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Abstract—Previous works in array processing have proposed
two types of snapshot models for the angle of arrival (AoA)
estimation problem in multi-antenna systems. The deterministic
model assumes that the source waveforms are non-random,
while the random sensor noise is white Gaussian with a known
covariance matrix. The stochastic model assumes that both the
waveforms and the noise are zero-mean Gaussian. Interestingly,
the performance of these two models have rarely been com-
pared in integrated sensing and communication (ISAC) systems.
Therefore, in this paper, we consider the uplink of a bistatic
ISAC system that uses unitary constant envelope signaling and
pilot-based channel estimation while transmitting a sensing signal
simultaneously with the communication signals. The base station
uses both the pilot and data signals to estimate the angle of
a passive source and the transmitted data symbol by an active
(connected) user equipment device. For this system, we derive the
classical Cramér-Rao bound for unbiased estimators of the AoA
and the transmitted symbol, along with the Bayesian Cramér-
Rao bound, which bounds the error of all estimators. We also
derive the ISAC-aware minimum mean squared error receiver for
both the deterministic and stochastic models. We study the trade-
off between sensing and communication under the deterministic
and stochastic waveform assumptions. Specifically, we show that
the fundamental trade-off between sensing and communication
power allocations is expressed differently in the deterministic
and stochastic models and argue that the results serve as basic
considerations when designing pilot and sensing signals for ISAC
systems.

Index terms— angle of arrival estimation, Cramér-Rao
bound, integrated sensing and communication.

I. INTRODUCTION

The emerging sixth generation (6G) of mobile networks is
expected to be a multi-functional network that integrates com-
munications, localisation, sensing, computation and security to
offer a wide range of services in a spectral efficient fashion
[1]–[3]. Integrated sensing and communication (ISAC) has
recently emerged as one of the key 6G enabling technolo-
gies, which extends the capabilities of traditional localisation
schemes by the ability of detecting, tracking and estimating
the parameters of both active (connected) user equipment (UE)
devices and passive objects in the environment [4]–[6]. In fact,
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recently, several research projects have demonstrated that 5G
pilot signals, designed for synchronisation and channel state
information (CSI) acquisition – such as the synchronisation
signal block (SSB) and demodulation reference signal (DMRS)
of 5G New Radio systems – can be used as sensing signals in
integrated passive radar and communication systems [7], [8].

Recognizing the advantages of reusing pilot and communi-
cation signals as illuminators of opportunity in passive radars
[9], recent works have studied the fundamental trade-offs
between communication and sensing in terms of the achiev-
able spectral and energy efficiency, detection probability and
accuracy of parameter estimation of target objects [5], [10]–
[12]. In particular, establishing Cramér-Rao Bounds (CRBs)
for parameter estimation has provided valuable insights in
some of the inherent trade-offs in ISAC systems operating
as either monostatic, bistatic or multistatic radars [10], [13],
[14]. Specifically, when the signals of UE devices are used for
sensing purposes (as illustrated in Figure 1), there is a trade-off
not only between allocating transmit power to pilot and data
symbols – which has been studied for long [15], [16], albeit not
in ISAC systems – but also between the energy dedicated for
CSI acquisition, and maintaining appropriate levels of signal-
to-noise ratio (SNR) for both communications and sensing [8],
[12], [17].

Several papers have proposed mechanisms whereby the total
available power at an ISAC transmitter can be either used
jointly for sensing and communications or split between gen-
erating the sensing and communication signals [10], [19]–[23].
Such a power split can be achieved in the frequency domain
[10], [19] or in the spatial domain using multiple antennas [4],
[20]–[23]. Specifically, in analog beamforming architectures,
the multibeam technique to generate suitable communication
and sensing beams was proposed in, for example, [14], [20],
[21]. When hybrid and fully digital architectures are available,
suitable precoding techniques for generating ISAC signals was
studied in [4], [22]–[24]. When such techniques are employed
at a UE device, the UE can allocate a certain portion of
its transmit power resources to generating a sensing signal,
while using the remaining power to transmit suitable uplink
pilot (reference) signals and information-carrying data signals
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Figure 1. A simple bistatic ISAC system consisting of a multi-antenna
user equipment (UE) that transmits a pilot and a unitary constant envelope
data signal in two subsequent time instances, a passive object (referred to as
the source of the sensing signal, see [18, Chapter 12], and a multiantenna
base station equipped with Nr receive antennas. We assume that the UE
utilizes multi-antenna transmission to transmit the pilot/data symbols and
simultaneously the sensing symbols, as proposed in, for example, [4].

(Figure 1).
Previous works in array processing have proposed two types

of snapshot models of the angle of arrival (AoA) estimation
problem in multi-antenna systems. The deterministic model
assumes that the source (sensing) waveforms are nonrandom,
while the stochastic model assumes that both the waveforms
and the noise are zero-mean Gaussian, as discussed in details
in [18, Chapter 12], and illustrated in Figure 1. It is interesting
to note that the rigorous analysis, including establishing CRBs
for deterministic (also called "conditional") and stochastic (also
called "unconditional") waveforms dates back to the 90’s, see
[25], [26], and briefly discussed in [18, Chapter 12], while
more recent works on sensing with random signals include
[27], [28].

It is important to distinguish these two models, since
they result in different AoA CRBs, and different maximum
likelihood (ML) direction finding techniques [26], [29]. As
discussed also in [18], the stochastic model is applicable
for cases of Gaussian waveforms and a great number of
snapshots, while the deterministic model is more suitable in
scenarios with unknown statistics of the source waveforms and
small sample size, where it is natural to treat the waveforms
as unknown deterministic variables. While both models are
insightful, and have been widely used for both establishing
CRBs and developing practical AoA estimation methods –
including multiple signal classification (MUSIC) or estimation
of signal parameters via rotational invariance (ESPRIT)-based
algorithms – the performance of these two models have not
been compared in bistatic ISAC systems, where both the AoA
and the transmitted communication symbol must be estimated
and the transmit power resources must be split between pilot
signaling, data transmission and sensing. The most important
related works are summarized in Table I.

In this paper, we argue that – using a high level of ab-
straction, as in [18, Chapter 12] and assuming a single radar
target, as illustrated in Figure 1 – studying and deriving CRBs

for estimating the AoA and the transmitted communication
symbol in the uplink of a simple ISAC system are conceptually
insightful and practically useful. Since the classical CRB
provides a bound for unbiased estimators only, it has limited
use when studying e.g minimum mean squared error (MMSE)
estimators, which may be biased. For this reason we also derive
the Bayesian Cramér-Rao Bound (BCRB), which bounds the
error of all estimators [33]. In particular, we assume unitary
constant envelope signaling – that is the data symbols are zero-
mean non-correlated unitary normalized symbols, as in e.g.
[34], [35], [36], [37] – for communication and aim to derive
and compare the sensing and communication CRBs in the
following four cases, which capture the aspects of the sensing
waveform being deterministic or stochastic and whether the
bound is the classical CRB or the BCRB:

• Case 1 (CRB) and Case 2 (BCRB): In these cases,
we use the deterministic waveform assumption, which
is applicable for cases, in which the source signal is
predefined and known by the receiver [18].

• Case 3 (CRB) and Case 4 (BCRB): In these cases,
the sensing waveform is a zero-mean complex Gaussian
random variable, which is a suitable model for a priori
unknown sensing signals with known second-order statis-
tics.

Arguably, these CRBs remain valid for any M -ary phase-
shift keying (PSK) signaling, where the possible values of
the ϕ are selected from a predetermined set. In practice, the
estimation error of ϕ incurs symbol errors, which depend on
the signal constellation used in the system, see for example see
for example [38], [39], and more recently [40], [41], However,
the connection between the CRBs established in this paper and
the symbol error is out of the scope of this paper.

The scenario, in which we study the above four cases differ
from that studied in [12] to establish some fundamental trade-
offs of ISAC systems in the following aspects:

• Reference [12] considers the scenario in which the com-
munication and sensing receivers are separate, and there-
fore, there is no interference between the communication
and sensing signals.

• Additionally, reference [12] assumes that the sensing
receiver knows the transmitted communications symbol,
while the ISAC receiver studied in this paper estimates
the transmitted symbol and the AoA from a passive object
simultaneously.

• Our paper uses a separate communication and sensing
symbol, which will be later denoted by p and x respec-
tively.

For these cases, we derive CRBs for both the transmitted
communication symbol and the AoA. Note that under the
unitary constant-envelope communication assumption, estimat-
ing the symbol is equivalent to estimating the phase of the
complex symbol (whose magnitude is assumed to be 1) [35],
[36], [37]. Interestingly, in all four cases, closed forms of the
associated CRBs can be derived. As the symbolic expressions
for the CRBs and the numerical examples illustrate, various
engineering insights can be derived. One of the important
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Table I
OVERVIEW OF RELATED LITERATURE

Reference Main
scope/contribution

Addressed ISAC
trade-offs

Are CRB or
Bayesian CRB

(BCRB) derived?

