55].

We intend to estimate {¢,0} based on y,, yq In the
deterministic model [18, Chapter 12], for a given value of
{¢,0}, y, and y, are complex normally distributed random
vectors with expected value:

Yo )l1,01| = A (6) Dp ®
Yd A()Dp)’
where A (6) Dp = Zf; a(0;) as,iv/Psp;. Using the above
notation, we can first state a theorem, that will be useful for

proving a proposition regarding the Fisher information matrix
(FIM) in the deterministic model.

Let the scalar-matrix function ¥(¢) be defined as follows:

ot () s () we) oo

B (aQPpC + 0’1y, QQQ/PdeCeM’) ©)

OZQw/PdeCeM) adeC + 02INT

u(@) =)

That is,
<y”> ~ CN (11(0), ®(g)). (10)
Yd
Theorem 1. For W—1(¢), the following holds:
1 _ Fi(C)  Fa(Cle7i®
where ) 2p
. o+ a“gu
]:1(“) - 0_2 (0_2 +O{2(Pp +Pd)u)7
—a?, /Py Pau
fQ(u) - 0_2 (0_2 +()42(Pp I Pd)u)’
2 2
Falu) = o+ a Pyu

o2 (0% 1 a2(F, + Pa)u)’

and the matrix function F(C) of Hermitian matrix C is defined
based on the spectral decomposition of C. If C = UAUH s
the spectral decomposition of C, where A = diag(\;) then
F(C) =UF(A)UH = Udiag(F(\;)) U,

The proof of Theorem [I]is in Appendix [A]

While Theorem [I] applies generally to any covariance matrix
C, a case of interest is when C is diagonal or proportional to
the identity matrix. Lemma [I] below states when these special
cases occur.



Lemma 1. If H follows a complex multivariate normal dis-
tribution such that the covariance of the i’th and j’th rows of
H s

E[(H;,)"H,,] = CiY) e ¢V,

then C is diagonal if the structure of C(;I’j ) is as follows:
cl =0 for i#j = C=diag(\), (12)

where the \;-s were introduced in Theorem [I} Additionally, if
C( ) has the following structure:

i 0
Ch]) = {C(l,l)
H

is proportional to the identity matrix with

ifi#

13
otherwise (13)

then C = cly,
HC 11)

Proof. Note that the (4, j) element of C, denoted by C;;, is
obtained as:
C;; = E[(h);(h)}] = E[(Hw);(Hw)]]

= wlE[(H;,)"H, Jw = w/CPw,  (14)

from which both parts of the Lemma follow. O

Now we are in the position of stating the following propo-
sition about the FIM when using the deterministic model.

For¢,7 =1,..., P, the elements of the FIM are defined as
2

0
I(¢, 9)171 = _Ew log f)’p7yd (u,v),

82

I(¢, 0)1,i+1 =1(, 91)i+1,1 = —Em log fyp,yd(lhv)a
82

I(¢70)Z 1,7+1 =-—E—r lng P> (u,v),
Tt 00;00; Y

o2 _ & S
Wherem—a—ﬁforZ—j.

Proposition 1. The elements of the FIM are as follows:

L(¢.0)11 = <(§;\P1 <¢>) ‘I’(¢)) : (15)
I(¢,0)1,i+1 =1(¢,0)i+1,1 =0, (16)
1(6,0)i11,511 = 2Re [( 2u0)) w0 (2 uio)|.
(i)

where W“( ) is defined in @9). Calculating the FIM, and
hence the CRB has time complexity O(N24).

The proof of Proposition [1]is in Appendix Note that since
Proposition [I] derives the classical CRB, ¢ is assumed to be a
deterministic unknown parameter. Hence, the CRB holds for
any signaling where the data symbol lies on the unit circle,
such as the PSK signaling. The following corollaries will be
useful to obtain numerical results without extensive simulation
experiments.

Corollary 1. Consider the example of P = 1 (i.e. the receiver
estimates the AoA from a single object), N, = 2 and C = cL.
In this simple example, — using the notation oy = o1 — the

diagonal elements of the FIM become:
4¢P, Py
I = L
(¢a91)11 C(Pp+Pd)06202+0'4
I(¢,01)22 =

81202 Pyai? cos® (01) (¢(Pp+Pa)a®+20° —2c¢/ P, Pac® cos())
c(Pp + Py)a20? + o4 ’
(18)
where ¢ denotes the antenna spacing per wavelength ratio (see
Table [TI).

It is interesting to note that the I(¢,6;)11 element is not a
function of either 6; or ¢, while I(¢,0;)2o is a function of
both. In particular, as intuitively expected, I(¢, 01 )22 becomes
zero when the AoA of the single object, 6;, becomes g On the
other hand, from the point of view of estimating 61, I(¢, 61)22
is maximal in ¢, when ¢ = 7 and cos(¢) = —1. In contrast, the
Fisher information is minimal, when ¢ = 0 and cos(¢) = 1.
The terms ay/P,h and a/Pyhe” appear as noise in (6) and
respectively when estimating 6, . Hence, it is intuitive that
the Fisher information with respect to 67 is maximal when the
pilot and data signals in (6) and have a perfect negative
correlation.

