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Abstract

Due to repeated and potentially faulty usage of con-

tinuously running client-server type software systems

by many clients, such software \ages" with time and

eventually fails. Huang et. al. proposed a technique

called \software rejuvenation" [3] in which the soft-

ware is periodically stopped and then restarted in a

\robust" state after proper maintenance. This \re-

newal" of software prevents, or at least postpones, the

crash failure.

In this paper, we present a quantitative analysis

of two software rejuvenation policies. The �rst one

considers only the ageing behaviour of the system by

time, while the second one considers the actual load

of the system as well. The behaviour of the system is

represented through a Markov Regenerative Stochas-

tic Petri Net (MRSPN) model. Numerical analysis of

the system performance regarding the probability of

successful service of clients is provided.

Keywords:

Continuously running client-server software sys-

tems, Software rejuvenation, Markov Regenerative
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1 Introduction

Software life cycle can broadly be classi�ed into de-

velopment and operational phase. The development

phase is roughly divided into design, coding and test-

ing phase. Traditionally, software quality improve-

ment with respect to factors like performance and non-

faultyness has been concentrated in the design phase.

However, coding and testing are not perfect and ex-

tensive enough to guarantee a fault free operational

software.

System failures due to imperfect software behaviour

are usually more frequent than failures caused by

hardware components faults [2]. These failures are

the result of either inherent design defects in the soft-

ware or from improper usage by clients [6]. Thus fault

tolerant software has become an e�ective alternative

to virtually impossible fault-free software. A wide lit-

erature exists in this �eld where the software has the

ability to recover from a transient fault [1, 4, 5, 7].

Most of the approaches for example N-version pro-

gramming [1] and recovery block [7] are corrective in

nature, i.e. only after a failure has occured, recovery

is started. The overhead incurred by such recovery

strategies remains high and much research was done

to reduce it.

Huang et. al. have suggested a complimentary

technique which is preventive in nature. It involves

periodic maintenance of the software so as to prevent

crash failures. They call it Software Rejuvenation [3],

and de�ne it as the periodic preemptive rollback of con-

tinuously running applications to prevent failures.

While monitoring real applications, it was observed

that software typically \ages" as it is run. Potential

fault conditions are thus slowly accumulated since the

beginning of the software activity. Consider, for ex-

ample, a server module interacting with many client

modules. Memory bloating, unreleased �le-locks, data

corruption are the typical causes of slow degradation

which, if not taken care of, leads to crash failure. Soft-

ware rejuvenation involves periodically stopping the

system, cleaning up, and restarting it from a clean in-

ternal state. This \renewal" of software prevents (or

in the least postpones) a crash failure.

In [8] a quantitative analysis of a software rejuve-

nation model by the mean of the probability of system

unavailability is presented. In this paper we evaluate

a similar non-Markovian system model however tak-

ing into consideration a di�erent performance mea-

sure, the steady state probability of successful service

instead of the probability of system unavailability.

The rest of the paper is organized as follows. Sec-

tion 2 briey introduces the applied model description

tool and the associated analysis method. Section 3

discusses the system model and the considered rejuve-

nation policies. Details of analysis of the considered

software rejuvenation models can be found in Section



4. Results of numerical experiments are presented in

Section 5, and the paper is concluded in Section 6.

2 Introduction to DSPNs

One di�culty in modeling a stochastic system such

as software with rejuvenation arises because the re-

juvenation interval is deterministic, which renders

the system \non-Markovian" and standard evaluation

method using the theory of continuous time Markov

chains can not be applied. In this case, the approach

is to study the underlying stochastic process of such

non-Markovian systems. In our cases the underlying

process can be shown to be a Markov regenerative one

(MRGP) and therefore Markov renewal theory can be

applied for its long-run behaviour [9, 11].

A complementary issue is to specify the system

behaviour in a concise way from which the underly-

ing stochastic process can be extracted and analyzed.

Non-Markovian Stochastic Petri nets on the one hand

with their remarkable exibility and potential for cap-

turing concurrency, contention and synchronization in

a system, and on the other hand with their ability to

quantitatively evaluate stochastic models can be used

as the high-level speci�cation tool.

For analyzing a non-Markovian SPN, with under-

lying MRGP [10], we need to identify certain time

points in the underlying stochastic process at which

it is possible to forget the past history. These points,

indicated as regeneration points, are such that the fu-

ture evolution of the stochastic process only depends

on the present state entered when a regeneration time

point occurs. The analysis of a non-Markovian SPN

with regeneration time points is composed by the fol-

lowing steps:

i) evaluation of the processes (called subordinated

processes) to the consecutive regeneration time

point starting from all possible states in which

the memoryless property can occur.

ii) evaluation of the steady state (or the transient)

behaviour of the whole process based on the anal-

ysis of the subordinated processes.

In this paper the considered performance models

are associated with the steady state behaviour of the

DSPN underlying the MRGP model of the system.

