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Abstract

In a client-server type system, the server software

is required to run continuously for very long periods.

Due to repeated and potentially faulty usage by many

clients, such software \ages" with time and eventually

fails. Huang et. al. proposed a technique called \soft-

ware rejuvenation" [9] in which the software is peri-

odically stopped and then restarted in a \robust" state

after proper maintenance. This \renewal" of software

prevents (or at least postpones) the crash failure. As

the time lost (or the cost incurred) due to the software

failure is typically more than the time lost (or the cost

incurred) due to rejuvenation, the technique reduces

the expected unavailability of the software. In this pa-

per, we present a quantitative analysis of software re-

juvenation. The behavior of the system is represented

through a Markov Regenerative Stochastic Petri Net

(MRSPN) model which is solved both for steady state

as well as transient conditions. We provide a closed-

form analytical solution for the steady state expected

down time (and the expected cost incurred) due to sys-

tem unavailability. We also evaluate the optimal re-

juvenation interval which minimizes the expected un-

availability of the software.

1 Introduction

In fault tolerant systems, preventive maintenance

is considered as one of the key strategies to increase

system availability and to reduce costs due to the sys-

tem failure. It is a widely researched �eld, especially

in the operations research community. The reader is

referred to [17] for a survey. In general, preventive

maintenance consists of periodically stopping the sys-

tem and restarting it after doing proper maintenance.

This reduces the probability of \unexpected" failure

of the system, which would have eventually happened

without any maintenance. Since the system is unavail-

able for normal use during maintenance, some cost is

involved in doing so. A typical research problem is

to �nd the optimal maintenance policy, i.e., the one

which minimizes a certain cost function de�ned on the

system unavailability. While preventive maintenance

concepts have been usually applied to mechanical sys-

tems, they can also be e�ectively applied to the �eld

of software reliability.

With constant and rapid reduction in hardware

failure rates due to fast-paced technological improve-

ments, importance of software reliability in overall sys-

tems' availability is being highlighted. System fail-

ures due to imperfect software behavior are usually

more frequent than failures caused by hardware com-

ponents' faults [2]. These failures result from either in-

herent design defects in the software or from improper

usage by clients [14]. Thus fault tolerant software has

become an e�ective alternative to virtually impossible

fault-free software. A wide literature exists in this �eld

where the software has the ability to recover from a

transient fault [1, 10, 11, 16]. Most of the approaches,

for example, the N-version programming [1] approach

and the recovery block [16] approach are corrective in

nature, i.e. only after a failure occurs, the recovery

process is started. The overhead incurred by such re-

covery strategies remains high and much research has

gone into reducing it.

Huang et. al. have suggested a complimentary

technique which is preventive in nature. It involves

periodic maintenance of the software so as to prevent

unexpected failures. They call it software rejuvena-

tion [9] and de�ne it as the periodic preemptive roll-

back of continuously running applications to prevent

failures.

While monitoring real applications, it was observed

that software typically \ages" as it is run. Potential

fault conditions slowly accumulate since the begin-

ning of the software activity. Consider, for example, a



server module interacting with many client modules.

Memory bloating, unreleased �le-locks, data corrup-

tion are the typical causes of slow degradation which,

if not taken care of, lead to crash failure. Software re-

juvenation involves periodically stopping the system,

cleaning up, and restarting it from a clean internal

state. This \renewal" of software prevents (or in the

least postpones) a crash failure. Since the down time

caused by this planned shutdown is typically less than

the down time resulting from a crash failure, this strat-

egy increases the system availability. For further mo-

tivation and practical examples, the reader is referred

to [9].

