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Abstrat

Petri nets represent a powerful paradigm for mod-

eling parallel and distributed systems. Parallelism

and resoure ontention an easily be aptured and

time an be inluded for the analysis of system dy-

nami behavior. Most popular stohasti Petri nets

assume that all �ring times are exponentially dis-

tributed. This is found to be a severe limitation in

many irumstanes that require deterministi and

generally distributed �ring times. This has led to

a onsiderable interest in studying non-Markovian

models. In this paper we spei�ally fous on non-

Markovian Petri nets. Analytial approah through

the solution of the underlying Markov regenerative

proess is dealt with and numerial analysis teh-

niques are disussed. Several examples are pre-

sented and solved to highlight the potentiality of

the proposed approahes.

Stohasti Petri Nets, Markov regenerative pro-

esses, preemption poliies, numerial analysis.

1 Introdution

Over the past deade, stohasti and timed Petri

nets of several kinds have been proposed to over-

ome limitations on the modeling apabilities of

Petri nets (PNs). Although very powerful in ap-

turing synhronization of events and ontention for

�
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system resoures, the original paradigm was not

omplete enough to apture other elements indis-

pensable for dependability and performane mod-

eling of systems. Thus, new extensions allowing

for time and randomness abstrations beame ne-

essary. Despite the onsensus on whih elements

to add, a ertain unertainty existed on where to

aggregate the proposed extensions. From among

several alternatives, a dominant one was soon es-

tablished where the Petri nets ould have transi-

tions that one enabled would �re aording to ex-

ponential distributions with di�erent rates (EXP

transitions). This led to well known net types:

Generalized Stohasti Petri Nets (GSPNs) [1℄ and

Stohasti Reward Nets (SRNs) [2℄.

The resulting modeling framework allowed the

de�nition and solution of stohasti problems en-

joying the Markov property [3℄: the probability

of any partiular future behavior of the proess,

when its urrent state is known exatly, is not al-

tered by additional knowledge onerning its past

behavior. These Markovian stohasti Petri nets

(MSPNs) were very well aepted by the model-

ing ommunity sine a wide range of real depend-

ability and performane models fall in the lass of

Markov models. Besides the ability to apture var-

ious types of system dependenies intrinsi to the

underlying Markov models, other advantages of the

Petri net framework also ontributed to the pop-

ularity of the MSPNs. Among these reasons, we

point out the power of onisely speifying very

largeMarkovmodels, and the equal ease with whih

steady-state, transient, ummulative transient and

sensitivity measures ould be omputed. One of the

key restritions, however, is that only exponentially

distributed �ring times are aptured. This led to

the development of non-Markovian stohasti Petri

nets.
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Non-Markovian stohasti Petri nets (NMSPNs)

were then proposed to allow for the high level de-

sription of non-Markovian models. Likewise in

the original evolutive hain, several alternative ap-

proahes to extend the Markovian Petri nets were

proposed. Their distintive feature was the under-

lying analytial tehnique used to solve the non-

Markovian models. Candidate solution methods

onsidered inluded the deployment of supplemen-

tary variables [4℄, the use of phase-type expan-

sions approximations [5, 6℄, and the appliation of

Markov renewal theory [7, 8℄. Representative non-

Markovian Petri nets proposed, listed aording

to the underlying solution tehniques, are the Ex-

tended Stohasti Petri Nets (ESPNs) [9℄, the De-

terministi and Stohasti Petri Nets (DSPNs) [10℄,

the Stohasti Petri Nets with Phase-Type Dis-

tributed Transitions (ESPs) [11℄, and the Markov

Regenerative Stohasti Petri Nets (MRSPNs) [12℄.

As a onsequene of these evolutive steps, we ob-

serve that the restrition imposed on the distribu-

tion funtions regulating the �ring of timed tran-

sitions was progressively relaxed from exponential

distributions to a ombination of exponential and

deterministi distributions, then to any distribu-

tion represented by phase type approximations,

and �nally to any general distribution funtion

(GEN transitions).

However, this exibility also brought a new re-

quirement with it. If an enabled GEN transition is

disabled before �ring, a sheduling poliy is needed

to omplete the model de�nition. Consider the

generi lient/server NMSPN model in Fig. 1 for

instane. Requests from lients arrive aording to

a Poisson proess (EXP transition t

1

). Tokens in

plae P

1

represent lients already in the system. In

a single server on�guration only one of the queued

requests will be servied at a given time. The ser-

vie requirement 

g

of eah request is sampled from

a general distribution funtion G

g

(t) that oordi-

nates the �ring of the GEN transition t

2

. An age

variables a

g

assoiated with a request keeps trak

of the amount of servie atually reeived by the

request. Servie will be ompleted (i.e., transition

t

2

will �re) as soon as the age variable a

g

of the a-

tive request (the one reeiving server's attention)

reahes the value of its servie requirement 

g

. Af-

ter that, the request leaves the system and its as-

soiated age variable is destroyed.

Furthermore, suppose that the server is failure-
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Figure 1: Fault-tolerant lient/server model.

prone with onstant failure and repair rates. A

token in plae P

2

represents the ative state of the

server while a token in plae P

3

indiates server

being down (undergoing repair). Consequently, �r-

ing of the EXP transitions t

3

and t

4

orrespond

to the failure and end-of-repair events assoiated

with the server. Whenever down, the server an-

not servie new lients or omplete the servie re-

quirement of the urrent request, as shown by the

inhibitor ar from plae P

3

to transition t

2

. Clearly

a sheduling poliy is then neessary to preisely

de�ne how the server must proeed when brought

up again. In MSPNs with EXP transitions this was

not a problem beause of the memoryless property

of the exponential distributions [3℄

1

. The remain-

ing proessing time of an nterrupted request is also

represented by the EXP transition t

2

.

In the favorable ase, the server is able to om-

pletely servie the urrent request before a failure

ours (as shown in Fig. 2a). Otherwise the system

behavior depends on the amount of remaining ser-

vie at the time of the interruption, and whether

the servie already reeived by the request will be

disarded. The servie requirement 

g

may inrease

or derease as an indiret onsequene of system

events responsible by the server interruption. For

instane, the failure of the server in Fig. 1 may

render ertain ativities of the lient unneessary,

whih would then redue its servie requirement

to a lower 

g

0 value. Likewise, the age variable

a

g

related to the ative request may also be af-

feted by the server interruption sine the amount

of servie already provided to the request may be

1

If the sheduling poliy is non-work-onserving and the

servie requirement of the lient needs to be preserved then

even the EXP transition has to be dealt with like a GEN

transition.
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preserved or lost. We distinguish both situations

alling the �rst a work onserving sheme, and the

seond non-work-onserving. With these four on-

ditions we onstruted the table in Fig. 2b. Note

that, although the servie requirement is shown to

be inreasing after the interruption in the illustra-

tion in the bottom row of the table, the situation

where 

g

0 < 

g

is also possible

2

.
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Figure 2: Di�erent sheduling poliies.