As (I8) suggests, I(¢,61)20 may benefit from a priori
available information on the AoA. This is illustrated by the
following example.

and

Corollary 2. Consider the example defined in Corollary
assume that P, = Py, and that the AoA estimator at the BS
has the a priori information that 0y is uniformly distributed
in the interval [—%, %], and ¢ is uniformly distributed over
[—7, 7|. Then, the lao element of the a posteriori FIM is
8027 (7 + 2) Psa(cPra? + o?) 19
2cPa20? + o4 ’ (19
=P, =Py

I =

where we used the notation P,

(19) is obtained from @ as

w/4
ey [ 2
=—7 0r=—m/4

When the total power budget is not fully utilized (Ps; < Pror—
P) in then increasing P and keeping P; fix, increases
Iy,. When the total power budget is utilized, i.e. P; =
Pror — Py, the derivative of (I9) with respect to P; is negative
for 0 < P; < Pror which indicates that Iy, is maximized at
P; = 0 (i.e. the total power is devoted to sensing), which is
align with intuition.

I(¢, 01)20d61do.

IV. CRAMER-RAO BOUND IN THE STOCHASTIC MODEL

According to the discussion in [18, Chapter 12], the stochas-
tic model assumes that both the noise and the source wave-
forms are zero-mean Gaussian. In this stochastic case, in ad-
dition to the known parameters discussed for the deterministic
model in the previous section, the covariance matrix of the
source waveform is assumed to be known, and here it is
denoted as 2 € CP*F . That is:

p~CN(0,Q). (20)

It is reasonable to assume that the BS knows the distribution of
the source waveform. This is because the BS is in full control



of configuring the pilot (reference) signals, the UE transmit
power and other transmission parameters used by the UE [56,
Chapter 5].

The received pilot and data signals remain the same as in the
deterministic model discussed in the previous section, given in
(6) and (7). For the joint distribution of y, and y,, we now

have:
y ~
(yz) ~CN (0,9(,0)).,

(4,002 E (”’) (“) (6,0}
Ya Ya

To determine W (¢, 8), notice that:
- A(6)D
oonone (125 ()

H)D

A(O)D

B A(6)D
~wor (Ao 2 (A
/P, PiCe™+M(8)

( a?P,C+02Iy, +M(0) o2

21

where

2/P,P;Ce?+M(0) o?P,;C + oIy, +M(6)
(22)
where M(0) = A(O)DOQD?AH (). When © =
Diag(ws,...,wp), then M(6) = Zil w;a? ; Psa(6;)a(6;)"

is a dyadic decomposition of M(8).

The following proposition defines the elements of the FIM
for the stochastic model.

Proposition 2. For i,j = 1,..., P, the elements of the FIM
1(¢, 0) associated with the deterministic unknown parameters
{¢,0} become as follows:

2

1(¢,0)11 = —— logdet (¢, 0)

@¢2
32
o (#0.055970.0). @
L(¢,0)1,i41 =1($,0)i41,1 = (24)

2

0]
0p00;

2
g det ¥(0,0) + 1 (9(6.0) ;0 571(6.0) )

2

0
00,00,
2 <

tr <\P(¢, 0) 56,07 ¥

Calculating the FIM, and hence the CRB, has time complex-
ity O(N24).

L(¢,0)i41,j41 = log det ¥ (¢, 0)

(o, 0)) .29

The proof of Proposition [2] is in Appendix [C} Similarly to
Proposition [T} Proposition [2]applies to any signaling, where the
data symbol lies on the unit circle, such as the PSK signaling.

The following corollary will be useful in the numerical
section.

Corollary 3. Consider the example of P = 1 (i.e. single
object)) N, = 2, C = cl, Q = 1. Under the assumption
P, = P; the i(¢,01)11 and the i(d), 01)ao elements of the
FIM are as follows:

L(¢,01)11 = (26)
4o P?

(202¢P; + 02) (202¢P103 + 40 Psa2 (cPru(¢) + 02) 4 05)?

ot (20420[:’1 + 02)2 + 60> Psa2 (2a20P1 + 02) (cP1U(¢)+02)

+2P%a) <4cP1v(¢) (cPrv(¢)+0°(cos(¢)+3))
a4<cos(2¢>5))] ,
1(¢,61)22 = (27

327217 cos® (61) Plos (cPro(¢) + 02)2
02 (2a2cPy + 02) (2a2cP10? + 4P,a2 (cPiv(9) + 02) + 1)’

= P, = Py, and v(¢) = o®(1 — cos(¢)).

Corollary [3| allows a similar qualitative analysis as Corollary
E} When the total power budget is utilized, i.e. Ps = Pror— P,
then the derivative of (Z6) with respect to P; is positive for
0 < P, < Pror, which indicates that I(¢, 6;); is maximized
at P, = Pror; and the derivative of (27) with respect to P,
is negative for 0 < P; < Pror, from which i(qﬁ, 01)22 is
maximized at P, = 0.

The relative simplicity of i(qb, 61)22 compared to i(¢, 01)11
in Corollary [3] is due to the following property.

