
On the Analysis of Software Rejuvenation

Policies

Sachin Garg

1

, Antonio Pulia�to

2

, Miklos Telek

3

, Kishor Trivedi

1

1

Center for Advanced Comp. & Comm.

Department of Electrical Engineering, Duke University

Durham, NC 27708-0291 - USA

E-mail: fsgarg,kstg@ee.duke.edu

2

Istituto di Informatica, Universit�a di Catania

Viale A. Doria 6, 95025 Catania - Italy

E-mail: ap@iit.unict.it

3

Department of Telecommunications

Technical University of Budapest

1521 Budapest - Hungary

E-mail: telek@pyxis.hit.bme.hu

Abstract

Software rejuvenation is a technique for software fault tolerance which involves oc-

casionally stopping the executing software, \cleaning" the \internal state" and restart-

ing. This cleanup is done at desirable times during execution on a preventive basis so

that unplanned failures, which result in higher costs compared to planned stopping,

are avoided. Since during rejuvenation, the software is typically unavailable or in a

degraded mode of operation, the operation involves a cost. The necessity to use this

technique not only in general purpose computers but also in safety-critical and high

availability systems clearly indicates the need of analysis in order to determine the

optimal times to rejuvenate.

In this paper, we present an analytical model of a software system which services

transactions. Due to \aging", not only the service rate of the software decreases with

time but the software itself experiences occasional crash/hang failures. We propose

and compare two rejuvenation policies. First policy is purely time dependent while

the second also takes into account the number of transactions currently queued for

service. The policies are evaluated for the resulting steady state availability as well

the probability that a transaction is denied service. We also numerically illustrate

the use of our model to compute the optimal rejuvenation interval which manimizes

(maximizes) the loss probability (steady state availability).

1

Keywords: Transaction oriented software systems, Software rejuvenation, Markov Re-

generative Stochastic models

1 Introduction

It is now well established that system failures due to imperfect software behavior are usually

more frequent than failures caused by hardware components faults [?, ?]. It is also well

known that software, regardless of development, testing and debugging time, contains some

residual faults [?]. Thus, fault tolerant software has become an e�ective alternative to vir-

tually impossible fault-free software, at least in safety-critical, high availability applications.

Traditional methods of software fault-tolerance, such as N-version programming [?, ?], re-

covery blocks [?] and N-self checking programming [?] are all based on design diversity.

Furthermore, they are all reactive in nature, i.e., the fault tolerance mechanism comes into

e�ect after at least one version has experienced failure.

More recently, from the study of �eld failure data, it has been observed that a large

percentage of software failures are transient in nature [?, ?], caused by phenomena such as

overloads or faulty exception handling [?]. A common characteristic of these type of failures

is that upon re-execution of the software, the failure is not likely to occur again. The error

condition, which results in the failure, typically manifests itself in the operating environment

of the executing software. Due to the complexity of modern-day operating systems, it has

been observed that the manifestation of the same error condition, when the software is re-

executed, is very unlikely thus avoiding the failure. This observation has led to alternative

software fault-tolerance techniques such as progressive retry [?]. These techniques based on

environment diversity are quite inexpensive compared to design diversity approaches and yet

have the potential to provide required reliability/availability.

Further, while monitoring real applications an interesting phenomenon of software \ag-

ing" has been reported. It is observed that potential fault conditions slowly accumulate over

time since the beginning of the software execution. Memory bloating, unreleased �le-locks,

data corruption are some typical causes of slow degradation. Huang et. al. report this

phenomenon in general purpose applications [?], where a Unix process results in a crash or a

hang failure. Avritzer and Weyuker have witnessed aging in telecommunications' switching

software where the e�ect manifests as degrading performance [1]. The service rate of the

software keeps decreasing with time and eventually it starts losing packets. Perhaps the most

vivid example of aging can be found in [?], where the failure resulted in loss of human life.

Patriot missiles, used during the Gulf was to destroy Iraq's Scud missiles used a computer

whose software accumulated errors. The e�ect of aging in this case was mis-interpretation

of an incoming Scud as not a missile but just a false alarm, which resulted in death of

twenty-eight U.S. soldiers.

