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Abstra
t

Petri nets represent a powerful paradigm for mod-

eling parallel and distributed systems. Parallelism

and resour
e 
ontention 
an easily be 
aptured and

time 
an be in
luded for the analysis of system dy-

nami
 behavior. Most popular sto
hasti
 Petri nets

assume that all �ring times are exponentially dis-

tributed. This is found to be a severe limitation in

many 
ir
umstan
es that require deterministi
 and

generally distributed �ring times. This has led to

a 
onsiderable interest in studying non-Markovian

models. In this paper we spe
i�
ally fo
us on non-

Markovian Petri nets. Analyti
al approa
h through

the solution of the underlying Markov regenerative

pro
ess is dealt with and numeri
al analysis te
h-

niques are dis
ussed. Several examples are pre-

sented and solved to highlight the potentiality of

the proposed approa
hes.

Sto
hasti
 Petri Nets, Markov regenerative pro-


esses, preemption poli
ies, numeri
al analysis.

1 Introdu
tion

Over the past de
ade, sto
hasti
 and timed Petri

nets of several kinds have been proposed to over-


ome limitations on the modeling 
apabilities of

Petri nets (PNs). Although very powerful in 
ap-

turing syn
hronization of events and 
ontention for

�

R.M. Fri
ks is with the SIMEPAR Laboratory and

Ponti�
ia Universidade Cat�oli
a do Paran�a, Curitiba/PR,

Brazil. A. Pulia�to is with the Istituto di Informati
a, Uni-

versit�a di Catania, Catania, Italy. M. Telek is with the

Department of Tele
ommuni
ations, Te
hni
al University of

Budapest, Budapest, Hungary. K.S. Trivedi is with the

Department of Ele
tri
al and Computer Engineering, Duke

University, Durham/NC, USA. E-mails: fri
ks�simepar.br,

ap�iit.uni
t.it, telek�hit.bme.hu, and kst�ee.duke.edu.

system resour
es, the original paradigm was not


omplete enough to 
apture other elements indis-

pensable for dependability and performan
e mod-

eling of systems. Thus, new extensions allowing

for time and randomness abstra
tions be
ame ne
-

essary. Despite the 
onsensus on whi
h elements

to add, a 
ertain un
ertainty existed on where to

aggregate the proposed extensions. From among

several alternatives, a dominant one was soon es-

tablished where the Petri nets 
ould have transi-

tions that on
e enabled would �re a

ording to ex-

ponential distributions with di�erent rates (EXP

transitions). This led to well known net types:

Generalized Sto
hasti
 Petri Nets (GSPNs) [1℄ and

Sto
hasti
 Reward Nets (SRNs) [2℄.

The resulting modeling framework allowed the

de�nition and solution of sto
hasti
 problems en-

joying the Markov property [3℄: the probability

of any parti
ular future behavior of the pro
ess,

when its 
urrent state is known exa
tly, is not al-

tered by additional knowledge 
on
erning its past

behavior. These Markovian sto
hasti
 Petri nets

(MSPNs) were very well a

epted by the model-

ing 
ommunity sin
e a wide range of real depend-

ability and performan
e models fall in the 
lass of

Markov models. Besides the ability to 
apture var-

ious types of system dependen
ies intrinsi
 to the

underlying Markov models, other advantages of the

Petri net framework also 
ontributed to the pop-

ularity of the MSPNs. Among these reasons, we

point out the power of 
on
isely spe
ifying very

largeMarkovmodels, and the equal ease with whi
h

steady-state, transient, 
ummulative transient and

sensitivity measures 
ould be 
omputed. One of the

key restri
tions, however, is that only exponentially

distributed �ring times are 
aptured. This led to

the development of non-Markovian sto
hasti
 Petri

nets.
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Non-Markovian sto
hasti
 Petri nets (NMSPNs)

were then proposed to allow for the high level de-

s
ription of non-Markovian models. Likewise in

the original evolutive 
hain, several alternative ap-

proa
hes to extend the Markovian Petri nets were

proposed. Their distin
tive feature was the under-

lying analyti
al te
hnique used to solve the non-

Markovian models. Candidate solution methods


onsidered in
luded the deployment of supplemen-

tary variables [4℄, the use of phase-type expan-

sions approximations [5, 6℄, and the appli
ation of

Markov renewal theory [7, 8℄. Representative non-

Markovian Petri nets proposed, listed a

ording

to the underlying solution te
hniques, are the Ex-

tended Sto
hasti
 Petri Nets (ESPNs) [9℄, the De-

terministi
 and Sto
hasti
 Petri Nets (DSPNs) [10℄,

the Sto
hasti
 Petri Nets with Phase-Type Dis-

tributed Transitions (ESPs) [11℄, and the Markov

Regenerative Sto
hasti
 Petri Nets (MRSPNs) [12℄.

As a 
onsequen
e of these evolutive steps, we ob-

serve that the restri
tion imposed on the distribu-

tion fun
tions regulating the �ring of timed tran-

sitions was progressively relaxed from exponential

distributions to a 
ombination of exponential and

deterministi
 distributions, then to any distribu-

tion represented by phase type approximations,

and �nally to any general distribution fun
tion

(GEN transitions).

However, this 
exibility also brought a new re-

quirement with it. If an enabled GEN transition is

disabled before �ring, a s
heduling poli
y is needed

to 
omplete the model de�nition. Consider the

generi
 
lient/server NMSPN model in Fig. 1 for

instan
e. Requests from 
lients arrive a

ording to

a Poisson pro
ess (EXP transition t

1

). Tokens in

pla
e P

1

represent 
lients already in the system. In

a single server 
on�guration only one of the queued

requests will be servi
ed at a given time. The ser-

vi
e requirement 


g

of ea
h request is sampled from

a general distribution fun
tion G

g

(t) that 
oordi-

nates the �ring of the GEN transition t

2

. An age

variables a

g

asso
iated with a request keeps tra
k

of the amount of servi
e a
tually re
eived by the

request. Servi
e will be 
ompleted (i.e., transition

t

2

will �re) as soon as the age variable a

g

of the a
-

tive request (the one re
eiving server's attention)

rea
hes the value of its servi
e requirement 


g

. Af-

ter that, the request leaves the system and its as-

so
iated age variable is destroyed.

Furthermore, suppose that the server is failure-

��

��

��

��

��

��

r

P

2

�

�/

S

Sw

�

�7

S

So

P

3

P

1

t

2

t

3

t

4

t

1

?

?


�

�

�

�

�

�

Figure 1: Fault-tolerant 
lient/server model.

prone with 
onstant failure and repair rates. A

token in pla
e P

2

represents the a
tive state of the

server while a token in pla
e P

3

indi
ates server

being down (undergoing repair). Consequently, �r-

ing of the EXP transitions t

3

and t

4


orrespond

to the failure and end-of-repair events asso
iated

with the server. Whenever down, the server 
an-

not servi
e new 
lients or 
omplete the servi
e re-

quirement of the 
urrent request, as shown by the

inhibitor ar
 from pla
e P

3

to transition t

2

. Clearly

a s
heduling poli
y is then ne
essary to pre
isely

de�ne how the server must pro
eed when brought

up again. In MSPNs with EXP transitions this was

not a problem be
ause of the memoryless property

of the exponential distributions [3℄

1

. The remain-

ing pro
essing time of an nterrupted request is also

represented by the EXP transition t

2

.