Corollary 4. det 'i12(¢>,61) is independent of 01 when P =1
and consequently 68? logdet ¥(¢,0,) =0
1

where P;

We prove Corollary [] in Appendix

As we will see in the next section — where we derive the
derivatives of the loglikelihood functions — unbiased estimators
that attain the CRB cannot be found either in the deterministic
or in the stochastic model. Therefore, we seek alternative esti-
mators, such as the maximum likelihood and MMSE estimators
of ¢ and 6.

V. DETERMINING THE MAXIMUM LIKELIHOOD CHANNEL
AND SYMBOL ESTIMATORS

In this section we are interested in formulating the maxi-
mum likelihood estimators (MLEs) for the deterministic and
stochastic models. The logarithm of the respective likelihood
functions are available in and respectively.

A. Maximum Likelihood Estimation of the Deterministic Model

To compute the maximum likelihood estimator, we need
to find the proper solution of the set of equations
B%Z(u,v,qb, 0) =0, 5-Z(u,v,$,0)=0,fori=1,...,P,
where (see (51)):



Figure 2.  An example of the likelihood function as a function of ¢ and 6
in the deterministic case, which illustrates why it is difficult to find its global

H
((;‘) —u <0>> v (¢) ((3) —u <o>>
(28)

is the ¢ and 6;-dependent term of the loglikelihood function.
For the derivative with respect to ¢ we have:

%Z(u,wqﬁ, 0)=
2 Re [(v — A (8) Dp) F5(C)e"**7/? (u — A (6) Dp)
(29)

where F(C) is defined in Theorem[I] For the derivative with
respect to 6;, utilizing that ¥ 1 is Hermitian and does not
depend on 6;, we have:

d
%Z(u7 v, ¢7 9)

9 ke [(639#(0))%1 (0) <<j> u(@)] .

(30)

L

Z(u7 v? ¢’ 0)

Due to (29) and (30) the derivative of the loglikelihood
functions with respect to ¢ and 6; is a non-linear function
of ¢ and 6;. Therefore, an unbiased estimator that attains the
CRB for ¢ or 6; cannot be found Chapter 3.4].

As the likelihood is a non-linear function of ¢ and 6,
it may exhibit several local extreme values. Figure [2] plots
Z(u,v,¢,0) from 28) (the likelihood function apart from a
constant) as a function of 6; and ¢ for a simple example with
P=1and N, =2.

This motivates the use of the maximum likelihood estimators
derived in this section and the MMSE estimators derived in the
sequel.

B. Maximum Likelihood Estimation in the Stochastic Model

Similarly to the deterministic case, to compute the maximum
likelihood estimator in the stochastic case, we need to find the

proper solution of the set of equations 6%2 (u,v,0,0) =0

and (%Z(u,v,q&,@) =0fori=1,...,P, where

H
(“) $1(¢,0) (“) . 6D

and its derivative according to ¢ and 6; can be computed
similarly:

H
%Z(u,v,gw) = (‘:) 1 (¢,0) (‘:) , (32
H
(u? v7 ()ZS? 9) = <u>
A"

1 (¢,0) (“) . (3)
v
where ¥ (¢, 0) is defined in (22).

The derivatives of the loglikelihood functions with respect
to ¢ and 6; in (32) and (33) are non-linear functions of ¢ and
0;. As a consequence, an unbiased estimator of the stochastic
model, that attains the CRB for ¢ or 6; cannot be found.

Z(u7 v? ()b’ 0)
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0

99

0
00;

Z

90;

C. Brute Force Search for Maximum Likelihood

While symbolically finding the ML estimate of ¢ and 6; is
hard, one can use a brute force grid search algorithm to find
the maximum of Z(u,v,¢,0), as given by Algorithm 1 for
P=1

Algorithm 1 Brute Force Grid Search to Maximize
Z(u’ V7 ¢7 0)
Input

: Function Z(u,v, ¢,0), observed u and v, search
parameters [fmin, Omax)s [Pmin, Pmax)» No. Ng
20,0
¢ max_value < —oc0
6: — emin

¢> «— (bmin

Output
Initialize

1 for i<+ 01t Ng—1do

3

4
5

6

7
8
9

10

for j<0to Ny—1do
0 < Omin +1- Ay
¢ 4 Pmin +J - A(b
current_value <+ Z(u, v, ¢,0)
if current_value > max_value then
max_value < current_value
0: — 0
$ o
else
end if
end for
end for
return é,é

This algorithm finds the ML estimates of ¢ and 6; in ranges
[Amin; Pmax] and [Omin, Omax), respectively, with precision A
and Ay, respectively. The time complexity of the algorithm
is O(N2*NyNy). A similar algorithm with the same time
complexity can be used to find the ML estimates in the
stochastic model by replacing Z with Z.



VI. DETERMINING THE MMSE CHANNEL AND SYMBOL
ESTIMATORS

A. MMSE Channel and Symbol Estimation in the Determin-
istic Model

Recall that the MMSE channel estimator — which we will
denote as Hisac to emphasize that the channel estimator
takes into account the effect of the sensing signal — aims to
Ipinimize the mean squared error (MSE) between the estimate
h = Hisacy, and the channel h, where [16], [58]:

Hisac 2arg min B{|Hy, — h||%}. (34)
For Hisac and the associated channel estimate fl, we can state
the following.