It is to counteract this phenomenon of aging that Huang et. al. [4] have proposed the

technique of \Software Rejuveantion". It is proactive in nature and simply involves stopping

the running software occasionally, removing the accrued error conditions and restarting the

software. Garbage collection,
ushing operating system kernel tables, reinitializing internal

data structures are some examples of what cleaning the internal state of a software migh

involve. An extreme, but well-known example of rejuvenation is a hardware reboot. Apart

from being used in an ad-hoc manner by almost all computer users, rejuvenation has been

used in high-availability systems such as large telecommunications software [1], where the

switching computer is rebooted occasinally upon which the service rate is restored to its

peak value. It is also used implicitly in fault tolerant operating system [5], where the process

is restarted on a lossely coupled redundant processor. In a safety critical environment also,

the necessity of performing rejuvenation is evident from the example in [6]. In the words

of the author, On 21 February, the o�ce sent out a warning that \very long running time"

could a�ect the targeting accuracy. The troops were not told, however, how many hours \very

long" was, or that it would help to switch the computer o� and on again after 8 hours.

Since during rejuvenation, the software is typically unavailable or in a degraded mode

of operation, the operation involves a cost. The use of this technique in safety-critical/high

availability systems clearly indicates the need of analysis in order to determine the opti-

mal times to rejuvenate. Prevous work in analysis of software rejuvenation was started

with a continuous time Markov chain model proposed by [4] to determine if rejuvenation

is bene�cial for systems which experience hang/crash failures. It was improved improved

upon by allowing deterministic rejuvenation time and provided a closed form expression for

the optimal rejuvenation interval which maximizes availability [2]. Avritzer and Weyuker,

collected tra�c data on the experimental system and proposed heuristics on good times

to rejuvenate [1]. In [?], a Markov decision process (MDP) based framework to deal with

the problem of determining optimal times to rejuvenate was developed assuming that the

software experiences degradation in the service rate.

In this paper, we develop and evaluate a non-Markovian model of a transaction oriented

software where the e�ect of aging manifests as decreasing service rate as well as occasional

crash/hang failure. This combination has not been considered by any of the previous model.

We propose and compare two rejuvenation policies. First policy is purely time dependent

while the second also takes into account the number of transactions currently queued for

service. The policies are evaluated for the resulting steady state availability as well the

probability that a transaction is denied service. We also numerically illustrate the use of our

model to compute the optimal rejuvenation interval which manimizes (maximizes) the loss

probability (steady state availability).

The rest of the paper deals with the proposed model, its solution and numerical example

and is organized as follows. Section 2 describes the behaviour of the software system being

modeled and introduces the rejuvenation policies. The desired measures of steady state

probability and loss probability are derived in Section 3. In Section 4, the use of the models

in comparing the two policies and in �nding optimal rejuvenation interval is illustrated via

a numerical example. The paper is concluded in Section 5.

2 System Model

The system we study consists of a server type software to which transactions arrive at a

constant rate �. Each transaction receives service for a random period. The service rate

of the software is monotone non-increasing function of time (because of aging) denoted by

�(t). Therefore, a transaction which starts service at time t

1

, occupies the server for a

time whose distribution is given by 1 � e

�

R

t

t

1

�(t)dt

. If the software is busy processing a

transaction, arriving customers are queued. Total number of transactions that the software

can accomodate is K (including the one being processed) and any more arriving when the

queue is full are lost. The service discipline is FCFS. This state, in which the software is

available for service (albeit at decreasing service rate) is denoted as state \1" (see Figure 1).