In this paper, we present a quantitative analysis

of software rejuvenation. To deal with deterministic

interval between successive rejuvenations, behavior of

the system is represented through a Markov regenera-

tive stochastic Petri net (MRSPN) model which is sub-

sequently solved for steady state as well as transient

conditions using Markov renewal theory. We provide

a closed-form analytical solution for the steady state

expected down time (and the expected cost incurred

due to software unavailability). Earlier work on quan-

titative analysis by Huang et. al. was based on a

continuous time Markov chain (CTMC) model. In-

tuitively, we expect that there would be a trade-o�

involved between the down time caused due to crash

failures and down time due to rejuvenation depending

on how often it is performed. We demonstrate the ef-

fect of the rejuvenation interval de�ned as the time to

perform next rejuvenation starting in the robust state

on the steady state expected down time and cost. We

also evaluate the optimal value of this interval which

minimizes the software unavailability for a given set

of system parameters.

The rest of this paper is organized as follows. In

Section 2, we give a brief introduction to the the-

ory of MRSPNs, their evaluation technique and the

fundamental equations for the steady state and the

transient probabilities. Description of the system, as-

sumptions and the MRSPN model that captures the

system behavior is given in Section 3. Reachability

graph of the MRSPN model is also constructed in this

section. In Section 4, we derive the matrices which

describe the system mathematically. Next, we solve

for the transient and the steady state expected down

time and expected cost incurred due to unavailability

of the software using equations from Section 2. Sec-

tion 5 contains an illustrative numerical example and

interpretation of the results. Finally, in Section 6, we

conclude with pointers to further research.

2 Introduction to MRSPN

One di�culty in modeling a stochastic system

such as software with rejuvenation arises because of

the deterministic rejuvenation interval, which renders

the system \non-Markovian" and standard modeling

method using the theory of continuous time Markov

chains can not be applied. In this case, the approach

is to study the underlying stochastic process of such

non-Markovian systems. Although a general stochas-

tic process may not be analytically tractable, in many

cases this process can be shown to be a Markov regen-

erative one (MRGP also known as semi-regenerative

process) and therefore Markov renewal theory can be

applied for its long-run as well as transient behav-

ior [6, 3, 4].

A complementary issue is to specify the system

behavior in a concise way from which the underly-

ing stochastic process can be extracted and analyzed.

Petri nets with their remarkable 
exibility and poten-

tial for capturing concurrency, contention and syn-

chronization in a system have been widely used for

qualitative modeling [15]. To study a system quanti-

tatively, stochastic Petri nets (SPNs) can be used as

the high-level speci�cation tool. Each transition in an

SPN can be one of the following three types

1

.

� Type I: Immediate (i.e. they �re in zero time)

� Type II: Timed with exponentially distributed �r-

ing time

� Type III: Timed with generally distributed �ring

time

If the SPN contains only type I and type II transi-

tions, the system is Markovian, i.e., at any instant,

the future evolution depends only on the current state

and not on the past history. It is then standard to au-

tomatically generate the underlying continuous time

Markov chain [5, 19] and numerically solve it for reli-

ability and performance measures.

If however, the SPN model contains at least one

type III transition, the above mentioned memory-

less property does not hold in general. For analyzing

such a non-Markovian SPN, we need to identify cer-

tain time points embedded in the underlying stochas-

tic process at which it is possible to forget the past his-

tory. These points, indicated as regeneration points,

are such that the future evolution of the stochastic

process only depends on the present state entered

when a regeneration time point occurs. The under-

lying stochastic process is determined by a marking

process fM(t); t > 0g , obtained by constructing the

reachability graph for the net. Once the Reachabil-

ity Set (RS) of the net is identi�ed, namely the set

of all possible states (markings) of the system, the

reachability graph (RG) can be obtained by connect-

ing a marking M

i

to a marking M

j

with a directed

arc if the marking M

j

can result from the �ring of

some transition enabled in M

i

. From the given initial

marking M

0

, a unique reachability graph is obtained.

A marking is a tangible marking if no Type I (imme-

diate) transition is enabled in that marking, otherwise

it is a vanishing marking.

A single realization of the marking process M(t)

can be written as:

R = f(�

0

; M

0

); (�

1

; M

1

); : : : ; (�

i

; M

i

); : : :g

1

The classi�cation is valid only when the transition follows

the so called prd (preemptive repeat di�erent) policy. Since the

discussion and analysis of di�erent �ring policies [18] is orthog-

onal to this paper, we do not elaborate on this aspect.



where M

i+1

is a marking immediately reachable from

M

i

, and �

i+1

� �

i

is the sojourn time in marking M

i

.

