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Abstract

Petri nets represent a powerful paradigm for mod-
eling parallel and distributed systems. Parallelism
and resource contention can easily be captured and
time can be included for the analysis of system dy-
namic behavior. Most popular stochastic Petri nets
assume that all firing times are exponentially dis-
tributed. This is found to be a severe limitation in
many circumstances that require deterministic and
generally distributed firing times. This has led to
a considerable interest in studying non-Markovian
models. In this paper we specifically focus on non-
Markovian Petri nets. Analytical approach through
the solution of the underlying Markov regenerative
process is dealt with and numerical analysis tech-
niques are discussed. Several examples are pre-
sented and solved to highlight the potentiality of
the proposed approaches.

Stochastic Petri Nets, Markov regenerative pro-
cesses, preemption policies, numerical analysis.

1 Introduction

Over the past decade, stochastic and timed Petri
nets of several kinds have been proposed to over-
come limitations on the modeling capabilities of
Petri nets (PNs). Although very powerful in cap-
turing synchronization of events and contention for
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system resources, the original paradigm was not
complete enough to capture other elements indis-
pensable for dependability and performance mod-
eling of systems. Thus, new extensions allowing
for time and randomness abstractions became nec-
essary. Despite the consensus on which elements
to add, a certain uncertainty existed on where to
aggregate the proposed extensions. From among
several alternatives, a dominant one was soon es-
tablished where the Petri nets could have transi-
tions that once enabled would fire according to ex-
ponential distributions with different rates (EXP
transitions). This led to well known net types:
Generalized Stochastic Petri Nets (GSPNs) [1] and
Stochastic Reward Nets (SRNs) [2].

The resulting modeling framework allowed the
definition and solution of stochastic problems en-
joying the Markov property [3]: the probability
of any particular future behavior of the process,
when its current state is known exactly, is not al-
tered by additional knowledge concerning its past
behavior. These Markovian stochastic Petri nets
(MSPNs) were very well accepted by the model-
ing community since a wide range of real depend-
ability and performance models fall in the class of
Markov models. Besides the ability to capture var-
ious types of system dependencies intrinsic to the
underlying Markov models, other advantages of the
Petri net framework also contributed to the pop-
ularity of the MSPNs. Among these reasons, we
point out the power of concisely specifying very
large Markov models, and the equal ease with which
steady-state, transient, cummulative transient and
sensitivity measures could be computed. One of the
key restrictions, however, is that only exponentially
distributed firing times are captured. This led to
the development of non-Markovian stochastic Petri
nets.



Non-Markovian stochastic Petri nets (NMSPNs)
were then proposed to allow for the high level de-
scription of non-Markovian models. Likewise in
the original evolutive chain, several alternative ap-
proaches to extend the Markovian Petri nets were
proposed. Their distinctive feature was the under-
lying analytical technique used to solve the non-
Markovian models. Candidate solution methods
considered included the deployment of supplemen-
tary variables [4], the use of phase-type expan-
sions approximations [5, 6], and the application of
Markov renewal theory [7, 8]. Representative non-
Markovian Petri nets proposed, listed according
to the underlying solution techniques, are the Ex-
tended Stochastic Petri Nets (ESPNs) [9], the De-
terministic and Stochastic Petri Nets (DSPNs) [10],
the Stochastic Petri Nets with Phase-Type Dis-
tributed Transitions (ESPs) [11], and the Markov
Regenerative Stochastic Petri Nets (MRSPNs) [12].
As a consequence of these evolutive steps, we ob-
serve that the restriction imposed on the distribu-
tion functions regulating the firing of timed tran-
sitions was progressively relaxed from exponential
distributions to a combination of exponential and
deterministic distributions, then to any distribu-
tion represented by phase type approximations,
and finally to any general distribution function
(GEN transitions).

However, this flexibility also brought a new re-
quirement with it. If an enabled GEN transition is
disabled before firing, a scheduling policy is needed
to complete the model definition. Consider the
generic client/server NMSPN model in Fig. 1 for
instance. Requests from clients arrive according to
a Poisson process (EXP transition ¢;). Tokens in
place P; represent clients already in the system. In
a single server configuration only one of the queued
requests will be serviced at a given time. The ser-
vice requirement vy, of each request is sampled from
a general distribution function G,(t) that coordi-
nates the firing of the GEN transition t5. An age
variables a, associated with a request keeps track
of the amount of service actually received by the
request. Service will be completed (i.e., transition
to will fire) as soon as the age variable a4 of the ac-
tive request (the one receiving server’s attention)
reaches the value of its service requirement ~,. Af-
ter that, the request leaves the system and its as-
sociated age variable is destroyed.

Furthermore, suppose that the server is failure-
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Figure 1: Fault-tolerant client/server model.

prone with constant failure and repair rates. A
token in place P, represents the active state of the
server while a token in place Ps; indicates server
being down (undergoing repair). Consequently, fir-
ing of the EXP transitions t3 and ¢4 correspond
to the failure and end-of-repair events associated
with the server. Whenever down, the server can-
not, service new clients or complete the service re-
quirement of the current request, as shown by the
inhibitor arc from place P; to transition ¢5. Clearly
a scheduling policy is then necessary to precisely
define how the server must proceed when brought
up again. In MSPNs with EXP transitions this was
not a problem because of the memoryless property
of the exponential distributions [3]'. The remain-
ing processing time of an nterrupted request is also
represented by the EXP transition ts.

In the favorable case, the server is able to com-
pletely service the current request before a failure
occurs (as shown in Fig. 2a). Otherwise the system
behavior depends on the amount of remaining ser-
vice at the time of the interruption, and whether
the service already received by the request will be
discarded. The service requirement vy, may increase
or decrease as an indirect consequence of system
events responsible by the server interruption. For
instance, the failure of the server in Fig. 1 may
render certain activities of the client unnecessary,
which would then reduce its service requirement
to a lower v,/ value. Likewise, the age variable
a, related to the active request may also be af-
fected by the server interruption since the amount
of service already provided to the request may be

LTf the scheduling policy is non-work-conserving and the
service requirement of the client needs to be preserved then
even the EXP transition has to be dealt with like a GEN
transition.



preserved or lost. We distinguish both situations
calling the first a work conserving scheme, and the
second non-work-conserving. With these four con-
ditions we constructed the table in Fig. 2b. Note
that, although the service requirement is shown to
be increasing after the interruption in the illustra-
tion in the bottom row of the table, the situation
where v,/ < 7, is also possible?.
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Figure 2: Different scheduling policies.