Fig. 2b an be interpreted from two distint per-

spetives. From the lients' perspetive, all urves

orrespond to the same lient whose servie is mo-

mentarily interrupted between times �

2

and �

3

.

From the server's perpetive, lients requests live

only from interruption-to-interruption. There is a

single age variable assoiated with the server, and

what happens after interruptions is de�ned by the

sheduling poliy whih may be preemptive or non-

preemptive, depending on if the server swaps lients

before �nishing servie or not. Preemptive poliies

are usually based on a hierarhial organization of

requests (e.g., priority sheduling) or on an alloa-

tion of servie based on time quotas (e.g., round-

robin sheduling). In this ase, system behavior

is strongly a�eted by the preemptive poliy and

2

Naturally, 

g

0 � a

g

at the time of the interruption needs

to be always imposed.

the overall performane will depend on the strat-

egy adopted to deal with the preempted requests,

as desribed in the following:

� The work done on the request prior to inter-

ruption is disarded so that the amount of

work a

g

is lost. The server starts proessing

a new request whih has a work requirement



g

0; i.e., a new sample is drawn from the servie

time distribution of the lient. The server then

starts serving this new request from the begin-

ning (i.e., a

g

= 0), as shown in the bottom-

right sketh in Fig. 2b.

� The server returns bak to the preempted re-

quest with the original servie requirement 

g

.

No work is lost so that the age variable retains

its value a

g

prior to the interruption. The re-

quest is resumed from the point of interruption

as shown in the top-left sketh in Fig. 2b.

� The server also returns to the same request

with the original servie requirement 

g

. But

the work done prior to the interruption is lost

and the age variable a

g

is set to zero. The

request proessing starts from the beginning

as shown in the top-right sketh in Fig. 2b.

As in [13℄, the above poliies are referred to as

preemptive repeat di�erent (prd), preemptive re-

sume (prs) and preemptive repeat idential (pri),

respetively

3

. The ase shown in the bottom-left

sketh in Fig. 2b is not onsidered in the literature

as it is unrealisti. Note that in [15℄, the authors

indiated the prd and prs type poliies as enabling

and age type. The pri poliy of Petri net transitions

was introdued for the �rst time in [16℄. The prd

and prs (with phase-type distributed �ring times)

poliies are the only ones onsidered in the available

tools modeling NMSPNs [17, 11, 18, 19℄.

Note that when the sheduling is preemptive: (i)

the prs and prd poliies produe the same results

with EXP transitions, but pri is di�erent; (ii) The

prd and pri poliies have the same e�et for tran-

sitions �ring aording to a deterministi random

variable, but prs is di�erent; and (iii) otherwise,

all three poliies will produe distint results for

otherwise same NMSPNs [14℄.

3

The prd, prs and pri names were borrowed from queue-

ing theory [14℄.
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In this paper, we deal with the general lass of

non-Markovian Petri nets using examples of MR-

SPNs, whih an be analyzed by means of Markov

regenerative proesses. The remaining setions of

the paper are organized as follows. The next se-

tion introdues Markov Regenerative Petri nets and

desribes how to deal with the underlying Markov

Regenerative Proess. Setion 3 shows how to

model a failure/repair proess in a parallel ma-

hine through MRSPN. Setion 4 further extends

this model by adopting a di�erent repair faility

sheduling sheme. Preemption in a multi-tasking

environment is analyzed in Setion 5 through the

WebSPN tool; the resulting model ontains sev-

eral onurrently enabled general transitions and

di�erent memory poliies. Conlusions are �nally

presented in Setion 6.

2 Markov Regenerative Petri

Nets

MRSPNs allow transitions with zero �ring times

(immediate transitions), exponentially distributed

or generally distributed �ring times. The dynami

behavior of an MRSPN is modeled by the exeution

of the underlying net, whih is ontrolled by the po-

sition and movement of tokens. At any given time,

the state of an MRSPN is de�ned by the number

of tokens in eah of its plaes, and is represented

by a vetor alled its marking. The set of markings

reahable from a given initial marking (i.e., the ini-

tial state of the system) by means of a sequene of

transition �rings de�nes the reahability set of the

Petri net. This set together with ars joining its

markings and indiating the transition that ause

the state transitions is alled reahability graph.

Two types of markings an be distinguished in

the reahability graph. In a vanishing marking at

least one immediate transition is enabled to �re,

while in a tangible marking no immediate transi-

tions are enabled. Vanishing markings are elim-

inated before analysis of the MRSPN using ele-

mentary probability theory [12℄. The resultant

redued reahability graph is a right-ontinuous,

pieewise onstant, ontinuous-time stohasti pro-

ess fZ

t

; t � 0g, where Z

t

represents the tangible

marking of the MRSPN at time t. Choi, Kulkarni,

and Trivedi [12℄ showed that this marking proess

is a Markov Regenerative Proess (MRGP) (if the

GEN transitions are of prd type and at most one

GEN transition is enabled at a time), a member of

a powerful paradigm generally grouped under the

name Markov renewal theory [7, 8℄. Mathematial

de�nition and solution tehniques for MRGP are

summarized next.

2.1 Markov Renewal Sequene

Assume a given system we are modeling is de-

sribed by a stohasti proess Z

d

= fZ

t

; t � 0g

taking values in a ountable set �. Suppose we

are interested in a single event related with the

system (e.g., when all system omponents fail).

Additionally, assume the times between sues-

sive ourrenes of this type of event are inde-

pendent and identially distributed (i:i:d:) ran-

dom variables. Let S

0

< S

1

< S

2

< ::: be the

time instants of suessive events to our. The

sequene of non-negative i:i:d: random variables,

S

d

= fS

n

�S

n�1

;n 2 N = f0; 1; 2; :::gg is a renewal

proess [20, 21℄. Otherwise, if we do not start ob-

serving the system at the exat moment an event

has ourred (i.e., S

0

6= 0) the stohasti proess S

is a delayed renewal proess.

However, suppose instead of a single event, we

observe that ertain transitions between identi�-

able system states X

n

of a subset 
 of �, 
 � �,

also resemble the behavior just desribed, when

onsidered in isolation. Suessive times S

n

at

whih a �xed state X

n

is entered form a (possi-

bly delayed) renewal proess

4

. Additionally, when

studying the system evolution we observe that at

these partiular times the stohasti proess Z ex-

hibits the Markov property, i.e., at any given mo-

ment S

n

, n 2 N , we an forget the past history of

the proess. The future evolution of the proess de-

pends only on the urrent state at these embedded

time points. In this senario we are dealing with a

ountable olletion of renewal proesses progress-

ing simultaneously suh that suessive states vis-

ited form an embedded disrete-time Markov hain

(EMC) with state spae 
. The superposition of

all the identi�ed renewal proesses gives the points

fS

n

;n 2 Ng, known asMarkov regeneration epohs

(also alled Markov renewal moments

5

), and to-

4

We are assuming X

n

is the system state at time S

n

.

