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Abstract

In this paper, we analyze the stationary behaviour of FSPNs with
single fluid place and mutually dependent continuous and discrete
part. The proposed analysis technique is restricted to the cases when
the fluid rate does not change sign in a given marking.

We provide the set of ordinary differential equations and boundary
conditions that determines the stationary behaviour and we discuss
potential numerical methods that evaluate the stationary distribution
based on this description. The numerical analysis of FSPN models of
telecommunication systems demonstrate the applicability of the intro-
duced analysis methods.

Key words: Fluid stochastic Petri nets, stationary distribution,
ordinary differential equations.

1 Introduction

The fluid extension of the Petri net formalism [13] allows to describe stochas-
tic models with combined discrete and continuous state space with a well

∗This work is partially supported by OTKA grant n. T-34972.
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established, intuitive graphical language. As a new and effective model de-
scription language Fluid stochastic Petri nets (FSPNs) gain importance in
the stochastic modeling community, but the widespread application of FSPNs
is still delayed by the lack of effective numerical analysis methods and auto-
matic tools implementing the solution methods. This paper intends to extend
the set of FSPN analysis methods. We consider a special analysis problem,
the stationary analysis of FSPNs with a single finite fluid place, and propose
numerical analysis methods for the computationally effective solution of this
problem.

Various FSPN formalisms with subtle differences have been introduced
in the literature [1, 13, 14, 7], but here we restrict our attention to first
order FSPN models with ordinary input and output fluid arcs. The class of
FSPN models considered here is identical with the class studied in [8] with
the restrictions summarized below.

Our considered FSPN class is wider than the one in [13, 6] and the class
of “stochastic fluid models” applied in telecommunication traffic engineering
[2, 4], because in those models the evolution of the discrete part does not
depend on the fluid part of the model, while in our FSPN formalism the
discrete and the continuous part mutually affects each others evolution. This
property has a significant consequence on the set of equations describing the
underlying model behaviour and, as a consequence, on the numerical methods
applicable for the solution of the considered FSPN models.

The majority of FSPN analysis papers, published so far, focuses on the
transient analysis of FSPN models. The transient analysis techniques cope
with one continuous variable for the time and as many further continuous
variables as many fluid places are in the model. The solution of these models
are usually based on equi-distance discretization of each continuous variable
and the differences of these methods are in the applied approximations of the
elementary step of the continuous range and the boundaries.

The stationary analysis of FSPN models allow to eliminate the time vari-
able from the analytical description on the price of having no initial condition
for the fluid distribution. The stationary analysis of FSPN models with only
one fluid place, i.e., the analytical description with one continuous variable,
allows to apply more sophisticated numerical techniques than the ones for the
transient analysis. We consider some of these methods for effective analysis
of FSPN models in this paper.

The analytical description and the numerical analysis presented in this
paper are extensions of the ones presented in [6]. The main difference of this
work with respect to [6] is that the transition rates of the discrete part and
the fluid drift of the continuous part depends on the fluid level here, while
they are constant in [6].
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The class of FSPN models considered in this paper is equivalent with the
class of models introduced in [8] with the following restrictions:

• there is one finite fluid place in the model,

• the aggregate fluid rate (input rate − output rate) can not change sign
in the continuous range, i.e., the aggregate fluid rate is either strictly
positive, or strictly negative, or constant zero,

• we allow discontinuity and sign change at the boundaries.

The rest of the paper is organized as follows. Section 2 presents the
analytical description of the continuous range of the model together with
its possible solution methods. Section 3 introduces the boundary equations
and the obtained set of linear equations. Section 4 discusses the case when
the fluid level remains constant in the continuous range in some discrete
states. Numerical examples are presented in Section 5. Section 6 concludes
the paper.

2 Stationary description of FSPNs with sin-

gle finite fluid place

The formal definition of the considered FSPN class is provided in [8]. Here we
only summarize the analytical description of the considered FSPN models.
The Z(t) = {X(t), Y (t)} process represents the state of a FSPN with single
fluid place, where X(t) ∈ S is the discrete marking and Y (t) ∈ [0, B] is the
fluid level of the (only) fluid place of the FSPN at time t. S denotes the
finite set of reachable discrete markings and B is the maximum fluid level.
With the applied restriction of the fluid rates the distribution of the fluid
level might not have probability masses between 0 and B. We define π̂i(t, x),
l̂i(t) and ûi(t) to describe the fluid density and the probability masses at the
lower and upper bound, respectively, i.e.