Fig. 2b can be interpreted from two distinct per-
spectives. From the clients’ perspective, all curves
correspond to the same client whose service is mo-
mentarily interrupted between times 7 and T73.
From the server’s perpective, clients requests live
only from interruption-to-interruption. There is a
single age variable associated with the server, and
what happens after interruptions is defined by the
scheduling policy which may be preemptive or non-
preemptive, depending on if the server swaps clients
before finishing service or not. Preemptive policies
are usually based on a hierarchical organization of
requests (e.g., priority scheduling) or on an alloca-
tion of service based on time quotas (e.g., round-
robin scheduling). In this case, system behavior
is strongly affected by the preemptive policy and

2Naturally, 74/ > ag at the time of the interruption needs
to be always imposed.

the overall performance will depend on the strat-
egy adopted to deal with the preempted requests,
as described in the following;:

e The work done on the request prior to inter-
ruption is discarded so that the amount of
work a, is lost. The server starts processing
a new request which has a work requirement
Y,!; i.e., anew sample is drawn from the service
time distribution of the client. The server then
starts serving this new request from the begin-
ning (i.e., a;, = 0), as shown in the bottom-
right sketch in Fig. 2b.

e The server returns back to the preempted re-
quest with the original service requirement ;.
No work is lost so that the age variable retains
its value a, prior to the interruption. The re-
quest is resumed from the point of interruption
as shown in the top-left sketch in Fig. 2b.

e The server also returns to the same request
with the original service requirement v,. But
the work done prior to the interruption is lost
and the age variable a, is set to zero. The
request processing starts from the beginning
as shown in the top-right sketch in Fig. 2b.

As in [13], the above policies are referred to as
preemptive repeat different (prd), preemptive re-
sume (prs) and preemptive repeat identical (pri),
respectively®. The case shown in the bottom-left
sketch in Fig. 2b is not considered in the literature
as it is unrealistic. Note that in [15], the authors
indicated the prd and prs type policies as enabling
and age type. The pri policy of Petri net transitions
was introduced for the first time in [16]. The prd
and prs (with phase-type distributed firing times)
policies are the only ones considered in the available
tools modeling NMSPNs [17, 11, 18, 19].

Note that when the scheduling is preemptive: (i)
the prs and prd policies produce the same results
with EXP transitions, but pri is different; (ii) The
prd and pri policies have the same effect for tran-
sitions firing according to a deterministic random
variable, but prs is different; and (iii) otherwise,
all three policies will produce distinct results for
otherwise same NMSPNs [14].

3The prd, prs and pri names were borrowed from queue-
ing theory [14].



In this paper, we deal with the general class of
non-Markovian Petri nets using examples of MR-
SPNs, which can be analyzed by means of Markov
regenerative processes. The remaining sections of
the paper are organized as follows. The next sec-
tion introduces Markov Regenerative Petri nets and
describes how to deal with the underlying Markov
Regenerative Process. Section 3 shows how to
model a failure/repair process in a parallel ma-
chine through MRSPN. Section 4 further extends
this model by adopting a different repair facility
scheduling scheme. Preemption in a multi-tasking
environment is analyzed in Section 5 through the
WebSPN tool; the resulting model contains sev-
eral concurrently enabled general transitions and
different memory policies. Conclusions are finally
presented in Section 6.

2 Markov Regenerative Petri
Nets

MRSPNs allow transitions with zero firing times
(immediate transitions), exponentially distributed
or generally distributed firing times. The dynamic
behavior of an MRSPN is modeled by the execution
of the underlying net, which is controlled by the po-
sition and movement of tokens. At any given time,
the state of an MRSPN is defined by the number
of tokens in each of its places, and is represented
by a vector called its marking. The set of markings
reachable from a given initial marking (i.e., the ini-
tial state of the system) by means of a sequence of
transition firings defines the reachability set of the
Petri net. This set together with arcs joining its
markings and indicating the transition that cause
the state transitions is called reachability graph.
Two types of markings can be distinguished in
the reachability graph. In a vanishing marking at
least one immediate transition is enabled to fire,
while in a tangible marking no immediate transi-
tions are enabled. Vanishing markings are elim-
inated before analysis of the MRSPN using ele-
mentary probability theory [12]. The resultant
reduced reachability graph is a right-continuous,
piecewise constant, continuous-time stochastic pro-
cess {Z;;t > 0}, where Z; represents the tangible
marking of the MRSPN at time ¢. Choi, Kulkarni,
and Trivedi [12] showed that this marking process

is a Markov Regenerative Process (MRGP) (if the
GEN transitions are of prd type and at most one
GEN transition is enabled at a time), a member of
a powerful paradigm generally grouped under the
name Markov renewal theory [7, 8]. Mathematical
definition and solution techniques for MRGP are
summarized next.

2.1 Markov Renewal Sequence

Assume a given system we are modeling is de-

scribed by a stochastic process Z 4 {Zy;t > 0}
taking values in a countable set ®. Suppose we
are interested in a single event related with the
system (e.g., when all system components fail).
Additionally, assume the times between succes-
sive occurrences of this type of event are inde-
pendent and identically distributed (i.i.d.) ran-
dom variables. Let Sy < S7 < Sy < ... be the
time instants of successive events to occur. The
sequence of non-negative i.i.d. random variables,
SL{S,—Sp_1;n €N =1{0,1,2,..}} is a renewal
process [20, 21]. Otherwise, if we do not start ob-
serving the system at the exact moment an event
has occurred (i.e., Sy # 0) the stochastic process S
is a delayed renewal process.