5

Note that these instants S

n

are not renewal moments
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gether with the states of the EMC de�ne a Markov

renewal sequene.

In mathematial terms, the bivariate stohasti

proess (X;S)

d

= fX

n

; S

n

;n 2 Ng is a Markov re-

newal sequene (MRS) provided that

PrfX

n+1

= j; S

n+1

� S

n

� t j X

0

; :::; X

n

;S

0

; :::; S

n

g =

PrfX

n+1

= j; S

n+1

� S

n

� t j X

n

g;

for all n 2 N , j 2 
, and t � 0. We will always

assume time-homogeneous MRS's; that is, the on-

ditional transition probabilities K

ij

(t), where

K

ij

(t)

d

= PrfX

n+1

= j; S

n+1

� S

n

� t j X

n

= ig

are independent of n for any i; j 2 
, t � 0. There-

fore, we an always write

K

ij

(t) = PrfX

1

= j; S

1

� t j X

0

= ig; 8i; j 2 
; t � 0:

The matrix of transition probabilities K(t)

d

=

[K

ij

(t)℄ is alled the kernel of the MRS.

2.2 Markov Regenerative Proesses

A stohasti proess fZ

t

; t � 0g is a Markov regen-

erative proess i� it exhibits an embedded MRS

(X,S) with the additional property that all ondi-

tional �nite distributions of fZ

S

n

+t

; t � 0g given

fZ

u

; 0 � u � S

n

; X

n

= i; i 2 
g are the same as

those of fZ

t

; t � 0g given X

0

= i. As a speial

ase, the de�nition implies that [8℄

PrfZ

S

n

+t

= j j Z

u

; 0 � u � S

n

; X

n

= ig =

PrfZ

t

= j j X

0

= ig; 8i 2 
;8j 2 �:

This means that the MRGP fZ

t

; t � 0g

does not have the Markov property in gen-

eral, but there is a sequene of embedded time

points (S

0

; S

1

; :::; S

n

; :::) suh that the states

(X

0

; X

1

; :::; X

n

; :::) respetively of the proess at

these points satisfy the Markov property. It also

implies that the future of the proess Z from t = S

n

onwards depends on the past fZ

u

; 0 � u � S

n

g

only through X

n

.

The stohasti proess between onseutive

Markov regeneration epohs, usually refered to

as desribed in renewal theory, sine the distributions of the

time interval between onseutive moments are not nees-

sarily i.i.d..

as subordinated proess, an be any ontinuous-

time disrete-state stohasti proess over the same

probability spae. Reently published examples

onsidered subordinated homogeneous CTMCs [12,

22℄, non-homogeneous CTMCs [23℄, semi-Markov

proesses (SMPs) [24℄, and MRGPs [25℄.

2.3 Solution of Problems

Let Z = fZ

t

; t � 0g be a stohasti proess with

disrete state spae � and embedded MRS (X;S) =

fX

n

; S

n

;n 2 Ng with kernel matrixK(t). For suh

a proess we an de�ne a matrix of onditional tran-

sition probabilities as:

V

ij

(t)

d

= PrfZ

t

= j j Z

0

= ig; 8i 2 
;8j 2 �; t � 0:

In many problems involving Markov renewal pro-

esses, our primary onern is �nding ways to ef-

fetively ompute V

ij

(t) sine several measures of

interest (e.g., reliability and availability) are re-

lated to the onditional transition probabilities of

the stohasti proess.

At any instant t, the onditional transition prob-

abilities V

ij

(t) of Z an be written as [7, 8℄:

V

ij

(t) = PrfZ

t

= j; S

1

> t j Z

0

= ig+

PrfZ

t

= j; S

1

� t j Z

0

= ig

= PrfZ

t

= j; S

1

> t j Z

0

= ig+

X

k2


Z

t

0

dK

ik

(u)V

kj

(t� u);

for all i 2 
, j 2 �, and t � 0. If we onstrut a

matrix E(t) = [E

ij

(t)℄ with

E

ij

(t)

d

= PrfZ

t

= j; S

1

> t j Z

0

= ig;

then the set of integral equations V

ij

(t) de�nes a

Markov renewal equation, and an be expressed in

matrix form as

V(t) = E(t) +

Z

t

0

dK(u)V(t� u); (1)

where the Lebesgue-Stieltjes integral

6

is taken term

by term.

To better distinguish the roles of matries E(t)

and K(t) in the desription of the MRGP we all

6

R

t

0

dK(u)V (t�u) =

R

t

0

k(u)V (t� u)du when K(t) pos-

sesses a density funtion k(t) =

dK(t)

dt

.

5



the matrix E(t) as the loal kernel of the MRGP,

sine it desribes the state probabilities of the sub-

ordinated proess during the interval between su-

essive Markov regeneration epohs. Sine matrix

K(t) desribes the evolution of the proess from

the Markov regeneration epoh perspetive, with-

out desribing what happens in between these mo-

ments we all it the global kernel of the MRGP.

In the speial ase when the stohasti proess Z

does not experiene state transitions between su-

essive Markov regeneration epohs; i.e.,

Z

t

= Z

S

+

n

where S

+

n

= maxfS

n

j S

n

� t; n 2 Ng;

Z is alled a semi-Markov proess and E(t) is a

diagonal matrix with elements

E

ii

(t) = 1�K

i

(t);

where

K

i

(t)

d

= PrfS

1

� t j Y

0

= ig; 8i 2 


=

X

j2


K

ij

(t)

is the sojourn time distribution in state i. Hene,

the global kernel matrix alone (whih in this ase is

usually denoted as Q(t)) ompletely desribes the

stohasti behavior of the SMP.

The Markov renewal equation represents a set

of oupled Volterra integral equations of the se-

ond kind [26℄ and an be solved in time-domain

or in Laplae-Stieltjes domain. One possible time

domain solution is based on a disretization ap-

proah to numerially evaluate the integrals pre-

sented in the Markov renewal equation. The inte-

grals in Eqn. 1 are solved using some approxima-

tion rule suh as trapezoidal rule, Simpson's rule

or other higher order quadrature methods. An-

other time domain alternative is to onstrut a sys-

tem of partial di�erential equations (PDEs), using

the method of supplementary variables [4℄. This

method has been onsidered for steady-state anal-

ysis of DSPNs in [22℄ and subsequently extended to

the transient ase in [27℄.