With the above notation, M(t) = M

i

for �

i

� t <

�

i+1

. We now give a formal de�nition of MRSPN.

De�nition 1 - A regeneration time point �

�

n

in the

marking process M(t) is the epoch of entrance in a

tangible marking M

n

in which the Markov property

holds.

De�nition 2 - An SPN, for which an embedded se-

quence of regeneration time points and associated state

(�

�

n

; M

n

) behaving as a Markov renewal process (or

Markov renewal sequence) can be found, is an MR-

SPN [3].

Choi et. al. in [3] showed that if at any time, at

most one type III (generally distributed) transition is

enabled, then it is always possible to �nd an embed-

ded sequence (�

�

n

; M

n

) i.e. the non-Markovian SPN is

guaranteed to belong to the class of MRSPN.

Let 
 represent the state space of the underly-

ing MRGP. It is given by the tangible subset of the

reachability graph given an initial marking. Thus,


 = RS(M

0

). also let n be the cardinality of 
.

Let the set of possible states at regeneration time

points be given by 


0

. Thus 


0

= fM

n

: (�

�

n

; M

n

)

is the embedded sequence g. Clearly, 


0

� 
 and

m = j


0

j � n. To provide an analytical formulation of

the stochastic process underlying an MRSPN, accord-

ing to [3, 6], we de�ne V(t) = [V

ij

(t)], K(t) = [K

ij

(t)]

and E(t) = [E

ij

(t)] as the following matrix valued

functions.

V

ij

(t) = PrfM(t) = j jM(�

�

0

) = ig

K

ij

(t) = PrfM(�

�

1

) = j ; �

�

1

� tjM(�

�

0

) = ig

E

ij

(t) = PrfM(t) = j ; �

�

1

> tjM(�

�

0

) = ig

(1)

V(t) is an m� n transition probability matrix and

gives the probability that the stochastic process M(t)

is in marking j at time t given that it was in marking

i at t = 0. Thus V(t) captures the transient behavior

of the process. The m �m matrix K(t) is called the

global kernel and provides the probability of the event

that the next regeneration time point is �

�

1

and the

next regeneration marking is j given that the marking

is i at �

�

0

= 0. Finally, the m � n matrix E(t) is

called the local kernel since it describes the behavior

of the marking process M(t) inside two consecutive

regeneration time points. The element E

ij

(t) is the

probability that the process is in marking j at time

t starting from marking i at �

�

0

= 0 before the next

regeneration time point. From the above de�nitions:

X

j2


0

K

ij

(t) +

X

j2


E

ij

(t) = 1 (2)

The transient behavior of the MRSPN can be eval-

uated by solving the following generalized Markov re-

newal equation (in matrix form) [6, 3]:

V(t) = E(t) + K � V(t) (3)

whereK �V(t) is a convolution matrix, whose (i; j)-th

entry is:

[K � V(t)]

ij

=

X

k

Z

t

0

dK

ik

(y)V

kj

(t� y):

Next, we outline the solution of the above equation for

steady state and transient cases.

2.1 Steady-state solution

If the embedded discrete time Markov chain

(DTMC) de�ned at regeneration points (fM(�

�

n

); n �

0g) is �nite and irreducible then its steady-state prob-

ability vector � given by the solution of the linear sys-

tem

� = �K(1) (4)

under the condition

P

i2


0

�

i

= 1 can be evaluated.

Let �

ij

denote the integral

R

1

0

E

ij

(t)dt. Then it can

be shown [13] that the steady-state probabilities �

j

of

the MRGP can be obtained in closed form by:

�

j

=

X

k2


�

k

�

kj

X

k2


�

k

X

l2


�

kl

(5)

2.2 Transient solution

Coupled integral Equations (3) describing the be-

havior of an MRGP

2

can be numerically solved by two

di�erent approaches:

� Direct solution in time domain. Equation (3) rep-

resents coupled Voltera equation of the second

kind, for which the numerical solution methods

are discussed in [7].