However, suppose instead of a single event, we
observe that certain transitions between identifi-
able system states X,, of a subset (2 of &, Q C &,
also resemble the behavior just described, when
considered in isolation. Successive times S, at
which a fixed state X,, is entered form a (possi-
bly delayed) renewal process?. Additionally, when
studying the system evolution we observe that at
these particular times the stochastic process Z ex-
hibits the Markov property, i.e., at any given mo-
ment S, n € N, we can forget the past history of
the process. The future evolution of the process de-
pends only on the current state at these embedded
time points. In this scenario we are dealing with a
countable collection of renewal processes progress-
ing simultaneously such that successive states vis-
ited form an embedded discrete-time Markov chain
(EMC) with state space . The superposition of
all the identified renewal processes gives the points
{Sn;n € N'}, known as Markov regeneration epochs
(also called Markov renewal moments®), and to-

4We are assuming Xy, is the system state at time Sy,.
5Note that these instants S, are not renewal moments



gether with the states of the EMC define a Markov
renewal sequence.
In mathematical terms, the bivariate stochastic

process (X, S) 4 {Xn,Sn;n € N} is a Markov re-
newal sequence (MRS) provided that

Pr{Xn+1 = j7 S’n+1 - S’n <t | X07 ---:Xn;507 7Sn}
Pr{XThLl =7, Sn+1 -5, <t | Xn}7

foralln e N, j € Q, and t > 0. We will always
assume time-homogeneous MRS’s; that is, the con-
ditional transition probabilities K;;(t), where

d . .
K”(t) = Pr{Xn+1 = ],Sn+1 — Sn S t | Xn = 'L}

are independent of n for any i,j € Q, ¢ > 0. There-
fore, we can always write

as subordinated process, can be any continuous-
time discrete-state stochastic process over the same
probability space. Recently published examples
considered subordinated homogeneous CTMCs [12,
22], non-homogeneous CTMCs [23], semi-Markov
processes (SMPs) [24], and MRGPs [25].

2.3 Solution of Problems

Let Z = {Z;;t > 0} be a stochastic process with
discrete state space ® and embedded MRS (X, S) =
{Xn,Sn;n € N} with kernel matrix K(¢). For such
a process we can define a matrix of conditional tran-
sition probabilities as:

Vii(t) L Pr{Z = j | Zo =i}, VieQ,Vjed,t>0.

In many problems involving Markov renewal pro-

Kij(t) = Pr{X, = j, 8 <t| Xo =i}, ¥i,j € Q, t > (i.esses, our primary concern is finding ways to ef-

The matrix of transition probabilities K() L

[K;;(t)] is called the kernel of the MRS.

2.2 Markov Regenerative Processes

A stochastic process {Z;;t > 0} is a Markov regen-
erative process iff it exhibits an embedded MRS
(X,S) with the additional property that all condi-
tional finite distributions of {Zg, 14t > 0} given
{Z4,;0 <u <8, X, =1i,i € Q} are the same as
those of {Z;,t > 0} given Xo = 4. As a special
case, the definition implies that [8]

Pr{Zgn_,_t:j |ZU,OS’U/SS”,X”:'L} =
Pr{Z, =j| Xo =i}, VieQVjeca.

This means that the MRGP {Z;;t > 0}
does not have the Markov property in gen-
eral, but there is a sequence of embedded time
points (Sp, S1,..;Sn,...) such that the states
(Xo0, X1, ..., Xpn, ...) respectively of the process at
these points satisfy the Markov property. It also
implies that the future of the process Z from ¢t = S,
onwards depends on the past {Z,,0 < u < S,}
only through X,,.

The stochastic process between consecutive
Markov regeneration epochs, usually refered to

as described in renewal theory, since the distributions of the
time interval between consecutive moments are not neces-
sarily i.2.d..

ectively compute Vj;(t) since several measures of
interest (e.g., reliability and availability) are re-
lated to the conditional transition probabilities of
the stochastic process.

At any instant ¢, the conditional transition prob-
abilities V;;(t) of Z can be written as [7, 8]:

Vijt) = Pr{Z:=345 >t|Zy=1i}+
P’I"{Zt:j,sl St|Z0:i}

= PI‘{Zt:j,Sl>t|Z0:7:}+
t

Z/ dKlk(U)Vk](t - ’LL),
0

keQ

foralli € Q, j € & and t > 0. If we construct a
matrix E(t) = [E;;(t)] with

Eij(t) £ Pr{Z = j, 81 > t| Zo = i},

then the set of integral equations V;;(t) defines a
Markov renewal equation, and can be expressed in
matrix form as
¢
V(t) = E(t) + / dK(u)V(t — u), (1)
0

where the Lebesgue-Stieltjes integral® is taken term
by term.

To better distinguish the roles of matrices E(t)
and K(¢) in the description of the MRGP we call

6f0t dK(u)V(t —u) = fot k(u)V (t — u)du when K (t) pos-

sesses a density function k(t) = —(“;Et)-



the matrix E(t) as the local kernel of the MRGP,
since it describes the state probabilities of the sub-
ordinated process during the interval between suc-
cessive Markov regeneration epochs. Since matrix
K(t) describes the evolution of the process from
the Markov regeneration epoch perspective, with-
out describing what happens in between these mo-
ments we call it the global kernel of the MRGP.

In the special case when the stochastic process Z
does not experience state transitions between suc-
cessive Markov regeneration epochs; i.e.,

Zy = Zg+ where St =maz{S, | S, <t,ne N},

Z is called a semi-Markov process and E(t) is a
diagonal matrix with elements

Ei(t) = 1 — K;(¢),
where
Ki(t) £ Pr{Si <t|Yp=1il,

= > Kyt

JEQ

Vi e

is the sojourn time distribution in state i. Hence,
the global kernel matrix alone (which in this case is
usually denoted as Q(t)) completely describes the
stochastic behavior of the SMP.