An alternative to the diret solution of the

Markov renewal equation in time-domain is the

use of transform methods. In partiular, if we

de�ne E

�

(s) =

R

1

0

e

�st

dE(t) and V

�

(s) =

R

1

0

e

�st

dV(t), the Markov renewal equation be-

omes

V

�

(s) = E

�

(s) +K

�

(s)V

�

(s)

= [I�K

�

(s)℄

�1

E

�

(s)

After solving the linear system for V

�

(s), trans-

form inversion is required

7

. In very simple ases,

a losed-form inversion might be possible but in

most ases of interest, numerial inversion will be

neessary. The transform inversion however an

enounter numerial diÆulties espeially if V

�

(s)

has poles in the positive half of the omplex plane.

For a thorough disussion of Markov renewal

equation solution tehniques see [28, 29℄, and for

generi Volterra integral equations numerial meth-

ods see [30, 31℄. Referenes for the applia-

tion of Markov renewal theory in the solution of

performane and reliability/availability models see

[16, 32, 23, 28, 33, 34, 35, 36, 37℄.

3 Modeling Failure/Repair

Ativities in a Parallel Ma-

hine Con�guration

The use and analysis of MRSPNs is initially demon-

strated using a omputer system performability

model. Two mahines (a and b) are working in a

parallel on�guration sharing a single repair fail-

ity with a First-Come First-Served (FCFS) shedul-

ing disipline. Due to the non-preemptive nature

of this disipline, we do not need age variables in

this ase (one enabled all GEN transitions in the

model will never be disabled until �ring). We as-

sume that both mahines have exponential lifetime

distributions with onstant parameters �

a

and �

b

respetively. Whenever one of the mahines fails it

immediately requests repair. When the single re-

pair faility is busy and a seond failure ours, the

seond mahine to fail waits in a repair queue un-

til the �rst mahine is put bak into servie. The

repair-time of the mahines is de�ned by the gen-

eral distribution funtions G

a

(t) and G

b

(t).

The overall behavior of the system an be un-

derstood from the MRSPN illustrated in Fig. 3a.

Mahine a is working whenever there is a token in

plae P

1

. The EXP transition f

a

with rate �

a

rep-

resents the failure of mahine a. When mahine a

fails, a token is deposited in plae P

6

and its repair

is requested. If the repair faility is available (i.e.,

7

This being the approah addopted in the solution of all

examples presented in this paper.
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Figure 3: Parallel system model: a) MRSPN; b)

reahability graph; and ) state transition diagram.

there is a token in plae P

5

), it is appropriated with

the �ring of immediate transition i

a

. The GEN

transition r

a

, �ring aording to the distribution

funtion G

a

(t), represents the random duration of

repair. A token in plae P

3

means that mahine a

is queued waiting for the availability of the single

repair faility while mahine b is undergoing repair

(there is a token in plae P

7

). A symmetrial set

of plaes and transitions desribes the behavior of

mahine b. The system is down whenever there are

no tokens in both the plaes P

1

and P

2

.

The reahability graph orresponding to the

Petri net is shown in Fig. 3b. Eah marking in

the graph is a 7-tuple keeping trak of the num-

ber of tokens in plaes P

1

through P

7

. In the

graph, solid ars represent state hanges due to

the �ring of immediate transitions or EXP tran-

sitions, while dotted ars denote the �ring of GEN

transitions. The vanishing markings (enlosed by

dashed ellipses in the diagram) are eliminated when

the redued reahability graph is onstruted (not

shown), and based on the redued version we on-

struted the state transition diagram of Fig. 3.

De�ne the stohasti proess Z = fZ

t

; t � 0g to

represent the system state at any instant, where

Z

t

=

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

1 if both mahines are working at t

2 if mahine a is under repair while

mahine b is working at t

3 if mahine b is under repair while

mahine a is working at t

4 if mahine a is under repair while

mahine b is waiting for repair at t

5 if mahine b is under repair while

mahine a is waiting for repair at t

Note that possible values of Z

t

are the labels or-

responding tangible markings in Fig. 3b. We are in-

terested in omputing performability measures as-

soiated with the system. To do so, we need to

determine the onditional probabilities PrfZ

t

= j j

Z

0

= 1g; 8j 2 � = f1; 2; :::; 5g. Analysis of the

resultant (redued) reahability graph shows that

Z is an MRGP with an EMC de�ned by the states

1, 2, and 3; i.e., 
 = f1; 2; 3g. We an observe that

transitions to states 4 and 5 do not orrespond to

Markov renewal epohs beause they our while

GEN transitions are enabled. An additional step

adopted before starting the synthesis of the kernel

matries was the onstrution of a simpli�ed state

transition diagram. Fig. 3 shows a simpli�ed ver-

sion of the redued reahability graph where the

markings were replaed by the orresponding state

indies. We preserved the onvention for the ars

and extended the notation by representing states

of the EMC by irles, and other states by squares.

The onstrution of kernel matries an proeed

with the analysis of possible state transitions. The

only non-zero elements in global kernel matrixK(t)

orrespond to the possible single-step transitions

between states of the EMC. Consequently, we have

the following struture of the matrix (identi�ed di-

retly from Fig. 3):

K(t) =

2

4

0 K

1;2

(t) K

1;3

(t)

K

2;1

(t) 0 K

2;3

(t)

K

3;1

(t) K

3;2

(t) 0

3

5

Let the random variables L

a

and L

b

be the re-

spetive time-to-failure of the two mahines, we an

determine K

1;2

(t) in the following way:

K

1;2

(t) = PrfX

1

= 2; S

1

� t j X

0

= 1g

= Prfmahine a fails by time t and

is the first one to failg

7



= PrfL

a

� t ^ L

b

> L

a

g

=

Z

t

0

�

1�

�

1� e

��

b

�

��

d

�

1� e

��

a

�

	

=

Z

t

0

e

��

b

�

�

a

e

��

a

�

d�

=

�

a

�

a

+ �

b

h

1� e

�(�

a

+�

b

)t

i

:

Similarly,

K

1;3

(t) = PrfX

1

= 3; S

1

� t j X

0

= 1g

= Prfmahine b fails by time t and

is the first one to failg

=

�

b

�

a

+ �

b

h

1� e

�(�

a

+�

b

)t

i

:

Determination of the elements K

2;1

(t) and

K

2;3

(t) is quite alike, so we only show howK

2;1

(t) is

determined. The third row is ompletelly symmet-

rial to the seond, so it an be easily undestood

one K

2;1

(t) is understood. We need some auxil-

iary variables to help in the explanation of the on-

strutive proess of K

2;1

(t). Hene, we de�ne the

random variables R

a

and R

b

to respetively repre-

sent times neessary to repair mahines a and b.

The distribution funtion of R

a

(R

b

) is G

a

(G

b

).