According to the above steps the steady state analysis

is as follows:

i) analysis of the subordinated processes

{ state transition probabilities of the embed-

ded DTMC:
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Figure 1: MRSPN Model of the System Behaviour

ii) analysis of the whole process

{ steady state probabilities of the embedded

DTMC (�
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{ and �nal steady state probabilities of the

MRGP (
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3 The system model and the consid-

ered rejuvenation policies

The software starts up in a \robust" state in which

the probability of failure is zero. As it is used, it ages

with time and if no rejuvenation is done eventually

transits to another state in which it provides normal

service but can fail (crash) with a non-zero probabil-

ity. Once it crashes, it takes a random amount of time

to bring the system up again to the clean state and

restart it. Rejuvenation is performed at a �xed inter-

val from the start (or restart) of the software in the ro-

bust state. At the time of rejuvenation, if the software

has not already crashed, it is either in the clean or the

failure probable state. It is then stopped, cleaned and

restarted all of which takes a random amount of time.

We assume that the time for which software remains

clean, the time to fail from the failure probable state

and the time to restart both from rejuvenation and

crash failures are all exponentially distributed. The

rejuvenation interval, however, is deterministic.

Figure 1 shows the Petri net model of the above

described software system itself. The robust state is

modeled by place P

up

. The exponentially distributed

transition T

fprob

models the aging of the software.

When this transition �res, (a token reaches place

P

fprob

), i.e., the software enters the failure proba-

ble state. The exponentially distributed transition

T

down

models crash failure of the software. During



the software maintenance (exponentially distributed

transition T

up

), every other activity is suspended: the

inhibitor arc from place P

down

to transition T

clock

is

used to model this fact.

Deterministic transition T

clock

models the rejuve-

nation period. It is competitively enabled with T

fprob

and �res when the clock expires if T

down

has not �red

by that time. Once it �res, a token moves to place

P

rej

and the activity related with software rejuvena-

tion (transition T

rej

) starts. The marking dependent

arcs from P

fprob

to T

rej

and from T

rej

to P

up

stand for

removing the token from P

fprob

if any at rejuvenation.

During the rejuvenation phase, every other activ-

ity in the system is suspended. This is modeled by

inhibitor arcs from place P

rej

to transitions T

fprob

and T

down

. Upon rejuvenation, the net has to be re-

initialized into a condition with one token in place

P

up

and one in place P

clock

, and all the other places

empty. If the software was in the robust state when

T

clock

�red, then after rejuvenation is complete, T

rej

�res to re-initialize the net, with a rate equal to �

rej1

.

If the software had reached the failure probable state

(token in place P

fprob

), then T

rej

�res to complete the

rejuvenation and re-initializes the net: a rate equal to

�

rej2

(with �

rej1

� �

rej2

is assumed in this case.

3.1 Time Based Policy

In this paper we extend the previous model,

originally provided in [8], by including the ar-

rival/departure processes of the requests addressed to

the server. Figure 2 is derived from Figure 1 where

transitions T

arr

and T

serve

and place P

load

have been

added. Transition T

arr

models the arrival process (ex-

ponentially distributed inter-arrival times have been

assumed) of requests which are stored in a bu�er mod-

eled through place P

load

. The dimension of the bu�er

is limited to k elements (the inhibitor arc from P

load

to T

arr

models the �nite dimension of the bu�er).

Transition T

serve

models the exponentially distributed

service time. To model the server unavailability, ei-

ther because under software rejuvenation or under

recovery from a crash condition, two inhibitor arcs

are provided from places P

rej

and P

down

to transition

T

serve

. Finally, a variable cardinality arc from place

P

load

to transition T

up

and one to transition T

rej

have

been added which ush the bu�er from all the pend-

ing requests before the system is restored to the full

functioning condition. Having related the processing

power of the system to its functioning state allows us

to evaluate the loss probability due to the system un-

availability as well as its e�ective productivity.

3.2 Load and Time Based Policy

We propose a di�erent rejuvenation strategy which

is strictly related to the load o�ered to the system in

a given time instant. The strategy we want to analyze

determines the Petri net model depicted in Figure 3. It

is derived from Figure 2, with some changes to the part

modeling the rejuvenation activity. The rejuvenation

time is now divided into two parts. After the �rst time

interval, modeled by transition T

clock1

, the system en-

ters into a state (modeled by a token in place P

rej1

)

in which a decision should be taken if rejuvenate or

not according to the status of the input bu�er. More
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Figure 2: Time dependent rejuvenation policy
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icy

precisely, if the load to the system is below a given

threshold (inhibitor arc from P

load

to the immediate

transition T

im

) then transition T

im

will �re immedi-

ately and the rejuvenation will start. If the number

of requests in the bu�er is over a given threshold, it

might be more convenient to delay the rejuvenation

for a while, in order to process some more requests,

thus reducing the number of lost requests. However,

after a maximum given amount of time (determinis-

tic transition T

clock2

) the rejuvenation phase will start

independently on the status of the requests queue.

4 Analysis of rejuvenation policies

The performance measure considered in this paper

is the steady state probability of successful service of
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requests, i.e.

� = lim

t!1

# requests succesfully served in (0; t)

# requests arrived to the system in (0; t)

=

PrfT
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is enabledg �

PrfT
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is enabledg �
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Which means that the performance measure of the

introduced models can be evaluated by summing up

the steady state probabilities of the states in which

T

arr

(T

serve

) is enabled.