� Numerical solution from transform domain. In

this paper, we follow this approach as described

below.

If we take the Laplace-Stieljes transform (LST) on

both sides of (3) we obtain,

~

V(s) =

~

E(s) +

~

K(s)

~

V(s);

from which the transient probabilities in Laplace

transform (LT) domain (as LST of a function is s times

its LT) are obtained as

�

V

(s) =

h

I� s

�

K

(s))

i

�1

�

E

(s) (6)

2

An alternative formulation for transient solution of MRGPs

is possible using partial di�erential equations [8].



Symbolic manipulators like \Mathematica" can be

used to automate evaluation of matrix inversion and

obtain expressions for V

ij

in the s domain. These ex-

pressions are then inverted numerically to obtain the

solution in time domain. For this purpose we use the

Jagerman's method [12].

To summarize the procedure, modeling with MR-

SPNs consists of the following steps.

1. Specify the system behavior by a concise SPN and

verify that it falls in the MRSPN class.

2. Obtain the reachability graph of the SPN and de-

termine the state space of the underlying MRGP.

3. Derive the global kernel (K) and the local kernel

(E) from the reachability graph in time domain

as well as Laplace domain.

4. Use Equation (6) and numerical inversion to ob-

tain the transient measures

5. Calculate K(1) and solve for the steady state

probabilities of the embedded DTMC.

6. Evaluate �

ij

s from the local kernel and use Equa-

tion (5) to obtain the steady state measures.

We now proceed to follow the above steps for analyzing

software rejuvenation.

3 The system

The software starts up in a \robust" state in which

the probability of failure is zero. As it is used, it ages

with time and if no rejuvenation is done eventually

transits to another state. In this state, it provides nor-

mal service but can fail (crash) with a non-zero prob-

ability. Once it crashes, it takes a random amount

of time to bring it up again to the clean state and

restart it. Rejuvenation is performed at a �xed inter-

val from the start (or restart) of the software in the

robust state. At the time of rejuvenation, if the soft-

ware has not already crashed, it is either in the clean or

the failure probable state. It is then stopped, cleaned

and restarted; all of which takes a random amount of

time. We assume that the time for which software re-

mains clean and the time to fail from the failure prob-

able state are both exponentially distributed. Thus

the time to failure for the software starting in the ro-

bust state has a hypo-exponential distribution. We

further assume that the times to restart both from

rejuvenation and crash failures are both exponentially

distributed. The rejuvenation interval, however, is de-

terministic. Even though our assumption about expo-

nentiality of restart times is not substantiated, they

clearly su�ce to demonstrate the tradeo�s involved in

rejuvenation. Showing the existance of an optimality

condition and illustrating the trade-o�s is the primary

objective of this paper. Furthermore, it is relatively

straightforward to solve the same problem with gen-

eral distributions using the same model.

P  up

Pdown

Prej
P
fprob

Pclock

clock
T

Trej1
Trej2

T
fprob

Tup

Tdown

Figure 1: MRSPN Model of Software Rejuvenation

3.1 Petri net model

Figure 1 shows the Petri net model of the above

system. The circles represent places with dots inside

representing the tokens held inside that place. Un-

shades rectangles represent transitions with exponen-

tially distributed �ring time while the shaded rectan-

gle represents a transition with a constant �ring time.

The robust state is modeled by the place P

up

. Tran-

sition T

fprob

models the aging of the software. When

this transition �res, i.e., a token reaches place P

fprob

)

the software enters the failure probable state. The

transition T

down

models crash failure of the software.

During the software restart (while the transition T

up

is enabled), every other activity is suspended; the in-

hibitor arc fromplace P

down

to transition T

clock

is used

to model this fact.

The transition T

clock

models the rejuvenation pe-

riod. It is competitively enabled with T

fprob

and �res

when the clock expires if T

fprob

has not �red by that

time. Once it �res, a token moves in place P

rej

and the

activity related with software rejuvenation (transition

T

rej

) starts.