π̂i(t, x) = lim
∆→0

Pr(X(t) = i, x ≤ Y (t) < x + ∆)

∆
,

l̂i(t) = Pr(X(t) = i, Y (t) = 0) ,

ûi(t) = Pr(X(t) = i, Y (t) = B) .

Assuming the system converges to a stationary solution, the stationary
fluid density function and fluid mass functions are

πi(x) = lim
t→∞

π̂i(t, x), li = lim
t→∞

l̂i(t), and ui = lim
t→∞

ûi(t).
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Over the (0, B) interval the stationary distribution, π(x) = {πi(x)}, satisfies
[8]:

d

dx

(
π(x)R(x)

)
= π(x)Q(x) , (1)

where matrix Q(x) is the transition rate matrix of the discrete marking of
the Petri net when the fluid level is x, and the diagonal matrix R(x) =
diag<ri(x)> is composed by the fluid rates ri(x) (the rate of change of the
fluid level at the fluid place in discrete marking i and fluid level x). For the
numerical solution of (1) we also need boundary conditions as it is discussed
later.

To evaluate the solution of (1) between 0 and B we have

d

dx
π(x) = π(x)

(
Q(x) −

d

dx
R(x)

)
R−1(x) = π(x)B(x) , (2)

where

B(x) =

(
Q(x) −

d

dx
R(x)

)
R−1(x) .

The case when the fluid level remains constant in some discrete markings
(∃i ∈ S such that ri(x) = 0) is discussed later in Section 4.

2.1 Solution based on series expansion

We denote the solution of (2) by

π(x) = π(0+)W(x) , (3)

for 0 < x < B, where W(x) satisfies

d

dx
W(x) = W(x)B(x) , (4)

with initial condition W(0) = I. One way to find the solution of (3) is ob-
tained from the power series representation of W(x) with coefficient matrices
Mi:

W(x) =

∞∑

i=0

xi

i!
Mi , (5)

and the Taylor expansion of B(x) around 0:

B(x) =
∞∑

i=0

xi

i!

di

dxi
B(x)

∣∣∣∣
x=0+

.
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From (4) we have

∞∑

i=0

xi

i!
Mi+1 =

∞∑

i=0

xi

i!
Mi ·

∞∑

j=0

xj

j!

dj

dxj
B(x)

∣∣∣∣
x=0+

.

The equivalence of the coefficient matrices of the power series on the left and
on the right hand sides results in the following recursive relation of the Mi

coefficient matrices:

Mi+1 =

i∑

j=0

(
i
j

)
Mi−j

dj

dxj
B(x)

∣∣∣∣
x=0+

, (6)

where, from the initial condition of W(x), M0 = I.
For level independent Q(x) and R(x) (i.e., Q(x) = Q, R(x) = R) the

applied expansion results in

W(x) =
∞∑

i=0

xi

i!

(
Q R−1

)i
= ex Q R−1

.

In case of exponentially increasing fluid rates R(x) = exR and fluid level
independent transition rates Q(x) = Q the B(x) matrix is −I + QR−1e−x,
and the first Mi coefficients are: M0 = I, M1 = −I + QR−1, M2 = M2

1 −
QR−1.

For numerical analysis we used the Ni = Mi/i! coefficient matrices in-
stead of Mi, where N0 = I and

Ni+1 =
1

i + 1

i∑

j=0

Ni−j

1

j!

dj

dxj
B(x)

∣∣∣∣
x=0+

. (7)

2.2 Numerical solution of differential equations

There are various numerical solution techniques available for the solution
of ordinary differential equations (ODEs) like (2). Among others, we can
classify them according to the following properties: order of approximation,
explicit or implicit, fix or dynamic step size. For the details of numerical
ODE solution methods (e.g., local truncation error) we refer to standard
numerical analysis textbooks like [10].