Deterministic or
stochastic sensing

signal

Key performance
indicators

Comment

Chiriyath
et al.,
[10]

Bounds on the perf.
of joint radar and

comm. co-existence

Multiple access rate
region vs. Fisher
information when

dividing the total BW
and power

CRB for
time-delay

estimation, data
rate and estimation

rate bounds

Stochastic sensing
signal

Achievable rate
region, Fisher
information,

estimation rate

AoA is out of scope
due to single-antenna
model.

Liu et al.,
[19]

Adaptive OFDM
integrated waveform

Trade-off between
data inf. rate and

mutual information
for radar target

identification and
classificiation

No Stochastic sensing
signal

SNR, data rate,
mutual

information

Transmit power and
waveform are adap-
tive, AoA is out of
scope.

Liu et al.,
[4]

Joint radar and
communication
(comprehensive)

design, Integrating
radar sensing in
MIMO UL/DL
communication

systems

UL/DL Spectral
efficiency vs.

parameter (e.g.
delay/Doppler)

estimation

No Stochastic sensig
signal

SNR, data rate,
spectral efficiency,

parameter
estimation MSE

Pilot/data/sensing
trade-off in bi-
static sensing is not
modelled.

Huang et
al., [30]

Multiple ISAC
transmitters

coordinated by a
central controller

Communication SNR
vs. CRB for target
location estimation

CRB for location
estimation is used
as a constraint in

various opt.
problems

Stochastic sensing
signal

CRB for location
estimation, SNR

for
communication,

total transmit
power

AoA and pilot model-
ing are out of scope.

Behdad
et al.,
[31]

Comm. and
multistatic sensing in
a cloud radio access

network

Detection probability
vs. used power via

power allocation for
ISAC using a

maximum a posteriori
ratio test detector

No Stochastic sensing
signal

Detection
probability, total

power
consumption

AoA and CRB deriva-
tions are out of scope.

Liu et al.,
[32]

Several performance
trade-offs and

theoretical limits,
signal processing

aspects and relation
of ISAC to overall
6G network design

Various trade-offs at
the PHY layer and

cross-layers

CRB for delay
estimation is

discussed/derived

Deterministic and
stochastic sensing

signals are
discussed (not
systematically

compared)

SNR, parameter
estimation,
detection

probability, data
rate, etc.

The three-way
trade-off between
pilot/data/sensing
power and comparing
CRB/BCRB are out
of scope.

Baig et
al., [14]

Bistatic BS-to-BS
ISAC system, SNR

and CRB are derived

Communication rate
vs. AoA estimation
performance in the

time and power
domains

Classical CRB for
AoA estimation is

derived

Stochastic sensing
signal

Data rate, AoA
estimation error

Pilot signals are not
modelled. Simulation
study: No analytical
derivations of perfor-
mance metrics.

Xu et al.,
[23]

Cellular
network-based ISAC,
where several cells
are coordinated in a

coordinated
multipoint fashion to
minimize the beam
pattern mismatch

error.

SINR achieved for
communication vs.

reliability of detection
under power budget

constraint

No Stochastic sensing
signal

Achieved quality
of service for

communication
users and target
sensing/detection

AoA and CRB cal-
culations are out of
scope.

Xiong et
al., [12]

Fundamental
trade-offs in

point-to-point ISAC
systems under

Gaussian channels

Achievable
communication rate
vs. CRB for sensing

CRBs for various
estimated

parameters based
on sensing

Both stochastic
and deterministic

sensing signals are
considered

Achievable data
rate, CRB for

various sensing
parameters

Pilot/data signals are
not modelled. ISAC-
aware MIMO receiver
is out of scope.

Present
paper

CRB and BCRB for
both the deterministic

and the stochastic
sensing models

CRB for symbol
estimation vs CRB
for AoA estimation

CRB and BCRB
with varying

degree of available
prior information

Deterministic and
stochastic sensing

signals

CRBs and
variances of

estimates

CRB, BCRB and esti-
mate variances are in-
vestigated as the func-
tion of the allocated
power levels to sens-
ing vs. communica-
tion
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insights is that the inherent ISAC trade-off is much more artic-
ulated in the random waveform case, while the deterministic
waveform allows for an almost independent allocation of the
sensing and communication resources, since the impact of the
communication and sensing signals on each other is much less
in the deterministic model than when using random waveforms
for sensing.

The paper is structured as follows. The next section de-
scribes the system and signal models. Next, Section III and
Section IV derive CRBs for the deterministic and stochas-
tic models respectively. Section V develops the maximum
likelihood symbol and AoA estimators, while Section VI
describes the MMSE channel and symbol estimators. Section
VII discusses numerical results, and Section VIII summarizes
the most important insights, draws conclusions and proposes
open research questions.

II. SYSTEM MODEL

We consider a single-user multiple input multiple output
(SU-MIMO) bistatic ISAC system, in which the UE device
transmits both sensing and communication (i.e. pilot or data)
signals [3], [4], [20], see Figure 1. In general, there are P
objects that reflect the sensing signals.

In this paper, we assume unitary constant envelope signaling,
that is the communication symbol x is uniformly distributed
over the complex unit circle, x = e𝕚ϕ, where ϕ is a random
variable with support [−π,+π]. Furthermore, we will denote
the transmitted sensing symbol by η, where both x and η are
scalars.

As proposed by e.g. [20], [14] and [42], the transmitter node
can use proper precoding to spatially separate the communi-
cation and sensing symbols and avoid or minimize the effect
that the communication signal has on the sensing process. The
combined transmitted symbol then becomes (see e.g. [42] for
a combined transmitted symbol model):

wx+wsη ∈ CNt , (1)

where w and ws denote the CNt precoding vectors for the
communication and sensing symbols respectively, and the
scalars x and η denote the transmitted communication symbol
and sensing symbol respectively and Nt denotes the number
of transmit antennas.

The received pilot and data signals at the BS then become:
yp =A(θ)︸ ︷︷ ︸

Nr×P

D︸︷︷︸
P×P

Ht (ws∗ +wsη)︸ ︷︷ ︸
P×1

+ α
√
Pp H (ws∗ +wsη)︸ ︷︷ ︸

Nr×1

+np ∈ CNr , and

yd =A(θ)DHt (wx+wsη)

+ α
√

PdH (wx+wsη) + nd ∈ CNr , (2)

respectively, where the diagonal sensing matrix, which collects
the sensing path loss αs,i (which includes the radar cross
section of the object), and the sensing power Ps for each

Table II
SYSTEM PARAMETERS

Notation Meaning

Nr Number of receive antennas at BS
Pp, Pd, Ps; PTOT =
max(Pp, Pd) + Ps

Transmit power of pilot, data and
sensing signals respectively, and
their total sum.

P Number of objects (targets).
p ∈ CP Sensing signals from the P objects

(referred to as sources in [18, Chap-
ter 12].

θp ∈ [−π/2, π/2] Angle of arrival of object p, p =
1 . . . P

D ∈ CP×P Diagonal sensing matrix.

a (θp) ≜
[
... e𝕚2πjℓ sin(θp)...

]T
∈

CNr

Steering vector associated with
θp, j = 0...Nr − 1, where
ℓ denotes the antenna spacing per
wavelength ratio.

θ =
[
θ1, . . . , θP

]T
Vector of AoA-s from the P objects.

A (θ) ≜
[
a(θ1) . . .a(θP )

]
∈

CNr×P

Steering matrix [18].

s; s∗ Transmitted uplink pilot symbol and
its complex conjugate.

x = e𝕚ϕ; |x| = 1; ϕ ∈ [−π,+π] Transmitted unitary normalized up-
link data symbol.

H ∈ CNr×Nt ; where vec(H) ∼
CN (0,Cov(vec(H)))

Communication channel matrix be-
tween the UE equipped with Nt

transmit antennas and the BS
equipped with Nr receive antennas.

w ∈ CNt Transmit precoder at the UE.
h ≜ Hw ∈ CNr ; h ∼ CN (0,C) Complex (effective) channel be-

tween UE-BS.
α Path loss between the UE and the

BS.
αs Aggregate path loss between (1) the

UE and the object and (2) the object
and the BS, including the (complex)
radar cross section (RCS) of the
object.

np, nd ∈ CNr Additive white Gaussian noise
(AWGN) at the receiver when
receiving the pilot and data signals.

C ∈ CNr×Nr Stationary covariance matrix of the
effective (block-fading) communi-
cation channel.

yp;yd ∈ CNr Received uplink pilot and data sig-
nals at the BS.

σ2 Variance of the AWGN.
Ω ∈ CP×P Covariance matrix of the P -

dimensional sensing signal in the
stochastic model.

I (ϕ,θ) ; Ĩ (ϕ,θ) Fisher information matrix in the de-
terministic/stochastic model.