Using this new variables we an ompute K

2;1

(t):

K

2;1

(t) = PrfX

1

= 1; S

1

� t j X

0

= 2g

= Prfrepair of a is finished by time t

and b has not failed during the

repair of ag

= PrfR

a

� t ^ L

b

> R

a

g

=

Z

t

0

PrfL

b

> �gdG

a

(�)

=

Z

t

0

�

1�

�

1� e

��

b

�

��

dG

a

(�)

=

Z

t

0

e

��

b

�

dG

a

(�):

To summarize, the elements of the global kernel

matrix are:

K

1;2

(t) =

�

a

�

a

+ �

b

h

1� e

�(�

a

+�

b

)t

i

;

K

1;3

(t) =

�

b

�

a

+ �

b

h

1� e

�(�

a

+�

b

)t

i

;

K

2;1

(t) =

Z

t

0

e

��

b

�

dG

a

(�);

K

2;3

(t) =

Z

t

0

�

1� e

��

b

�

�

dG

a

(�);

K

3;1

(t) =

Z

t

0

e

��

a

�

dG

b

(�); and

K

3;2

(t) =

Z

t

0

�

1� e

��

a

�

�

dG

b

(�):

Note that the global kernel will always be a

square matrix. In this ase with dimensions 3� 3,

sine we have 3 states in the embedded Markov

hain. However, the loal kernel matrix is not ne-

essarily a square matrix, sine the ardinality of the

state spae of Z an be larger than the ardinality

of the state spae of the embedded Markov hain.

This an be seen, for instane, in this system sine

the embedded Markov hain has only 3 states while

the MRGP has 5 possible states.

We onstrut the loal kernel matrix E(t) follow-

ing a similar indutive proedure. In this ase we

are looking for the probability that the MRGP will

move to a given state before the next Markov re-

newal moment. Careful analysis of Fig. 3 reveals

the struture of the loal kernel matrix E(t):

2

4

E

1;1

(t) 0 0 0 0

0 E

2;2

(t) 0 E

2;4

(t) 0

0 0 E

3;3

(t) 0 E

3;5

(t)

3

5

Sine in a single step the system an only go from

state 1 to the other two states of the EMC then E

1;1

should be the omplementary sojourn time distri-

bution funtion in state 1, that is,

E

1;1

= 1� (K

1;2

(t) +K

1;3

(t))

= e

�(�

a

+�

b

)t

:

The diÆulty omes with the indution of E

2;2

(t)

and E

2;4

(t) (omplement of E

2;2

(t)). One we solve

for these, we have the solution for the remaining

omponents of the matrix due to the symetry of

the problem. Therefore, we explain the indution

proess that leads to E

2;2

(t):

E

2;2

(t) = PrfZ

t

= 2; S

1

> t j X

0

= 2g

= Prfrepair of a is not finished up to t

and b has not failed until tg

= Prfrepair of a is not finished up to t

� Prfb has not failed until tg

= [1�G

a

(t)℄e

��

b

t

:

8



We an now express the remaining non-zero ele-

ments of the loal kernel matrix as

E

2;4

(t) =

�

1� e

��

b

t

�

G



a

(t)

E

3;3

(t) = e

��

a

t

G



b

(t)

E

3;5

(t) =

�

1� e

��

a

t

�

G



b

(t)

with

G



a

(t) = 1�G

a

(t); and

G



b

(t) = 1�G

b

(t):

We an always verify our answers by summing the

elements in eah row of both kernel matries. Cor-

responding row-sums of the two matries must add

to unity, ondition that is easily veri�ed to hold in

the example.
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SPNP results:

LST results:

Figure 4: Numerial results for the parallel system

with non-premptive repair.

The kernel matries determined an then be sub-

stituted in Equation (1) and the resultant system

of oupled integral equations solved using one of

the approahes desribed in [28, 29℄. The resultant

plots, labelled LST in Fig. 4, report system avail-

ability and performability omputed when time to

repair is deterministi; i.e.,

G

a

(t) = U(t� �

a

); �

a

> 0

G

b

(t) = U(t� �

b

); �

b

> 0

where U(t) is the unit step funtion; the failure

rates (parameters �

a

and �

b

) are idential �

b

) takes

5 hours. The interval availability is the expeted

proportion of time the system is operational during

the period [0; t℄:

�

A(t) =

1

t

Z

t

0

E[X(�)℄d�;

when the disrete random variableX represents the

operational status of the system; i.e., X(t) = 1 if

the system is operatinal at time t, and 0 if it is not.

The performability measure plotted in the �gure

orresponds to the interval proessing apaity of

the system, with the onvention that a unit of om-

puting apaity orresponds to that of one ative

mahine.

Following the approah used in [34℄, we also plot-

ted orresponding Markovian system results, where

eah DET transition was replaed by an equivalent

25-stage Erlang subnet. The Markovian models

were solved using the Stohasti Petri Net Pak-

age (SPNP) introdued in [38℄.

4 Preemptive LCFS repair

Fig. 5 shows the PN whih desribes the behavior of

the system ontaining the same mahines a and b

of the previous example and applies the preemptive

LCFS sheduling sheme. The repair of mahine a

(b), represented by a token at P

6

(P

7

) is preempted

as soon as mahine b (a) fails, i.e., transition f

b

(f

a

)

�res. In this ase the repair faility is assigned to

the mahine whih failed later (i

0

a

or i

0

b

�res and a

token is plaed to P

8

or P

9

). After the repair of

the last failed mahine (�ring of r

0

a

or r

0

b

) the re-

pair faility returns to the ompletion of preempted

repair ation. Di�erent memory poliies an be

onsidered depending on whether the repairman is

able to \remember" the work already performed on

the mahine before preemption or not. In the ase

9
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Figure 5: Preemptive LCFS repair with non-

idential mahines

that the prior work is lost due to the interruption

and the repair must be repeated from srath with

an idential repair time requirement (pri poliy) or

with a repair time resampled from the original u-

mulative distribution funtion (prd poliy). In the

ase that the prior work is not lost and the time

to omplete the preempted repair equals the resid-

ual repair time given the portion of work already

ompleted before preemption (prs poliy). The PN

on Fig. 5 aptures the di�erent memory poliies for

repair by assigning transitions r

a

and r

b

the appro-

priate preemption poliies. (The preemption poli-

ies of transitions r

0

a

and r

0

b

are not relevant sine

r

0

a

and r

0

b

annot be preempted.)