Proposition 3. In the deterministic model, the MMSE channel
estimator and the associated MMSE channel estimate are
expressed as vec(Hisac) = T~ 'b, where

T !'=M'®I, (35)
b = ay/P,vec(C). (36)

Furthermore, the estimated channel when using the MMSE
receiver is expressed as:

hisac = a/P,C(M )"y,
where M 2 621y + o?P,C + A(8) Dpp” D?A (9).

(37

The proof of Proposition [3] is in Appendix [E]

The MMSE symbol estimator that utilizes an MMSE chan-
nel estimation has been derived in several papers, see for exam-
ple, [59], [16]. Similarly to the derivation of the ISAC-aware
channel estimator, the ISAC-aware receiver can be derived by
considering the sensing signal as additional Gaussian noise at
the communication receiver:

Gisac = an/Pyhil - (a2Pd (EISACB{SIAC + Q)

+A () Dpp" DAY (6) + 0%y, ) . (38)
where the Q regularization matrix is the covariance matrix of
the conditional distribution of h [59], [58]:

(h/h) ~ CN'(h, Q). (39)

Note that as it was proven in [58|], regularizing the MMSE
receiver with the D and Q matrices as shown in (38) minimizes
the expectation of the squared symbol error in the presence of
channel estimation errors. Thus, the intuition behind the ISAC-
aware receiver in is that since the sensing signal appears
as noise at the communication receiver, the regularization must
include the sensing signal accordingly.

B. MMSE Channel and Symbol Estimation in the Stochastic
Model

The analysis of the stochastic model follows the same
pattern as the one of the deterministic model and here we
only summarize the main results.

Table III
SETTING OF THE SYSTEM PARAMETERS
l Parameter Value
N, 4

Covariance matrix of the effective
channel h = Hw.

Total power budget P,+Ps = 250
mW; Py + Ps = 250 mW.

P 1 (single object)

C =cly,, withc=1

Pp7 Pdv Ps

peCr p=1and p ~ CN (0,£), where
Q =1 (scalar).

Op Angle of arrival of object p, p =
1...P

s s=1

z x = €%, where ¢ € [, 7]

a, Qs 60 dB ("low path loss, (PL)") or 80

dB ("high path loss, (PL)")

The estimated channel when using the MMSE receiver is
expressed as:

hisac = a/P,C(M )"y,
where M 2 %Iy, + o?P,C + A(6;) DQRD?A (6,). The
ISAC-aware receiver is:
Gisac = ay/Pyhid s - (O¢2Pd (hisachfiac + Q)

(40)

-1
+ A (6,) DDA AT (6,) + JQINT) . (4D

C. Summary

Section [V] has derived analytical formulas for the first
derivatives of the likelihood functions in the deterministic and
stochastic models, which form the basis of finding the maxi-
mum likelihood estimations of the AoA and the transmitted
communication symbol (6; and ¢) for each observation of
(¥p,¥a). While the maximum likelihood estimation of ¢; and
¢ is appealing, maximizing the likelihood function is difficult
in practice, and therefore in this section we have noted that
a viable alternative is to use MMSE estimation for both the
communication channel h and the transmitted symbol x, while
employing the well-known MUSIC algorithm for estimating
f,. To this end, we have established Proposition that,
together with @]}, defines the ISAC-aware MMSE receiver,
which can be used as an alternative to maximum likelihood
estimation.

VII. NUMERICAL RESULTS

Recall that Cases 1-2 refer to the deterministic model,
in which the source signal is predefined and known by the
receiver, while in Cases 3-4 the sensing waveform is zero-
mean Gaussian. Cases 1 and 3 concern the case without a priori
information about the AoA, while in Cases 2 and 4 some a
priori information about the AoA is available at the receiver,
and we are interested in establishing the BCRB.

To gain some basic insights, in this section, we consider the
uplink of a SU-MIMO ISAC system that consists of a single
UE, a serving BS equipped with N, = 4 receive antennas
and a single passive object (i.e. P = 1). The UE transmits



Table IV
SUMMARY OF FIGURES IN THE NUMERICAL SECTION

l Figure Description and Take-Away
FigureEI Comparing the CRBs in the deter-
ministic and stochastic models.
Figure H Variances of the ¢ and 67 estimates

— using maximum likelihood esti-
mation — in the deterministic and
stochastic models. The figure also
shows the associated deterministic
model CRBs for comparison.
CRBs for ¢ and 01 in the deter-
ministic model as functions of ¢.

Figure

Figure @ CRB for 01 in the deterministic and
stochastic models at low and high
path loss values as functions of 6.
Figure@ CRBs for ¢ and 6; in the de-

terministic and stochastic models
as functions of the communication
power (i.e. P, = Py)

CRB for él in the stochastic model
as a function of the communica-
tion power (i.e. P, = P4) when
the a priori information of 6; is
available (i.e. Case 4) that it is
uniformly distributed in the inter-
val {0, i] ;ag > 1. The figure
examines two cases: a; = 1 and
Ay — 00.

CRB for 6, in the stochastic model
as a function of the sensing power
Ps when a certain power budget is
allocated to the total communica-
tion power (ie. P, + Py = 100
mW).