2

1

3

Rejuvenating

Recovering

A
va

ila
bl

e

Figure 1: Macro-states representation of the software behavior

Further, the software can fail upon which recovery procedure is started. This state, in

which the software is recovering and is unavailable for service is denoted as state \2". The

rate at which it fails, i.e., at which the software moves from state 1 to state 2 is a monotone

non-decreasing funtion of time and is denoted by �(t). Let the time to failure be denoted by

random variable X. Then, its distribution is given by

F

X

(t) = 1� e

�

R

t

0

�(t)dt

:

The e�ect of aging, therefore, is captured by using decreasing service rate and increasing

failure rate, which to the best of our knowledge considered for the �rst time. This is,

however, reasonable as both performance degradation and unavailability are characteristics

of a complex transaction oriented software, even though one may be more dominant than

the other. The service degradation and crash failures in our model are assumed to be

stochastically independent processes. The dependence (in reality) can be approximated by

using parameteric dependence in the de�nitions of �(t) and �(t). The failure process is

independent of the arrival also and any transactions that are queued at the time of failure

are lost. Moreover, any transactions which arrive during recovery are also lost. Time to

recover from a failed state is denoted by Y

f

with associated distribution F

Y

f

.

Lastly, the software is occasionally rejuvenated. This state is denoted as state \3" and

the software is allowed to rejuvenate only from state 1. We consider two di�erent policies

which determine the time to rejuvenate.

1. Purely time based. The software is rejuvenated after a constant time �

I

has elapsed

since it was started (or restart) referred to as Policy I. We shall refer to � under this

policy as the rejuvenation interval.

2. Load and time based. A waiting period of �

II

must elapse before rejuvenation is at-

tempted. Further, after this time, the software is rejuvenated if and only if there are

no transations in the system. This policy shall be referred to as Policy II and delta

under this policy as rejuvenation wait. Note that actual rejuvenation interval under

policy II is determined by sum of rejuvenation wait and the time it takes for the queue

to get empty. The latter quantity can be potentially in�nite.

Regardless of the policy used, it takes a random amount of time, denoted by Y

r

, to rejuve-

nate the software. Let F

Y

r

be its distribution. As will be showed in the following Section,

our model does not require any assumption on the nature of F

Y

f

and F

Y

r

, and only the

expectation

f

= E[Y

f

] and

r

= E[Y

r

] of the two random variables is required.

Once recovery from the failed state or rejuvenation is complete, the software is reset in

state \1" and is as good as new. From this moment on, the whole process stochastically

repeats itself. The transition behavior of the software among states 1, 2 and 3 is illustrated

in Figure 1

The queueing behaviour of the software, on the other hand, as determined by the two

rejuvenation policies is illustrated in Figure 2. The horizontal axis represents time t and the

vertical axis represents the number of transactions queued in the software at time t, denoted

by N(t). Figure 2(a) shows a sample path in which rejuvenation occurs as soon constant

time � elapses. In accordance with Policy I, the software is idle at time instant � and, even

if N(t) > 0, the software is rejuvenated and all the transactions already in the queue at time

� are lost.

Figure 2(b) illustrates Policy II where at time �, transactions are queued to receive service

(including the transaction being processed), i.e., N(t) > 0. In this case, the software waits

till the queue is empty upon which it is rejuvenated

1

.This wait is a random quantity denoted

in the �gure by B. Intuitively, if B is very large, it is likely that the software will fail before

it has a chance to be rejuvenated.

R
E

JU
V

E
N

A
T

IO
N

rγδ B t

N(t)

N(t)

tδ

R
E

JU
V

E
N

A
T

IO
N

γr

(a)

(b)

Figure 2: Sample Path of the process

The main assumptions of our model can then be summarized as follows:

1. Aging is captured by decreasing service rate and increasing failure rate;

2. Time to recovery from a failure is generally distributed;

3. Time to complete rejuvenation is generally distributed;

4. �, (Rejuvenation interval under policy I and rejuvenation wait under policy II is de-

terministic;

1

Eventually this assumption might be relaxed assuming that rejuvenation occurs as soon as t � � and

the number of jobs in the queue is below a given threshold.