Z(u,v, ϕ,θ); Z̃(u,v, ϕ,θ) Loglikelihood function in the deter-
ministic/stochastic model.

object, is defined as:

D ≜


αs,1

√
Ps . . . 0

...
. . .

...
0 . . . αs,P

√
Ps

 ∈ RP×P , (3)

A (θ) ∈ CNr×P is the steering matrix, and s is the uplink
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pilot symbol (see also Table II). Furthermore, Ht is the P ×
Nt transmitter-objects channel matrix, whose pth row contains
the Nt dimensional channel between the transmitter and the
pth object and H is the Nr ×Nt dimensional communication
channel matrix between the transmitter (UE) and the BS, and
α, Pp and Pd denote the communication path loss, pilot and
data transmit powers respectively.

In this paper, similarly to [20], [14] and [42], we assume
that Nt > P , that is the number of transmit antennas must be
greater than the number of objects that we intend to sense and
that the transmitter has perfect CSI so that it can apply proper
precoding such that w is in the null-space of Ht (meaning that
the transmitter zero-forces the communication symbol away
from the objects):

Htw = 0, and Hws ≈ 0. (4)

Indeed, when such transmit precoding is employed, substi-
tuting (4) into (2), we have:
yp = A (θ)D

(
Htwsη︸ ︷︷ ︸

≜p

)
+ α

√
Pd

(
Hw︸︷︷︸
≜h

s∗
)
+ np ∈ CNr ,

yd = A (θ)D
(
Htwsη

)
+ α

√
Pd

(
Hwx

)
+ nd ∈ CNr , (5)

where p ≜ Htwsη ∈ CP is the sensing signal, and h ≜ Hw ∈
CNr is the effective communication channel. The parameters
characterizing this system are summarized in Table II. As
discussed in [18], given the above definition of the sensing
signal p, the sensing signal can be advantageously modelled
as a zero-mean complex normal random variable if Ht contains
complex normal distributed elements. However, p can also be
modeled as a deterministic signal under the assumption that a
good estimate of Ht is available at the receiver.

Note that this signal model is an extension of the radar signal
models used in [3], [5], [14], [18] by explicitly distinguishing
the received pilot and data signals (yp and yd). We will
assume that the UE is equipped with multiple transmit antennas
that enable it to divide its total transmit power between the
communication (i.e. pilot and data) signals and the sensing
signal, such that their sum PTOT = max(Pp, Pd) + Ps remains
under a power budget dictated by physical limitations and
regulatory constraints on the uplink of cellular systems [43].

III. CRAMÉR-RAO BOUND IN THE DETERMINISTIC MODEL

To proceed, notice that in a SU-MIMO system, the pilot
symbol can be set, without loss of generality, to s = 1. Also,
recall that the transmitted symbol is of the form of x = e𝕚ϕ.
It will be convenient to rewrite (5) as:

yp = A (θ)Dp+ α
√
Pph+ np, (6)

yd = A (θ)Dp+ α
√
Pdhe

𝕚ϕ + nd. (7)

Recalling the system model and Table II in the previous
section, notice that in these expressions yp, yd are observed
random variables, h, np, nd are non-observed random vari-
ables, α,

√
Pp,
√
Pd, D, p, C and σ2 are known parameters,

and A(·) is a known function. In practice, the serving BS
maintains an estimate of the large scale parameters (path loss)
and channel covariance matrices for mobility (handover), and

quality of service (QoS) management [44], [45], link failure
prediction [46] and power control [47] purposes based on mea-
surement reports on reference signals (RSRP) delivered by the
UE. Based on such measurement reports, the BS continuously
can maintain an estimate of the channel covariance matrix
with sophisticated techniques [48], [49], [50], [51], [52], [53].
Furthermore, in practice, the BS continuously estimates the
thermal noise variance as well as the total received interference
power, which are often expressed in the form of reference
signal received quality (RSRQ), based on UE measurement
reports and measurements at the BS [54], [55].

We intend to estimate {ϕ,θ} based on yp, yd. In the
deterministic model [18, Chapter 12], for a given value of
{ϕ,θ}, yp and yd are complex normally distributed random
vectors with expected value:

µ
(
θ
)
≜ E

[(
yp

yd

)∣∣∣∣∣{ϕ,θ}
]
=

(
A (θ)Dp

A (θ)Dp

)
, (8)

where A (θ)Dp =
∑P

i=1 a (θi)αs,i

√
Pspi. Using the above

notation, we can first state a theorem, that will be useful for
proving a proposition regarding the Fisher information matrix
(FIM) in the deterministic model.

Let the scalar-matrix function Ψ(ϕ) be defined as follows:

Ψ(ϕ) ≜ E

((yp

yd

)
− µ

(
θ
))((yp

yd

)
− µ

(
θ
))H

∣∣∣∣∣∣{ϕ,θ}


=

(
α2PpC+ σ2INr

α2
√
PpPdCe−𝕚ϕ

α2
√
PpPdCe𝕚ϕ α2PdC+ σ2INr

)
. (9)

That is, (
yp

yd

)
∼ CN

(
µ
(
θ
)
,Ψ(ϕ)

)
. (10)

Theorem 1. For Ψ−1(ϕ), the following holds:

Ψ−1(ϕ) =

(
F1(C) F2(C)e−𝕚ϕ

F2(C)e𝕚ϕ F4(C)

)
, (11)

where

F1(u) =
σ2 + α2Pdu

σ2 (σ2 + α2(Pp + Pd)u)
,

F2(u) =
−α2

√
PpPdu

σ2 (σ2 + α2(Pp + Pd)u)
,

F4(u) =
σ2 + α2Ppu

σ2 (σ2 + α2(Pp + Pd)u)
,

and the matrix function F(C) of Hermitian matrix C is defined
based on the spectral decomposition of C. If C = UΛUH is
the spectral decomposition of C, where Λ = diag(λi) then
F(C) = UF(Λ)UH = Udiag(F(λi))U

H .

The proof of Theorem 1 is in Appendix A.
While Theorem 1 applies generally to any covariance matrix

C, a case of interest is when C is diagonal or proportional to
the identity matrix. Lemma 1 below states when these special
cases occur.
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Lemma 1. If H follows a complex multivariate normal dis-
tribution such that the covariance of the i’th and j’th rows of
H is

E[(Hi⋆)
HHj⋆] = C

(i,j)
H ∈ CNt×Nt ,

then C is diagonal if the structure of C(i,j)
H is as follows:

C
(i,j)
H = 0 for i ̸= j =⇒ C = diag(λi), (12)

where the λi-s were introduced in Theorem 1. Additionally, if
C

(i,j)
H has the following structure:

C
(i,j)
H =

{
0 if i ̸= j

C
(1,1)
H otherwise

(13)

then C = cINr
is proportional to the identity matrix with

c = wHC
(1,1)
H w.

Proof. Note that the (i, j) element of C, denoted by Cij , is
obtained as:

Cij = E[(h)i(h)
∗
j ] = E[(Hw)i(Hw)∗j ]

= wHE[(Hj⋆)
HHi⋆]w = wHC

(j,i)
H w, (14)

from which both parts of the Lemma follow.

Now we are in the position of stating the following propo-
sition about the FIM when using the deterministic model.

For i, j = 1, . . . , P , the elements of the FIM are defined as

I(ϕ,θ)1,1 = −E ∂2

∂ϕ2
log fyp,yd

(u,v),

I(ϕ,θ)1,i+1 = I(ϕ, θ1)i+1,1 = −E ∂2

∂ϕ∂θi
log fyp,yd

(u,v),

I(ϕ,θ)i+1,j+1 = −E ∂2

∂θi∂θj
log fyp,yd

(u,v),

where ∂2

∂θi∂θj
= ∂2

∂θ2
i

for i = j.

Proposition 1. The elements of the FIM are as follows:

I(ϕ,θ)1,1 = tr
((

∂2

∂ϕ2
Ψ−1 (ϕ)

)
Ψ (ϕ)

)
, (15)

I(ϕ,θ)1,i+1 = I(ϕ,θ)i+1,1 = 0, (16)

I(ϕ,θ)i+1,j+1 = 2Re

[(
∂

∂θi
µ(θ)

)H

Ψ−1(ϕ)

(
∂

∂θj
µ(θ)

)]
,

(17)

where ∂
∂θi

µ (θ) is defined in (49). Calculating the FIM, and
hence the CRB has time complexity O(N2.4

r ).

The proof of Proposition 1 is in Appendix B. Note that since
Proposition 1 derives the classical CRB, ϕ is assumed to be a
deterministic unknown parameter. Hence, the CRB holds for
any signaling where the data symbol lies on the unit circle,
such as the PSK signaling. The following corollaries will be
useful to obtain numerical results without extensive simulation
experiments.