The Markov renewal equation represents a set
of coupled Volterra integral equations of the sec-
ond kind [26] and can be solved in time-domain
or in Laplace-Stieltjes domain. One possible time
domain solution is based on a discretization ap-
proach to numerically evaluate the integrals pre-
sented in the Markov renewal equation. The inte-
grals in Eqn. 1 are solved using some approxima-
tion rule such as trapezoidal rule, Simpson’s rule
or other higher order quadrature methods. An-
other time domain alternative is to construct a sys-
tem of partial differential equations (PDEs), using
the method of supplementary variables [4]. This
method has been considered for steady-state anal-
ysis of DSPNs in [22] and subsequently extended to
the transient case in [27].

An alternative to the direct solution of the
Markov renewal equation in time-domain is the
use of transform methods. In particular, if we
define E~(s) = [~e *dE(t) and V~(s) =
Jo e7*tdV (t), the Markov renewal equation be-
comes

V() = E~(s)+K™(s)V~(s)

= [I-K~(s)]'E™(s)

After solving the linear system for V~(s), trans-
form inversion is required”. In very simple cases,
a closed-form inversion might be possible but in
most cases of interest, numerical inversion will be
necessary. The transform inversion however can
encounter numerical difficulties especially if V™ (s)
has poles in the positive half of the complex plane.

For a thorough discussion of Markov renewal
equation solution techniques see [28, 29|, and for
generic Volterra integral equations numerical meth-
ods see [30, 31]. References for the applica-
tion of Markov renewal theory in the solution of
performance and reliability /availability models see
[16, 32, 23, 28, 33, 34, 35, 36, 37].

3 Modeling  Failure/Repair
Activities in a Parallel Ma-
chine Configuration

The use and analysis of MRSPNs is initially demon-
strated using a computer system performability
model. Two machines (a and b) are working in a
parallel configuration sharing a single repair facil-
ity with a First-Come First-Served (FCFS) schedul-
ing discipline. Due to the non-preemptive nature
of this discipline, we do not need age variables in
this case (once enabled all GEN transitions in the
model will never be disabled until firing). We as-
sume that both machines have exponential lifetime
distributions with constant parameters A\, and A
respectively. Whenever one of the machines fails it
immediately requests repair. When the single re-
pair facility is busy and a second failure occurs, the
second machine to fail waits in a repair queue un-
til the first machine is put back into service. The
repair-time of the machines is defined by the gen-
eral distribution functions G, (t) and Gy (t).

The overall behavior of the system can be un-
derstood from the MRSPN illustrated in Fig. 3a.
Machine a is working whenever there is a token in
place P;. The EXP transition f, with rate A, rep-
resents the failure of machine a. When machine a
fails, a token is deposited in place P and its repair
is requested. If the repair facility is available (i.e.,

"This being the approach addopted in the solution of all
examples presented in this paper.
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Figure 3: Parallel system model: a) MRSPN; b)
reachability graph; and c) state transition diagram.

there is a token in place Ps), it is appropriated with
the firing of immediate transition i,. The GEN
transition r,, firing according to the distribution
function G,(t), represents the random duration of
repair. A token in place P; means that machine a
is queued waiting for the availability of the single
repair facility while machine b is undergoing repair
(there is a token in place P;). A symmetrical set
of places and transitions describes the behavior of
machine b. The system is down whenever there are
no tokens in both the places P; and Ps.

The reachability graph corresponding to the
Petri net is shown in Fig. 3b. Each marking in
the graph is a 7-tuple keeping track of the num-
ber of tokens in places P; through P;. In the
graph, solid arcs represent state changes due to
the firing of immediate transitions or EXP tran-
sitions, while dotted arcs denote the firing of GEN
transitions. The vanishing markings (enclosed by
dashed ellipses in the diagram) are eliminated when
the reduced reachability graph is constructed (not
shown), and based on the reduced version we con-
structed the state transition diagram of Fig. 3c.

Define the stochastic process Z = {Z;;t > 0} to

represent the system state at any instant, where

(1 if both machines are working at t

2 if machine a is under repair while
machine b is working at t

3 if machine b is under repair while
machine a is working at t

4 if machine a is under repair while
machine b is waiting for repair at t

5 if machine b is under repair while
machine a is waiting for repair at t

\

Note that possible values of Z; are the labels cor-
responding tangible markings in Fig. 3b. We are in-
terested in computing performability measures as-
sociated with the system. To do so, we need to
determine the conditional probabilities Pr{Z; = j |
Zy = 1}, Vj € & = {1,2,....,5}. Analysis of the
resultant (reduced) reachability graph shows that
Z is an MRGP with an EMC defined by the states
1, 2, and 3; i.e., @ = {1,2,3}. We can observe that
transitions to states 4 and 5 do not correspond to
Markov renewal epochs because they occur while
GEN transitions are enabled. An additional step
adopted before starting the synthesis of the kernel
matrices was the construction of a simplified state
transition diagram. Fig. 3c shows a simplified ver-
sion of the reduced reachability graph where the
markings were replaced by the corresponding state
indices. We preserved the convention for the arcs
and extended the notation by representing states
of the EMC by circles, and other states by squares.

The construction of kernel matrices can proceed
with the analysis of possible state transitions. The
only non-zero elements in global kernel matrix K(t)
correspond to the possible single-step transitions
between states of the EMC. Consequently, we have
the following structure of the matrix (identified di-
rectly from Fig. 3c):

0 Ki(t) Kis(t)
K(t)=| K21(t) 0 K 5(t)
K31(t) Ksa(t) 0

Let the random variables L, and L; be the re-
spective time-to-failure of the two machines, we can
determine K1 »(t) in the following way:

K172(t) = PT{Xl :2,51 St|X0:1}
= Pr{machine a fails by time t and
is the first one to fail}



Pr{L, <tALy> L.}
/Ot 1—(1—e™)]d{1—e "}

t
/ e M N\ e T dr
0

A
— a 1 _ 7(Aa+Ab)t .
Mo+ N 1-e ]
Similarly,
K173(t) P’I"{Xl :3,51 §t|X0:1}

Pr{machine b fails by time t and
is the first one to fail}

My e—(Aa+Ab)t] _
Ao+ X

Determination of the elements K»1(tf) and
K 3(t) is quite alike, so we only show how K 1 (t) is
determined. The third row is completelly symmet-
rical to the second, so it can be easily undestood
once K> 1(t) is understood. We need some auxil-
iary variables to help in the explanation of the con-
structive process of K 1(t). Hence, we define the
random variables R, and R} to respectively repre-
sent times necessary to repair machines a and b.
The distribution function of R, (Rp) is G, (Gp)-
Using this new variables we can compute K> 1 (t):

K>1(t) Pr{X;=1,5 <t|Xo=2}

Pr{repair of a is finished by time t
and b has not failed during the
repair of a}

Pr{R, <tALy> R,}

/Ot Pr{L, > 7}dG (1)
/0 [1-(1- ef’\”)] dG (1)
/t e T dG, (7).