Pilot and data power trade-off in
Case 3 in terms of the CRB for 64
when the pilot and data power are
set equally/unequally under a fixed
communication power budget.

Figure

Figure H

Figure

CDF of the squared communica-
tion symbol estimation error under
different communication power set-
tings.

CDF of the AoA estimation er-
ror under different communication
power (and thereby sensing power)
settings.

Figure

Figure

a pilot symbol s and subsequently a data symbol z = ¢'¢
over the effective communication channel h, which yields the
received pilot and data signals as described by (6) and (7).
Recall that in this example we assume that there is a single slot
used for transmitting the pilot symbol and a single subsequent
slot for transmitting the data symbol according to the snapshot
model assumption (discussed in [18]). Note that all angles are
measured in radian, and the units are indicated in the figures,
except for the unit-less quantities such as radian or probability.

In line with the assumption on dividing the total available
power Pror discussed in Section [lIL the total power budget of
the UE is divided between the communication power (P, in
the pilot slot and Py in the data slot) and the sensing power
P, where we set the total power budget to 250 mW. The main
parameters of this system are summarized in Table [Tl C =

10

Log1,(CRB)

-6 ‘ 100 150 200
P1 [mW]
Figure 3. Comparing the CRBs for qAS and 6, in the deterministic (Case 1)

and stochastic (Case 3) models. As pi, that is the trangmit power level used
for both pi}ot and data symbols increases, the CRB for ¢ decreases, while the
CRB for 67 increases. Notice that the CRBs in the deterministic model are
somewhat lower due to the fact that the applied sensing signal is deterministic.

Logyo(Variances) and Log;,(CRB)

150 200

P1 [mW]
Figure 4. Comparing the variances of & and 6 in the deterministic (Case 1)
and stochastic (Case 3) models and relating them to the CRB (obtained with the
deterministic model). The figure shows the empirically obtained variances for
both ¢ and 6; (as indicated with the dashed ellipsoids) when using maximum
likelihood estimation as well as the respective CRBs. Note that the variances
obtained in the deterministic sensing model (p = 1) are lower for all P;
(communication power) values than when using the stochastic (Gaussian)
sensing model.

cIy, means that the rows of H are assumed to be independent
with identical covariance matrices. It is important to note that
the CRB results presented in this section are obtained using
the closed form expressions in Propositions [T| and 2} while
the variances of the estimated parameters ¢ and 6; (shown
only in Figure [) are obtained by Monte Carlo simulations.
For convenience, the figures in this section show the 10-base
logarithm of the CRBs and variances.

Figure [3| shows the CRBs as a function of P; £ P, = P,
when using the deterministic and stochastic sensing signal
models. As P; increases, the sensing power decreases, which
explains why the CRB for 6, increases, while the CRB for g{)
decreases. These opposing trends are due to the intrinsic trade-
off in the power domain between sensing and communications.
Also, as expected, both CRBs are lower when using the
deterministic model due to the fact that when the sensing signal
is stochastic, it increases the variance of the received pilot and
data signals.



Log:o(CRB)

150 200

100
P1[mW]

Figure 5. CRB trade-off in the deterministic model (Case 1) when the path
loss between the UE and the BS is high (80 dB) and low (60 dB), denoted as
“High PL” and “Low PL”, respectively. Both estimates are sensitive to both
the power setting (i.e. the value of P;) and the path loss.

Figure |4| shows the variance of ¢ and 6, as a function
of P, P, P, in the deterministic and stochastic
models, that is for the cases when the sensing signal p is
deterministic and when it is a random signal drawn from a
Gaussian distribution according to the parameter setting in
Table [ITl} . For comparison, this figure also plots the respective
(deterministic) CRBs. The variances are obtained by Monte
Carlo simulations using the ML estimation method to obtain
the gZ; and 91 estimates based on the received signal y, and
yq. Notice that when maximizing the loglikelihood function
in (;AS and él, the receiver (i.e. the serving BS) does not need
to estimate h and in this sense the ML is blind.

Figure [5 focuses on Case 1 (deterministic model without
a priori information on the parameters) and shows the CRBs
for ¢? and él as a function of the communication power P;
for the high and low path loss (o« = 80 dB and o = 60 dB,
respectively). Similarly to the trends observed in Figure Bl the
CRB for ¢ decreases, while the CRB for 6, increases. Low
path loss between the UE and the serving BS facilitates higher
quality estimates characterized by much lower CRBs for both
symbol and AoA estimation due to the higher SNR from the
perspectives of both communication and sensing.

Figure |§| shows the CRBs for #; and g% as a function of
the actual value (ground truth) of ¢ in Case 1. Note as we
discussed in conjunction with Proposition |1} the CRB for d;
does not depend on ¢, while the phase of the transmitted
symbol (¢) affects heavily the CRB for 6. This is because
when ¢ = 0 (i.e. x = 1), the communication signal represents
the highest interference in the observation at the BS and makes
the angle estimation problematic. Notice in the figure that the
CRB at this value of ¢ is the same in the low and high path
loss scenarios. This observation may be relevant in a future
work aiming to design not only the sensing signal, but also to
design "sensing-friendly” communication signals.