In the favorable 
ase, the server is able to 
om-

pletely servi
e the 
urrent request before a failure

o

urs (as shown in Fig. 2a). Otherwise the system

behavior depends on the amount of remaining ser-

vi
e at the time of the interruption, and whether

the servi
e already re
eived by the request will be

dis
arded. The servi
e requirement 


g

may in
rease

or de
rease as an indire
t 
onsequen
e of system

events responsible by the server interruption. For

instan
e, the failure of the server in Fig. 1 may

render 
ertain a
tivities of the 
lient unne
essary,

whi
h would then redu
e its servi
e requirement

to a lower 


g

0 value. Likewise, the age variable

a

g

related to the a
tive request may also be af-

fe
ted by the server interruption sin
e the amount

of servi
e already provided to the request may be

1

If the s
heduling poli
y is non-work-
onserving and the

servi
e requirement of the 
lient needs to be preserved then

even the EXP transition has to be dealt with like a GEN

transition.

2



preserved or lost. We distinguish both situations


alling the �rst a work 
onserving s
heme, and the

se
ond non-work-
onserving. With these four 
on-

ditions we 
onstru
ted the table in Fig. 2b. Note

that, although the servi
e requirement is shown to

be in
reasing after the interruption in the illustra-

tion in the bottom row of the table, the situation

where 


g

0 < 


g

is also possible

2

.
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Figure 2: Di�erent s
heduling poli
ies.

Fig. 2b 
an be interpreted from two distin
t per-

spe
tives. From the 
lients' perspe
tive, all 
urves


orrespond to the same 
lient whose servi
e is mo-

mentarily interrupted between times �

2

and �

3

.

From the server's perpe
tive, 
lients requests live

only from interruption-to-interruption. There is a

single age variable asso
iated with the server, and

what happens after interruptions is de�ned by the

s
heduling poli
y whi
h may be preemptive or non-

preemptive, depending on if the server swaps 
lients

before �nishing servi
e or not. Preemptive poli
ies

are usually based on a hierar
hi
al organization of

requests (e.g., priority s
heduling) or on an allo
a-

tion of servi
e based on time quotas (e.g., round-

robin s
heduling). In this 
ase, system behavior

is strongly a�e
ted by the preemptive poli
y and

2

Naturally, 


g

0 � a

g

at the time of the interruption needs

to be always imposed.

the overall performan
e will depend on the strat-

egy adopted to deal with the preempted requests,

as des
ribed in the following:

� The work done on the request prior to inter-

ruption is dis
arded so that the amount of

work a

g

is lost. The server starts pro
essing

a new request whi
h has a work requirement




g

0; i.e., a new sample is drawn from the servi
e

time distribution of the 
lient. The server then

starts serving this new request from the begin-

ning (i.e., a

g

= 0), as shown in the bottom-

right sket
h in Fig. 2b.

� The server returns ba
k to the preempted re-

quest with the original servi
e requirement 


g

.

No work is lost so that the age variable retains

its value a

g

prior to the interruption. The re-

quest is resumed from the point of interruption

as shown in the top-left sket
h in Fig. 2b.

� The server also returns to the same request

with the original servi
e requirement 


g

. But

the work done prior to the interruption is lost

and the age variable a

g

is set to zero. The

request pro
essing starts from the beginning

as shown in the top-right sket
h in Fig. 2b.

As in [13℄, the above poli
ies are referred to as

preemptive repeat di�erent (prd), preemptive re-

sume (prs) and preemptive repeat identi
al (pri),

respe
tively

3

. The 
ase shown in the bottom-left

sket
h in Fig. 2b is not 
onsidered in the literature

as it is unrealisti
. Note that in [15℄, the authors

indi
ated the prd and prs type poli
ies as enabling

and age type. The pri poli
y of Petri net transitions

was introdu
ed for the �rst time in [16℄. The prd

and prs (with phase-type distributed �ring times)

poli
ies are the only ones 
onsidered in the available

tools modeling NMSPNs [17, 11, 18, 19℄.

Note that when the s
heduling is preemptive: (i)

the prs and prd poli
ies produ
e the same results

with EXP transitions, but pri is di�erent; (ii) The

prd and pri poli
ies have the same e�e
t for tran-

sitions �ring a

ording to a deterministi
 random

variable, but prs is di�erent; and (iii) otherwise,

all three poli
ies will produ
e distin
t results for

otherwise same NMSPNs [14℄.

3

The prd, prs and pri names were borrowed from queue-

ing theory [14℄.
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In this paper, we deal with the general 
lass of

non-Markovian Petri nets using examples of MR-

SPNs, whi
h 
an be analyzed by means of Markov

regenerative pro
esses. The remaining se
tions of

the paper are organized as follows. The next se
-

tion introdu
es Markov Regenerative Petri nets and

des
ribes how to deal with the underlying Markov

Regenerative Pro
ess. Se
tion 3 shows how to

model a failure/repair pro
ess in a parallel ma-


hine through MRSPN. Se
tion 4 further extends

this model by adopting a di�erent repair fa
ility

s
heduling s
heme. Preemption in a multi-tasking

environment is analyzed in Se
tion 5 through the

WebSPN tool; the resulting model 
ontains sev-

eral 
on
urrently enabled general transitions and

di�erent memory poli
ies. Con
lusions are �nally

presented in Se
tion 6.

2 Markov Regenerative Petri

Nets

MRSPNs allow transitions with zero �ring times

(immediate transitions), exponentially distributed

or generally distributed �ring times. The dynami


behavior of an MRSPN is modeled by the exe
ution

of the underlying net, whi
h is 
ontrolled by the po-

sition and movement of tokens. At any given time,

the state of an MRSPN is de�ned by the number

of tokens in ea
h of its pla
es, and is represented

by a ve
tor 
alled its marking. The set of markings

rea
hable from a given initial marking (i.e., the ini-

tial state of the system) by means of a sequen
e of

transition �rings de�nes the rea
hability set of the

Petri net. This set together with ar
s joining its

markings and indi
ating the transition that 
ause

the state transitions is 
alled rea
hability graph.

Two types of markings 
an be distinguished in

the rea
hability graph. In a vanishing marking at

least one immediate transition is enabled to �re,

while in a tangible marking no immediate transi-

tions are enabled. Vanishing markings are elim-

inated before analysis of the MRSPN using ele-

mentary probability theory [12℄. The resultant

redu
ed rea
hability graph is a right-
ontinuous,

pie
ewise 
onstant, 
ontinuous-time sto
hasti
 pro-


ess fZ

t

; t � 0g, where Z

t

represents the tangible

marking of the MRSPN at time t. Choi, Kulkarni,

and Trivedi [12℄ showed that this marking pro
ess

is a Markov Regenerative Pro
ess (MRGP) (if the

GEN transitions are of prd type and at most one

GEN transition is enabled at a time), a member of

a powerful paradigm generally grouped under the

name Markov renewal theory [7, 8℄. Mathemati
al

de�nition and solution te
hniques for MRGP are

summarized next.

2.1 Markov Renewal Sequen
e

Assume a given system we are modeling is de-

s
ribed by a sto
hasti
 pro
ess Z

d

= fZ

t

; t � 0g

taking values in a 
ountable set �. Suppose we

are interested in a single event related with the

system (e.g., when all system 
omponents fail).

Additionally, assume the times between su

es-

sive o

urren
es of this type of event are inde-

pendent and identi
ally distributed (i:i:d:) ran-

dom variables. Let S

0

< S

1

< S

2

< ::: be the

time instants of su

essive events to o

ur. The

sequen
e of non-negative i:i:d: random variables,

S

d

= fS

n

�S

n�1

;n 2 N = f0; 1; 2; :::gg is a renewal

pro
ess [20, 21℄. Otherwise, if we do not start ob-

serving the system at the exa
t moment an event

has o

urred (i.e., S

0

6= 0) the sto
hasti
 pro
ess S

is a delayed renewal pro
ess.