Corollary 1. Consider the example of P = 1 (i.e. the receiver
estimates the AoA from a single object), Nr = 2 and C = cI.
In this simple example, – using the notation αs = αs,1 – the

diagonal elements of the FIM become:

I(ϕ, θ1)11 =
4c2PpPdα

4

c(Pp + Pd)α2σ2 + σ4
and

I(ϕ, θ1)22 =

8π2ℓ2Psα
2
s cos

2(θ1)
(
c(Pp+Pd)α

2+2σ2−2c
√

PpPdα
2 cos(ϕ)

)
c(Pp + Pd)α2σ2 + σ4

,

(18)

where ℓ denotes the antenna spacing per wavelength ratio (see
Table II).

It is interesting to note that the I(ϕ, θ1)11 element is not a
function of either θ1 or ϕ, while I(ϕ, θ1)22 is a function of
both. In particular, as intuitively expected, I(ϕ, θ1)22 becomes
zero when the AoA of the single object, θ1, becomes π

2 . On the
other hand, from the point of view of estimating θ1, I(ϕ, θ1)22
is maximal in ϕ, when ϕ = π and cos(ϕ) = −1. In contrast, the
Fisher information is minimal, when ϕ = 0 and cos(ϕ) = 1.
The terms α

√
Pph and α

√
Pdhe

𝕚ϕ appear as noise in (6) and
(7) respectively when estimating θ1. Hence, it is intuitive that
the Fisher information with respect to θ1 is maximal when the
pilot and data signals in (6) and (7) have a perfect negative
correlation.

As (18) suggests, I(ϕ, θ1)22 may benefit from a priori
available information on the AoA. This is illustrated by the
following example.

Corollary 2. Consider the example defined in Corollary 1,
assume that Pp = Pd, and that the AoA estimator at the BS
has the a priori information that θ1 is uniformly distributed
in the interval [−π

4 ,
π
4 ], and ϕ is uniformly distributed over

[−π, π]. Then, the I22 element of the a posteriori FIM is

I22 =
8ℓ2π(π + 2)Psα

2
s(cP1α

2 + σ2)

2cP1α2σ2 + σ4
, (19)

where we used the notation P1 = Pp = Pd.

(19) is obtained from (18) as

I22 =
1

2π

∫ π

ϕ=−π

2

π

∫ π/4

θ1=−π/4

I(ϕ, θ1)22dθ1dϕ.

When the total power budget is not fully utilized (Ps < PTOT−
P1) in (19) then increasing Ps and keeping P1 fix, increases
I22. When the total power budget is utilized, i.e. Ps =
PTOT−P1, the derivative of (19) with respect to P1 is negative
for 0 < P1 < PTOT which indicates that I22 is maximized at
P1 = 0 (i.e. the total power is devoted to sensing), which is
align with intuition.

IV. CRAMÉR-RAO BOUND IN THE STOCHASTIC MODEL

According to the discussion in [18, Chapter 12], the stochas-
tic model assumes that both the noise and the source wave-
forms are zero-mean Gaussian. In this stochastic case, in ad-
dition to the known parameters discussed for the deterministic
model in the previous section, the covariance matrix of the
source waveform is assumed to be known, and here it is
denoted as Ω ∈ CP×P . That is:

p ∼ CN (0,Ω) . (20)

It is reasonable to assume that the BS knows the distribution of
the source waveform. This is because the BS is in full control
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of configuring the pilot (reference) signals, the UE transmit
power and other transmission parameters used by the UE [56,
Chapter 5].

The received pilot and data signals remain the same as in the
deterministic model discussed in the previous section, given in
(6) and (7). For the joint distribution of yp and yd, we now
have: (

yp

yd

)
∼ CN

(
0, Ψ̃(ϕ,θ)

)
, (21)

where

Ψ̃(ϕ,θ) ≜ E

(yp

yd

)(
yp

yd

)H
∣∣∣∣∣∣{ϕ,θ}

 .

To determine Ψ̃(ϕ,θ), notice that:

Ψ̃(ϕ,θ) = Ψ(ϕ) + E

(A(θ)Dp

A(θ)Dp

)(
A(θ)Dp

A(θ)Dp

)H


= Ψ(ϕ) +

(
A(θ)D

A(θ)D

)
Ω

(
A(θ)D

A(θ)D

)H

=

(
α2PpC+σ2INr

+M(θ) α2
√

PpPdCe−𝕚ϕ+M(θ)

α2
√

PpPdCe𝕚ϕ+M(θ) α2PdC+ σ2INr
+M(θ)

)
,

(22)

where M(θ) = A(θ)DΩDHAH(θ). When Ω =
Diag(ω1, . . . , ωP ), then M(θ) =

∑P
i=1 ωiα

2
s,iPsa(θi)a(θi)

H

is a dyadic decomposition of M(θ).
The following proposition defines the elements of the FIM

for the stochastic model.

Proposition 2. For i, j = 1, . . . , P , the elements of the FIM
Ĩ(ϕ,θ) associated with the deterministic unknown parameters
{ϕ,θ} become as follows:

Ĩ(ϕ,θ)1,1 =
∂2

∂ϕ2
log det Ψ̃(ϕ,θ)

+ tr
(
Ψ̃(ϕ,θ)

∂2

∂ϕ2
Ψ̃−1(ϕ,θ)

)
, (23)

Ĩ(ϕ,θ)1,i+1 = Ĩ(ϕ,θ)i+1,1 = (24)
∂2

∂ϕ∂θi
log det Ψ̃(ϕ,θ) + tr

(
Ψ̃(ϕ,θ)

∂2

∂ϕ∂θi
Ψ̃−1(ϕ,θ)

)
,

Ĩ(ϕ,θ)i+1,j+1 =
∂2

∂θi∂θj
log det Ψ̃(ϕ,θ)

+ tr
(
Ψ̃(ϕ,θ)

∂2

∂θi∂θj
Ψ̃−1(ϕ,θ)

)
. (25)

Calculating the FIM, and hence the CRB, has time complex-
ity O(N2.4

r ).

The proof of Proposition 2 is in Appendix C. Similarly to
Proposition 1, Proposition 2 applies to any signaling, where the
data symbol lies on the unit circle, such as the PSK signaling.

The following corollary will be useful in the numerical
section.

Corollary 3. Consider the example of P = 1 (i.e. single
object), Nr = 2, C = cI, Ω = 1 . Under the assumption
Pp = Pd the Ĩ(ϕ, θ1)11 and the Ĩ(ϕ, θ1)22 elements of the
FIM are as follows:

Ĩ(ϕ, θ1)11 = (26)

4α4c2P 2
1

(2α2cP1 + σ2) (2α2cP1σ3 + 4σPsα2
s (cP1v(ϕ) + σ2) + σ5)2

·

[
σ4 (2α2cP1 + σ2)2 + 6σ2Psα

2
s

(
2α2cP1 + σ2) (cP1v(ϕ)+σ2)

+2P 2
s α

4
s

(
4cP1v(ϕ)

(
cP1v(ϕ)+σ2(cos(ϕ)+3)

)
−σ4(cos(2ϕ)−5)

)]
,

Ĩ(ϕ, θ1)22 = (27)

32π2l2 cos2 (θ1)P
2
s α

4
s

(
cP1v(ϕ) + σ2

)2
σ2 (2α2cP1 + σ2) (2α2cP1σ2 + 4Psα2

s (cP1v(ϕ) + σ2) + σ4)
,

where P1 = Pp = Pd, and v(ϕ) = α2
(
1− cos(ϕ)

)
.

Corollary 3 allows a similar qualitative analysis as Corollary
2. When the total power budget is utilized, i.e. Ps = PTOT−P1,
then the derivative of (26) with respect to P1 is positive for
0 < P1 < PTOT, which indicates that Ĩ(ϕ, θ1)11 is maximized
at P1 = PTOT; and the derivative of (27) with respect to P1

is negative for 0 < P1 < PTOT, from which Ĩ(ϕ, θ1)22 is
maximized at P1 = 0.

The relative simplicity of Ĩ(ϕ, θ1)22 compared to Ĩ(ϕ, θ1)11
in Corollary 3, is due to the following property.

Corollary 4. det Ψ̃(ϕ, θ1) is independent of θ1 when P = 1

and consequently ∂2

∂θ2
1
log det Ψ̃(ϕ, θ1) = 0

We prove Corollary 4 in Appendix D.
As we will see in the next section – where we derive the

derivatives of the loglikelihood functions – unbiased estimators
that attain the CRB cannot be found either in the deterministic
or in the stochastic model. Therefore, we seek alternative esti-
mators, such as the maximum likelihood and MMSE estimators
of ϕ and θ1.

V. DETERMINING THE MAXIMUM LIKELIHOOD CHANNEL
AND SYMBOL ESTIMATORS

In this section we are interested in formulating the maxi-
mum likelihood estimators (MLEs) for the deterministic and
stochastic models. The logarithm of the respective likelihood
functions are available in (51) and (60) respectively.