We analyze a simpli�ed version of the two ma-

hine system with preemptive LCFS repair and

with prs poliy. We assume that the two mahines

are statistially idential, i.e., their failure and re-

pair time distributions are the same. Fig. 6a shows

a PN whih desribes the behavior of the system of

two idential mahines with LCFS sheduling. To-

kens in plae P

1

represent operational mahines, to-

kens in P

2

ount failed mahines (inluding the one

under repair), and a token in plae P

4

the availabil-

ity of the single repair faility. In the initial mark-

ing M

1

= (2 0 0 1) (Fig. 6b), t

1

is the only enabled

transition. Firing of t

1

represents the failure of the

�rst mahine and leads to state M

2

= (1 1 1 0). In

M

2

, transitions t

2

and t

3

are ompeting. The GEN

transition t

2

represents the repair of the failed ma-

hine and its �ring returns the system to the initial

state M

1

. The EXP transition t

3

represents the

failure of the seond mahine and its �ring disables
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Figure 6: Preemptive LCFS repair with idential

mahines

t

2

by removing one token from P

3

(the �rst repair

beomes dormant). In M

3

= (0 2 0 1) one mahine

is under repair and the other repair is dormant,

and the only enabled transition is the repair of the

last failed mahine. Firing of the GEN transition t

4

leads the system again to M

2

, where the dormant

repair is resumed. Assume that the failure times of

both mahines are exponentially distributed with

parameter � so that the EXP transitions t

1

and t

3

have �ring rates 2� and �, respetively.

The preemptive poliy of transition t

2

has to be

assigned based on the system behavior to be eval-

uated. (The preemptive poliy of transition t

4

is

irrelevant sine t

4

an not be preempted.) Assign-

ing a prd poliy to t

2

means that eah time t

2

is

disabled by the failure of the seond mahine (t

3

�res before t

2

), the orresponding age variable a

2

is reset. As soon as t

2

beomes enabled again (the

seond repair ompletes and t

4

�res) no memory is

kept of the prior repair period, and the exeution

of the repair restarts from srath. The prd servie

poliies, like this one, are overed by the model def-

inition in [39, 40℄.

The ase when a pri poliy is assigned to t

2

is

very similar to the previous one exept that as soon

as t

2

beomes reenabled (the seond repair om-

pletes and t

4

�res), the same repair (same �ring

time sample) has to be ompleted from the begin-

ning. This type of pri memory poliy is overed by

the model de�nition in [16℄, and an be analyzed

by the transform domain method disussed there.

Hereafter we assume that a prs poliy is assigned

to t

2

. When a prs poliy is assigned to t

2

, eah time

10



t

2

is disabled without �ring (t

3

�res before t

2

) the

age variable a

2

is not reset. Hene, as the seond

repair ompletes (t

4

�res), the system returns to

M

2

keeping the value of a

2

, so that the time to

omplete the interrupted repair an be evaluated

as the original repair requirement minus the ur-

rent value of a

2

. The age variable a

2

ounts the

total time during whih t

2

is enabled before �r-

ing, and is equal to the umulative sojourn time in

M

2

. The Markov renewal moments in the mark-

ing proess orrespond to the epohs of entrane

to markings in whih the age variables assoiated

with all the transitions are equal to zero. By in-

speting Fig. 6b, the Markov renewal moments are

the epohs of enteringM

1

and of enteringM

2

from

M

1

.

The subordinated proess starting from marking

M

1

is a single step CTMC (sine t

1

the only en-

abled EXP transition) and inludes the only im-

mediately reahable state M

2

(Markovian regener-

ation period).

The subordinated proess starting from marking

M

2

inludes all the states reahable from M

2

be-

fore �ring of t

2

; i.e., M

2

and M

3

. Sine M

2

is the

only state in whih t

2

is enabled, the age variable

a

2

inreases only in marking M

2

and maintains its

value in M

3

. The �ring of t

2

an only our from

M

2

leading to marking M

1

.

Notie that the subordinated proess starting

from M

2

is semi-Markov sine the �ring time of t

4

is generally distributed. The age variable a

2

grows

whenever the MRSPN is in marking M

2

, and the

�ring of t

2

ours when a

2

reahes the atual value

of the �ring time (whih is generally distributed

with umulative distribution funtion G(t)). If we

ondition that the �ring time of t

2

to w, w ats an

absorbing barrier for the aumulation funtional

represented by the age variable a

2

, the �ring time

of t

2

is determined by the �rst passage time of a

2

aross the absorbing barrier w.

The losed form Laplae-Stieltjes transform ex-

pressions of the kernel matries of the LCFS re-

pair prs ase are derived here in detail, applying

the tehnique based on the Markov renewal theory.

We build up the K

�

(s) and E

�

(s) matries row

by row by onsidering separately all the states that

an be regeneration states and an originate a sub-

ordinated proess. M

3

an never be a regeneration

state sine t

2

is always ative when entering to M

3

,


 = fM

1

;M

2

g. The fat that M

3

is not a regen-

eration marking, means that the proess an stay

in M

3

only between two suessive Markov renewal

moments.

The starting regeneration state is M

1

- (Markovian

regeneration period) No general transition is en-

abled and the next regeneration state an only be

state M

2

. The non-zero elements of the �rst row of

the kernel matries are

K

�

12

(s) =

2�

s + 2�

and E

�

11

(s) =

s

s + 2�

The starting regeneration state isM

2

- Transition t

2

is GEN so that the next regeneration time point is

the epoh of �ring of t

2

. The subordinated proess

starting from M

2

omprises states M

2

and M

3

and

is an SMP (sine t

4

is GEN) whose kernel is:

Q

�

(s) =

2

4

0

�

s + �

G

�

(s) 0

3

5

where G

�

(s) is the LST of the distribution funtion

of the �ring time of t

4

.

The transition t

2

�res when the age variable a

2

reahes atual sample of the �ring time 

2

. In gen-

eral, when a GEN transition is ative the ourene

of a Markov renewal epoh in the marking proess

of an NMSPN is due to one of the following two

reasons:

� the GEN transition �res,

� the GEN transition of prd type beomes dis-

abled.

For the analysis of subordinated proesses of this

kind three matrix funtions F

i

(t; w), D

i

(t; w) and

P

i

(t; w) (where t denotes the time, w a �xed �r-

ing time sample, and the supersript i refers to the

initial (regeneration) state of the subordinated pro-

ess) were introdued in [24℄. F

i

(t; w) refers to the

ase when the next regeneration moment is beause

of the �ring of the GEN transition with the (�xed)

�ring time sample w. For the analysis of this ase

an additional matrix (�

i

referred to as branhing

probability matrix) is introdued, as well, to de-

sribe the state transition subsequent to the �ring

of the GEN transition. D

i

(t; w) aptures the ase

when the next regeneration moment is aused by

the disabling of the prd type GEN transition. And

11



P

i

(t; w) desribes the state transition probabilities

inside the regeneration period.