However, suppose instead of a single event, we

observe that 
ertain transitions between identi�-

able system states X

n

of a subset 
 of �, 
 � �,

also resemble the behavior just des
ribed, when


onsidered in isolation. Su

essive times S

n

at

whi
h a �xed state X

n

is entered form a (possi-

bly delayed) renewal pro
ess

4

. Additionally, when

studying the system evolution we observe that at

these parti
ular times the sto
hasti
 pro
ess Z ex-

hibits the Markov property, i.e., at any given mo-

ment S

n

, n 2 N , we 
an forget the past history of

the pro
ess. The future evolution of the pro
ess de-

pends only on the 
urrent state at these embedded

time points. In this s
enario we are dealing with a


ountable 
olle
tion of renewal pro
esses progress-

ing simultaneously su
h that su

essive states vis-

ited form an embedded dis
rete-time Markov 
hain

(EMC) with state spa
e 
. The superposition of

all the identi�ed renewal pro
esses gives the points

fS

n

;n 2 Ng, known asMarkov regeneration epo
hs

(also 
alled Markov renewal moments

5

), and to-

4

We are assuming X

n

is the system state at time S

n

.

5

Note that these instants S

n

are not renewal moments

4



gether with the states of the EMC de�ne a Markov

renewal sequen
e.

In mathemati
al terms, the bivariate sto
hasti


pro
ess (X;S)

d

= fX

n

; S

n

;n 2 Ng is a Markov re-

newal sequen
e (MRS) provided that

PrfX

n+1

= j; S

n+1

� S

n

� t j X

0

; :::; X

n

;S

0

; :::; S

n

g =

PrfX

n+1

= j; S

n+1

� S

n

� t j X

n

g;

for all n 2 N , j 2 
, and t � 0. We will always

assume time-homogeneous MRS's; that is, the 
on-

ditional transition probabilities K

ij

(t), where

K

ij

(t)

d

= PrfX

n+1

= j; S

n+1

� S

n

� t j X

n

= ig

are independent of n for any i; j 2 
, t � 0. There-

fore, we 
an always write

K

ij

(t) = PrfX

1

= j; S

1

� t j X

0

= ig; 8i; j 2 
; t � 0:

The matrix of transition probabilities K(t)

d

=

[K

ij

(t)℄ is 
alled the kernel of the MRS.

2.2 Markov Regenerative Pro
esses

A sto
hasti
 pro
ess fZ

t

; t � 0g is a Markov regen-

erative pro
ess i� it exhibits an embedded MRS

(X,S) with the additional property that all 
ondi-

tional �nite distributions of fZ

S

n

+t

; t � 0g given

fZ

u

; 0 � u � S

n

; X

n

= i; i 2 
g are the same as

those of fZ

t

; t � 0g given X

0

= i. As a spe
ial


ase, the de�nition implies that [8℄

PrfZ

S

n

+t

= j j Z

u

; 0 � u � S

n

; X

n

= ig =

PrfZ

t

= j j X

0

= ig; 8i 2 
;8j 2 �:

This means that the MRGP fZ

t

; t � 0g

does not have the Markov property in gen-

eral, but there is a sequen
e of embedded time

points (S

0

; S

1

; :::; S

n

; :::) su
h that the states

(X

0

; X

1

; :::; X

n

; :::) respe
tively of the pro
ess at

these points satisfy the Markov property. It also

implies that the future of the pro
ess Z from t = S

n

onwards depends on the past fZ

u

; 0 � u � S

n

g

only through X

n

.

The sto
hasti
 pro
ess between 
onse
utive

Markov regeneration epo
hs, usually refered to

as des
ribed in renewal theory, sin
e the distributions of the

time interval between 
onse
utive moments are not ne
es-

sarily i.i.d..

as subordinated pro
ess, 
an be any 
ontinuous-

time dis
rete-state sto
hasti
 pro
ess over the same

probability spa
e. Re
ently published examples


onsidered subordinated homogeneous CTMCs [12,

22℄, non-homogeneous CTMCs [23℄, semi-Markov

pro
esses (SMPs) [24℄, and MRGPs [25℄.

2.3 Solution of Problems

Let Z = fZ

t

; t � 0g be a sto
hasti
 pro
ess with

dis
rete state spa
e � and embedded MRS (X;S) =

fX

n

; S

n

;n 2 Ng with kernel matrixK(t). For su
h

a pro
ess we 
an de�ne a matrix of 
onditional tran-

sition probabilities as:

V

ij

(t)

d

= PrfZ

t

= j j Z

0

= ig; 8i 2 
;8j 2 �; t � 0:

In many problems involving Markov renewal pro-


esses, our primary 
on
ern is �nding ways to ef-

fe
tively 
ompute V

ij

(t) sin
e several measures of

interest (e.g., reliability and availability) are re-

lated to the 
onditional transition probabilities of

the sto
hasti
 pro
ess.

At any instant t, the 
onditional transition prob-

abilities V

ij

(t) of Z 
an be written as [7, 8℄:

V

ij

(t) = PrfZ

t

= j; S

1

> t j Z

0

= ig+

PrfZ

t

= j; S

1

� t j Z

0

= ig

= PrfZ

t

= j; S

1

> t j Z

0

= ig+

X

k2


Z

t

0

dK

ik

(u)V

kj

(t� u);

for all i 2 
, j 2 �, and t � 0. If we 
onstru
t a

matrix E(t) = [E

ij

(t)℄ with

E

ij

(t)

d

= PrfZ

t

= j; S

1

> t j Z

0

= ig;

then the set of integral equations V

ij

(t) de�nes a

Markov renewal equation, and 
an be expressed in

matrix form as

V(t) = E(t) +

Z

t

0

dK(u)V(t� u); (1)

where the Lebesgue-Stieltjes integral

6

is taken term

by term.

To better distinguish the roles of matri
es E(t)

and K(t) in the des
ription of the MRGP we 
all

6

R

t

0

dK(u)V (t�u) =

R

t

0

k(u)V (t� u)du when K(t) pos-

sesses a density fun
tion k(t) =

dK(t)

dt

.

5



the matrix E(t) as the lo
al kernel of the MRGP,

sin
e it des
ribes the state probabilities of the sub-

ordinated pro
ess during the interval between su
-


essive Markov regeneration epo
hs. Sin
e matrix

K(t) des
ribes the evolution of the pro
ess from

the Markov regeneration epo
h perspe
tive, with-

out des
ribing what happens in between these mo-

ments we 
all it the global kernel of the MRGP.

In the spe
ial 
ase when the sto
hasti
 pro
ess Z

does not experien
e state transitions between su
-


essive Markov regeneration epo
hs; i.e.,

Z

t

= Z

S

+

n

where S

+

n

= maxfS

n

j S

n

� t; n 2 Ng;

Z is 
alled a semi-Markov pro
ess and E(t) is a

diagonal matrix with elements

E

ii

(t) = 1�K

i

(t);

where

K

i

(t)

d

= PrfS

1

� t j Y

0

= ig; 8i 2 


=

X

j2


K

ij

(t)

is the sojourn time distribution in state i. Hen
e,

the global kernel matrix alone (whi
h in this 
ase is

usually denoted as Q(t)) 
ompletely des
ribes the

sto
hasti
 behavior of the SMP.