Figure |7| shows the CRB for él in Case 1 and Case 3
(deterministic and stochastic model respectively), as a function
of 0, (recall that the CRB for QAS is not a function of 6;). The
CRB is low when 6; = 0 or when 67 = +7 and high when

11

-2/ CRB @ HighPL|
o -3 CRB ) HighPL |
o | | | |
S} : ! ‘ 1 :
D _4)-- RB- O -LowPL . 3 |
S | C;RB¢ 5 RB &) Low PL | |

R o

3 2 23

Figure 6. CRBs for 6; and  as the function of ¢ in Case 1. Interestingly, the
CRB for ¢ is not a function of ¢, whereas the CRB for 61 is quite sensitive
to the phase of the transmitted symbol. This result indicates that the AoA
estimation is most problematic (high CRB) when ¢ = 0, i.e. x = 1. (The
value of 1 is assumed to be the ground truth 6; = %.)

a0

Log1o(CRB)

,

1
64

Figure 7. CRB for él as a function of 07 in the deterministic and stochastic

models (Case 1 and Case 3). When 601 :i:g, the quality of the AoA

estimation is poor (high CBR), because the time difference of arrival and phase
difference at the different antenna elements is less than when, e.g. ;7 = 0.

0 ==+%.

The éRB is low when the AoA of the impinging signals
is #; = 0 (i.e. arriving from the boresight direction), because
in this case the change in the phase difference at the antenna
elements of the antenna array due to a small movement of
the reflecting object is the largest over all possible values of
f,. This can be seen by considering that the steering vector
depends on the sine of ¢, whose rate of change is greatest at
6, =0.

Figure [§] compares Case 2 and Case 4 when a priori
knowledge about the distribution of the AoA is available, and
examines how this a priori knowledge affects the BCRB. This
figure assumes that 6 is uniformly distributed in the interval
[0, i} which is applicable in cases, where the sensed passive
objects are restricted to be in a certain angular domain. As
a, increases along the abscissa, the support of the AoA gets
smaller in the interval [0, 57|, which lowers the BCRB. Notice
that the BCRB is lower in the deterministic model (Case 2),
and that this difference does not get smaller as the support of
the AoA decreases (i.e. as a, increases).

Figure [0] shows the BCRB in Case 4 (i.e. stochastic model)
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aX
Figure 8. The impact of a priori knowledge about the AoA distribution in

Case 2 (deterministic model) and Case 4 (stochastic model). As a, increases
along the abscissa, the support of the 01 gets smaller in the interval [0, 57—,
which lowers the BCRB in both cases.
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Figure 9. BCRB for 01 as az goes to oo in the stochastic model (Case
4). In this figure, az = 1 corresponds to the a priori information that 6; is
uniformly distributed in the interval [0, |, whereas increasing a, narrows

)
down the support of 81 to t[O, %] The BCRB decreases due to narrowing
down the possible values of 6. -

as a function of P, when a priori information is available about
0;. The a priori information about 6, is represented by the
information that #; is uniformly distributed over the closed

interval [O, ﬁ} when a, = 1 and a, — co. More specifically,
the BCRB plotted in this figure is defined as:

- 1 2ax g
o2 £ 22 |

T =—7 J0;=0

/2

I(¢,01)22 dopdf;. (42)
As Figure |§| shows, the BCRB decreases as the interval within
which 6; lies decreases (as a, tends to infinity), although the
CRB remains finite. This fact can also be seen by evaluating
the integral in (@2) (not shown here).

Figure [I0]illustrates the pilot and data transmit power trade-
off in Case 3 (stochastic model). This figure shows the CRB
for 6 as a function of the sensing power P, assuming a fixed
communication power budget P, + FP; = 100 mW. As the
sensing power increases, the CRB for él decreases. The CRB
is quite insensitive to how the communication power budget is
divided between the transmit power level of the pilot (F,) and
data (Py) signals. Note that two curves corresponding to how

2 T T T T
Pllot/Data Power Trade-off (Case 3)
Comm power budget =100 mW

P,=20mW, P, =80 mW |

-4 P,=80mW, Py= 20 mW | 3 3 S
-6 | | | | I I |
0 20 40 60 80 100 120 140
Ps[mW]
Figure 10. Pilot and data transmit power trade-off in Case 3 (stochastic

sensing signal) illustrated by the CRB for 6, as a function of the sensing
power Ps assuming a fixed communication power P, + Py = 100 mW. As
the sensing power increases, the CRB for 91 decreases. The CRB is quite
insensitive to how the communication power budget is divided between the
transmit power level of the pilot (P,) and data (Py) signals, which explains
why the two curves (P, = 20 mW and P, = 80 mW) overlap.
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Figure 11. The distribution of the squared communication symbol error in
the cases of using the naive and the ISAC-aware MMSE receivers and a
stochatastic sensing signal when the communication power is set to P; to
50 mW and 200 mW. As the communication power increases, the symbol
estimation error decreases, and the gap between the naive and ISAC-aware
receivers vanishes.

the communication budget is divided between the pilot and
data power overlap. We observe a similar behavior in Case 1
(deterministic model, not shown here).