0

To summarize, the elements of the global kernel
matrix are:

Aq -
Ka() = 3775 [t o]
A _
Kis) = 575, 1],
t
Kg’l(t) = /eibedGa(T),
0

t
K2,3(t) = / (]. — E_AbT) dGa(T),
0
t
Kai(t) = / e eTdGy(r), and
0

K3,2(t) = /0 (]. — E_AQT) dGb(T)

Note that the global kernel will always be a
square matrix. In this case with dimensions 3 x 3,
since we have 3 states in the embedded Markov
chain. However, the local kernel matrix is not nec-
essarily a square matrix, since the cardinality of the
state space of Z can be larger than the cardinality
of the state space of the embedded Markov chain.
This can be seen, for instance, in this system since
the embedded Markov chain has only 3 states while
the MRGP has 5 possible states.

We construct the local kernel matrix E(¢) follow-
ing a similar inductive procedure. In this case we
are looking for the probability that the MRGP will
move to a given state before the next Markov re-
newal moment. Careful analysis of Fig. 3c reveals
the structure of the local kernel matrix E(t):

Ei, (t) 0 0 0 0
0 Es (1) 0 Es4(1) 0
0 0 Es5(t) 0 Es 5(t)

Since in a single step the system can only go from
state 1 to the other two states of the EMC then E; 3
should be the complementary sojourn time distri-
bution function in state 1, that is,

Eiq 1= (Ki2(t) + K1 3(t))
8_(>\a+>\b)t-

The difficulty comes with the induction of E; »(%)
and E» 4(t) (complement of E; 2(t)). Once we solve
for these, we have the solution for the remaining
components of the matrix due to the symetry of
the problem. Therefore, we explain the induction
process that leads to Es »(t):

Fos(t) Pr{Z =2,5 >t| X, =2}
Pr{repair of a is not finished up to t
and b has not failed until t}
Pr{repair of a is not finished up tot
x Pr{b has not failed until t}

[1— Ga(t)]e .



We can now express the remaining non-zero ele-
ments of the local kernel matrix as

E2 4(t) =(1- G_Abt) Gg(t)

)

B3 5(t) = %A“tGZ(t)

By 5(t) = (1—e ") Gi(t)
with

GS(t) = 1—G,(t), and

Gi(t) = 1—Gy(t).

We can always verify our answers by summing the
elements in each row of both kernel matrices. Cor-
responding row-sums of the two matrices must add
to unity, condition that is easily verified to hold in
the example.
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Figure 4: Numerical results for the parallel system
with non-premptive repair.

The kernel matrices determined can then be sub-
stituted in Equation (1) and the resultant system

of coupled integral equations solved using one of
the approaches described in [28, 29]. The resultant
plots, labelled LST in Fig. 4, report system avail-
ability and performability computed when time to
repair is deterministic; i.e.,

U(t - ,Ufa):
U(t — ),

where U(t) is the unit step function; the failure
rates (parameters A\, and \p) are identical p;) takes
5 hours. The interval availability is the expected
proportion of time the system is operational during
the period [0, t]:

to >0
wp >0

A =1 [ EX

when the discrete random variable X represents the
operational status of the system; i.e., X(¢) = 1 if
the system is operatinal at time ¢, and 0 if it is not.
The performability measure plotted in the figure

|corresponds to the interval processing capacity of

the system, with the convention that a unit of com-

{puting capacity corresponds to that of one active

machine.
Following the approach used in [34], we also plot-
ted corresponding Markovian system results, where

leach DET transition was replaced by an equivalent

25-stage Erlang subnet. The Markovian models

%ere solved using the Stochastic Petri Net Pack-

age (SPNP) introduced in [38].

4 Preemptive LCFS repair

Fig. 5 shows the PN which describes the behavior of

|the system containing the same machines a and b

of the previous example and applies the preemptive

‘LCFS scheduling scheme. The repair of machine a

(b), represented by a token at Ps (Pr) is preempted

las soon as machine b (a) fails, i.e., transition fj (f,)
|fires. In this case the repair facility is assigned to

the machine which failed later (i, or i, fires and a
token is placed to Ps or Py). After the repair of

*Fhe last failed machine (firing of r, or r,) the re-

pair facility returns to the completion of preempted
repair action. Different memory policies can be
considered depending on whether the repairman is
able to “remember” the work already performed on
the machine before preemption or not. In the case



Figure 5:

Preemptive LCFS repair with non-
identical machines

that the prior work is lost due to the interruption
and the repair must be repeated from scratch with
an identical repair time requirement (pri policy) or
with a repair time resampled from the original cu-
mulative distribution function (prd policy). In the
case that the prior work is not lost and the time
to complete the preempted repair equals the resid-
ual repair time given the portion of work already
completed before preemption (prs policy). The PN
on Fig. 5 captures the different memory policies for
repair by assigning transitions r, and r, the appro-
priate preemption policies. (The preemption poli-
cies of transitions rla and r; are not relevant since
rla and r; cannot be preempted.)