A. Maximum Likelihood Estimation of the Deterministic Model

To compute the maximum likelihood estimator, we need
to find the proper solution of the set of equations
∂
∂ϕZ(u,v, ϕ,θ) = 0, ∂

∂θi
Z(u,v, ϕ,θ) = 0, for i = 1, . . . , P ,

where (see (51)):
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Figure 2. An example of the likelihood function as a function of ϕ and θ1
in the deterministic case, which illustrates why it is difficult to find its global
maximum.

Z(u,v, ϕ,θ) ≜

((
u

v

)
−µ (θ)

)H

Ψ−1 (ϕ)

((
u

v

)
−µ (θ)

)
(28)

is the ϕ and θi-dependent term of the loglikelihood function.
For the derivative with respect to ϕ we have:
∂

∂ϕ
Z(u,v, ϕ,θ) =

2 Re
[
(v −A (θ)Dp)HF2(C)e𝕚(ϕ+π/2)(u−A (θ)Dp)

]
,

(29)

where F2(C) is defined in Theorem 1. For the derivative with
respect to θi, utilizing that Ψ−1 is Hermitian and does not
depend on θi, we have:

∂

∂θi
Z(u,v, ϕ,θ)

= 2 Re

[(
− ∂

∂θi
µ (θ)

)H

Ψ−1 (ϕ)

((
u

v

)
− µ (θ)

)]
.

(30)

Due to (29) and (30) the derivative of the loglikelihood
functions with respect to ϕ and θi is a non-linear function
of ϕ and θi. Therefore, an unbiased estimator that attains the
CRB for ϕ or θi cannot be found [57, Chapter 3.4].

As the likelihood is a non-linear function of ϕ and θ1,
it may exhibit several local extreme values. Figure 2 plots
Z(u,v, ϕ,θ) from (28) (the likelihood function apart from a
constant) as a function of θ1 and ϕ for a simple example with
P = 1 and Nr = 2.

This motivates the use of the maximum likelihood estimators
derived in this section and the MMSE estimators derived in the
sequel.

B. Maximum Likelihood Estimation in the Stochastic Model

Similarly to the deterministic case, to compute the maximum
likelihood estimator in the stochastic case, we need to find the

proper solution of the set of equations ∂
∂ϕ Z̃(u,v, ϕ,θ) = 0

and ∂
∂θi

Z̃(u,v, ϕ,θ) = 0 for i = 1, . . . , P , where

Z̃(u,v, ϕ,θ) ≜

(
u

v

)H

Ψ̃−1 (ϕ,θ)

(
u

v

)
, (31)

and its derivative according to ϕ and θi can be computed
similarly:

∂

∂ϕ
Z̃(u,v, ϕ,θ) =

(
u

v

)H
∂

∂ϕ
Ψ̃−1 (ϕ,θ)

(
u

v

)
, (32)

∂

∂θi
Z̃(u,v, ϕ,θ) =

(
u

v

)H
∂

∂θi
Ψ̃−1 (ϕ,θ)

(
u

v

)
, (33)

where Ψ̃ (ϕ,θ) is defined in (22).
The derivatives of the loglikelihood functions with respect

to ϕ and θi in (32) and (33) are non-linear functions of ϕ and
θi. As a consequence, an unbiased estimator of the stochastic
model, that attains the CRB for ϕ or θi cannot be found.

C. Brute Force Search for Maximum Likelihood

While symbolically finding the ML estimate of ϕ and θi is
hard, one can use a brute force grid search algorithm to find
the maximum of Z(u,v, ϕ,θ), as given by Algorithm 1 for
P = 1.

Algorithm 1 Brute Force Grid Search to Maximize
Z(u,v, ϕ, θ)

Input : Function Z(u,v, ϕ, θ), observed u and v, search
parameters [θmin, θmax], [ϕmin, ϕmax], Nθ, Nϕ

Output : ϕ̂, θ̂
Initialize : max_value← −∞

θ̂ ← θmin

ϕ̂← ϕmin

1 for i← 0 to Nθ − 1 do
2 for j ← 0 to Nϕ − 1 do
3 θ ← θmin + i ·∆θ

ϕ← ϕmin + j ·∆ϕ

current_value← Z(u,v, ϕ, θ)
4 if current_value > max_value then
5 max_value← current_value

θ̂ ← θ
ϕ̂← ϕ

6 else
7 end if
8 end for
9 end for

10 return ϕ̂, θ̂

This algorithm finds the ML estimates of ϕ and θ1 in ranges
[ϕmin, ϕmax] and [θmin, θmax], respectively, with precision ∆ϕ

and ∆θ, respectively. The time complexity of the algorithm
is O(N2.4

r NθNϕ). A similar algorithm with the same time
complexity can be used to find the ML estimates in the
stochastic model by replacing Z with Z̃.
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VI. DETERMINING THE MMSE CHANNEL AND SYMBOL
ESTIMATORS

A. MMSE Channel and Symbol Estimation in the Determin-
istic Model

Recall that the MMSE channel estimator – which we will
denote as HISAC to emphasize that the channel estimator
takes into account the effect of the sensing signal – aims to
minimize the mean squared error (MSE) between the estimate
ĥ = HISACyp and the channel h, where [16], [58]:

HISAC ≜argmin
H
E{||Hyp − h||2F }. (34)

For HISAC and the associated channel estimate ĥ, we can state
the following.

Proposition 3. In the deterministic model, the MMSE channel
estimator and the associated MMSE channel estimate are
expressed as vec(HISAC) = T−1b, where

T−1 = M̂−1 ⊗ I, (35)

b = α
√
Ppvec(C). (36)

Furthermore, the estimated channel when using the MMSE
receiver is expressed as:

ĥISAC = α
√

PpC(M̂−1)Typ, (37)

where M̂ ≜ σ2INr + α2PpC+A(θ)DppHDHAH(θ).

The proof of Proposition 3 is in Appendix E.
The MMSE symbol estimator that utilizes an MMSE chan-

nel estimation has been derived in several papers, see for exam-
ple, [59], [16]. Similarly to the derivation of the ISAC-aware
channel estimator, the ISAC-aware receiver can be derived by
considering the sensing signal as additional Gaussian noise at
the communication receiver:

GISAC = α
√

Pd ĥ
H
ISAC ·

(
α2Pd

(
ĥISACĥ

H
ISAC +Q

)
+A (θ)DppHDHAH (θ) + σ2INr

)−1

, (38)

where the Q regularization matrix is the covariance matrix of
the conditional distribution of h [59], [58]:

(h|ĥ) ∼ CN (ĥ,Q). (39)

Note that as it was proven in [58], regularizing the MMSE
receiver with the D and Q matrices as shown in (38) minimizes
the expectation of the squared symbol error in the presence of
channel estimation errors. Thus, the intuition behind the ISAC-
aware receiver in (38) is that since the sensing signal appears
as noise at the communication receiver, the regularization must
include the sensing signal accordingly.

B. MMSE Channel and Symbol Estimation in the Stochastic
Model

The analysis of the stochastic model follows the same
pattern as the one of the deterministic model and here we
only summarize the main results.

Table III
SETTING OF THE SYSTEM PARAMETERS

Parameter Value

Nr 4
C = cINr , with c = 1 Covariance matrix of the effective

channel h = Hw.
Pp, Pd, Ps Total power budget Pp+Ps = 250

mW; Pd + Ps = 250 mW.
P 1 (single object)
p ∈ CP p = 1 and p ∼ CN (0,Ω), where

Ω = 1 (scalar).
θp Angle of arrival of object p, p =

1 . . . P

s s = 1

x x = e𝕚ϕ, where ϕ ∈ [−π, π]

α, αs 60 dB ("low path loss, (PL)") or 80
dB ("high path loss, (PL)")

The estimated channel when using the MMSE receiver is
expressed as:

ȟISAC = α
√
PpC(M̌−1)Typ, (40)

where M̌ ≜ σ2INr
+ α2PpC + A(θ1)DΩDHAH(θ1). The

ISAC-aware receiver is:

ǦISAC = α
√

Pd ȟ
H
ISAC ·

(
α2Pd

(
ȟISACȟ

H
ISAC +Q

)
+A (θ1)DΩDHAH (θ1) + σ2INr

)−1

. (41)

C. Summary

Section V has derived analytical formulas for the first
derivatives of the likelihood functions in the deterministic and
stochastic models, which form the basis of finding the maxi-
mum likelihood estimations of the AoA and the transmitted
communication symbol (θ1 and ϕ) for each observation of
(yp,yd). While the maximum likelihood estimation of θ1 and
ϕ is appealing, maximizing the likelihood function is difficult
in practice, and therefore in this section we have noted that
a viable alternative is to use MMSE estimation for both the
communication channel h and the transmitted symbol x, while
employing the well-known MUSIC algorithm for estimating
θ1. To this end, we have established Proposition 3, that,
together with (38), defines the ISAC-aware MMSE receiver,
which can be used as an alternative to maximum likelihood
estimation.