During the rejuvenation phase, every other activ-

ity in the system is suspended. This is modeled by

inhibitor arcs from place P

rej

to transitions T

fprob

and T

down

. Upon rejuvenation, the net has to be re-

initialized into a condition with one token in place P

up

and one in place P

clock

, and all the other places empty.

If the software was in the robust state when T

clock

�red, then after rejuvenation is complete, T

rej2

�res

to re-initialize the net. If the software had reached

the failure probable state (token in place P

fprob

),

then T

rej1

�res to complete the rejuvenation and re-

initializes the net.

As there is only one deterministic transition in the

net, the condition for at most one generally distributed

transition enabled at any time is automatically satis-

�ed. Thus our SPN model of the system belongs to

the MRSPN class.

3.2 Reachability graph

Since there are no immediate transitions in the

net, all the markings are tangible. Let the 5-
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Tfprob

Tclock
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Figure 2: Reachability Graph for the MRSPN Model

tuple (P

up

; P

fprob

; P

down

; P

clock

; P

rej

) denote a mark-

ing with P

x

= 1, if a token is present in place P

x

,

and zero otherwise. From the SPN description, it is

clear that only �ve markings are possible viz (10010),

(01010), (10001), (00110) and (01001).

Figure 2 shows the reachability graph with ovals

representing the markings and arcs representing pos-

sible transitions between the markings. The �ve mark-

ings mentioned above are labeled one through �ve re-

spectively. An arc from a marking i to another mark-

ing j is labeled with the name of the transition whose

�ring brought about the change. Let �

1

, �

2

, �

3

, �

4

and �

5

be the transition rates associated with T

fprob

,

T

down

, T

rej1

, T

up

and T

rej2

respectively. Also, let �

be the �ring time associated with T

clock

.

4 Model solution

The state space of the underlying MRGP consists

of �ve states, i.e., 
 = f1; 2; 3; 4; 5g. We de�ne the

regeneration time points as the instances when either

of the following events occur:

� The deterministic transition gets enabled.

� The deterministic transition gets disabled or �res.

� An exponentially distributed transition which is

not competitively enabled with the deterministic

transition �res.

It can be seen from the net behavior and above con-

ditions that the regeneration times exactly correspond

to times of entering either of states 1, 3, 4 or 5. In all

these states, at the time of entering that state, future

evolution of the process can be fully characterized by

just that state. In contrast, when a process transits

from state 1 to state 2 due to �ring of T

fprob

, the

deterministic transition T

clock

that was enabled when

process entered state 1, remains enabled. Thus, in or-

der to probabilistically determine future state of the

process, the time already expired in T

clock

also needs

to be known apart from the knowledge that the pro-

cess is in state 2.

Thus possible set of states at regeneration instants

is given by 


0

= f1; 3; 4; 5g. We now proceed to de�ne

the E(t) and the K(t) matrices. Since cardinality of




0

is four, K(t) is a 4� 4 matrix given as following:

K(t) =

0

B

@

0 K

13

(t) K

14

(t) K

15

(t)

K

31

(t) 0 0 0

K

41

(t) 0 0 0

K

51

(t) 0 0 0

1

C

A

Note that the subscripts ij on K

ij

(t) denote the ac-

tual state labels according to the reachability graph

(and not the indices of rows or columns). The diago-

nal entries are zero as at a regeneration instance, the

process must change state. As no transition is possi-

ble from states 3, 4 and 5 to each other, corresponding

entries are zero.

From Equation (1), K

13

(t) is given by the proba-

bility that the process enters state 3 by �ring of T

clock

.

This equals the probability that T

fprob

does not �re

in the interval [0; �) and is given as

K

13

(t) = e

��

1

�

u(t� �) (7)

where u(t) denotes the unit-step function. K

14

(t) is

given by the joint probability that the state at next

regeneration instant is 4 and the time to regenerate is

less than or equal to t, given that the state is 1 at time

zero. As the process has to pass through state 2, this

quantity is obtained by conditioning on the time to

reach 2 and then un-conditioning in the interval [0; �]

as

K

14

(t) =

8

<

:

1�

�

1

�

1

��

2

e

��

2

t

+

�

2

�

1

��

2

e

��

1

t

; 0 � t < �

1�

�

1

�

1

��

2

e

��

2

�

+

�

2

�

1

��

2

e

��

1

�

; t � �

(8)

K

15

(t) is given by the probability that T

down

does not

�re up to time �, given that the process is in state 1

at time zero.