We analyze a simplified version of the two ma-
chine system with preemptive LCFS repair and
with prs policy. We assume that the two machines
are statistically identical, i.e., their failure and re-
pair time distributions are the same. Fig. 6a shows
a PN which describes the behavior of the system of
two identical machines with LCFS scheduling. To-
kens in place P; represent operational machines, to-
kens in P, count failed machines (including the one
under repair), and a token in place Py the availabil-
ity of the single repair facility. In the initial mark-
ing My =(2001) (Fig. 6b), t; is the only enabled
transition. Firing of ¢; represents the failure of the
first machine and leads to state My = (1110). In
M, transitions ¢y and t3 are competing. The GEN
transition s represents the repair of the failed ma-
chine and its firing returns the system to the initial
state M;. The EXP transition #3 represents the
failure of the second machine and its firing disables
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Figure 6: Preemptive LCFS repair with identical
machines

t2 by removing one token from Pj (the first repair
becomes dormant). In M3 = (02 0 1) one machine
is under repair and the other repair is dormant,
and the only enabled transition is the repair of the
last failed machine. Firing of the GEN transition ¢4
leads the system again to M>, where the dormant
repair is resumed. Assume that the failure times of
both machines are exponentially distributed with
parameter A so that the EXP transitions ¢; and t3
have firing rates 2\ and A, respectively.

The preemptive policy of transition ¢» has to be
assigned based on the system behavior to be eval-
uated. (The preemptive policy of transition t4 is
irrelevant since ¢4 can not be preempted.) Assign-
ing a prd policy to t; means that each time ¢- is
disabled by the failure of the second machine (t3
fires before t2), the corresponding age variable as
is reset. As soon as t» becomes enabled again (the
second repair completes and ¢4 fires) no memory is
kept of the prior repair period, and the execution
of the repair restarts from scratch. The prd service
policies, like this one, are covered by the model def-
inition in [39, 40].

The case when a pri policy is assigned to to is
very similar to the previous one except that as soon
as ty becomes reenabled (the second repair com-
pletes and t4 fires), the same repair (same firing
time sample) has to be completed from the begin-
ning. This type of pri memory policy is covered by
the model definition in [16], and can be analyzed
by the transform domain method discussed there.

Hereafter we assume that a prs policy is assigned
to t2. When a prs policy is assigned to t», each time



to is disabled without firing (¢35 fires before t2) the
age variable a; is not reset. Hence, as the second
repair completes (¢4 fires), the system returns to
M> keeping the value of as, so that the time to
complete the interrupted repair can be evaluated
as the original repair requirement minus the cur-
rent value of a;. The age variable ay counts the
total time during which t, is enabled before fir-
ing, and is equal to the cumulative sojourn time in
M. The Markov renewal moments in the mark-
ing process correspond to the epochs of entrance
to markings in which the age variables associated
with all the transitions are equal to zero. By in-
specting Fig. 6b, the Markov renewal moments are
the epochs of entering M; and of entering M, from
M;.

The subordinated process starting from marking
M; is a single step CTMC (since t; the only en-
abled EXP transition) and includes the only im-
mediately reachable state M»> (Markovian regener-
ation period).

The subordinated process starting from marking
M, includes all the states reachable from M, be-
fore firing of t9; i.e., My and Mj. Since M is the
only state in which ¢, is enabled, the age variable
az increases only in marking M> and maintains its
value in M3. The firing of ¢ can only occur from
M> leading to marking Mj.

Notice that the subordinated process starting
from Ms is semi-Markov since the firing time of ¢4
is generally distributed. The age variable as grows
whenever the MRSPN is in marking Ms, and the
firing of t5 occurs when as reaches the actual value
of the firing time (which is generally distributed
with cumulative distribution function G(t)). If we
condition that the firing time of ¢; to w, w acts an
absorbing barrier for the accumulation functional
represented by the age variable as, the firing time
of t5 is determined by the first passage time of ay
across the absorbing barrier w.

The closed form Laplace-Stieltjes transform ex-
pressions of the kernel matrices of the LCFS re-
pair prs case are derived here in detail, applying
the technique based on the Markov renewal theory.
We build up the K~(s) and E~(s) matrices row
by row by considering separately all the states that
can be regeneration states and can originate a sub-
ordinated process. M3 can never be a regeneration
state since ¢ is always active when entering to M3,
Q = {M;, M>}. The fact that M; is not a regen-
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eration marking, means that the process can stay
in M3 only between two successive Markov renewal
moments.

The starting regeneration state is M, - (Markovian
regeneration period) No general transition is en-
abled and the next regeneration state can only be
state M>. The non-zero elements of the first row of
the kernel matrices are

s
s+ 2A

Kis(s) = -

o and E7(s) =

The starting regeneration state is M - Transition ¢
is GEN so that the next regeneration time point is
the epoch of firing of t. The subordinated process
starting from M, comprises states My and M3 and
is an SMP (since t4 is GEN) whose kernel is:

[ o 1

e ]

where G™(s) is the LST of the distribution function
of the firing time of #4.

The transition ¢, fires when the age variable as
reaches actual sample of the firing time 2. In gen-
eral, when a GEN transition is active the occurence
of a Markov renewal epoch in the marking process
of an NMSPN is due to one of the following two
reasons:

A
s+ A
0

Q~(s)

e the GEN transition fires,

e the GEN transition of prd type becomes dis-
abled.

For the analysis of subordinated processes of this
kind three matrix functions Fé(¢,w), D¥(¢t,w) and
Pi(t,w) (where t denotes the time, w a fixed fir-
ing time sample, and the superscript i refers to the
initial (regeneration) state of the subordinated pro-
cess) were introduced in [24]. Fi(t,w) refers to the
case when the next regeneration moment is because
of the firing of the GEN transition with the (fixed)
firing time sample w. For the analysis of this case
an additional matrix (A’ referred to as branching
probability matrix) is introduced, as well, to de-
scribe the state transition subsequent to the firing
of the GEN transition. D(t,w) captures the case
when the next regeneration moment is caused by
the disabling of the prd type GEN transition. And



Pi(t,w) describes the state transition probabilities
inside the regeneration period.