We selected 3 numerical ODE solution methods to compare their proper-
ties. The TR (trapezoid rule) method is a first order implicit method, whose
elementary step is:

W(xn+1) = W(xn) +
h

2
W(xn)B(xn) +

h

2
W(xn+1)B(xn+1) . (8)
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Note, that the unknown W(xn+1) appears also on the rhs and that is why
the

W(xn+1) = W(xn)
(
I +

h

2
B(xn)

)(
I −

h

2
B(xn+1)

)−1

or the

W(xn+1) = W(xn)
(
I +

h

2
B(xn)

) ∞∑

i=0

h

2
Bi(xn+1)

expression is used for the computation. The RK4 (Runge-Kutta) method is
a fourth order explicit method, whose elementary step is:

K1 = hW(xn)B(xn),

K2 = h
(
W(xn) + 1

2
K1

)
B(xn + h

2
),

K3 = h
(
W(xn) + 1

2
K2

)
B(xn + h

2
),

K4 = h
(
W(xn) + K3

)
B(xn + h),

W(xn+1) = W(xn) +
1

6
K1 +

1

3
K2 +

1

3
K3 +

1

6
K4 .

(9)

The TR-BDF2 method is a combination of the TR method and the BDF2
(2nd order backwards difference formula) method which is a second order
implicit method. The TR-BDF2 method is found to be effective and accurate
in the analysis of homogeneous CTMCs [12, 11]. An elementary step of the
method is composed by a TR step and a BDF2 step:

W(xn + γh) = W(xn) +
γh

2
W(xn)B(xn) +

γh

2
W(xn + γh)B(xn + γh),

W(xn+1) =

−
(1 − γ)2

γ(2 − γ)
W(xn) +

1

γ(2 − γ)
W(xn + γh) +

h(1 − γ)

2 − γ
W(xn+1)B(xn+1),

(10)
where γ (0 < γ < 1) is a constant determining the internal point of the h
interval. Its typical value falls in the 0.5 ≤ γ ≤ 0.7 range. Similar to the TR
method a matrix inversion is necessary in both sub-steps of the method.

2.3 Step size control

The numerical ODE solution methods can be used with fix and with dynam-
ically varying step size. There are several proposals to dynamically modify
the step size, but all of these methods are composed by two main elements,
the estimation of the local truncation error (LTE) and the policy of step size
adjustment.
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We used the following approximations of the LTE:

LTEa =
1

h
||W(xn+1) − W(xn)|| ,

LTEb =

h(−3γ2 + 4γ − 2)

6(2 − γ)

∣∣∣∣

∣∣∣∣−
1

γ
W(xn) +

1

γ(1 − γ)
W(xn + γh) −

1

1 − γ
W(xn+1)

∣∣∣∣

∣∣∣∣ ,

and
LTEc = ||W(xn+1) − W′(xn+1)|| ,

where W′(xn+1) is calculated in 2 steps using step size h/2. LTEb is appli-
cable only with the TR-BDF method. The calculation of LTEa and LTEb

is based on known quantities while the analysis of W′(xn+1) cost 2 extra
elementary steps for each LTE calculation.

We compared two step size adjustment policies the CI (continuous in-
crease) policy and the HY (hysteresis) policy. The CI policy is based on the
local precision requirement (ǫ) and it increases the step size (hnew = ahold)
in each steps of the method as long as LTE < ǫ and otherwise the step size
is decreased to hold/2. The typical value of a is in the range of (1.0001, 1.5).

The HY policy is based on the local precision requirement (ǫ) and the
minimal local precision requirement (ǫmin). The step size remains unchanged
as long as ǫmin < LTE < ǫ and the step size is multiplied (divided) by 2
if ǫ < LTE (LTE < ǫmin). In case of computationally expensive LTE
calculation it is possible to reduce the number of LTE checks of the HY
policy for one per every N steps (e.g., N = 2, 5, 10, 20, 50, . . .).

3 Boundary conditions

For the boundary conditions two different cases arises, depending on the
direction of the fluid flow [3].