5. Transaction arrivals follows the Poisson process;

Assumption 1 is quite realistic as a complex software system experiences unavailability

and performance degradations at the same time, even if the e�ect of one may be more

dominant than the other. Each of the previous models considered only one of the two

aspects. Speci�cally in [2] occasional crash/hang failures with increasing failure rates were

assumed, while in [7] decreasing service rates were taken into consideration. Furthermore,

in [2] the time to failure was assumed to have hypo-exponential distribution. In this work, we

relax this assumption by considering a general distribution. Assumptions 2 and 3, similarly

are enhancements to previous modeling e�orts, where a speci�c distribution (exponential in

[2] and deterministic in [?]) for these qauantities was assumed. Assumption 4 is usually

accepted for such arrival processes.

Given the above behavioral model, the task at hand involves

1. Evaluate the steady state availability for both policies I and II.

2. Evaluate the stready state probability that an arriving transaction will not be processed

by the software.

3. Determine the optimal value of �, i.e., rejuvenation interval under policy I and re-

juvenation wait under policy II which would maximize (minimize) the availability

(probability of loss).

3 Model Solution

Let the steady state availability be denoted by A

SS

and the probability that an arriving

transaction will be lost be denoted by P

loss

. The approach we follow in deriving expressions

for above qunatities and the intermediate expressions we work with apply to both policies,

I and II. Only when a particular expression is di�erent, will it be noted explicitly. The

solution method in general, and the class of stochastic process used to model in particular,

provides an elegant, concise and fast alternative to usually expensive simulation approach.

As already mentioned in the previous Section, the software can be in any one of three

states at any time t. It can be up and available for service (state 1), rejuvenating (state 3) or

recovering, i.e.,in failed (2) state (see Figure 1). If ifZ(t); t � 0g represents the state of the

software at time t, and the sequence of random variables S

i

; i > 0 represent the transition

times among di�erent states, then it is easy to see that ifZ(S

i

); i > 0g is the embedded

discrete time Markov chain (DTMC). The transition probabilities matrix P for this DTMC

can also be easily derived and is given by:

P =

0

B

@

0 P

12

P

13

1 0 0

1 0 0

1

C

A

(1)

The steady state probability �

i

; i = 1; 2; 3 of the software being in state i can be also

be determined in a straightforward manner from the well know relation � = �P . They are

given by;

�

1

=

1

2

�

2

=

1

2

P

12

(2)

�

3

=

1

2

P

13

The software behavior as a whole is modeled via the stochastic process f(Z(t); N(t)) ; t �

0g, where N(t) represents the number of transactions in queue for processing (including

one being serviced). If Z(t) = 1, then N(t) 2 f0; 1; : : : ;Kg, as the software queue can

accomodate up to K transactions. If Z(t) 2 f2; 3g, then N(t) = 0, since we assumed that

all incoming transactions when the software is either rejuvenating or recovering are lost.

Further, the transactions already in the queue at the transition instant are also discarded.

It can be shown that the process f(Z(t); N(t)) is a Markov regenerative process (MRGP)

[?, ?]. The regeneration instants are embedded at times when the process makes transition

from state i to state j, i; j = 1; 2; 3, i.e., Z(t) changes. Note that what makes the process

an MRGP is the fact that within one regeneration period, the stochastic process changes

state. In other words, N(t) assumes di�erent values for some t, during which Z(t) remains

in state 1. State 1 is certainly a regeneration state as we explicitly assumed that when the

system enters this state everything is reset to the original initial condition (the system is

empty and the software is as good as new). States 2 and 3 are also regeneration states as,

once the system enters these states, every other activity but the recovery or rejuvenation

one is interrupted. The system forgets the past history and can only come back to the fully

operational condition. Note that what makes this process an MRGP is the fact that within

one regeneration period, the stochastic process changes state. In other words, N(t) assumes

di�erent values for some t, during which Z(t) remains in state 1. We de�ned and solved the

embedded DTMC of this MRGP.

To better understand the solution method, the Table 1 lists the adopted notation (R.V.

denotes random variable):

P

12

Transition probability from state 1 (UP) to state 2 (Recovering)

P

13

Transition probability from state 1 (UP) to state 3 (Rejuvenating)

p

i

(t) Probability that i transactions are queued at time t

N

l

Number of transactions discarded at the end of the

regeneration period started from state 1 (R.V.)

f

Expected time to recover from failure

r

Expected time to rejuvenate

U Sojourn time spent in state 1 (R.V.)