The Markov renewal equation represents a set

of 
oupled Volterra integral equations of the se
-

ond kind [26℄ and 
an be solved in time-domain

or in Lapla
e-Stieltjes domain. One possible time

domain solution is based on a dis
retization ap-

proa
h to numeri
ally evaluate the integrals pre-

sented in the Markov renewal equation. The inte-

grals in Eqn. 1 are solved using some approxima-

tion rule su
h as trapezoidal rule, Simpson's rule

or other higher order quadrature methods. An-

other time domain alternative is to 
onstru
t a sys-

tem of partial di�erential equations (PDEs), using

the method of supplementary variables [4℄. This

method has been 
onsidered for steady-state anal-

ysis of DSPNs in [22℄ and subsequently extended to

the transient 
ase in [27℄.

An alternative to the dire
t solution of the

Markov renewal equation in time-domain is the

use of transform methods. In parti
ular, if we

de�ne E

�

(s) =

R

1

0

e

�st

dE(t) and V

�

(s) =

R

1

0

e

�st

dV(t), the Markov renewal equation be-


omes

V

�

(s) = E

�

(s) +K

�

(s)V

�

(s)

= [I�K

�

(s)℄

�1

E

�

(s)

After solving the linear system for V

�

(s), trans-

form inversion is required

7

. In very simple 
ases,

a 
losed-form inversion might be possible but in

most 
ases of interest, numeri
al inversion will be

ne
essary. The transform inversion however 
an

en
ounter numeri
al diÆ
ulties espe
ially if V

�

(s)

has poles in the positive half of the 
omplex plane.

For a thorough dis
ussion of Markov renewal

equation solution te
hniques see [28, 29℄, and for

generi
 Volterra integral equations numeri
al meth-

ods see [30, 31℄. Referen
es for the appli
a-

tion of Markov renewal theory in the solution of

performan
e and reliability/availability models see

[16, 32, 23, 28, 33, 34, 35, 36, 37℄.

3 Modeling Failure/Repair

A
tivities in a Parallel Ma-


hine Con�guration

The use and analysis of MRSPNs is initially demon-

strated using a 
omputer system performability

model. Two ma
hines (a and b) are working in a

parallel 
on�guration sharing a single repair fa
il-

ity with a First-Come First-Served (FCFS) s
hedul-

ing dis
ipline. Due to the non-preemptive nature

of this dis
ipline, we do not need age variables in

this 
ase (on
e enabled all GEN transitions in the

model will never be disabled until �ring). We as-

sume that both ma
hines have exponential lifetime

distributions with 
onstant parameters �

a

and �

b

respe
tively. Whenever one of the ma
hines fails it

immediately requests repair. When the single re-

pair fa
ility is busy and a se
ond failure o

urs, the

se
ond ma
hine to fail waits in a repair queue un-

til the �rst ma
hine is put ba
k into servi
e. The

repair-time of the ma
hines is de�ned by the gen-

eral distribution fun
tions G

a

(t) and G

b

(t).

The overall behavior of the system 
an be un-

derstood from the MRSPN illustrated in Fig. 3a.

Ma
hine a is working whenever there is a token in

pla
e P

1

. The EXP transition f

a

with rate �

a

rep-

resents the failure of ma
hine a. When ma
hine a

fails, a token is deposited in pla
e P

6

and its repair

is requested. If the repair fa
ility is available (i.e.,

7

This being the approa
h addopted in the solution of all

examples presented in this paper.
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Figure 3: Parallel system model: a) MRSPN; b)

rea
hability graph; and 
) state transition diagram.

there is a token in pla
e P

5

), it is appropriated with

the �ring of immediate transition i

a

. The GEN

transition r

a

, �ring a

ording to the distribution

fun
tion G

a

(t), represents the random duration of

repair. A token in pla
e P

3

means that ma
hine a

is queued waiting for the availability of the single

repair fa
ility while ma
hine b is undergoing repair

(there is a token in pla
e P

7

). A symmetri
al set

of pla
es and transitions des
ribes the behavior of

ma
hine b. The system is down whenever there are

no tokens in both the pla
es P

1

and P

2

.

The rea
hability graph 
orresponding to the

Petri net is shown in Fig. 3b. Ea
h marking in

the graph is a 7-tuple keeping tra
k of the num-

ber of tokens in pla
es P

1

through P

7

. In the

graph, solid ar
s represent state 
hanges due to

the �ring of immediate transitions or EXP tran-

sitions, while dotted ar
s denote the �ring of GEN

transitions. The vanishing markings (en
losed by

dashed ellipses in the diagram) are eliminated when

the redu
ed rea
hability graph is 
onstru
ted (not

shown), and based on the redu
ed version we 
on-

stru
ted the state transition diagram of Fig. 3
.

De�ne the sto
hasti
 pro
ess Z = fZ

t

; t � 0g to

represent the system state at any instant, where

Z

t

=

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

1 if both ma
hines are working at t

2 if ma
hine a is under repair while

ma
hine b is working at t

3 if ma
hine b is under repair while

ma
hine a is working at t

4 if ma
hine a is under repair while

ma
hine b is waiting for repair at t

5 if ma
hine b is under repair while

ma
hine a is waiting for repair at t

Note that possible values of Z

t

are the labels 
or-

responding tangible markings in Fig. 3b. We are in-

terested in 
omputing performability measures as-

so
iated with the system. To do so, we need to

determine the 
onditional probabilities PrfZ

t

= j j

Z

0

= 1g; 8j 2 � = f1; 2; :::; 5g. Analysis of the

resultant (redu
ed) rea
hability graph shows that

Z is an MRGP with an EMC de�ned by the states

1, 2, and 3; i.e., 
 = f1; 2; 3g. We 
an observe that

transitions to states 4 and 5 do not 
orrespond to

Markov renewal epo
hs be
ause they o

ur while

GEN transitions are enabled. An additional step

adopted before starting the synthesis of the kernel

matri
es was the 
onstru
tion of a simpli�ed state

transition diagram. Fig. 3
 shows a simpli�ed ver-

sion of the redu
ed rea
hability graph where the

markings were repla
ed by the 
orresponding state

indi
es. We preserved the 
onvention for the ar
s

and extended the notation by representing states

of the EMC by 
ir
les, and other states by squares.

The 
onstru
tion of kernel matri
es 
an pro
eed

with the analysis of possible state transitions. The

only non-zero elements in global kernel matrixK(t)


orrespond to the possible single-step transitions

between states of the EMC. Consequently, we have

the following stru
ture of the matrix (identi�ed di-

re
tly from Fig. 3
):

K(t) =

2

4

0 K

1;2

(t) K

1;3

(t)

K

2;1

(t) 0 K

2;3

(t)

K

3;1

(t) K

3;2

(t) 0

3

5

Let the random variables L

a

and L

b

be the re-

spe
tive time-to-failure of the two ma
hines, we 
an

determine K

1;2

(t) in the following way:

K

1;2

(t) = PrfX

1

= 2; S

1

� t j X

0

= 1g

= Prfma
hine a fails by time t and

is the first one to failg

7



= PrfL

a

� t ^ L

b

> L

a

g

=

Z

t

0

�

1�

�

1� e

��

b

�

��

d

�

1� e

��

a

�

	

=

Z

t

0

e

��

b

�

�

a

e

��

a

�

d�

=

�

a

�

a

+ �

b

h

1� e

�(�

a

+�

b

)t

i

:

Similarly,

K

1;3

(t) = PrfX

1

= 3; S

1

� t j X

0

= 1g

= Prfma
hine b fails by time t and

is the first one to failg

=

�

b

�

a

+ �

b

h

1� e

�(�

a

+�

b

)t

i

:

Determination of the elements K

2;1

(t) and

K

2;3

(t) is quite alike, so we only show howK

2;1

(t) is

determined. The third row is 
ompletelly symmet-

ri
al to the se
ond, so it 
an be easily undestood

on
e K

2;1

(t) is understood. We need some auxil-

iary variables to help in the explanation of the 
on-

stru
tive pro
ess of K

2;1

(t). Hen
e, we de�ne the

random variables R

a

and R

b

to respe
tively repre-

sent times ne
essary to repair ma
hines a and b.