VII. NUMERICAL RESULTS

Recall that Cases 1-2 refer to the deterministic model,
in which the source signal is predefined and known by the
receiver, while in Cases 3-4 the sensing waveform is zero-
mean Gaussian. Cases 1 and 3 concern the case without a priori
information about the AoA, while in Cases 2 and 4 some a
priori information about the AoA is available at the receiver,
and we are interested in establishing the BCRB.

To gain some basic insights, in this section, we consider the
uplink of a SU-MIMO ISAC system that consists of a single
UE, a serving BS equipped with Nr = 4 receive antennas
and a single passive object (i.e. P = 1). The UE transmits
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Table IV
SUMMARY OF FIGURES IN THE NUMERICAL SECTION

Figure Description and Take-Away

Figure 3 Comparing the CRBs in the deter-
ministic and stochastic models.

Figure 4 Variances of the ϕ̂ and θ̂1 estimates
– using maximum likelihood esti-
mation – in the deterministic and
stochastic models. The figure also
shows the associated deterministic
model CRBs for comparison.

Figure 5 CRBs for ϕ̂ and θ̂1 in the deter-
ministic model as functions of ϕ.

Figure 6 CRB for θ̂1 in the deterministic and
stochastic models at low and high
path loss values as functions of θ1.

Figure 7 CRBs for ϕ̂ and θ̂1 in the de-
terministic and stochastic models
as functions of the communication
power (i.e. Pp = Pd)

Figure 8 CRB for θ̂1 in the stochastic model
as a function of the communica-
tion power (i.e. Pp = Pd) when
the a priori information of θ1 is
available (i.e. Case 4) that it is
uniformly distributed in the inter-
val

[
0, π

2ax

]
; ax ≥ 1. The figure

examines two cases: ax = 1 and
ax → ∞.

Figure 9 CRB for θ̂1 in the stochastic model
as a function of the sensing power
Ps when a certain power budget is
allocated to the total communica-
tion power (i.e. Pp + Pd = 100
mW).

Figure 10 Pilot and data power trade-off in
Case 3 in terms of the CRB for θ̂1
when the pilot and data power are
set equally/unequally under a fixed
communication power budget.

Figure 11 CDF of the squared communica-
tion symbol estimation error under
different communication power set-
tings.

Figure 12 CDF of the AoA estimation er-
ror under different communication
power (and thereby sensing power)
settings.

a pilot symbol s and subsequently a data symbol x = e𝕚ϕ

over the effective communication channel h, which yields the
received pilot and data signals as described by (6) and (7).
Recall that in this example we assume that there is a single slot
used for transmitting the pilot symbol and a single subsequent
slot for transmitting the data symbol according to the snapshot
model assumption (discussed in [18]). Note that all angles are
measured in radian, and the units are indicated in the figures,
except for the unit-less quantities such as radian or probability.

In line with the assumption on dividing the total available
power PTOT discussed in Section II, the total power budget of
the UE is divided between the communication power (Pp in
the pilot slot and Pd in the data slot) and the sensing power
Ps, where we set the total power budget to 250 mW. The main
parameters of this system are summarized in Table III. C =

CRB

Deterministic

Deterministic

Stochastic

Stochastic

CRB

Figure 3. Comparing the CRBs for ϕ̂ and θ̂1 in the deterministic (Case 1)
and stochastic (Case 3) models. As p1, that is the transmit power level used
for both pilot and data symbols increases, the CRB for ϕ̂ decreases, while the
CRB for θ̂1 increases. Notice that the CRBs in the deterministic model are
somewhat lower due to the fact that the applied sensing signal is deterministic.

CRB

Variances

CRB

Variances

Figure 4. Comparing the variances of ϕ̂ and θ̂1 in the deterministic (Case 1)
and stochastic (Case 3) models and relating them to the CRB (obtained with the
deterministic model). The figure shows the empirically obtained variances for
both ϕ̂ and θ̂1 (as indicated with the dashed ellipsoids) when using maximum
likelihood estimation as well as the respective CRBs. Note that the variances
obtained in the deterministic sensing model (p = 1) are lower for all P1

(communication power) values than when using the stochastic (Gaussian)
sensing model.

cINr means that the rows of H are assumed to be independent
with identical covariance matrices. It is important to note that
the CRB results presented in this section are obtained using
the closed form expressions in Propositions 1 and 2, while
the variances of the estimated parameters ϕ̂ and θ̂1 (shown
only in Figure 4) are obtained by Monte Carlo simulations.
For convenience, the figures in this section show the 10-base
logarithm of the CRBs and variances.

Figure 3 shows the CRBs as a function of P1 ≜ Pp = Pd

when using the deterministic and stochastic sensing signal
models. As P1 increases, the sensing power decreases, which
explains why the CRB for θ̂1 increases, while the CRB for ϕ̂
decreases. These opposing trends are due to the intrinsic trade-
off in the power domain between sensing and communications.
Also, as expected, both CRBs are lower when using the
deterministic model due to the fact that when the sensing signal
is stochastic, it increases the variance of the received pilot and
data signals.
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CRB

CRB

High PL

High PL

Low PL

Low PL

Figure 5. CRB trade-off in the deterministic model (Case 1) when the path
loss between the UE and the BS is high (80 dB) and low (60 dB), denoted as
“High PL” and “Low PL”, respectively. Both estimates are sensitive to both
the power setting (i.e. the value of P1) and the path loss.

Figure 4 shows the variance of ϕ̂ and θ̂1 as a function
of P1 ≜ Pp = Pd in the deterministic and stochastic
models, that is for the cases when the sensing signal p is
deterministic and when it is a random signal drawn from a
Gaussian distribution according to the parameter setting in
Table III. . For comparison, this figure also plots the respective
(deterministic) CRBs. The variances are obtained by Monte
Carlo simulations using the ML estimation method to obtain
the ϕ̂ and θ̂1 estimates based on the received signal yp and
yd. Notice that when maximizing the loglikelihood function
in ϕ̂ and θ̂1, the receiver (i.e. the serving BS) does not need
to estimate h and in this sense the ML is blind.

Figure 5 focuses on Case 1 (deterministic model without
a priori information on the parameters) and shows the CRBs
for ϕ̂ and θ̂1 as a function of the communication power P1

for the high and low path loss (α = 80 dB and α = 60 dB,
respectively). Similarly to the trends observed in Figure 3, the
CRB for ϕ̂ decreases, while the CRB for θ̂1 increases. Low
path loss between the UE and the serving BS facilitates higher
quality estimates characterized by much lower CRBs for both
symbol and AoA estimation due to the higher SNR from the
perspectives of both communication and sensing.

Figure 6 shows the CRBs for θ̂1 and ϕ̂ as a function of
the actual value (ground truth) of ϕ in Case 1. Note as we
discussed in conjunction with Proposition 1, the CRB for ϕ̂
does not depend on ϕ, while the phase of the transmitted
symbol (ϕ) affects heavily the CRB for θ̂1. This is because
when ϕ = 0 (i.e. x = 1), the communication signal represents
the highest interference in the observation at the BS and makes
the angle estimation problematic. Notice in the figure that the
CRB at this value of ϕ is the same in the low and high path
loss scenarios. This observation may be relevant in a future
work aiming to design not only the sensing signal, but also to
design "sensing-friendly" communication signals.

Figure 7 shows the CRB for θ̂1 in Case 1 and Case 3
(deterministic and stochastic model respectively), as a function
of θ1 (recall that the CRB for ϕ̂ is not a function of θ1). The
CRB is low when θ1 = 0 or when θ1 = ±π and high when

CRB

CRB

CRB

Low PL

High PL

High PL

Low PLCRB

Figure 6. CRBs for θ̂1 and ϕ̂ as the function of ϕ in Case 1. Interestingly, the
CRB for ϕ̂ is not a function of ϕ, whereas the CRB for θ̂1 is quite sensitive
to the phase of the transmitted symbol. This result indicates that the AoA
estimation is most problematic (high CRB) when ϕ = 0, i.e. x = 1. (The
value of θ1 is assumed to be the ground truth θ1 = π

5
.)

High PL

Low PL
Deterministic

Stochastic

Stochastic

Deterministic

Figure 7. CRB for θ̂1 as a function of θ1 in the deterministic and stochastic
models (Case 1 and Case 3). When θ1 = ±π

2
, the quality of the AoA

estimation is poor (high CBR), because the time difference of arrival and phase
difference at the different antenna elements is less than when, e.g. θ1 = 0.

θ1 = ±π
2 .