� Transaction arrival rate

�(t) Transaction service rate

�(t) Failure rate

Table 1: Adopted notation

The steady state availability can then be obtained using standard formulae from MRGP

theory and is given as:

A

SS

= Prfsoftware in state 1g

=

�

1

E[U]

�

2

f

+ �

3

r

+ �

1

E[U]

Substituting values of �

1

, �

2

and �

3

,

A

SS

=

E[U]

P

12

f

+ P

13

r

+ E[U]

(3)

The probability that a transaction is lost is de�ned as the ratio of expected number of

transactions which are lost in an interval and the total number transactions which arrive

during that interval. Since the process is stochastically same in succesive visits to state 1,

it su�ces to consider this interval only. The expected number of transactions lost is given

by summation of the expected number lost due to the discarding (when the software failed

or was rejuvenate), expected number lost while recovery or rejuvenation is going on and

expected number which lost due to the bu�er being full. The last quantity is of special

signi�cance as due to the degrading service rate, the bu�er has a higher probability of being

full. The probability of loss is then given by:

P

loss

=

�

1

E[N

l

] + �

�

�

2

f

+ �

3

r

+ �

1

Z

1

0

p

K

(t)dt

�

� (�

2

f

+ �

3

r

+ �

1

E[U])

(4)

where:

� �

1

E[N

l

] is the expected number of jobs already in the bu�er when the system is exiting

state 1;

� ��

2

f

is expected number of jobs arriving while the system is recovering in state 2;

� ��

3

r

is the expected number of jobs arriving while the system is rejuvenating;

� ��

1

R

1

0

p

K

(t)dt is the expected number of transactions denied service because of bu�er

full;

� (�

2

f

+ �

3

r

+ �

1

E[U]) is the average length of time between two consequtive visits to

state 1.

Equation 4 is valid for policy II only is assumed. Under policy I the upper limit in the

integral

R

1

0

p

K

(t)dt is � instead of 1. This is because, the sojourn time in state 1 is limited

by � under policy I.

Regardless of the rejuvenation policy, as can be observed from equations 3 and 4, we

need to obtain expected soujourn times and the steady state probability of the software

in each of the three states 1; 2 and 3, as well as the transient probability that there are

i; i = 0; 1; : : : ;K transactions queued up for service. It is the last quantity which forbids a

closed form analytical solution and necessitates a numerical approach.

The mean sojourn time in states 2 and 3 is already available as

f

and

r

respectively

2

.

The quantities still to be derived are related to the behavior of the software in state 1i, viz.,

P

12

, P

13

, E[U] and p

i

(t); i = 0; 1; : : : ;K and their evaluation depends on the policy used.

3.1 Behavior of the system in state 1 assuming Policy I

For Z(t) = 1, the subordinated process, i.e., the process until a regeneration occurs, is

determined by the queuing behavior of the software processing transactions. The process

is terminated by either a failure (which can happen at any time) or by rejuvenation which

under policy I happens at time � if the software has not failed by that time. Figure 3 shows

the state diagram of the subordinated non-homogeneous continuous time Markov chain (NH-

CTMC) under policy I. It is simply a birth-death process augmented with one absorbing

state associated with each state of the birth-death process. Not included in the �gure is the

fact that at t = �, the whole process terminated.

µ()t
ρ()t

µ()t µ()t µ()t

ρ()t ρ()t ρ()t ρ()t ρ()t

λλλ λ

3

3’ ’ ’ ’ ’K-1 K’210

0 1 2 K-1 K

Figure 3: Subordinated Non-homogeneous CTMC for t � �

By our notation, p

i

(t) is the probability that there are i transactions queued for service,

2

The �rst moment measures evaluated in this paper require only the �rst moments of Y

f

and Y

r

and

hence no assumptions on the nature of their distribution is made.

which is also the probability of being in state i of the NH-CTMC at time t. Note that state

i; i = 0; 1; : : : ;K is not be confused with state i

0

; i = 0; 1; : : : ;K which was de�ned just to

be able to evaluate the quantities of interest. As such, all the states under the shaded area

of the NH-CTMC can be lumped into a single absorbing state.