Case a) absorbing states: The first case is the one in which the fluid
flow is directed towards the bound, that is rj(0

+) < 0 (for the lower bound),
or rj(B

−) > 0 (for the upper bound). In this case, independently on the sign
of the rate at the discontinuity, probability mass builds up at the bound. In
this case we can characterize the bound by a single equation:

ljqjj(0) − πj(0
+)rj(0

+) +
∑

k 6=j

lkqkj(0) = 0,

for the lower bound, and for the upper bound:

ujqjj(B) + πj(B
−)rj(B

−) +
∑

k 6=j

ukqkj(B) = 0.
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Case b) emitting states: The second case is the one in which the
fluid flow is directed in the opposite direction with respect to the bound,
that is rj(0

+) > 0 (for the lower bound), or rj(B
−) < 0 (for the upper

bound). In this case we may have two different behavior, depending on the
sign of the rate at boundary. No probability mass will be formed if the sign
of the fluid rate at the boundary is identical to the one immediately after
(sign(rj(0)) = sign(rj(0

+)) and if sign(rj(B)) = sign(rj(B
−))). (It is the

most common case, but we also consider the special case when rj(x) is not
continuous at 0 and/or at B for completeness.) Probability mass will build
up if the sing of the rate at the boundary is zero or opposite to the fluid flow
next to the boundary. In any case we will have two equations per boundary,
that are:

if sign(rj(0)) = sign(rj(0
+)) : 0 = ljqjj(0),

πj(0
+)rj(0

+) =
∑

k 6=j

lkqkj(0),

if sign(rj(0)) 6= sign(rj(0
+)) : 0 = ljqjj(0) +

∑

k 6=j

lkqkj(0),

πj(0
+)rj(0

+) = 0,

for the lower bound, and for the upper bound:

if sign(rj(B)) = sign(rj(B
−)) : 0 = ujqjj(B),

−πj(B
−)rj(B

−) =
∑

k 6=j

ukqkj(B),

if sign(rj(B)) 6= sign(rj(B
−)) : 0 = ujqjj(B) +

∑

k 6=j

ukqkj(B),

−πj(B
−)rj(B

−) = 0.

3.1 The set of equations

If the number of discrete states of the model is |S|, then the number of un-
knowns is 4|S|, i.e., vectors l, u, π(0+) and π(B−). By the considerations
provided in the previous sections we have got exactly 4|S| equations to eval-
uate these unknowns. Eq. (3) for x = B− represents |S| equations. The
states with positive (negative) fluid rate over the (0, B) interval are emitting
(absorbing) states at the lower bound and absorbing (emitting) states at the
upper bound, hence there are 3 further equations per state.

We can represent the obtained set of equations using matrix notation. S+

(S−) is the subset of states with with positive (negative) fluid rate over the
(0, B) interval. With proper numbering of the states Q(x) and R(x) have
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the form

Q(x) =
Q−−(x) Q−+(x)
Q+−(x) Q−−(x)

and R(x) =
R−(x) 0

0 R+(x)
.

The vectors associated with S+ and S− are denoted with + and − super-
script, respectively. With these notations the boundary conditions are:

• for absorbing states

– lower bound: −π−(0)R−(0) + l−Q−−(0) + l+Q+−(0) = 0

– upper bound: π+(B)R+(B) + u−Q−+(B) + u+Q++(B) = 0

• for emitting states (without sign change at the boundary)

– lower bound: l+ = 0
−π+(0)R+(0) + l−Q−+(0) + l+Q++(0) = 0

– upper bound: u− = 0
π−(B)R−(B) + u−Q−−(B) + u+Q+−(B) = 0

Using also the partitioned form of the W(B) matrix the
zZ = 0 linear equation needs to be solved where z =
{l−, l+, π−(0), π+(0), π−(B), π+(B), u−, u+} and matrix Z is provided
in Figure 1.

l

�

l

+

�

�

(0) �

+

(0) �

�

(B) �

+

(B) u

�

u

+

l

�

Q

��

(0) Q

�+

(0)

l

+

Q

+�

(0) I Q

++

(0)

�

�

(0) �R

�

(0) W

��

(B) W

�+

(B)

�

+

(0) W

+�

(B) �R

+

(0) W

++

(B)

�

�

(B) �I R

�

(B)

�

+

(B) �I R

+

(B)

u

�

Q

��

(B) I Q

�+

(B)

u

+

Q

+�

(B) Q

++

(B)