K

15

(t) =

�

1

�

1

� �

2

�

e

��

2

�

� e

��

1

�

�

u(t� �) (9)

In states 3, 4, and 5, only a single exponential transi-

tion is enabled. So K

i1

(t); i = 3; 4; 5 is the probability

that the corresponding transition �res in time t.

K

i1

(t) = 1� e

��

i

t

; i = 3; 4; 5 (10)

E(t) describes the process at times between two

consecutive regeneration points starting from a state

at regeneration and hence is a 4 � 5 matrix given as

following:

E(t) =

0

B

@

E

11

(t) E

12

(t) 0 0 0

0 0 E

33

(t) 0 0

0 0 0 E

44

(t) 0

0 0 0 0 E

55

(t)

1

C

A



Again, the subscripts ij represent the actual state la-

bels and not the row or column indices. Zero entries

in the matrix at ijth location indicate that either a

transition from i to j is not possible or it results in a

regeneration. E

11

(t) is simply the probability that the

process starting in state 1, stays in it till time t. Here

t lies in the interval [0; �) as at time �, the process is

sure to transit to state 3 resulting in a regeneration.

Thus

E

11

(t) = e

��

1

t

(u(t)� u(t� �)) (11)

E

12

(t) is the probability that at time t the process

is in state 2 given that at time 0, it was in state 1.

Note that t takes values in (0; �). Conditioning on

time to enter state 2 and un-conditioning, we obtain

E

12

(t) =

�

1

�

1

� �

2

�

e

��

2

t

� e

��

1

t

�

(u(t) � u(t� �))

(12)

E

ii

(t), for i = 3; 4; 5 is the probability that the corre-

sponding enabled exponential transition does not �re

by time t. Therefore

E

ii

(t) = e

��

i

t

; i = 3; 4; 5 (13)

4.1 Steady state solution

Using the notation de�ned in Section 2, we evaluate

the following quantities:

�

11

=

Z

1

0

E

11

(t)dt (14)

=

1

�

1

�

1� e

��

1

�

�

(15)

�

12

=

Z

1

0

E

12

(t)dt

=

1

�

2

�

�

1

�

1

� �

2

�

e

��

2

�

�

2

�

e

��

1

�

�

1

�

(16)

�

ii

=

Z

1

0

E

ii

(t)dt (17)

=

1

�

i

; i = 3; 4; 5 (18)

The steady state probabilities for the embedded

DTMC are obtained by using Equation (4) as follow-

ing:

�

1

= 1=2 (19)

�

3

=

1

2

e

��

1

�

(20)

�

4

=

1

2

�

�

1

2(�

1

� �

2

)

e

��

2

�

�

�

2

2(�

1

� �

2

)

e

��

1

�

(21)

�

5

=

�

1

2(�

1

� �

2

)

�

e

��

2

�

� e

��

1

�

�

(22)

Next, the steady state probabilities of the MRGP be-

ing in state i; 1 � i � 5, are obtained in closed form by

plugging in values from Equations (14) through (17)

and Equations (19) through (22) in Equation (5). The

steady state probability of the software being unavail-

able is given by the probability that the process is in

state 3, 4 or 5. Therefore

�

down

= �

3

+ �

4

+ �

5

: (23)

Let T

d

be a random variable denoting the down time of

software, then the expected down time in the interval

[0; T ] would be

E[T

d

] = �

down

T (24)

Since rejuvenation is typically scheduled for times

when the costs incurred will be less, it may be appro-

priate to measure the performance in terms of costs

incurred rather than in terms of down time. Let C

r

be the �xed cost per unit time when the software is in

the rejuvenation phase and C

f

be the �xed cost per

unit time when it has failed. If C is a random variable

denoting the cost incurred, then, the expected total

cost incurred in the interval [0; T ] is given by

E[C] = ((�

3

+ �

5

)C

r

+ �

4

C

f

)T (25)

We have obtained closed-form expressions for the

expected down time and expected down costs which,

for a given T are functions of �

1

; �

2

; �

3

; �

4

; �

5

and �.