p

i

(t); i = 0; 1; : : : ;K and p

i

0

(t); i = 0; 1; : : : ;K can be obtained by solving the Chapman-

Kolmogorov forward di�erential equations given as:

dp

0

(t)

dt

= �(t)p

1

(t)� (� + �(t)) p

0

(t)

dp

i

(t)

dt

= �(t)p

i+1

(t) + �p

i�1

(t)� (�(t) + � + �(t)) p

i

(t); 1 � i < K

dp

K

(t)

dt

= �p

K�1

(t)� (�(t) + �(t)) p

K

(t) (5)

dp

i

0

(t)

dt

= �(t)p

i

(t); 0 � i � K

The set of simultaneous of di�erential-di�erence equations given by 6 do not have a tractable

analytical solution and must be evaluated numerically. In our work, this set along with the

initial conditions p

0

(0) = 1, p

i

(0) = 0; 1 � i � K and p

i

0

(0) = 0; 0 � i � K was coded in

Mathematica and solved numerically for all p

i

(t). Once these probabilities are obtained, the

rest of the wuantities can be easily evaluated as follows.

One step transition probability P

12

is given by:

P

12

=

K

0

X

i=0

0

p

i

(�)

and

P

13

= 1 � P

12

Thereafter, according to 3, the steady state probability that the software is in states 2 and

3 can be obtained.

The expected sojourn time in state 1 is given as:

E[U] =

Z

�

t=0

K

X

i=0

p

i

(t)

!

dt

where the upper limit on the integral indicates that the sojourn time is bounded by �. The

average value E[N

l

] of customers already in the system at the time when state 1 is left, is

evaluated as:

E[N

l

] =

K

X

i=0

i p

i

(�)

Both A

SS

and P

loss

as given in equations 3 and 4 respectively can now be easily calculated.

3.2 Behavior of the system in state 1 assuming Policy II

If Policy II is assumed, the evolution of the system in macro-state 1 is somewhat more

complex. In this case, in fact, we need to distinguish between t � � and t > �, as Policy II

assumes that rejuvenation will occur if and only if the bu�er is empty after � has elapsed. For

t � �, exactly the same NH-CTMC of Figure 3 determines the behavior of the software. For

t > � the NH-CTMC which models the behavior is shown in Figure 4. As can be observed,

the state 0 now belongs to the set of absorbing states because rejuvenation will occur, thus

turminating the subordinated NH-CTMC, once the system processes all the transactions in

the queue.

µ()t µ()t µ()t

ρ()t ρ()t ρ()t ρ()t ρ()t
µ()t

λλ λ

3

3’ ’ ’ ’ ’K-1 K’21

0 1 2 K-1 K

Figure 4: Subordinated Non-homogeneous CTMC fot t > �

The Chapman-Kolmogorov forward di�erential equations which are used to determine

all transient probabilities are given as follows:

dp

0

(t)

dt

= �(t)p

1

(t)� (�

0

t+ �(t)) p

0

(t)

dp

1

(t)

dt

= �(t)p

2

(t) + �

0

(t)p

0

(t)� (�(t) + �+ �(t)) p

1

(t);

dp

i

(t)

dt

= �(t)p

i+1

(t) + �p

i�1

(t)� (�(t) + � + �(t)) p

i

(t); 2 � i < K

dp

K

(t)

dt

= �p

K�1

(t)� (�(t) + �(t)) p

K

(t) (6)

dp

0

0

(t)

dt

= �

0

(t)p

0

(t)

dp

i

0

(t)

dt

= �(t)p

i

(t); 1 � i � K

where �

0

(t) = �; t � �, otherwise it is zero. Similarly, �

0

(t) = �(t); t � �, otherwise zero.

As before, this set of di�erential-di�erence equations along with the initial condition that

p

0

(0) = 1 is solved numerically using Mathematica package.