The distribution fun
tion of R

a

(R

b

) is G

a

(G

b

).

Using this new variables we 
an 
ompute K

2;1

(t):

K

2;1

(t) = PrfX

1

= 1; S

1

� t j X

0

= 2g

= Prfrepair of a is finished by time t

and b has not failed during the

repair of ag

= PrfR

a

� t ^ L

b

> R

a

g

=

Z

t

0

PrfL

b

> �gdG

a

(�)

=

Z

t

0

�

1�

�

1� e

��

b

�

��

dG

a

(�)

=

Z

t

0

e

��

b

�

dG

a

(�):

To summarize, the elements of the global kernel

matrix are:

K

1;2

(t) =

�

a

�

a

+ �

b

h

1� e

�(�

a

+�

b

)t

i

;

K

1;3

(t) =

�

b

�

a

+ �

b

h

1� e

�(�

a

+�

b

)t

i

;

K

2;1

(t) =

Z

t

0

e

��

b

�

dG

a

(�);

K

2;3

(t) =

Z

t

0

�

1� e

��

b

�

�

dG

a

(�);

K

3;1

(t) =

Z

t

0

e

��

a

�

dG

b

(�); and

K

3;2

(t) =

Z

t

0

�

1� e

��

a

�

�

dG

b

(�):

Note that the global kernel will always be a

square matrix. In this 
ase with dimensions 3� 3,

sin
e we have 3 states in the embedded Markov


hain. However, the lo
al kernel matrix is not ne
-

essarily a square matrix, sin
e the 
ardinality of the

state spa
e of Z 
an be larger than the 
ardinality

of the state spa
e of the embedded Markov 
hain.

This 
an be seen, for instan
e, in this system sin
e

the embedded Markov 
hain has only 3 states while

the MRGP has 5 possible states.

We 
onstru
t the lo
al kernel matrix E(t) follow-

ing a similar indu
tive pro
edure. In this 
ase we

are looking for the probability that the MRGP will

move to a given state before the next Markov re-

newal moment. Careful analysis of Fig. 3
 reveals

the stru
ture of the lo
al kernel matrix E(t):

2

4

E

1;1

(t) 0 0 0 0

0 E

2;2

(t) 0 E

2;4

(t) 0

0 0 E

3;3

(t) 0 E

3;5

(t)

3

5

Sin
e in a single step the system 
an only go from

state 1 to the other two states of the EMC then E

1;1

should be the 
omplementary sojourn time distri-

bution fun
tion in state 1, that is,

E

1;1

= 1� (K

1;2

(t) +K

1;3

(t))

= e

�(�

a

+�

b

)t

:

The diÆ
ulty 
omes with the indu
tion of E

2;2

(t)

and E

2;4

(t) (
omplement of E

2;2

(t)). On
e we solve

for these, we have the solution for the remaining


omponents of the matrix due to the symetry of

the problem. Therefore, we explain the indu
tion

pro
ess that leads to E

2;2

(t):

E

2;2

(t) = PrfZ

t

= 2; S

1

> t j X

0

= 2g

= Prfrepair of a is not finished up to t

and b has not failed until tg

= Prfrepair of a is not finished up to t

� Prfb has not failed until tg

= [1�G

a

(t)℄e

��

b

t

:

8



We 
an now express the remaining non-zero ele-

ments of the lo
al kernel matrix as

E

2;4

(t) =

�

1� e

��

b

t

�

G




a

(t)

E

3;3

(t) = e

��

a

t

G




b

(t)

E

3;5

(t) =

�

1� e

��

a

t

�

G




b

(t)

with

G




a

(t) = 1�G

a

(t); and

G




b

(t) = 1�G

b

(t):

We 
an always verify our answers by summing the

elements in ea
h row of both kernel matri
es. Cor-

responding row-sums of the two matri
es must add

to unity, 
ondition that is easily veri�ed to hold in

the example.
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SPNP results:

LST results:

Figure 4: Numeri
al results for the parallel system

with non-premptive repair.

The kernel matri
es determined 
an then be sub-

stituted in Equation (1) and the resultant system

of 
oupled integral equations solved using one of

the approa
hes des
ribed in [28, 29℄. The resultant

plots, labelled LST in Fig. 4, report system avail-

ability and performability 
omputed when time to

repair is deterministi
; i.e.,

G

a

(t) = U(t� �

a

); �

a

> 0

G

b

(t) = U(t� �

b

); �

b

> 0

where U(t) is the unit step fun
tion; the failure

rates (parameters �

a

and �

b

) are identi
al �

b

) takes

5 hours. The interval availability is the expe
ted

proportion of time the system is operational during

the period [0; t℄:

�

A(t) =

1

t

Z

t

0

E[X(�)℄d�;

when the dis
rete random variableX represents the

operational status of the system; i.e., X(t) = 1 if

the system is operatinal at time t, and 0 if it is not.

The performability measure plotted in the �gure


orresponds to the interval pro
essing 
apa
ity of

the system, with the 
onvention that a unit of 
om-

puting 
apa
ity 
orresponds to that of one a
tive

ma
hine.

Following the approa
h used in [34℄, we also plot-

ted 
orresponding Markovian system results, where

ea
h DET transition was repla
ed by an equivalent

25-stage Erlang subnet. The Markovian models

were solved using the Sto
hasti
 Petri Net Pa
k-

age (SPNP) introdu
ed in [38℄.

4 Preemptive LCFS repair

Fig. 5 shows the PN whi
h des
ribes the behavior of

the system 
ontaining the same ma
hines a and b

of the previous example and applies the preemptive

LCFS s
heduling s
heme. The repair of ma
hine a

(b), represented by a token at P

6

(P

7

) is preempted

as soon as ma
hine b (a) fails, i.e., transition f

b

(f

a

)

�res. In this 
ase the repair fa
ility is assigned to

the ma
hine whi
h failed later (i

0

a

or i

0

b

�res and a

token is pla
ed to P

8

or P

9

). After the repair of

the last failed ma
hine (�ring of r

0

a

or r

0

b

) the re-

pair fa
ility returns to the 
ompletion of preempted

repair a
tion. Di�erent memory poli
ies 
an be


onsidered depending on whether the repairman is

able to \remember" the work already performed on

the ma
hine before preemption or not. In the 
ase

9
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Figure 5: Preemptive LCFS repair with non-

identi
al ma
hines

that the prior work is lost due to the interruption

and the repair must be repeated from s
rat
h with

an identi
al repair time requirement (pri poli
y) or

with a repair time resampled from the original 
u-

mulative distribution fun
tion (prd poli
y). In the


ase that the prior work is not lost and the time

to 
omplete the preempted repair equals the resid-

ual repair time given the portion of work already


ompleted before preemption (prs poli
y). The PN

on Fig. 5 
aptures the di�erent memory poli
ies for

repair by assigning transitions r

a

and r

b

the appro-

priate preemption poli
ies. (The preemption poli-


ies of transitions r

0

a

and r

0

b

are not relevant sin
e

r

0

a

and r

0

b


annot be preempted.)