Figure 1: The structure of the coefficient matrix
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3.2 Normalizing condition

Since the 4n equations presented above are linearly dependent we need to
define a normalizing condition to determine the required solution. The nor-
malizing condition is obtained from the fluid distribution and the probability
masses at the bounds as

1 =
∑

j∈S

lj + uj +

∫ B

0

πj(x) dx = l1 + u1 +

∫ B

0

π(x)1 dx, (11)

where 1 is the column vector of ones with the appropriate size. Unfortunately,
the normalizing condition can not be evaluated based on the W(B) matrix,

but it requires the evaluation of the
∫ B

0
π(x)1 dx = π(0)

∫ B

0
W(x)1 dx inte-

gral.
To obtain the accumulated measure L(x) =

∫ x

0
W(u)du the following

solution methods can be used:

a) Numerical integration of W(x) during the numerical solution of ODE
(2):

L(xn+1) = L(xn) +
h

2

(
W(xn) + W(xn+1)

)
. (12)

In case of the TR-BDF2 method we can utilize the solution at the
internal point xn + γh as well:

L(xn+1) = L(xn)+
h

2

(
γW(xn)+W(xn +γh)+(1−γ)W(xn+1

)
. (13)

b) Series expansion:

L(x) =

∞∑

i=0

xi+1

(i + 1)!
Mi (14)

c) Numerical solution of the ODE describing the accumulated measure:

d

dx
L(x) = I + L(x)B(x) −

∫ x

u=0

L(u)B′(u) du . (15)

If the
∫ B

0
π(x)1 dx integral is calculated together with matrix W(x) we

need to calculate matrix L(x). In contrast, if W(x) and π(0) (actually π(0)

times a constant) is calculated prior to the calculation of
∫ B

0
π(x)1 dx it is

enough to calculate the π(0)L(x) vector instead of the L(x) matrix.
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3.3 The overall analysis method

To conclude this section we summarize the main steps of the overall numer-
ical procedure in Figure 2. The two versions of the procedure differs in the
calculation if the normalizing condition. The first version (on the left) cal-
culates the L(B) matrix, while the second version calculates the π(0)L(B)
vector.

?

?

?

?

CalulateW(B) using

series exp. (5) or ODE solver (7)-(9)

Create matrix Z

Solve zZ = 0 with arbitrary

based on Figure 1

normalizing ondition

based on l, u and �(x)

Calulate performane measures

and re-normalize the solution

Calulate the �(0)L(B) vetor

?

?

?

CalulateW(B) and L(B) using

series exp. (5) or ODE solver (7)-(9)

Create matrix Z

ondition (10)

Solve zZ = 0 with normalizing

based on l, u and �(x)

Calulate performane measures

based on Figure 1

Figure 2: The main steps of the solution method

4 Extension to states with zero rate

In the previous sections we have always considered rj(x) 6= 0 for the (0, B)
interval. In many practical situation however, there are cases where rj(x) =
0. When there are this kind of zero states, both the continuous part and the
boundary conditions change accordingly.

11



4.1 Zero states at continuous domain

Let us partition the state space (S) into the sets of non-zero (S∅) and zero
states (S0). With proper numbering of the states the generator and the fluid
rate matrix takes the form

Q(x) =
Q∅∅(x) Q∅0(x)

Q0∅(x) Q00(x)
and R(x) =

R∅(x) 0
0 0

.

Let π0(x) be the vector of the probability density of the states in S0 (zero
states), and π∅(x) the probability density of the other states in S∅ (non-zero
states). We can rewrite equation (1) as:

d

dx

(
π∅(x)R∅(x)

)
= π∅(x)Q∅∅(x) + π0(x)Q0∅(x) , (16)

0 = π∅(x)Q∅0(x) + π0(x)Q00(x) . (17)

From Equation (16) and (17) we obtain:

d

dx

(
π∅(x)R∅(x)

)
= π∅(x)

[
Q∅∅(x) − Q∅0(x)Q00−1

(x)Q0∅(x)
]

, (18)

π0(x) = −π∅(x)Q∅0(x)Q00−1
(x) , (19)

Note that
Q̂(x) = Q∅∅(x) −Q∅0(x)Q00−1

(x)Q0∅(x)

is the generator of the discrete state process restricted to the non-zero states
at fluid level x.