The quantities of interest can then be evaluated using similar expressions as derived for

policy I. Minor di�erences arise, which arise are now given. Transient state probabilities P

12

and P

13

are evaluated at t =1 and are given as:

P

12

=

K

0

X

i=0

0

p

i

(1)

and

P

13

= 1 � P

12

:

The sojourn time in state 1 is now given by:

E[U] =

Z

�

t=0

K

X

i=0

p

i

(t)

!

dt+

Z

1

t=�

K

X

i=1

p

i

(t)

!

dt

=

Z

�

t=0

p

0

(t)dt+

Z

1

t=0

K

X

i=1

p

i

(t)

!

dt

Computation of E[N

l

] is exactly the same as in policy I. Using equations 3 and 4, steady

state availability and probability of loss of an arriving transaction can be calculated.

4 Experiments and Results

In this Section, we illustrate the usefulness of the models developed to evaluate the steady

state availability (A

SS

) and the probability that a transaction is lost P

loss

. Further, the

models are solved for multiple values of � (rejuvenation interval in the case of policy I and

rejuvenation wait in the case of policy II) and optimal values are determined. Table 2 shows

the parameter values that were chosen. The values chosen are for illutration purposes only

and do not necesasrily represent any physical system.

f

0:15 and 0:85 (hours)

r

0:15 (hours)

� 6:0 (hours

�1

)

� 1 : : : 200 (hours)

K 20

�(t) �

max

h

1�

t

MTTF

i

if t � a

�

min

if t > a

with a =

(�

max

��

min

)

�

max

MTTF

�(t) ��t

��1

with � = 1:5

and � =

�

�(1+

1

�

)

MTTF

�

�

Table 2: Model parameters

Further, the rejuvenation interval (wait) � is varied between 1 and 200 hours. The

expected time to recover will be assumed to be equal to 0:15 and 0:85, while the expected

time to rejuvenate is assumed equal to 0:15 (hours) in all the experiments. The arrival

rate is �xed as well (� = 6arrivalsperhours) and we assume a bu�er size of 20. Figure 5

plots the function �(t), which is an approximation to what is witnessed in reality [1]. Note

max

µ min

µ

time
a

Figure 5: Time variation of the service rate �(t)

that our model, by itself, is not restrictive and mu(t) can be any general function. As we

mentioned in the earlier section, the failure process and the service process are stochastically

independent. In reality, they may be dependent. To capture this dependence, we de�ne �(t)

to have parametric dependence on the Mean Time To Failure (MTTF) of the software. This

0 50 100 150 200
δ

0.00

0.02

0.04

0.06

0.08

0.10

Pr
{L

os
s}

recovery time = 0.15
recovery time = 0.85

0 50 100 150 200
δ

0.985

0.990

0.995

1.000

St
ea

dy
 S

ta
te

 A
va

ila
bi

lit
y

recovery time = 0.15
recovery time = 0.85

(a) (b)
Figure 6: Loss Probability and Availability under Policy I

is shown in table 2 from the way in which the value of a is calculated:

a =

(�

max

� �

min

)

�

max

MTTF:

We further assumed �

max

= 15 and �

min

= 6 customers served per hour. Finally, to model

the increasing failure rate of the software system, Weibull distribution for time to failure has

been assumed with � = 1:5 and

� =

"

�(1 +

1

�

)

MTTF

#

�

:

The results obtained by after running the Mathematica program are plotted in Figure 6 for

Policy I and in Figure 7 for Policy II.

Figure 6(a) shows the plot of the probability of loss against the rejuvenation interval,

assuming

f

= 0:15 and 0:85 hours. As can be observed, if the rejuvenation is done at

very small intervals, the probability of loss is quite high. Similarly, with very infrequent

rejuvenation, the probability of loss is high. A range of �, roughly from 50 to 125 hours

guarantees a minimum value of loss probability. We can de�nitely �nd a given minimum

value for the loss probability (that in our plot occurs for � = 87:0 hours), but it is interesting

to note that some
exibility is allowed in choosing the rejuvenation interval. Further, the

value of the recovery time

f

does not a�ect too much the �nal results.