We analyze a simpli�ed version of the two ma-


hine system with preemptive LCFS repair and

with prs poli
y. We assume that the two ma
hines

are statisti
ally identi
al, i.e., their failure and re-

pair time distributions are the same. Fig. 6a shows

a PN whi
h des
ribes the behavior of the system of

two identi
al ma
hines with LCFS s
heduling. To-

kens in pla
e P

1

represent operational ma
hines, to-

kens in P

2


ount failed ma
hines (in
luding the one

under repair), and a token in pla
e P

4

the availabil-

ity of the single repair fa
ility. In the initial mark-

ing M

1

= (2 0 0 1) (Fig. 6b), t

1

is the only enabled

transition. Firing of t

1

represents the failure of the

�rst ma
hine and leads to state M

2

= (1 1 1 0). In

M

2

, transitions t

2

and t

3

are 
ompeting. The GEN

transition t

2

represents the repair of the failed ma-


hine and its �ring returns the system to the initial

state M

1

. The EXP transition t

3

represents the

failure of the se
ond ma
hine and its �ring disables
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Figure 6: Preemptive LCFS repair with identi
al

ma
hines

t

2

by removing one token from P

3

(the �rst repair

be
omes dormant). In M

3

= (0 2 0 1) one ma
hine

is under repair and the other repair is dormant,

and the only enabled transition is the repair of the

last failed ma
hine. Firing of the GEN transition t

4

leads the system again to M

2

, where the dormant

repair is resumed. Assume that the failure times of

both ma
hines are exponentially distributed with

parameter � so that the EXP transitions t

1

and t

3

have �ring rates 2� and �, respe
tively.

The preemptive poli
y of transition t

2

has to be

assigned based on the system behavior to be eval-

uated. (The preemptive poli
y of transition t

4

is

irrelevant sin
e t

4


an not be preempted.) Assign-

ing a prd poli
y to t

2

means that ea
h time t

2

is

disabled by the failure of the se
ond ma
hine (t

3

�res before t

2

), the 
orresponding age variable a

2

is reset. As soon as t

2

be
omes enabled again (the

se
ond repair 
ompletes and t

4

�res) no memory is

kept of the prior repair period, and the exe
ution

of the repair restarts from s
rat
h. The prd servi
e

poli
ies, like this one, are 
overed by the model def-

inition in [39, 40℄.

The 
ase when a pri poli
y is assigned to t

2

is

very similar to the previous one ex
ept that as soon

as t

2

be
omes reenabled (the se
ond repair 
om-

pletes and t

4

�res), the same repair (same �ring

time sample) has to be 
ompleted from the begin-

ning. This type of pri memory poli
y is 
overed by

the model de�nition in [16℄, and 
an be analyzed

by the transform domain method dis
ussed there.

Hereafter we assume that a prs poli
y is assigned

to t

2

. When a prs poli
y is assigned to t

2

, ea
h time

10



t

2

is disabled without �ring (t

3

�res before t

2

) the

age variable a

2

is not reset. Hen
e, as the se
ond

repair 
ompletes (t

4

�res), the system returns to

M

2

keeping the value of a

2

, so that the time to


omplete the interrupted repair 
an be evaluated

as the original repair requirement minus the 
ur-

rent value of a

2

. The age variable a

2


ounts the

total time during whi
h t

2

is enabled before �r-

ing, and is equal to the 
umulative sojourn time in

M

2

. The Markov renewal moments in the mark-

ing pro
ess 
orrespond to the epo
hs of entran
e

to markings in whi
h the age variables asso
iated

with all the transitions are equal to zero. By in-

spe
ting Fig. 6b, the Markov renewal moments are

the epo
hs of enteringM

1

and of enteringM

2

from

M

1

.

The subordinated pro
ess starting from marking

M

1

is a single step CTMC (sin
e t

1

the only en-

abled EXP transition) and in
ludes the only im-

mediately rea
hable state M

2

(Markovian regener-

ation period).

The subordinated pro
ess starting from marking

M

2

in
ludes all the states rea
hable from M

2

be-

fore �ring of t

2

; i.e., M

2

and M

3

. Sin
e M

2

is the

only state in whi
h t

2

is enabled, the age variable

a

2

in
reases only in marking M

2

and maintains its

value in M

3

. The �ring of t

2


an only o

ur from

M

2

leading to marking M

1

.

Noti
e that the subordinated pro
ess starting

from M

2

is semi-Markov sin
e the �ring time of t

4

is generally distributed. The age variable a

2

grows

whenever the MRSPN is in marking M

2

, and the

�ring of t

2

o

urs when a

2

rea
hes the a
tual value

of the �ring time (whi
h is generally distributed

with 
umulative distribution fun
tion G(t)). If we


ondition that the �ring time of t

2

to w, w a
ts an

absorbing barrier for the a

umulation fun
tional

represented by the age variable a

2

, the �ring time

of t

2

is determined by the �rst passage time of a

2

a
ross the absorbing barrier w.

The 
losed form Lapla
e-Stieltjes transform ex-

pressions of the kernel matri
es of the LCFS re-

pair prs 
ase are derived here in detail, applying

the te
hnique based on the Markov renewal theory.

We build up the K

�

(s) and E

�

(s) matri
es row

by row by 
onsidering separately all the states that


an be regeneration states and 
an originate a sub-

ordinated pro
ess. M

3


an never be a regeneration

state sin
e t

2

is always a
tive when entering to M

3

,


 = fM

1

;M

2

g. The fa
t that M

3

is not a regen-

eration marking, means that the pro
ess 
an stay

in M

3

only between two su

essive Markov renewal

moments.

The starting regeneration state is M

1

- (Markovian

regeneration period) No general transition is en-

abled and the next regeneration state 
an only be

state M

2

. The non-zero elements of the �rst row of

the kernel matri
es are

K

�

12

(s) =

2�

s + 2�

and E

�

11

(s) =

s

s + 2�

The starting regeneration state isM

2

- Transition t

2

is GEN so that the next regeneration time point is

the epo
h of �ring of t

2

. The subordinated pro
ess

starting from M

2


omprises states M

2

and M

3

and

is an SMP (sin
e t

4

is GEN) whose kernel is:

Q

�

(s) =

2

4

0

�

s + �

G

�

(s) 0

3

5

where G

�

(s) is the LST of the distribution fun
tion

of the �ring time of t

4

.

The transition t

2

�res when the age variable a

2

rea
hes a
tual sample of the �ring time 


2

. In gen-

eral, when a GEN transition is a
tive the o

uren
e

of a Markov renewal epo
h in the marking pro
ess

of an NMSPN is due to one of the following two

reasons:

� the GEN transition �res,

� the GEN transition of prd type be
omes dis-

abled.

For the analysis of subordinated pro
esses of this

kind three matrix fun
tions F

i

(t; w), D

i

(t; w) and

P

i

(t; w) (where t denotes the time, w a �xed �r-

ing time sample, and the supers
ript i refers to the

initial (regeneration) state of the subordinated pro-


ess) were introdu
ed in [24℄. F

i

(t; w) refers to the


ase when the next regeneration moment is be
ause

of the �ring of the GEN transition with the (�xed)

�ring time sample w. For the analysis of this 
ase

an additional matrix (�

i

referred to as bran
hing

probability matrix) is introdu
ed, as well, to de-

s
ribe the state transition subsequent to the �ring

of the GEN transition. D

i

(t; w) 
aptures the 
ase

when the next regeneration moment is 
aused by

the disabling of the prd type GEN transition. And

11



P

i

(t; w) des
ribes the state transition probabilities

inside the regeneration period.