Finally, we study the impact of power allocation on the sym-
bol and AoA estimation performance when using the proposed
ISAC-aware communication receiver and the naive (legacy)
MMSE receiver. Recall that the naive receiver is derived under
the assumption that perfect channel state information at the
receiver (CSIR) is available, and uses the estimated channel h
as if it was the actual channel h [16], [60]:

Gaive = CY\/FdﬁH : (CY2Pdflle + O‘QINT)i

For ease of illustration, we again set the pilot and data power
levels equally (denoted by P, & P, = P,) in Figures |l 1| and
[12] and assume that P; + P, = 250 mW. Figure [T1]| shows
the distribution of the squared error of communication symbol
estimation (i.e. |z —2|?). When the pilot and data power levels
are low P; = 50 mW, (and even when P; = 200 mW),

(43)
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Figure 12. The distribution of the AoA estimation error as the function of
the power level that is allocated to communication, P;. Recall that the sensing
power increases, since we assume a fix total communication and sensing power
budget (in this case 250 mW). As P decreases, the sensing power increases
and the distribution of the AoA estimation concentrates around zero with a
lower variance than when the sensing power is low.

the squared symbol error depends critically on employing
the ISAC-aware communication receiver. For example, when
P = 50 mW, in 80% of the cases the squared symbol error
is less than 0.42 when using the ISAC-aware receiver, while
it is less than 0.68 when using the naive receiver. However,
when P; is set to 200 mW, the difference between the naive
and ISAC-aware receivers becomes negligible.

As expected, Figure[I2]shows an opposite trend for the AoA-
estimation error, which further illustrates the inherent trade-off
between the communication and sensing performance. When
Py is low, the sensing power can be set to higher values,
which significantly improves the AoA estimation quality. This
is clearly visible in the cumulative distribution function (CDF)
of the AoA estimation error, where the CDF has a much
narrower spread around zero when P; = 10 mW than when
P =240 mW.

VIII. CONCLUSIONS

In this paper, we argued that both the deterministic and
the stochastic models provide meaningful CRBs for symbol
and AoA estimation in ISAC systems. However, the depen-
dencies of the CRBs in the two models are different. In the
deterministic model, the CRB for the symbol phase (¢) is
not a function of the symbol phase and the angle, while the
CRB for the AoA is a function of both the symbol phase
and the AoA. In contrast, in the stochastic model, the CRB
on the symbol phase is a function of the phase (but not
of the AoA), while the CRB for the AoA is a function of
both. We have also shown that a priori information on the
distribution of the symbol phase and the AoA enables to derive
the Bayesian CRB, which in turn helps to lower the CRB. ML
estimation is challenging in terms of finding the maximum of
the likelihood functions and does not achieve the CRB either in
the deterministic or in the stochastic models. These results can
serve as basic considerations when designing pilot and sensing
signals for ISAC systems. Our future work includes extending
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these models to cases, in which the wireless channels undergo
channel aging.

APPENDIX A
PROOF OF THEOREMI]
Proof. According to (9)

q,<¢,):< )

where K;(C) = a?P,C+0%1y,, K2(C) £ a?,/P,P;C and
K4(C) £ o?P;C + o%Iy,. We note that C, K;(C), K5(C)
and K,(C) are Hermitian and commute.

For the inverse of W(¢), utilizing that e'?e~? = 1, we have:

1o [ Ki(©) KE(C)e¥
v <¢)_(K2(C)eﬂ¢ K4(C) >, (45)

£ (Ki(C) - Ko OK;  (CKF(0)) .
—K(C)KE (C)R4(C),

K,(C)
KQ(C)GW'

KQ(C)GiM}

44
K,4(C) @

(K1(0) - Kf (K (O)Ka(C)

A

K,(C) £

Utilizing the commutativity of the matrices, we have
K1(C) 2 (Ki(C) - K (C)K; ' (C)K»(C))

1
(O[QPPC+0'2INT7044Pppd02(O[QPdC+UQINT)71> .

That is, K1 is such that

. 1
K1 u) =
() a?Pyu+o?—

o2 +a?Pyu
ot + a202(P, + Py)u’

(,Y4 Pp Pdu2 -
a?Pyuto?

The rest of the proof comes similarly from K (C) and K4(C).
O

APPENDIX B
PROOF OF PROPOSITIONIT]
Using ei?e~1% = 1, for the determinant of ¥ () we have:
det W(¢) = det K, (C)
x det (K4(C) — K2(C)K; H(OKE (C))  (46)

That is, det ¥(¢) is independent of ¢.
For %111_1 ¢), utilizing Theorem |1} we have:

d 0 K (C)e i¢+7/2)
L 1<¢) = i(p+m/2) 2 ’
0¢ Kz(C)e 0
(47
The derivative of a; (6) with respect to 6 is
%aj (9) — %eiﬁﬂ-jesin(e) — 1'127Tj£ COS(9)€ﬁ27rj€sin(9) (48)
for j € {0,..., N, — 1} and
0 ) 30, A0)Dp) _ [a' (6:) a5V P
90 57-A(0) Dp a' (0;) as,iVPpi )’
(49)

. T
where a’ (0;) = [...1'127ijcos(&i)eﬂ”]“‘“(@i)...} .