Since transition to is of prs type the matrix func-
tion D¥(¢,w) does not play a role in the analysis
of the subordinated process starting from mark-
ing My. The remaining functions can be evalu-
ated based on the kernel of the subordinated SMP

(Q'(t) = {QL,(1)}) [24]:

ri [1— Qi (s +vr)]
Fi* =
( ) One S+ vrg +
Z Qi (s +vry)Fiy*(s,v)
u€ER?
s[1— Qi (s + vry)]
Py = 4
(5,v) h v(s + vrk) *
Z Qi (s +vrg)Piy* (s, v)
u€R?
where Qi (t) = >, Q%,(t); s is the time variable and

v is the barrier level variable in transform domain;
ri is the indicator that the active GEN transition
is enabled in state k; R’ is the part of the state
space reachable during the subordinated process;
and the superscript ~ (x) refers to Laplace-Stieltjes
(Laplace) transform.

Given that G,(t) is the distribution function of
the firing time of the GEN transition, the elements
of the i-th row of matrices K(¢) and E(t) can be
expressed as follows, as a function of the matrices
Pi(t,w), Fi(t,w) and Di(¢,w):

Kij(t) = / Z sz (t w)A}c] _+_DZ (t,w) dGr?a(jhmeS a
kER?
E;(t) = / Pl (t,w)dGy (w)

To evaluate the 2nd row of the kernel matrices
we are applying these results for the subordinated
process starting from regeneration state M. Doing
so we obtain the following expressions for the non-
zero matrix entries:

~k _ 1
F'(s0) = s+v+A—AG~(s)
s . s/v
P50 = A T o)
o A1-G~(s))/v
Prg*(s,v) = ( )/

s+v+A—AG~(s)
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Unconditioning with respect to the firing time dis-
tribution of ¢, and after inverting the Laplace
transform (LT) with respect to v, the non-zero en-
tries of the 2nd row of the LST matrix functions
K™~ (s) and E™~(s) become:

K5 (s) = /OOO e~ w(s+A=AG™(s)) dG (w)
= G™(s + A= AG™(s))
z (1= G~ (s + X = AG~(3))
e s+ A= AG~(s)
Bp(s) = MZGTEL-G™(s + A= AG(5))]

s+ A= AG™~(s)

The LST of the state probabilities are obtained
by solving the Markov renewal equation in trans-
form domain. The time domain probabilities are
calculated by numerically inverting the result by
resorting to the Jagerman method [41].

To evaluate the performance of the different
scheduling schemes, we compared the availability
and processing power of the FCFS and the LCFS
repair schemes with two different repair time dis-
tributions. The FCFS scheme was evaluated by
the time domain method introduced in the previ-
ous section and the LCFS scheme was evaluated
by the above transform domain method. It is as-
sumed that the system is available when at least
one machine is working (marking M; and M>) and
that the system performance doubles when both
machines are working. The failure times of both
re exponentially distributed with rates
Ay = 0.01. The repair times of both
machlnes are assumed to be:

e deterministic 7 = 5, hence

=Gi(t) =Ga(t) =
G (s)y=¢€e "7,

G(1) Ut —r)

e hyperexponentially distributed with p = 0.625;
w1 = 0.5; p2 = 0.1, hence

G(t) = Gi(t) = Ga(t) = 1—pe "' —(1—p)e "'
Gr(s) = 2o (=P
p1+s p2+s

The mean repair time is 5 in both cases. Fig. 7a
and 7b show the instantaneous and the interval



measures of availability and processing power with
deterministic repair time, respectively. The dot-
ted line shows the instantaneous and the short
dashed line shows the interval availability /power
with LCFS repair, while the long dashed line shows
the instantaneous and the solid line shows the inter-
val availability /power with FCFS repair. It can be
observed that the FCFS scheduling performs better
in this case. The availability and processing power
results for the hyperexponential repair time distri-
bution are plotted on Fig. 7c and 7d, respectively.
In these figures the dotted line shows the instanta-
neous availability /power with LCFS repair, while
the dashed line shows the instantaneous availabil-
ity /performability with FCFS repair. As can be
seen from these figures, in contrast with the deter-
ministic repair time the LCFS scheduling performs
better with the hyperexponential repair time dis-
tribution.

5 Modeling preemption in a
multi-tasking environment

NMSPN require complex solution techniques
mainly based on theory of Markov regenerative pro-
cesses. Software packages are then required which
can hide solution and implementation details. A
big boost in this direction came from two well-
known tools, DSPNexpress [42] and TimeNET [43,
44]. Recently, a new software package for non-
Markovian Petri nets has been developed in a joint
effort between the Universities of Catania and Bu-
dapest. This tool, named WebSPN [45],

provides a discrete time approximation of the
stochastic behaviour of the marking process which
results in the possibility to analyze a wider class
of PN models with prd, prs and pri concurrently
enabled generally distributed transitions. The ap-
proximation of the continuous time model at eq-
uispaced discrete time points involves the analysis
of the system behavior over a time interval based
on the system state at the beginning of the inter-
val and the past history of the system. A Web-
centered view has been adopted in its develop-
ment in order to make it easily accessible from
any node connected with the Internet as long as
it possesses a Java-enabled Web browser. Sophis-
ticated security mechanisms have also been imple-
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mented to regulate the access to the tool which are
based on the use of public and private electronic
keys. WebSPN is available at the following site:
http://sun195.iit.unict.it/~webspn/webspn2/

5.1 Model description

In this section we describe and solve a model of
Petri net with several concurrently enabled GEN
transitions and different memory policies. The sys-
tem moves between an operative phase, where use-
ful work is produced, and a phase of maintenance
where the processing is temporarily interrupted.

The Petri net shown in Fig. 8 represents the
model of the system that consists of three func-
tional blocks generically referred to as Blockl,
Block2 and Block3. Blockl models the alternation
of the system between the operative phase and the
maintenance phase. Block2 models the two sequen-
tial phases of processing of jobs. Finally, Block3
models the alternation of the system during the op-
erative phase between the phase of pre-processing
and the one of processing of jobs.

Within Blockl, the two states of operation where
the system can be are represented by places user
and system and by transitions U_time and S_time.
A token in place user denotes the operative state,
while a token in place system denotes the mainte-
nance one. The duration of the operative phase
is denoted by transition U_time, while the mainte-
nance one is denoted by transition S_time. The in-
hibitor arcs outgoing from place system and leading
to the timed and immediate transitions contained
in Block2 and Block3 producer, consI, busy_prod,
idle_prod, busy2, idle2 are used for interrupting the
activity of the system during the phase of mainte-
nance.