Sin
e transition t

2

is of prs type the matrix fun
-

tion D

i

(t; w) does not play a role in the analysis

of the subordinated pro
ess starting from mark-

ing M

2

. The remaining fun
tions 
an be evalu-

ated based on the kernel of the subordinated SMP

(Q

i

(t) = fQ

i

k`

(t)g) [24℄:

F

i��

k`

(s; v) = Æ

k`

r

k

�

1�Q

i�

k

(s+ vr

k

)

�

s+ vr

k

+

X

u2R

i

Q

i�

ku

(s+ vr

k

)F

i��

u`

(s; v)

P

i��

k`

(s; v) = Æ

k`

s

�

1�Q

i�

k

(s+ vr

k

)

�

v(s+ vr

k

)

+

X

u2R

i

Q

i�

ku

(s+ vr

k

)P

i��

u`

(s; v)

whereQ

i

k

(t) =

P

`

Q

i

k`

(t); s is the time variable and

v is the barrier level variable in transform domain;

r

k

is the indi
ator that the a
tive GEN transition

is enabled in state k; R

i

is the part of the state

spa
e rea
hable during the subordinated pro
ess;

and the supers
ript � (�) refers to Lapla
e-Stieltjes

(Lapla
e) transform.

Given that G

g

(t) is the distribution fun
tion of

the �ring time of the GEN transition, the elements

of the i-th row of matri
es K(t) and E(t) 
an be

expressed as follows, as a fun
tion of the matri
es

P

i

(t; w), F

i

(t; w) and D

i

(t; w):

K

ij

(t) =

Z

1

0

"

X

k2R

i

F

i

ik

(t; w)�

i

k;j

+D

i

ij

(t; w)

#

dG

g

(w)

E

ij

(t) =

Z

1

0

P

i

ij

(t; w)dG

g

(w)

To evaluate the 2nd row of the kernel matri
es

we are applying these results for the subordinated

pro
ess starting from regeneration stateM

2

. Doing

so we obtain the following expressions for the non-

zero matrix entries:

F

��

22

(s; v) =

1

s+ v + �� �G

�

(s)

P

��

22

(s; v) =

s=v

s+ v + �� �G

�

(s)

P

��

23

(s; v) =

�(1�G

�

(s))=v

s+ v + �� �G

�

(s)

Un
onditioning with respe
t to the �ring time dis-

tribution of t

2

, and after inverting the Lapla
e

transform (LT) with respe
t to v, the non-zero en-

tries of the 2nd row of the LST matrix fun
tions

K

�

(s) and E

�

(s) be
ome:

K

�

21

(s) =

Z

1

w=0

e

�w(s+ ���G

�

(s))

dG(w)

= G

�

(s + �� �G

�

(s))

E

�

22

(s) =

s[1�G

�

(s + �� �G

�

(s))℄

s+ �� �G

�

(s)

E

�

23

(s) =

�(1�G

�

(s)) [1�G

�

(s + �� �G

�

(s))℄

s+ �� �G

�

(s)

The LST of the state probabilities are obtained

by solving the Markov renewal equation in trans-

form domain. The time domain probabilities are


al
ulated by numeri
ally inverting the result by

resorting to the Jagerman method [41℄.

To evaluate the performan
e of the di�erent

s
heduling s
hemes, we 
ompared the availability

and pro
essing power of the FCFS and the LCFS

repair s
hemes with two di�erent repair time dis-

tributions. The FCFS s
heme was evaluated by

the time domain method introdu
ed in the previ-

ous se
tion and the LCFS s
heme was evaluated

by the above transform domain method. It is as-

sumed that the system is available when at least

one ma
hine is working (marking M

1

and M

2

) and

that the system performan
e doubles when both

ma
hines are working. The failure times of both

ma
hines are exponentially distributed with rates

� = �

a

= �

b

= 0:01. The repair times of both

ma
hines are assumed to be:

� deterministi
 � = 5, hen
e

G(t) = G

1

(t) = G

2

(t) = U(t� �)

G

�

(s) = e

��s

;

� hyperexponentially distributed with p = 0:625;

�

1

= 0:5; �2 = 0:1, hen
e

G(t) = G

1

(t) = G

2

(t) = 1�pe

��

1

t

�(1�p)e

��

2

t

G

�

(s) =

p�

1

�

1

+ s

(1� p)�

2

�

2

+ s

:

The mean repair time is 5 in both 
ases. Fig. 7a

and 7b show the instantaneous and the interval
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measures of availability and pro
essing power with

deterministi
 repair time, respe
tively. The dot-

ted line shows the instantaneous and the short

dashed line shows the interval availability/power

with LCFS repair, while the long dashed line shows

the instantaneous and the solid line shows the inter-

val availability/power with FCFS repair. It 
an be

observed that the FCFS s
heduling performs better

in this 
ase. The availability and pro
essing power

results for the hyperexponential repair time distri-

bution are plotted on Fig. 7
 and 7d, respe
tively.

In these �gures the dotted line shows the instanta-

neous availability/power with LCFS repair, while

the dashed line shows the instantaneous availabil-

ity/performability with FCFS repair. As 
an be

seen from these �gures, in 
ontrast with the deter-

ministi
 repair time the LCFS s
heduling performs

better with the hyperexponential repair time dis-

tribution.

5 Modeling preemption in a

multi-tasking environment

NMSPN require 
omplex solution te
hniques

mainly based on theory of Markov regenerative pro-


esses. Software pa
kages are then required whi
h


an hide solution and implementation details. A

big boost in this dire
tion 
ame from two well-

known tools, DSPNexpress [42℄ and TimeNET [43,

44℄. Re
ently, a new software pa
kage for non-

Markovian Petri nets has been developed in a joint

e�ort between the Universities of Catania and Bu-

dapest. This tool, named WebSPN [45℄,

provides a dis
rete time approximation of the

sto
hasti
 behaviour of the marking pro
ess whi
h

results in the possibility to analyze a wider 
lass

of PN models with prd, prs and pri 
on
urrently

enabled generally distributed transitions. The ap-

proximation of the 
ontinuous time model at eq-

uispa
ed dis
rete time points involves the analysis

of the system behavior over a time interval based

on the system state at the beginning of the inter-

val and the past history of the system. A Web-


entered view has been adopted in its develop-

ment in order to make it easily a

essible from

any node 
onne
ted with the Internet as long as

it possesses a Java-enabled Web browser. Sophis-

ti
ated se
urity me
hanisms have also been imple-

mented to regulate the a

ess to the tool whi
h are

based on the use of publi
 and private ele
troni


keys. WebSPN is available at the following site:

http://sun195.iit.uni
t.it/�webspn/webspn2/

5.1 Model des
ription

In this se
tion we des
ribe and solve a model of

Petri net with several 
on
urrently enabled GEN

transitions and di�erent memory poli
ies. The sys-

tem moves between an operative phase, where use-

ful work is produ
ed, and a phase of maintenan
e

where the pro
essing is temporarily interrupted.

The Petri net shown in Fig. 8 represents the

model of the system that 
onsists of three fun
-

tional blo
ks generi
ally referred to as Blo
k1,

Blo
k2 and Blo
k3. Blo
k1 models the alternation

of the system between the operative phase and the

maintenan
e phase. Blo
k2 models the two sequen-

tial phases of pro
essing of jobs. Finally, Blo
k3

models the alternation of the system during the op-

erative phase between the phase of pre-pro
essing

and the one of pro
essing of jobs.

Within Blo
k1, the two states of operation where

the system 
an be are represented by pla
es user

and system and by transitions U time and S time.