Using Q̂(x) and R̂(x) = R∅(x) equation (18) is the same kind as (1) and
the same solution methods are applicable.

4.2 Zero states at the bounds

When rj(x) = 0 over the (0, B) interval the value of rj(0) and rj(B) does not
play role. Probability mass can develop at the bounds in any case according
to

0 = ljqjj(0) +
∑

k 6=j

lkqkj(0),

0 = ujqjj(B) +
∑

k 6=j

ukqkj(B).
(20)

In matrix form (20) is

0 = l∅Q∅0(0) + l0Q00(0),

0 = u∅Q∅0(B) + u0Q00(B).
(21)
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4.3 Normalizing condition

The normalizing condition is the same as before, but utilizing to the parti-
tioning of the state space we can calculate the normalizing condition by the
measures of S∅:

1 = l1 + u1 +

∫ B

0

π(x)1 dx

= l∅
(
I∅∅1 − Q∅0(0)Q00−1

(0)1
)

+ u∅
(
I∅∅1 − Q∅0(B)Q00−1

(B)1
)

+

∫ B

0

π∅(x)
(
I∅∅1 −Q∅0(x)Q00−1

(x)1
)

dx, (22)

which is easier to evaluate using the numerical integration of W(x) during
the numerical solution of the ODE (1) (i.e., eq. (12) or (13)).

5 Numerical examples

In this section we introduce the FSPN models of two telecommunication
systems and analyze them with the proposed numerical methods.

5.1 Example 1: Cable modem subnetwork

a2s

s2a

busy

thinking

stalled

available

N

arrival

service

router

Figure 3: The FSPN model of the cable modem system

We consider a subnetwork, that access the internet using a shared channel
like a cable modem. N users work in the subnetwork (left block of the FSPN
in Figure 3). Each of them produce packets with bandwidth r (through the
fluid arc from sercive to router) when they are active (indicated by a token
in busy) and they do not send any packets during their thinking phase
(indicated by a token in thinking). When the router holds the channel
(there is a token in available), packets can be transmitted through the
channel at bandwidth c (represented by the fluid arc from router to a2s).
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number of users N 8
arrival rate α 0, 2 per user
service rate λ(x) 0.4(1 − p(x)) per user
transmission rate r(x) 0.3(1 − p(x)) per user
router output bandwidth C 3
router buffer size B 2
rate of a2s 0.5
rate of s2a 0.5

Table 1: Parameter of the cable modem example

When the channel is held by another subnetwork (token in stalled), packets
need to be enqueued in the router buffer (fluid place router). The channel
capacity is high enough to satisfy the instantaneous demand of users, that is
c > Nr. (This condition ensures that the drift does not change sign in the
0, B range in any discrete state.) In order to provide better performance,
a pro-active routing algorithm, like RED (random early detection) is used
at the router. That is, packets coming to the router buffer are discarded
with a probability (p(x)) that linearly increases with the buffer size. The
actual input rate of router is r(1 − p(x)) times the number of active users.
At the same time the pro-active routing algorithm slows down the service
of the users and they busy periods increase proportionally, since they have
to retransmit the packets they have lost. The transition rate of service is
λ(1 − p(x)). Transitions service and arrival have infinite server semantic.
In the discrete state (#thinking = N, #stalled = 1) the fluid rate remains
constant, hence we applied the technique described in Section 4.

We used 4 different p(x) functions (= 0, = x/(1.2B), = x/(1.01B),
= 0.99(1 − ex)/(1 − eB)) together with the model parameters summarized
in Table 1. The resulted fluid level distribution is depicted in Figure 4. The
numerical differences of the applied solution methods are negligible. The
computation time of our Matlab implementation was less than 10 seconds
for each curve with the ODE solvers more than one minute with the series
expansion. The number of elementary steps (S) and the number of step size
reductions (M) of the ODE solution methods with continuous step size in-
crease (CI) policy are summarized in Table 2, where the applied step increase
coefficient was a = 1.2 and we used LTEc.