4.1 Time Based Policy

Let the 6-tuple (#P

up

, #P

fprob

, #P

down

, #P

clock

,

#P

rej

, #P

load

) denote the markings of the Petri net

model, where #P

x

is the number of tokens in place

P

x

. Since there is only a single deterministic transition

(T

clock

) in the net whose behaviour is independent of

the service process the structure of the reachability

graph can be studied disregarding the service process

(i.e. #P

load

)

The evolution of the stochastic process can be rep-

resented over the sets of states (10010�), (01010�),

(10001�), (00110�) and (01001�). '�' means that the

number of tokens in #P

load

can take any value from

0; 1; : : : ; k. Each sets are composed by k + 1 states.

Hence the number of reachable markings are 5k + 5.

Figure 4 shows the structure of the reachability

graph with the ovals representing the sets of mark-

ings and the arcs representing the possible transitions

between the sets. The �ve sets of markings are labeled

one through �ve respectively. The arc from a mark-

ing set i to j is labeled by the name of the transition

whose �ring brought about the change.

There is only a single subordinated process with

internal state transition in this model. The subor-

dinated process starting from marking (100100) is a

CTMC, with internal state transitions due to the �r-

ing of T

fprob

, T

arr

and T

serve

. This subordinated pro-

cess can be concluded by the �ring of T

clock

(at its

deterministic �ring time) or by a preceding �ring of

fprob
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Figure 5: Structure of the reachability graph of the

load and time based model

T

down

. All the other subordinated processes are con-

cluded by the �ring of an exponential transition ( T

rej

,

T

up

, T

arr

or T

serve

). From sets (10010�) and (01010�)

only marking (100100) can be a regeneration state

with the given initial marking, while only exponen-

tial transitions are enabled in the other 3 sets, hence

there are 3k+4 regeneration markings out of the 5k+5

markings.

The considered performance parameter is associ-

ated with the particular Petri net model in the follow-

ing way:

� =

PrfT

serve

is enabledg �

PrfT

arr

is enabledg �

=

Prf(#P

down

= 0)&(#P

rej

= 0)&(#P

load

> 0)g �

Prf#P

load

< kg �

(6)

4.2 Load and Time Based Policy

Let the 7-tuple (#P

up

, #P

fprob

, #P

down

, #P

clock

,

#P

rej1

, #P

rej2

, #P

load

) denote the markings of the

Petri net model.

The evolution of the stochastic process can be rep-

resented over the sets of states depicted in Figure 5.

'+' means that the number of tokens in #P

load

can

take any value from 1; 2; : : : ; k. Sets (1), (2), (4), (7),

(8) are composed by k+1 tangible states. Sets (3), (5)

are composed by k tangible and one vanishing states.

Set (6) contains k states. Hence the number of reach-

able markings are 8k + 5.

There are two exclusively enabled transitions with

deterministic �ring time (T

clock1

, T

clock2

) in the model.

The subordinated processes associated with the �ring

of these transitions are CTMCs. The states of sets

(1) and (2) can not be regeneration states apart of

(1001000). This way the number of regeneration states

is 6k+ 4.

The successful service probability is associated with

the Petri net model as in Eq. (6) but #P

rej

has to be

replaced by #P

rej2

in the denominator.



0.001

0.01

120 360 600 1200 2400 4800 24000

L
os

s 
pr

ob
.

Tclock1

ρ=0.5, Tclock2=0
ρ=0.5, Tclock2=10

Figure 6: Performance of rejuvenation policies, � =

0:5

0.001

0.01

120 360 600 1200 2400 4800 24000

L
os

s 
Pr

ob
.

Tclock1

ρ=0.9,Tclock2=0
ρ=0.9,Tclock2=10

ρ=0.9,Tclock2=100

Figure 7: Performance of rejuvenation policies, � =

0:9

5 Numerical results on the perfor-

mance of rejuvenation policies

Let �

1

, �

2

, �

3

and �

4

be the transition rates asso-

ciated with T

fprob

, T

down

, T

rej

and T

up

respectively.

Values of �

1

through �

4

are �xed for all the results

and are taken from [3]. �

�1

1

= 240h:, �

�1

2

= 2160h:,

�

3

= 6=h: and �

4

= 2=h:. Two values of the utiliza-

tion (�) were considered in the numerical experiments:

� = 0:5 (� = 0:5, � = 1) and � = 0:9 (� = 0:9, � = 1).

The "bu�er size" (k) was 20 in all cases.

In Figure 6 and Figure 7 the dependence of the loss

probability of customers (1 � �) on the rejuvenation

time(s) is depicted. The solid lines titled "Tclock2=0"

refers to the time dependent model, while the lines

where Tclock2>0 refer to the load and time dependent

model.

6 Conclusion

We studied and compared two software rejuvena-

tion models with performance parameters associated

with their service performance. We found that sig-

ni�cant performance gain can be obtained when the

number of customers in the system is considered at

rejuvenation.
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