For each, di�erentiating with respect to � and equating

to zero gives us the optimal value of � that minimizes

the respective quantity.

5 Results

Values of �

1

through �

5

are �xed for all the results

and are taken from page 15 of [9]. Table 1 lists these

values.

Parameter Value

�

�1

1

240 hrs.

�

�1

2

2160 hrs.

�

3

6 /hr.

�

4

2 /hr.

�

5

6 /hr.

Table 1: Parameter Values

Transient results:

We chose the value of � to be 336 hours(also from [9]).

To obtain the results we evaluated

�

K

(s) and

�

E

(s)

and programmed Equation (6) in Mathematica to ob-

tain

�

V

(s). Then we used Jagerman's method to nu-

merically invert

�

V

13

(s)+

�

V

14

(s)+

�

V

15

(s). Figure 3

shows the transient probability of the software being

unavailable (due to rejuvenation as well as failure).
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Figure 3: Transient expected unavailability of software

From the plot, we can see that the expected unavail-

ability ripples as time increases �nally settling down

to the steady state value. Also, the local maxima of

the �rst ripple occurs at 336 hrs. The maxima of ith

ripple for i � 2 occurs at (i + 1)336 + i

1

6

. Note that

1

6

is the time it takes to complete the rejuvenation.

Also note that there are minor \kinks" in the graph

which result from a loss of precision in the numerical

inversion of Laplace transform.

Steady state results:

We are not only interested in the steady state prob-

ability of the software being unavailable given a reju-

venation interval, but also on the e�ect of the interval

on expected unavailability. Figure 4 shows the e�ect

on expected down time by change in the rejuvenation

interval(�). In the extreme case, if � = 0, i.e., the soft-

ware is always rejuvenating, it would also be always

unavailable. As � is increased, expected unavailability

decreases. As it is performed less and less frequently,

the unavailability caused by rejuvenation is overshad-

owed by the down time due to failure. Thus expected

unavailability achieves a minimum and then increases

again. It was found that the optimal rejuvenation in-

terval is 33 days. As � ! 1, expected unavailability

approaches the value when there is no rejuvenation.

Figure 5 shows the change in expected costs as � is

varied. For illustration purpose, we assume that the

cost incurred when software fails (i.e., C

f

) is �xed at

$5000 /hr. The results are plotted for di�erent values

of C

f

=C

r

. As with the down time, expected cost is a

function with the optimum value of � at its minimum.

As the ratio C

f

=C

r

is increased, which means keeping

C

f

�xed at 5000$/hr. and decreasing C

r

, we see that

the optimal value of � also decreases. Thus higher

the cost of failure relative to the cost of maintenance,

more often would we perform rejuvenation. In the

limit � ! 1, i.e., no rejuvenation, the expected cost

is a function of C

f

only and hence all graphs approach

the same value. Also, in the limit � ! 0, the cost

incurred is in�nite, as the software always remains in

the rejuvenation state.
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Figure 4: Steady state expected down time versus re-

juvenation interval
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Figure 5: Steady state expected cost versus rejuvena-

tion interval

6 Conclusion

We have presented an MRSPN based model of soft-

ware rejuvenation which illustrates the change in ex-

pected down time and expected total cost with respect

to the rejuvenation interval. The model can be used to

�nd the optimum rejuvenation interval given the sys-

tem parameters. The model provides the probability

that the software is unavailable in both the transient

and steady state cases. In the presented model, reju-

venation is solely time based. Since the cost incurred

is a function of the load on the service provided by

the software, rejuvenation may also be a function of

load. We are currently investigating rejuvenation poli-

cies which are purely load dependent as well as policies

which are both time and load dependent.
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