Sine transition t

2

is of prs type the matrix fun-

tion D

i

(t; w) does not play a role in the analysis

of the subordinated proess starting from mark-

ing M

2

. The remaining funtions an be evalu-

ated based on the kernel of the subordinated SMP

(Q

i

(t) = fQ

i

k`

(t)g) [24℄:

F

i��

k`

(s; v) = Æ

k`

r

k

�

1�Q

i�

k

(s+ vr

k

)

�

s+ vr

k

+

X

u2R

i

Q

i�

ku

(s+ vr

k

)F

i��

u`

(s; v)

P

i��

k`

(s; v) = Æ

k`

s

�

1�Q

i�

k

(s+ vr

k

)

�

v(s+ vr

k

)

+

X

u2R

i

Q

i�

ku

(s+ vr

k

)P

i��

u`

(s; v)

whereQ

i

k

(t) =

P

`

Q

i

k`

(t); s is the time variable and

v is the barrier level variable in transform domain;

r

k

is the indiator that the ative GEN transition

is enabled in state k; R

i

is the part of the state

spae reahable during the subordinated proess;

and the supersript � (�) refers to Laplae-Stieltjes

(Laplae) transform.

Given that G

g

(t) is the distribution funtion of

the �ring time of the GEN transition, the elements

of the i-th row of matries K(t) and E(t) an be

expressed as follows, as a funtion of the matries

P

i

(t; w), F

i

(t; w) and D

i

(t; w):

K

ij

(t) =

Z

1

0

"

X

k2R

i

F

i

ik

(t; w)�

i

k;j

+D

i

ij

(t; w)

#

dG

g

(w)

E

ij

(t) =

Z

1

0

P

i

ij

(t; w)dG

g

(w)

To evaluate the 2nd row of the kernel matries

we are applying these results for the subordinated

proess starting from regeneration stateM

2

. Doing

so we obtain the following expressions for the non-

zero matrix entries:

F

��

22

(s; v) =

1

s+ v + �� �G

�

(s)

P

��

22

(s; v) =

s=v

s+ v + �� �G

�

(s)

P

��

23

(s; v) =

�(1�G

�

(s))=v

s+ v + �� �G

�

(s)

Unonditioning with respet to the �ring time dis-

tribution of t

2

, and after inverting the Laplae

transform (LT) with respet to v, the non-zero en-

tries of the 2nd row of the LST matrix funtions

K

�

(s) and E

�

(s) beome:

K

�

21

(s) =

Z

1

w=0

e

�w(s+ ���G

�

(s))

dG(w)

= G

�

(s + �� �G

�

(s))

E

�

22

(s) =

s[1�G

�

(s + �� �G

�

(s))℄

s+ �� �G

�

(s)

E

�

23

(s) =

�(1�G

�

(s)) [1�G

�

(s + �� �G

�

(s))℄

s+ �� �G

�

(s)

The LST of the state probabilities are obtained

by solving the Markov renewal equation in trans-

form domain. The time domain probabilities are

alulated by numerially inverting the result by

resorting to the Jagerman method [41℄.

To evaluate the performane of the di�erent

sheduling shemes, we ompared the availability

and proessing power of the FCFS and the LCFS

repair shemes with two di�erent repair time dis-

tributions. The FCFS sheme was evaluated by

the time domain method introdued in the previ-

ous setion and the LCFS sheme was evaluated

by the above transform domain method. It is as-

sumed that the system is available when at least

one mahine is working (marking M

1

and M

2

) and

that the system performane doubles when both

mahines are working. The failure times of both

mahines are exponentially distributed with rates

� = �

a

= �

b

= 0:01. The repair times of both

mahines are assumed to be:

� deterministi � = 5, hene

G(t) = G

1

(t) = G

2

(t) = U(t� �)

G

�

(s) = e

��s

;

� hyperexponentially distributed with p = 0:625;

�

1

= 0:5; �2 = 0:1, hene

G(t) = G

1

(t) = G

2

(t) = 1�pe

��

1

t

�(1�p)e

��

2

t

G

�

(s) =

p�

1

�

1

+ s

(1� p)�

2

�

2

+ s

:

The mean repair time is 5 in both ases. Fig. 7a

and 7b show the instantaneous and the interval
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measures of availability and proessing power with

deterministi repair time, respetively. The dot-

ted line shows the instantaneous and the short

dashed line shows the interval availability/power

with LCFS repair, while the long dashed line shows

the instantaneous and the solid line shows the inter-

val availability/power with FCFS repair. It an be

observed that the FCFS sheduling performs better

in this ase. The availability and proessing power

results for the hyperexponential repair time distri-

bution are plotted on Fig. 7 and 7d, respetively.

In these �gures the dotted line shows the instanta-

neous availability/power with LCFS repair, while

the dashed line shows the instantaneous availabil-

ity/performability with FCFS repair. As an be

seen from these �gures, in ontrast with the deter-

ministi repair time the LCFS sheduling performs

better with the hyperexponential repair time dis-

tribution.

5 Modeling preemption in a

multi-tasking environment

NMSPN require omplex solution tehniques

mainly based on theory of Markov regenerative pro-

esses. Software pakages are then required whih

an hide solution and implementation details. A

big boost in this diretion ame from two well-

known tools, DSPNexpress [42℄ and TimeNET [43,

44℄. Reently, a new software pakage for non-

Markovian Petri nets has been developed in a joint

e�ort between the Universities of Catania and Bu-

dapest. This tool, named WebSPN [45℄,

provides a disrete time approximation of the

stohasti behaviour of the marking proess whih

results in the possibility to analyze a wider lass

of PN models with prd, prs and pri onurrently

enabled generally distributed transitions. The ap-

proximation of the ontinuous time model at eq-

uispaed disrete time points involves the analysis

of the system behavior over a time interval based

on the system state at the beginning of the inter-

val and the past history of the system. A Web-

entered view has been adopted in its develop-

ment in order to make it easily aessible from

any node onneted with the Internet as long as

it possesses a Java-enabled Web browser. Sophis-

tiated seurity mehanisms have also been imple-

mented to regulate the aess to the tool whih are

based on the use of publi and private eletroni

keys. WebSPN is available at the following site:

http://sun195.iit.unit.it/�webspn/webspn2/

5.1 Model desription

In this setion we desribe and solve a model of

Petri net with several onurrently enabled GEN

transitions and di�erent memory poliies. The sys-

tem moves between an operative phase, where use-

ful work is produed, and a phase of maintenane

where the proessing is temporarily interrupted.

The Petri net shown in Fig. 8 represents the

model of the system that onsists of three fun-

tional bloks generially referred to as Blok1,

Blok2 and Blok3. Blok1 models the alternation

of the system between the operative phase and the

maintenane phase. Blok2 models the two sequen-

tial phases of proessing of jobs. Finally, Blok3

models the alternation of the system during the op-

erative phase between the phase of pre-proessing

and the one of proessing of jobs.