A token in pla
e user denotes the operative state,

while a token in pla
e system denotes the mainte-

nan
e one. The duration of the operative phase

is denoted by transition U time, while the mainte-

nan
e one is denoted by transition S time. The in-

hibitor ar
s outgoing from pla
e system and leading

to the timed and immediate transitions 
ontained

in Blo
k2 and Blo
k3 produ
er, 
ons1, busy prod,

idle prod, busy2, idle2 are used for interrupting the

a
tivity of the system during the phase of mainte-

nan
e.

Blo
k2 models the pro
essing of jobs. In parti
-

ular, the number of jobs to be pro
essed is denoted

by the number of tokens 
ontained in pla
e work,

while the time of pre-pro
essing of ea
h job is rep-

resented by transition produ
er. Pre-pro
essed jobs

are queued in a bu�er (pla
e bu�1) waiting for the

se
ond phase of pro
essing (transition 
ons1).

In Blo
k3, the alternation between the phases

of pre-pro
essing and pro
essing of jobs is repre-

sented through pla
es slot1 and slot2 and transi-

tions busy brod, busy2, idle prod, idle2. A token in

pla
e slot1 denotes that the system is exe
uting the

pre-pro
essing of a job, while a token in pla
e slot2
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denotes the exe
ution of a phase of pro
essing. An

inhibitor ar
 between slot1 and 
ons1 dea
tivates

the phase of pro
essing when the pre-pro
essing

one is a
tive. In the same way, the inhibitor ar


between slot2 and produ
er dea
tivates the phase

of pre-pro
essing when the pro
essing one is a
-

tive. The time that the system alternately spends

for these two a
tivities is represented by transitions

busy prod and busy2. The immediate transition

idle prod (idle2) prevents the system to remain in

phase 1 (2), even if no job is to be pro
essed. The

fun
tion of the inhibitor ar
s from pla
e work to

transition idle prod and from pla
e bu� to transi-

tion idle2 is to enable su
h transitions when no job

is to be pro
essed in the 
orresponding phase of

pro
essing.

Immediate transition end and pla
e Stop are used

for modeling the pro
essing of all the jobs assigned

to the system at the beginning. In fa
t, transition

end is inhibited until at least one token is present

in pla
es work and bu�. When all the jobs have

been pro
essed, transition end �res, and immedi-

ately moves a token to pla
e Stop. All the a
tivi-

ties of the system are thus interrupted through the

inhibitor ar
s outgoing from pla
e Stop.

The measure that we evaluate from this model is

the distribution of the time required for 
omplet-

ing the set of jobs assigned to the system at the

beginning. It 
an be obtained as the distribution

of having a token in pla
e Stop.

With regard to the distributions of the �ring

times to be assigned to timed transitions, we as-

sume that the �ring times of transitions U time,

S time, busy brod, busy2 are deterministi
. We

assume that the �ring times of transitions pro-

du
er and 
ons1 are respe
tively distributed uni-

formly and exponentially. The measures 
onsidered


an therefore be evaluated by 
hanging the mem-

ory poli
y asso
iated with transitions produ
er and


ons1.

In the 
ase of prd poli
y, the temporary inter-

ruption of the pro
essing of a job (either be
ause

the whole system enters the phase of maintenan
e,

or be
ause, even if the system is in the produ
-

tion phase, it interrupts the pre-pro
essing phase

for 
hanging to the pro
essing one or vi
e versa)


auses the interrupted job to be dis
arded. A new

job is exe
uted when the system is available again.

The 
orresponden
e with a real system is perhaps

hard to �nd; however, we note that prd poli
y is

the most 
ommonly used one in the literature.

Conversely, by adopting prs poli
y, we keep a

memory of the work that we were exe
uting. In

this 
ase, when transition produ
er is disabled, we

keep a memory of the work that has already been

exe
uted on the job 
onsidered. When the system

enters the operative state again, the pre-pro
essing

of the job 
ontinues from the point we had rea
hed.

In this 
ase, the model 
an represent a system of

manufa
turing, where a ma
hine used for produ
-

tion alternates 
y
les of produ
tion and 
y
les of

maintenan
e, and produ
tion takes pla
e in two se-

quential phases. We note that prd and prs poli
ies

are equivalent for transition 
ons1, sin
e this one is

and EXP transition.

With pri poli
y, when transition produ
er is dis-

abled, the work that had already been produ
ed

is lost, but we keep a memory of the job that we

were pro
essing. When the transition is enabled

again we start from zero, but the amount of work

to be produ
ed on the job remains the same, be-


ause the job has not been 
hanged. Su
h a be-

havior 
an be easily noted when a

essing transa
-

tional databases, where ea
h transa
tion is atomi


(i.e., has to be pro
essed with no interruption). If

an interruption o

urs, the transa
tion is entirely

pro
essed again. If we assume a memory poli
y like

prs for transition 
ons1, the model 
ould represent a


lient/server system where the a

esses to database

(transition produ
er) take pla
e atomi
ally, and the

phase of pro
essing of the query (transition 
ons1)

requires a variable time, distributed exponentially.

5.2 Numeri
al Results

For the solution of the model we assume that the

�ring time of transition produ
er is distributed uni-

formly between 0.5 and 1.5; the �ring time of tran-

sitions U time and S time are deterministi
, with

a �ring time of 1; the �ring time of transitions

busy prod and busy2 are deterministi
, with a �r-

ing time of 0.1; the �ring time of transition 
ons1

is distributed exponentially, with a �ring rate of

0.1; transition end is immediate and has a priority

of 2; transitions idle prod and idle2 are immediate

and have a priority of 1; the total number of jobs

to be pro
essed is 3.

In Fig. 9 we show the distribution of 
omple-

tion time for di�erent memory poli
ies assigned to

transitions produ
er and 
ons1. The behavior of

14



the system 
hanges signi�
antly depending upon

the memory poli
y adopted. The prs poli
y a
-


rues the highest probability of 
ompletion within

a given time. Both the prd and the prs poli
ies

a

omplish the 
ompletion of jobs. In fa
t, 
urves

eventually rea
h the value 1. Conversely, a di�er-

ent behavior 
an be observed if we assume a poli
y

like pri. In fa
t, in that 
ase, the resulting dis-

tribution is defe
tive, sin
e the unit value is never

rea
hed for t ! 1. This is 
losely 
onne
ted with

the 
hoi
e of the parameters asso
iated with tran-

sitions produ
er and U time. As we note in Fig. 10,

when the �ring time of transition U time is lower

than 1.5, transition produ
er has a positive prob-

ability (50%)of not 
ompleting its work. Sin
e in

the 
ase of pri poli
y the job is pro
essed with the

same work requirement, this 
auses a situation of

impasse, whi
h prevents the work assigned to the

system to be 
ompleted.

Fig. 11 shows how the overall system behavior


hanges if transitionU time is assigned a �ring time

higher than 1.5 (for example 2.0). In su
h 
ase,

transition produ
er has a �nite probability of �ring

before the system enters the phase of maintenan
e,

and therefore the distribution of 
ompletion time

with pri poli
y rea
hes the value 1.

6 Con
lusion

We dis
ussed the need for more advan
ed te
h-

niques to 
apture generally distributed events

whi
h o

ur in everyday life. Among the di�er-

ent approa
hes proposed in the literature, non-

Markovian Petri nets represent a valid analyti
al

alternative to numeri
al simulation. An approa
h

based on the analysis of the underlying Markov Re-

generative Pro
ess has been presented. Advan
ed

preemption poli
ies were introdu
ed and several ex-

amples solved in detail.
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