5.2 Example 2: Parallel WEB server

Our second example is an extension of the parallel WEB server system stud-
ied in [5] and [6]. Figure 5 represents the FSPN model of the system.
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Figure 4: Distribution of the buffer content with different p(x) functions

TR RK4 TR-BDF2
LTE=10−5 S M S M S M

p(x) = 0 772 13 153 2 241 6

p(x) = x
1.2B

441 22 185 8 286 8

p(x) = x
1.01B

638 60 289 21 344 25

p(x) = 0.99 1−ex

1−eB 845 89 169 13 560 31

Table 2: Number of elementary ODE solution steps

Requests arrive in burst to the web server. The left subnet models the
bursty generation of the requests by an interrupted poisson process. Places
on and off model the state of the process and transition arrival models
the requests arrival. Transitions off2on and on2off model respectively the
beginning and the end of a burst. Interruption of the arrival is modeled by the
inhibitor arc that connects place off to transition arrival. The parallel web
server has a common buffer where all the requests are queued. This buffer
is modeled by place insystem. The request buffer has a finite capacity
K, which is modeled by place free. The number of tokens in place free
represents the position still available in the buffer. Since WWW pages are
typically composed of text and images, the data transmitted back to the
client has a very big variance. This is approximated by the two immediate
transitions long and short which correspond respectively to the transmission
of a small (i.e. an HTML page) or a large (i.e. an image) amount of data.
The parallelism of the web server is represented by the number of tokens
p contained in place processors. Each time a new request arrives, it is
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Figure 5: The FSPN model of the parallel WEB server

served immediately if there is a free processor, otherwise it is enqueued.
The actual service of the request is modeled by transitions longsrv and
shortsrv. During this service period, packets are transferred using a LAN
to the buffer of the router. The server applies a traffic control procedure
to reduce the probability of buffer overflow. The transmission rate of each
processors depends on the fluid level and the firing rate of transitions longsrv
and shortsrv changes according to the transmission rate. As soon as a
service has finished, the processor becomes available and can serve another
request. Packets are approximated by fluid, and the router buffer is modeled
by fluid place buffer. This buffer has a finite capacity B. If a packet arrives
when the buffer is full, it is lost. The speed with which data is transmitted
by the network is fluctuating during transmission, due to varying network
load. This is modeled by the subnetwork on the right. The traffic generated
by the WEB server is a significant part of the network load, hence transition
rates of the subnetwork on the right is a function of the buffer content. The
network can be in three different states: at full speed (modeled by place
fast), at reduced speed (place slow) or stalled (place stalled). Transitions
f2s, s2f , s2st and st2s represent the changes of the network state.

The parameters of the model are given in Table 3. Transitions shortsrv
and fastsrv have infinite server semantic. The fluid arcs connecting tran-
sition shortsrv and fastsrv to the fluid buffer have a marking dependent
flow rate: the amount of fluid transferred to the buffer is a function of the
number of processors serving long (resp. short) requests and the fluid level.
The flow rate of the fluid arc connecting buffer to transition f2s corresponds
to the network speed in the fast state, and the flow rate of the arc connecting
buffer to transition s2st corresponds to the network speed in the slow state.
The rate of on2off is given by 1/BL, the rate of on2off 1/(BL(Θ−1)), and
the rate of arrival by λ̄Θ.
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mean arrival rate λ̄ 1800 requests per hour
burstiness Θ 2
mean burst length BL 1 h
small data size 1 kB (rate:1/(1 − p(x)))
large data size 39 kB (rate:1/39(1 − p(x)))
fast transfer rate 128 kB/s
slow transfer rate 64 kB/s
network transfer rate 9.6(1 − p(x)) kB/s
change of network condition 0.8 s
request buffer size k 10
packet buffer size B 16 kB
number of processors p 2

Table 3: Parameter of the parallel web server model

TR RK4 TR-BDF2
LTE=10−4 S M S M S M

p(x) = 0 318 20 148 5 166 10

p(x) = x
1.2B

493 15 152 6 254 8

p(x) = x
1.01B

535 29 204 14 270 14

p(x) = 0.99 1−ex

1−eB 585 31 196 13 311 18

Table 4: Number of elementary ODE solution steps

This model also has some zero states (when the requests buffer is empty
and the system is stalled), so we applied the technique described in Section
4. The considered model has 180 states and its solution with our Matlab
implementation takes less than 90 seconds on a 800Mhz machine with the
ODE solvers. The series expansion method did converge in reasonable time.
We used several built in Matlab routines, and the majority of the compu-
tation time is devoted to the script processing for matrix construction with
both solution approaches, the ODE solver and the series expansion. Most
probably this part of the computation could be significantly faster in a C
implementation. The results are provided in Figure 6 and the number of
elementary steps in Table 4.