The CRB is low when the AoA of the impinging signals
is θ1 = 0 (i.e. arriving from the boresight direction), because
in this case the change in the phase difference at the antenna
elements of the antenna array due to a small movement of
the reflecting object is the largest over all possible values of
θ1. This can be seen by considering that the steering vector
depends on the sine of θ1, whose rate of change is greatest at
θ1 = 0.

Figure 8 compares Case 2 and Case 4 when a priori
knowledge about the distribution of the AoA is available, and
examines how this a priori knowledge affects the BCRB. This
figure assumes that θ1 is uniformly distributed in the interval
[0, π

2ax
], which is applicable in cases, where the sensed passive

objects are restricted to be in a certain angular domain. As
ax increases along the abscissa, the support of the AoA gets
smaller in the interval [0, π

2ax
], which lowers the BCRB. Notice

that the BCRB is lower in the deterministic model (Case 2),
and that this difference does not get smaller as the support of
the AoA decreases (i.e. as ax increases).

Figure 9 shows the BCRB in Case 4 (i.e. stochastic model)
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High PL, P1=200 mW (low sensing power)

High PL, P1=50 mW (high sensing power)

Low PL, P1=200 mW (low sensing power)

Low PL, P1=50 mW (high sensing power)

High PL, P1=50 mW (high sensing power)

High PL, P1=200 mW (low sensing power)

Det. (Case 2)

Stoch. (Case 4)

Low PL, P1=200 mW (low sensing power)

Low PL, P1=50 mW (high sensing power)
Stoch. (Case 4)

Det. (Case 2)

Figure 8. The impact of a priori knowledge about the AoA distribution in
Case 2 (deterministic model) and Case 4 (stochastic model). As ax increases
along the abscissa, the support of the θ1 gets smaller in the interval [0, π

2ax
],

which lowers the BCRB in both cases.

ax=1

axꝏ

Figure 9. BCRB for θ̂1 as ax goes to ∞ in the stochastic model (Case
4). In this figure, ax = 1 corresponds to the a priori information that θ1 is
uniformly distributed in the interval

[
0, π

2

]
, whereas increasing ax narrows

down the support of θ1 to
[
0, π

2ax

]
. The BCRB decreases due to narrowing

down the possible values of θ1.

as a function of P1 when a priori information is available about
θ̂1. The a priori information about θ̂1 is represented by the
information that θ1 is uniformly distributed over the closed
interval

[
0, π

2ax

]
when ax = 1 and ax →∞. More specifically,

the BCRB plotted in this figure is defined as:

Ĩ(ax)22 ≜
1

2π
· 2ax

π
·
∫ π

ϕ=−π

∫ π/2
ax

θ1=0

Ĩ(ϕ, θ1)22 dϕdθ1. (42)

As Figure 9 shows, the BCRB decreases as the interval within
which θ1 lies decreases (as ax tends to infinity), although the
CRB remains finite. This fact can also be seen by evaluating
the integral in (42) (not shown here).

Figure 10 illustrates the pilot and data transmit power trade-
off in Case 3 (stochastic model). This figure shows the CRB
for θ̂1 as a function of the sensing power Ps assuming a fixed
communication power budget Pp + Pd = 100 mW. As the
sensing power increases, the CRB for θ̂1 decreases. The CRB
is quite insensitive to how the communication power budget is
divided between the transmit power level of the pilot (Pp) and
data (Pd) signals. Note that two curves corresponding to how

Pilot/Data Power Trade-off (Case 3)

Comm. power budget = 100 mW

Pp =Pd = 50 mW

Pp= 20 mW, Pd = 80 mW
Pp = 80 mW, Pd = 20 mW

Figure 10. Pilot and data transmit power trade-off in Case 3 (stochastic
sensing signal) illustrated by the CRB for θ̂1 as a function of the sensing
power Ps assuming a fixed communication power Pp + Pd = 100 mW. As
the sensing power increases, the CRB for θ̂1 decreases. The CRB is quite
insensitive to how the communication power budget is divided between the
transmit power level of the pilot (Pp) and data (Pd) signals, which explains
why the two curves (Pp = 20 mW and Pp = 80 mW) overlap.

P1=50 mW
P1=200 mW

Naive

Naive

ISAC
aware

ISAC
aware

Figure 11. The distribution of the squared communication symbol error in
the cases of using the naive and the ISAC-aware MMSE receivers and a
stochatastic sensing signal when the communication power is set to P1 to
50 mW and 200 mW. As the communication power increases, the symbol
estimation error decreases, and the gap between the naive and ISAC-aware
receivers vanishes.

the communication budget is divided between the pilot and
data power overlap. We observe a similar behavior in Case 1
(deterministic model, not shown here).

Finally, we study the impact of power allocation on the sym-
bol and AoA estimation performance when using the proposed
ISAC-aware communication receiver and the naive (legacy)
MMSE receiver. Recall that the naive receiver is derived under
the assumption that perfect channel state information at the
receiver (CSIR) is available, and uses the estimated channel ĥ
as if it was the actual channel h [16], [60]:

Gnaive = α
√
Pdĥ

H ·
(
α2Pdĥĥ

H + σ2INr

)−1

. (43)

For ease of illustration, we again set the pilot and data power
levels equally (denoted by P1 ≜ Pp = Pd) in Figures 11 and
12 and assume that P1 + Ps = 250 mW. Figure 11 shows
the distribution of the squared error of communication symbol
estimation (i.e. |x− x̂|2). When the pilot and data power levels
are low P1 = 50 mW, (and even when P1 = 200 mW),

12



P1=10 mW

P1=240 mW

P1=50 mW
P1=100 mW

Figure 12. The distribution of the AoA estimation error as the function of
the power level that is allocated to communication, P1. Recall that the sensing
power increases, since we assume a fix total communication and sensing power
budget (in this case 250 mW). As P1 decreases, the sensing power increases
and the distribution of the AoA estimation concentrates around zero with a
lower variance than when the sensing power is low.

the squared symbol error depends critically on employing
the ISAC-aware communication receiver. For example, when
P1 = 50 mW, in 80% of the cases the squared symbol error
is less than 0.42 when using the ISAC-aware receiver, while
it is less than 0.68 when using the naive receiver. However,
when P1 is set to 200 mW, the difference between the naive
and ISAC-aware receivers becomes negligible.

As expected, Figure 12 shows an opposite trend for the AoA-
estimation error, which further illustrates the inherent trade-off
between the communication and sensing performance. When
P1 is low, the sensing power can be set to higher values,
which significantly improves the AoA estimation quality. This
is clearly visible in the cumulative distribution function (CDF)
of the AoA estimation error, where the CDF has a much
narrower spread around zero when P1 = 10 mW than when
P1 = 240 mW.

VIII. CONCLUSIONS

In this paper, we argued that both the deterministic and
the stochastic models provide meaningful CRBs for symbol
and AoA estimation in ISAC systems. However, the depen-
dencies of the CRBs in the two models are different. In the
deterministic model, the CRB for the symbol phase (ϕ) is
not a function of the symbol phase and the angle, while the
CRB for the AoA is a function of both the symbol phase
and the AoA. In contrast, in the stochastic model, the CRB
on the symbol phase is a function of the phase (but not
of the AoA), while the CRB for the AoA is a function of
both. We have also shown that a priori information on the
distribution of the symbol phase and the AoA enables to derive
the Bayesian CRB, which in turn helps to lower the CRB. ML
estimation is challenging in terms of finding the maximum of
the likelihood functions and does not achieve the CRB either in
the deterministic or in the stochastic models. These results can
serve as basic considerations when designing pilot and sensing
signals for ISAC systems. Our future work includes extending

these models to cases, in which the wireless channels undergo
channel aging.

APPENDIX A
PROOF OF THEOREM 1

Proof. According to (9)

Ψ(ϕ) =

(
K1(C) K2(C)e−𝕚ϕ

K2(C)e𝕚ϕ K4(C)

)
, (44)

where K1(C) ≜ α2PpC+σ2INr
, K2(C) ≜ α2

√
PpPdC and

K4(C) ≜ α2PdC+ σ2INr
. We note that C, K1(C), K2(C)

and K4(C) are Hermitian and commute.
For the inverse of Ψ(ϕ), utilizing that e𝕚ϕe−𝕚ϕ = 1, we have:

Ψ−1(ϕ) ≜

(
K̂1(C) K̂H

2 (C)e−𝕚ϕ

K̂2(C)e𝕚ϕ K̂4(C)

)
, (45)

where
K̂1(C) ≜

(
K1(C)−KH

2 (C)K−1
4 (C)K2(C)

)−1

,

K̂4(C) ≜
(
K4(C)−K2(C)K−1

1 (C)KH
2 (C)

)−1

,

K̂2(C) ≜ −K−1
1 (C)KH

2 (C)K̂4(C).

Utilizing the commutativity of the matrices, we have

K̂1(C) ≜
(
K1(C)−KH

2 (C)K−1
4 (C)K2(C)

)−1

=
(
α2PpC+σ2INr

−α4PpPdC
2
(
α2PdC+σ2INr

)−1
)−1

.