Block2 models the processing of jobs. In partic-
ular, the number of jobs to be processed is denoted
by the number of tokens contained in place work,
while the time of pre-processing of each job is rep-
resented by transition producer. Pre-processed jobs
are queued in a buffer (place buff1) waiting for the
second phase of processing (transition cons?).

In Block3, the alternation between the phases
of pre-processing and processing of jobs is repre-
sented through places slot! and slot2 and transi-
tions busy_brod, busy2, idle_prod, idle2. A token in
place slot1 denotes that the system is executing the
pre-processing of a job, while a token in place slot2



denotes the execution of a phase of processing. An
inhibitor arc between slot! and cons! deactivates
the phase of processing when the pre-processing
one is active. In the same way, the inhibitor arc
between slot2 and producer deactivates the phase
of pre-processing when the processing one is ac-
tive. The time that the system alternately spends
for these two activities is represented by transitions
busy_prod and busy?2. The immediate transition
idle_prod (idle2) prevents the system to remain in
phase 1 (2), even if no job is to be processed. The
function of the inhibitor arcs from place work to
transition idle_prod and from place buff to transi-
tion idle2 is to enable such transitions when no job
is to be processed in the corresponding phase of
processing.

Immediate transition end and place Stop are used
for modeling the processing of all the jobs assigned
to the system at the beginning. In fact, transition
end is inhibited until at least one token is present
in places work and buff. When all the jobs have
been processed, transition end fires, and immedi-
ately moves a token to place Stop. All the activi-
ties of the system are thus interrupted through the
inhibitor arcs outgoing from place Stop.

The measure that we evaluate from this model is
the distribution of the time required for complet-
ing the set of jobs assigned to the system at the
beginning. It can be obtained as the distribution
of having a token in place Stop.

With regard to the distributions of the firing
times to be assigned to timed transitions, we as-
sume that the firing times of transitions U_time,
S_time, busy_brod, busy2 are deterministic. We
assume that the firing times of transitions pro-
ducer and consl are respectively distributed uni-
formly and exponentially. The measures considered
can therefore be evaluated by changing the mem-
ory policy associated with transitions producer and
consl.

In the case of prd policy, the temporary inter-
ruption of the processing of a job (either because
the whole system enters the phase of maintenance,
or because, even if the system is in the produc-
tion phase, it interrupts the pre-processing phase
for changing to the processing one or vice versa)
causes the interrupted job to be discarded. A new
job is executed when the system is available again.
The correspondence with a real system is perhaps
hard to find; however, we note that prd policy is
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the most commonly used one in the literature.

Conversely, by adopting prs policy, we keep a
memory of the work that we were executing. In
this case, when transition producer is disabled, we
keep a memory of the work that has already been
executed on the job considered. When the system
enters the operative state again, the pre-processing
of the job continues from the point we had reached.
In this case, the model can represent a system of
manufacturing, where a machine used for produc-
tion alternates cycles of production and cycles of
maintenance, and production takes place in two se-
quential phases. We note that prd and prs policies
are equivalent for transition consi, since this one is
and EXP transition.

With pri policy, when transition producer is dis-
abled, the work that had already been produced
is lost, but we keep a memory of the job that we
were processing. When the transition is enabled
again we start from zero, but the amount of work
to be produced on the job remains the same, be-
cause the job has not been changed. Such a be-
havior can be easily noted when accessing transac-
tional databases, where each transaction is atomic
(i.e., has to be processed with no interruption). If
an interruption occurs, the transaction is entirely
processed again. If we assume a memory policy like
prs for transition cons!, the model could represent a,
client/server system where the accesses to database
(transition producer) take place atomically, and the
phase of processing of the query (transition consi)
requires a variable time, distributed exponentially.

5.2 Numerical Results

For the solution of the model we assume that the
firing time of transition producer is distributed uni-
formly between 0.5 and 1.5; the firing time of tran-
sitions U_time and S_time are deterministic, with
a firing time of 1; the firing time of transitions
busy_prod and busy2 are deterministic, with a fir-
ing time of 0.1; the firing time of transition cons!
is distributed exponentially, with a firing rate of
0.1; transition end is immediate and has a priority
of 2; transitions idle_prod and idle2 are immediate
and have a priority of 1; the total number of jobs
to be processed is 3.

In Fig. 9 we show the distribution of comple-
tion time for different memory policies assigned to
transitions producer and consi. The behavior of



the system changes significantly depending upon
the memory policy adopted. The prs policy ac-
crues the highest probability of completion within
a given time. Both the prd and the prs policies
accomplish the completion of jobs. In fact, curves
eventually reach the value 1. Conversely, a differ-
ent behavior can be observed if we assume a policy
like pri. In fact, in that case, the resulting dis-
tribution is defective, since the unit value is never
reached for ¢ — co. This is closely connected with
the choice of the parameters associated with tran-
sitions producer and U_time. As we note in Fig. 10,
when the firing time of transition U_time is lower
than 1.5, transition producer has a positive prob-
ability (50%)of not completing its work. Since in
the case of pri policy the job is processed with the
same work requirement, this causes a situation of
impasse, which prevents the work assigned to the
system to be completed.

Fig. 11 shows how the overall system behavior
changes if transition U_time is assigned a firing time
higher than 1.5 (for example 2.0). In such case,
transition producer has a finite probability of firing
before the system enters the phase of maintenance,
and therefore the distribution of completion time
with pri policy reaches the value 1.

6 Conclusion

We discussed the need for more advanced tech-
niques to capture generally distributed events
which occur in everyday life. Among the differ-
ent approaches proposed in the literature, non-
Markovian Petri nets represent a valid analytical
alternative to numerical simulation. An approach
based on the analysis of the underlying Markov Re-
generative Process has been presented. Advanced
preemption policies were introduced and several ex-
amples solved in detail.
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