The joint probability density function of (y,,ya) is

H
fypya (u,v) = m "eXp | — <<:> 2 (9)>

o))

Noting that det ¥(¢) is neither a function of ¢ nor 6 (see
([@6) above) , we define d = det ¥(¢), and for the logarithm
of the density function we write

logfy, y.(u,v) = —log (7r2Nrd>

. ((j) —uw))H\rl (©) <<‘V‘> —u(9)> 1)

To determine the elements of the FIM, we need the second
order partial derivatives of the logarithm of the density function
with respect to 6; and ¢.

For the first-order derivative, we have:

[e) u, Vv " u
dlog fy, y.(u,v) _ (8(;“(0)) T (¢) ((v) —u(0)>

00;
" 9
+ ((j) - u(9)> o) (50 ).

(52)

(50)

The second-order derivatives can be written as:

0% log Jypya(@,v)
02

H 82
(R ()
(53)
9?10 fy, (1) ,yat) (0, V) _
Db B
_(29 0 " 0\11*1 v 0
(50®) sov@((2)-ne
H
([2) o) 2o (o)
=2Re [(8?%“(0)) %‘I’_l(@ ((3 —n(0) ],
(54)

and

9210g fy, (1),ya(r) (W, V)
00,00,

2 H u
(s ®) ¥ @ <<v> —u(9)>

—2Re [(;&u(e))}[\l’l(@ ((.fejuw))] . (59)

=2 Re
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Next, to get the FIM, we substitute (y,, y4) into (u,v), and
take the expected value. Notice that since

(yp ) — ()
Ya

any term that is a linear function of this expression has an
expected value of 0. Finally, noticing that

E[z" Az] = E [tr(z" Az)] = E {tr(AzzH” = tr(ACov(z))

E =0, (56)

for any zero mean random vector z and non-random matrix
A, and substituting

2= ((“) u(9)> , (58)
v
and
A= > ¢! 59
=92 (9), (59)

into (57), the first part of the proposition follows. Regarding
the time complexity of calculating the FIM, note that the the
operations in the calculation are:

o Inversion of a matrix of dimension 2N,. X 2N,;

o Multiplication of two matrices of dimensions 2/NV,. X 2N,;

o Partial derivation of a matrix of dimension 2N, x 2N,;

o Multiplication of a matrix of dimensions 2N, x 2N, and
a vector of dimension 2N,..

The highest time complexity steps are the matrix multiplication
and inversion steps, for which many O(N?2) algorithms exist,
e.g. [61].

APPENDIX C
PROOF OF PROPOSITION

The logarithm of the density function in the stochastic case

becomes:

log fy, ya(0,v) = (60)

H
—log (HNT) ~log det ¥ (g, 0) — <:> T1(4,0) (3) .

The derivatives of the first term of the likelihood function in
(60) are zero. The second order partial derivatives of the third

term of (60) with respect to ¢ is:
82 = _1 u
8752‘11 (¢,0) (v) .

8 [u " =1 u u "
() oo (1))
(61

The other second order derivative (i.e. with respect to 6; and
6;) are obtained similarly. To obtain the elements of the FIM,

we need to take the expectations of the second order partial
derivatives of (60). Using the identity in (57), the FIM as stated
in the proposition follows. The time complexity is the same as
in Proposition [I]



APPENDIX D
PROOF OF COROLLARY [4]

Proof. Notice that due to (TI), when P=1 (single object), we
have:
det ¥(,0) =

det ¥(0)- [1+Q (fl(m(a)) + Fo(m(9))e

+ Fa(m(0))e + Fi(m(6)))

where ) and m(0)
m(0) we have

= DHA(O)HCA(H)D are scalars. For

m(9) = DEA ()P CA(H)D
N, N, N,

_ a§,1Ps Z Ci + Cijeix%ré(i—j) sin(0) ,
i=1 i=1 j=1,j#i

which implies that when C is diagonal, that is C;; = 0 for
i # j, det ¥(¢, 0) is not a function of 6. O

APPENDIX E
PROOF OF PROPOSITIONE
Proof. We first derive the MMSE channel estimator Higac.
Using that Hy, = vec(Hy,) (v} @ I)vec(H), for
E{|[Hy, — h||%} we have:

E{||Hy, — h|[%}

= E{vec )" (y] @ )" (y] @ I)vec(H)} + E{h"h}

— B{vee(H)" (y7 @ 1)"h} — BE{h¥ (yT @ Dvec(H)}},
which is a quadratic optimization problem for z = vec(H),
that is of the form z” Tz — z#b — bz + constant, where
the optimal solution is zp, = vec(Hjsac). The solution of the
quadratic optimization problem is z,p; = T~ 'b, where:

T H( T « T
T =E{(y, ®D)"(y, ®D)} =E{y;y, } ®1 )
=(0’In, +a’P,C+A(0) Dpp”DYAY(6)) 1 = M1,
b =E{(y, ®I)"h} = E{y; ® h} = ay/P,vec(C),

and

T'!'=M'oL
The next step is to compute usac.
Hisacyp, = (yg ® I)vec(Hisac)
= Qi /Pp(yg DM ® I)vec(C)
QA /Pp(ygl\_/l_1 ® I)vec(C)
ay/P,c(M YTy,
which is identical with (37).

hisac
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