That is, K̂1 is such that

K̂1(u) =
1

α2Ppu+σ2− α4PpPdu2

α2Pdu+σ2

=
σ2 + α2Pdu

σ4 + α2σ2(Pp + Pd)u
.

The rest of the proof comes similarly from K̂2(C) and K̂4(C).

APPENDIX B
PROOF OF PROPOSITION 1

Using e𝕚ϕe−𝕚ϕ = 1, for the determinant of Ψ(ϕ) we have:
detΨ(ϕ) = detK1(C)

× det
(
K4(C)−K2(C)K−1

1 (C)KH
2 (C)

)
(46)

That is, detΨ(ϕ) is independent of ϕ.
For ∂

∂ϕΨ
−1(ϕ), utilizing Theorem 1, we have:

∂

∂ϕ
Ψ−1(ϕ) ≜

(
0 K̂H

2 (C)e−𝕚(ϕ+π/2)

K̂2(C)e𝕚(ϕ+π/2) 0

)
.

(47)

The derivative of aj (θ) with respect to θ is
∂

∂θ
aj (θ) =

∂

∂θ
e𝕚2πjℓ sin(θ) = 𝕚2πjℓ cos(θ)e𝕚2πjℓ sin(θ) (48)

for j ∈ {0, . . . , Nr − 1} and
∂

∂θi
µ(θ) =

(
∂
∂θi

A (θ)Dp
∂
∂θi

A (θ)Dp

)
=

(
a′ (θi)αs,i

√
Pspi

a′ (θi)αs,i

√
Pspi

)
,

(49)

where a′ (θi) ≜
[
... 𝕚2πjℓ cos(θi)e𝕚2πjℓ sin(θi)...

]T
.
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The joint probability density function of
(
yp,yd

)
is

fyp,yd
(u,v) =

1

π2Nr detΨ(ϕ)
· exp

−((u
v

)
− µ (θ)

)H

·Ψ−1 (ϕ)

((
u

v

)
− µ (θ)

))
. (50)

Noting that detΨ(ϕ) is neither a function of ϕ nor θ (see
(46) above) , we define d ≜ detΨ(ϕ), and for the logarithm
of the density function we write
logfyp,yd

(u,v) = − log
(
π2Nrd

)
−

((
u

v

)
− µ (θ)

)H

Ψ−1 (ϕ)

((
u

v

)
− µ (θ)

)
. (51)

To determine the elements of the FIM, we need the second
order partial derivatives of the logarithm of the density function
with respect to θi and ϕ.

For the first-order derivative, we have:
∂ log fyp,yd

(u,v)

∂θi
=

(
∂

∂θi
µ (θ)

)H

Ψ−1(ϕ)

((
u

v

)
− µ (θ)

)

+

((
u

v

)
− µ (θ)

)H

Ψ−1(ϕ)

(
∂

∂θi
µ (θ)

)
.

(52)

The second-order derivatives can be written as:

∂2 log fyp,yd
(u,v)

∂ϕ2
=

= −

((
u

v

)
− µ (θ)

)H
∂2

∂ϕ2
Ψ−1 (ϕ)

((
u

v

)
− µ (θ)

)
,

(53)

∂2 log fyp(t),yd(t)(u,v)

∂ϕ∂θi
=

=

(
∂

∂θi
µ (θ)

)H
∂

∂ϕ
Ψ−1(ϕ)

((
u

v

)
− µ (θ)

)

+

((
u

v

)
− µ (θ)

)H
∂

∂ϕ
Ψ−1(ϕ)

(
∂

∂θi
µ (θ)

)

= 2 Re

[(
∂

∂θi
µ (θ)

)H
∂

∂ϕ
Ψ−1(ϕ)

((
u

v

)
− µ (θ)

)]
,

(54)

and

∂2 log fyp(t),yd(t)(u,v)

∂θi∂θj

= 2 Re

[(
∂2

∂θi∂θj
µ (θ)

)H

Ψ−1(ϕ)

((
u

v

)
− µ (θ)

)]

− 2 Re

[(
∂

∂θi
µ (θ)

)H

Ψ−1(ϕ)

(
∂

∂θj
µ (θ)

)]
. (55)

Next, to get the FIM, we substitute (yp,yd) into (u,v), and
take the expected value. Notice that since

E

[(
yp

yd

)
− µ (θ)

]
= 0, (56)

any term that is a linear function of this expression has an
expected value of 0. Finally, noticing that
E[zHAz] = E

[
tr(zHAz)

]
= E

[
tr
(
AzzH

)]
= tr

(
ACov(z)

)
,

(57)

for any zero mean random vector z and non-random matrix
A, and substituting

z =

((
u

v

)
− µ (θ)

)
, (58)

and

A =
∂2

∂ϕ2
Ψ−1 (ϕ) , (59)

into (57), the first part of the proposition follows. Regarding
the time complexity of calculating the FIM, note that the the
operations in the calculation are:

• Inversion of a matrix of dimension 2Nr × 2Nr;
• Multiplication of two matrices of dimensions 2Nr×2Nr;
• Partial derivation of a matrix of dimension 2Nr × 2Nr;
• Multiplication of a matrix of dimensions 2Nr × 2Nr and

a vector of dimension 2Nr.

The highest time complexity steps are the matrix multiplication
and inversion steps, for which many O(N2.4

r ) algorithms exist,
e.g. [61].

APPENDIX C
PROOF OF PROPOSITION 2

The logarithm of the density function in the stochastic case
becomes:
log fyp,yd

(u,v) = (60)

− log
(
π2Nr

)
− log det Ψ̃(ϕ,θ)−

(
u

v

)H

Ψ̃−1(ϕ,θ)

(
u

v

)
.

The derivatives of the first term of the likelihood function in
(60) are zero. The second order partial derivatives of the third
term of (60) with respect to ϕ is:

∂2

∂ϕ2

(
u

v

)H

Ψ̃−1(ϕ, θ)

(
u

v

)
=

(
u

v

)H
∂2

∂ϕ2
Ψ̃−1(ϕ, θ)

(
u

v

)
.

(61)

The other second order derivative (i.e. with respect to θi and
θj) are obtained similarly. To obtain the elements of the FIM,
we need to take the expectations of the second order partial
derivatives of (60). Using the identity in (57), the FIM as stated
in the proposition follows. The time complexity is the same as
in Proposition 1.
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APPENDIX D
PROOF OF COROLLARY 4

Proof. Notice that due to (11), when P=1 (single object), we
have:

det Ψ̃(ϕ, θ) =

detΨ(ϕ) ·

(
1 + Ω

(
F1(m(θ)) + F2(m(θ))e−𝕚ϕ

+ F2(m(θ))e𝕚ϕ + F4(m(θ))
))

where Ω and m(θ) = DHA(θ)HCA(θ)D are scalars. For
m(θ) we have

m(θ) = DHA(θ)HCA(θ)D

= α2
s,1Ps

(
Nr∑
i=1

Cii +

Nr∑
i=1

Nr∑
j=1,j ̸=i

Cije
𝕚2πℓ(i−j) sin(θ)

)
,

which implies that when C is diagonal, that is Cij = 0 for
i ̸= j, det Ψ̃(ϕ, θ) is not a function of θ.

APPENDIX E
PROOF OF PROPOSITION 3

Proof. We first derive the MMSE channel estimator HISAC.
Using that Hyp = vec(Hyp) = (yT

p ⊗ I)vec(H), for
E{||Hyp − h||2F } we have:
E{||Hyp − h||2F }
= E{vec(H)H(yT

p ⊗ I)H(yT
p ⊗ I)vec(H)}+ E{hHh}

− E{vec(H)H(yT
p ⊗ I)Hh} − E{hH(yT

p ⊗ I)vec(H)}},

which is a quadratic optimization problem for z = vec(H),
that is of the form zHTz − zHb − bHz + constant, where
the optimal solution is zopt = vec(HISAC). The solution of the
quadratic optimization problem is zopt = T−1b, where:
T = E{(yT

p ⊗ I)H(yT
p ⊗ I)} = E{y∗

py
T
p } ⊗ I

=
(
σ2INr

+α2PpC+A(θ)DppHDHAH(θ)
)
⊗I = M̄⊗I,

b = E{(yT
p ⊗ I)Hh} = E{y∗

p ⊗ h} = α
√
Ppvec(C),

and
T−1 = M̄−1 ⊗ I.

The next step is to compute ĥISAC.
ĥISAC = HISACyp = (yT

p ⊗ I)vec(HISAC)

= α
√
Pp(y

T
p ⊗ I)(M̄−1 ⊗ I)vec(C)

= α
√
Pp(y

T
p M̄

−1 ⊗ I)vec(C)

= α
√
PpC(M̄−1)Typ,

which is identical with (37).
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