Within Blok1, the two states of operation where

the system an be are represented by plaes user

and system and by transitions U time and S time.

A token in plae user denotes the operative state,

while a token in plae system denotes the mainte-

nane one. The duration of the operative phase

is denoted by transition U time, while the mainte-

nane one is denoted by transition S time. The in-

hibitor ars outgoing from plae system and leading

to the timed and immediate transitions ontained

in Blok2 and Blok3 produer, ons1, busy prod,

idle prod, busy2, idle2 are used for interrupting the

ativity of the system during the phase of mainte-

nane.

Blok2 models the proessing of jobs. In parti-

ular, the number of jobs to be proessed is denoted

by the number of tokens ontained in plae work,

while the time of pre-proessing of eah job is rep-

resented by transition produer. Pre-proessed jobs

are queued in a bu�er (plae bu�1) waiting for the

seond phase of proessing (transition ons1).

In Blok3, the alternation between the phases

of pre-proessing and proessing of jobs is repre-

sented through plaes slot1 and slot2 and transi-

tions busy brod, busy2, idle prod, idle2. A token in

plae slot1 denotes that the system is exeuting the

pre-proessing of a job, while a token in plae slot2
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denotes the exeution of a phase of proessing. An

inhibitor ar between slot1 and ons1 deativates

the phase of proessing when the pre-proessing

one is ative. In the same way, the inhibitor ar

between slot2 and produer deativates the phase

of pre-proessing when the proessing one is a-

tive. The time that the system alternately spends

for these two ativities is represented by transitions

busy prod and busy2. The immediate transition

idle prod (idle2) prevents the system to remain in

phase 1 (2), even if no job is to be proessed. The

funtion of the inhibitor ars from plae work to

transition idle prod and from plae bu� to transi-

tion idle2 is to enable suh transitions when no job

is to be proessed in the orresponding phase of

proessing.

Immediate transition end and plae Stop are used

for modeling the proessing of all the jobs assigned

to the system at the beginning. In fat, transition

end is inhibited until at least one token is present

in plaes work and bu�. When all the jobs have

been proessed, transition end �res, and immedi-

ately moves a token to plae Stop. All the ativi-

ties of the system are thus interrupted through the

inhibitor ars outgoing from plae Stop.

The measure that we evaluate from this model is

the distribution of the time required for omplet-

ing the set of jobs assigned to the system at the

beginning. It an be obtained as the distribution

of having a token in plae Stop.

With regard to the distributions of the �ring

times to be assigned to timed transitions, we as-

sume that the �ring times of transitions U time,

S time, busy brod, busy2 are deterministi. We

assume that the �ring times of transitions pro-

duer and ons1 are respetively distributed uni-

formly and exponentially. The measures onsidered

an therefore be evaluated by hanging the mem-

ory poliy assoiated with transitions produer and

ons1.

In the ase of prd poliy, the temporary inter-

ruption of the proessing of a job (either beause

the whole system enters the phase of maintenane,

or beause, even if the system is in the produ-

tion phase, it interrupts the pre-proessing phase

for hanging to the proessing one or vie versa)

auses the interrupted job to be disarded. A new

job is exeuted when the system is available again.

The orrespondene with a real system is perhaps

hard to �nd; however, we note that prd poliy is

the most ommonly used one in the literature.

Conversely, by adopting prs poliy, we keep a

memory of the work that we were exeuting. In

this ase, when transition produer is disabled, we

keep a memory of the work that has already been

exeuted on the job onsidered. When the system

enters the operative state again, the pre-proessing

of the job ontinues from the point we had reahed.

In this ase, the model an represent a system of

manufaturing, where a mahine used for produ-

tion alternates yles of prodution and yles of

maintenane, and prodution takes plae in two se-

quential phases. We note that prd and prs poliies

are equivalent for transition ons1, sine this one is

and EXP transition.

With pri poliy, when transition produer is dis-

abled, the work that had already been produed

is lost, but we keep a memory of the job that we

were proessing. When the transition is enabled

again we start from zero, but the amount of work

to be produed on the job remains the same, be-

ause the job has not been hanged. Suh a be-

havior an be easily noted when aessing transa-

tional databases, where eah transation is atomi

(i.e., has to be proessed with no interruption). If

an interruption ours, the transation is entirely

proessed again. If we assume a memory poliy like

prs for transition ons1, the model ould represent a

lient/server system where the aesses to database

(transition produer) take plae atomially, and the

phase of proessing of the query (transition ons1)

requires a variable time, distributed exponentially.

5.2 Numerial Results

For the solution of the model we assume that the

�ring time of transition produer is distributed uni-

formly between 0.5 and 1.5; the �ring time of tran-

sitions U time and S time are deterministi, with

a �ring time of 1; the �ring time of transitions

busy prod and busy2 are deterministi, with a �r-

ing time of 0.1; the �ring time of transition ons1

is distributed exponentially, with a �ring rate of

0.1; transition end is immediate and has a priority

of 2; transitions idle prod and idle2 are immediate

and have a priority of 1; the total number of jobs

to be proessed is 3.

In Fig. 9 we show the distribution of omple-

tion time for di�erent memory poliies assigned to

transitions produer and ons1. The behavior of
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the system hanges signi�antly depending upon

the memory poliy adopted. The prs poliy a-

rues the highest probability of ompletion within

a given time. Both the prd and the prs poliies

aomplish the ompletion of jobs. In fat, urves

eventually reah the value 1. Conversely, a di�er-

ent behavior an be observed if we assume a poliy

like pri. In fat, in that ase, the resulting dis-

tribution is defetive, sine the unit value is never

reahed for t ! 1. This is losely onneted with

the hoie of the parameters assoiated with tran-

sitions produer and U time. As we note in Fig. 10,

when the �ring time of transition U time is lower

than 1.5, transition produer has a positive prob-

ability (50%)of not ompleting its work. Sine in

the ase of pri poliy the job is proessed with the

same work requirement, this auses a situation of

impasse, whih prevents the work assigned to the

system to be ompleted.

Fig. 11 shows how the overall system behavior

hanges if transitionU time is assigned a �ring time

higher than 1.5 (for example 2.0). In suh ase,

transition produer has a �nite probability of �ring

before the system enters the phase of maintenane,

and therefore the distribution of ompletion time

with pri poliy reahes the value 1.

6 Conlusion

We disussed the need for more advaned teh-

niques to apture generally distributed events

whih our in everyday life. Among the di�er-

ent approahes proposed in the literature, non-

Markovian Petri nets represent a valid analytial

alternative to numerial simulation. An approah

based on the analysis of the underlying Markov Re-

generative Proess has been presented. Advaned

preemption poliies were introdued and several ex-

amples solved in detail.
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Figure 7: Availability and proessing power

Figure 8: Petri net model of the system
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