Figure 6(b) shows the system availability vs. the rejuvenation interval �, with varying

the recovery time. If

f

= 0:85 hours the system availabilty is always less than if

f

= 0:15

0 50 100 150 200
δ

0.00

0.03

0.05

0.08

0.10

Pr
{L

os
s}

recovery time = 0.15
recovery time = 0.85

0 50 100 150 200
δ

0.985

0.990

0.995

1.000

St
ea

dy
 S

ta
te

 A
va

ila
bi

lit
y

recovery time = 0.15
recovery time = 0.85

(a) (b)
Figure 7: Loss Probability and Availability under Policy II

hours is assumed.

If

f

= 0:15 hours, then it can be observed that it is not possible to identify an optimal

value for �, but increasing it as much as possible. It indicates that in this case rejuvenation

is not an e�ective way to increase steady state availability. If

f

= 0:85 hours it is possible

to idenfy a value of � such that the availability starts decreasing. It is not easily visible

form the Figure, but at � = 170 hours, the system availability starts descreasing from its

maximumvalue 0:9969. Thus, it is not possible to optimize at the same time loss probability

and system availability, but a reasonable comprise can be obtained by choosing � accordingly

to the plots of Figure 6.

Figure 7 shows similar measures, but when Policy II is assumed. As can be observed the

behavior of the system is almost the same, but values are quite di�erent. In fact in this case

the loss probability values are much smaller, as a consequence of the rejuvenation policy

adopted.The optimal value of the rejuvenation interval � is now equal to 105 hours, and the

loss probability is equal to 0:00237 and 0:00424 for

f

= 0:15 and

f

= 0:85, respectively.

For Policy I tyhe corresponding vaules were 0:00526 and 0:0065. Also in this case an optimal

value to rejuvenate which maximize system availability can be found only for

f

= 0:85 and

is equal to 144 hours were A

SS

= 0:9968.

5 Conclusions

Software rejuvenation has been proved to be a pratical way to avoid system crash due to

software starvation. Even if it has been adopted till now in a very empirical way by almost

all computer users, in this paper we provide an in depth analysis of the phenomen, assuming

di�erent rejuvenation policies. An analytical approach is followed which, through numerical

solution, allows to compare two rejuvenation policies in order to evaluate the steady state

availability (A

SS

) and the probability that a transaction is lost P

loss

. Further, the models are

solved for multiple values of � (rejuvenation interval in the case of policy I and rejuvenation

wait in the case of policy II) and optimal values are determined.

Acknoledgements

This work was done while Antonio Pulia�to was visiting Duke University supported by italian

CNR under grant n.

Sachin Garg was partially supported by an IBM fellowship.

References

[1] A. Avritzer and E. J. Weyuker, \Monitoring smoothly degrading systems for increased

dependability", Submitted for publication.

[2] S. Garg, A. Pulia�to, M. Telek and K. S. Trivedi, \Analysis of software rejuvenation

using Markov regenerative stochastic Petri net", Proc. of the Sixth Intnl. Symposium on

Software Reliability Engineering, Toulouse, France, October 24-27, 1995, pp. 180-187.

[3] J. Gray, \Why do computers stop and what can be done about it?", Proc. of 5th Symp.

on Reliability in Distributed Software and Database Systems, pp. 3-12, January 1986.

[4] Y. Huang, C. Kintala, N. Koletis, N. D. Fulton, \Software Rejuvenation- design, im-

plementation and analysis", Proc. of Fault-tolerant Computing Symposium, Pasadena,

CA, June 1995, pp. 381-390.

[5] I. Lee, \Software dependability in the operational phase", Ph.D. Thesis, Dept. of Elec-

trical and Computer Engineering, Univ. of Illinois, Urbana-Champaign, 1995.

[6] E. Marshall, \Fatal error: how Patriot overlooked a Scud", Science, March 13, 1992,

page 1347.

[7] A. Pfening, S. Garg, M. Telek, A. Pulia�to and K. S. Trivedi, \Optimal rejuvenation

for tolerating soft failures", in Performance Evaluation, Vol. 27 & 28, October 1996,

North-Holland, pp. 491-506.