5.3 Numerical experiences

Here we summarize the experiences obtained from our Matlab implemen-
tation of the proposed methods. Other implementations may result in the
same tendencies with different numbers.

From numerical point of view the most crucial model feature is the order
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Figure 6: Distribution of the WEB server buffer content

of magnitude of W(b). When W(b) is too large (> 1020) the linear system
(which is partially composed by the elements of W(b)) provides inaccurate
result. To estimate the order of magnitude of W(b) in advance the ODE
solution we used the following approximation. We calculated λmax(x) the
eigenvalue of B(x) with the maximal real part at some points (xi) in the
(0, B) range and used maxi e

λmax(xi)B to approximate the order of magnitude
of W(b). According to our experiences, below the maxi λmax(xi)B = 35
limit the applied numerical procedures are stable and rather insensitive to
the precision requirement of the ODE solver (in a wide range of ǫ) and the
applied dynamic step size control policy.

The fact that we do not have any other analysis methods for the numerical
solution of the studied systems than the ones presented in this paper made
difficult to validate our results and to judge the precision of the methods. We
can compare our numerical procedures with “independent” solution methods
only in the special case when Q(x) and R(x) are constant. In these cases we
used the method of matrix exponentiation presented in [6] and the spectral
decomposition method presented in [9] for comparison. We experienced a
perfect matching of the results (at least to the first 4 meaningful digits)
in the evaluated cases with all the 3 ODE solutions and a wide range of
reasonable precision requirements.

In the majority of our evaluated examples, especially with larger state
space, the absolute value of λmax(x) (≥ 0) and λmin(x) (the eigenvalue with
the minimal real part, (≤ 0)) were close to each other (with less than 10%
difference). Even though, in those cases when |λmax(x)| >> |λmin(x)| we can
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TR RK4 TR-BDF
inversion 1 0 2

multiplication 2 4 4
summation 1 7 2

Table 5: Number of matrix operations

extend the applicability of the numerical method by the y = B − x variable
substitution, which replaces the role of the upper and the lower bounds and
reverses the direction of the continuous access. By this substitution the role
of λmax(x) and λmin(x) interchanges as well and we get a lower λmax(y)B
product.

The computational complexity of the proposed ODE solution procedures
depends on the complexity of an elementary ODE solution step and the
number of the elementary steps. The complexity of the elementary steps is
summarized in Table 5 in term of |S|×|S| matrix operation. The calculation
of the LTE further increase the complexity of an elementary step, e.g., the
calculation of LTEc doubles the complexity of the elementary step. The
number of elementary step is predictable (based on the number of discrete
states, the bound of the fluid place (B), and the step size) with fix step
size, instead, it is a function of the model parameters with adaptive step
size control. The computational complexity of the series expansion method
depends on the number of calculated coefficient matrices, which depends on
the model parameters in an unpredictable way. The complexity of the final
step of the analysis, the solution of the linear system, is equivalent with the
inversion of a 3|S| × 3|S| matrix.

6 Conclusions

The stationary analysis of FSPNs with single finite fluid place and with mu-
tually dependent continuous and fluid parts is considered in this paper. The
dependence of the transition rate and the fluid drift on the fluid level com-
plicates the analytical description of the underlying stochastic process a bit
and, as a consequence, prevents the application of previously proposed solu-
tion techniques. Based on the analytical description of the model behaviour
we presented numerical analysis techniques using series expansion and ODE
solution methods applicable for the solution of the considered system.

We evaluated the FSPN models of two telecommunication systems, a
subnetwork with cable model and a parallel WEB server, using the proposed
numerical methods. The experienced numerical properties of the solution
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methods are summarized together with the results of the studied examples.
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