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Abstract. The performance of service units might depend on various
randomly changing environmental effects. It is quite often the case that
these effects varies on different time scales. In this paper we consider
short and long scale service variability, where the short scale variability
affects the instantaneous service speed of the service unit and the large
scale effect is defined by a modulating background Markov chain. The
main modelling challenge in this work is that the considered short and
long range variation results randomness along different axes, the short
scale variability along the time axis and the long scale variability along
the work axis.
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1 Introduction

Service speed variability is a problem that has been measured in many practical
application scenario. For example in [3], it has been observed for vehicular traffic.
More recently this problem has been recognized in data-center [2]. The effect of
variability was also studied in [1] with application to video-streaming. Most of the
previous literature however, focused only on large-time scale variability, where
Markov-modulating models represent the random effect of the environment. All
of those models can be handled with matrix analytic methods, summarized e.g.,
by Latouche and Ramaswami in [4].

The variation in the service speed can be modelled by dividing the amount
of job to be executed into “infinitesimal quantities of work to be done” and con-
sider the “speed at which this infinitesimal work is performed”, i.e., the random
amount of time needed to execute the infinitesimal amount of work. Then, if a
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model that defines how speed changes over time, the complete system can be
modelled in a straight-forward way where the amount of work increases grad-
ually along the analysis and the time required to execute the given amount of
work is a random process.

If the service process depends on a time dependent random process, e.g., on
a modulating background CTMC representing the environmental state, whose
“clock” evolves according to the time, then the natural performance analysis is
based on the gradually increasing time and randomly varying time dependent
environment state.

However, in many real applications, variability is not easily predictable and
works at different time-scales. Modulating CTMCs (whose “clock” evolves ac-
cording to the time) works very well to model variability where the parameters of
the job execution remains constant for a longer random period of time, and there
are few jumps during the execution of one job. Apart of this large scale variabil-
ity, in this work, we focus also on variability that occurs at much smaller time
scales, where the execution speeds changes thousands, if not millions, of times
during the execution of the main job, and combine it with the more classical
modulation that works on a larger time scale.

The remainder of this paper is structured as follows. In Section 2 we start
with considering only the small time-scale variability. In Section 3 we addition-
ally introduce also the large time-scale variability. The effects of the considered
variability is studied in Section 4 through numerical examples, and Section 5
concludes the paper.

2 Small time-scale variability

In this section, we omit the large time-scale variability and instead focus only on
small time-scale variability. So assume that the environmental state is unchanged
for now.

We introduce a second order fluid model for the short time-scale variability:
assuming that a job is composed of quantums of size ∆x, each such quantum is
served in a random amount of time with distribution N(µ∆x, σ2∆x) (with µ >
0). Assuming that the service times of the different quantums are independent,
the progress of service is modeled by a Brownian motion B(x) with parameters
µ and σ2. We emphasize that in this model, the Brownian motion corresponds to
the time required to service a job as a function of the size of the job (see Figure
1). A job of size x thus requires a random time T with distribution N(µx, σ2x),

whose probability density function is e
− (t−µx)2

2xσ2√
2πxσ2

. Note that a Brownian motion

may take negative values as well, which does not make sense physically, but,
since µ > 0, for macroscopic values of w, the probability that T is negative is
negligible.

We focus on the service of a job in a queue whose work requirement, W , is
generally distributed according to probability density function fW (x).
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Fig. 1: The time T required to service a job as a function of the job size W

Using the second order fluid model assumption, the probability density func-
tion of the service time of a job, denoted by fT (t), can be computed as:

fT (t) =

∫ ∞
0

fW (x) · e
− (t−µx)2

2xσ2

√
2πxσ2

dx (1)

2.1 Moments of the scaled distribution

There are also some interesting relations between the moments of W , the mo-
ments of T and the parameters µ and σ2. In particular, the K-th moment of T
can be expressed as:

E[TK ] =

∫ ∞
0

tkfT (t)dt =

∫ ∞
0

tk
∫ ∞
0

fW (x) · e
− (t−µx)2

2xσ2

√
2πxσ2

dx · dt =

=

∫ ∞
0

fW (x)

∫ ∞
0

tk · e
− (t−µx)2

2xσ2

√
2πxσ2

dt · dx =

=

∫ ∞
0

fW (x)E[N(xµ, xσ2)k]dx

Now, since E[N(xµ, xσ2)k] can be expressed as a polynomial in xµ and xσ2,
where σ appears only for even exponents:

E[N(xµ, xσ2)k] =

k∑
j=0

uk,j(xµ)j(
√
xσ)k−j (2)
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we can compute the moments of T as:

E[TK ] =

∫ ∞
0

fW (x)

k∑
j=0

uk,j(xµ)j(
√
xσ)k−jdx =

=

k∑
j=0

uk,jµ
jσk−j

∫ ∞
0

fW (x)xj(
√
x)k−jdx =

=

k∑
j=0

uk,jµ
jσk−jE[W

k+j
2 ] (3)

Since σ2 appears only for even exponents, k + i is always even, so E[T
k+i
2 ] is

always an integer moment of T . For example, for the first and second moment,
since E[N(xµ, xσ2)2] = xµ and E[N(xµ, xσ2)2] = x2µ2 + xσ2, we have:

E[T ] = µE[W ],

E[T 2] = µ2E[W 2] + σ2E[W ].

3 Combining large and small time-scale variability

Large scale variability can be considered using a discrete state Markov modulat-
ing process (MMP) of K states, denoted by M(t). The MMP is a CTMC with
infinitesimal generator matrix denoted by Q. In state i, the service is charac-
terised by rate µi and variance σi.

Only considering large scale variability (that is, assuming σk ≡ 0) would
lead to a standard first order Markov-modulated fluid model. However, including
small-scale variability makes for an interesting and complex model.

Assume that a job of size W = x starts service at time t = 0, with the
background modulating process in state i. Then the evolution of the service
time B(x) as a function of the job size is the following:

– Let a1 denote the time of the first transition of M(t). As long as B(x) is
smaller than a1, B(x) evolves according to a BM(µi, σi).

– At time a1, M(t) changes to some state j. Accordingly, assuming that the
first passage of B(x) to a1 occurs at work amount w1, for x ≥ w1, B(x)
evolves according to a BM(µj , σj) (starting from the point w1 and from
level a1).

– This is repeated for further transitions of M(t) at times a2, a3, . . . , up to the
point x = W .

Note that in visualization, the x axis denotes the job size, and the y axis
denotes time, see Figure 2. Thus for B(x), the behaviour can be described as a
type of level-dependent Brownian motion: the parameters µ and σ of the Brow-
nian motion change upon first passage to levels a1, a2, . . . . This is different from
usual second order Markov-modulated fluid models, where parameter changes
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Fig. 2: A possible realization of B(x) for job size W = 1.2

occur upon the variable of the Brownian motion (x in our case) reaching some
transition points instead of the level reaching transition points.

Keeping in mind that M(t) is a CTMC, the entire distribution of B(x) is
determined by the initial points t = 0 and x = 0 and the initial state of the
modulating process M(0) = i. The process B(x) can be simulated as follows:

– B(x) starts from t = 0, x = 0, with M(0) = i and job size W .
– Generate the first transition time a1 of M(t).
– B(x) runs as a BM(µi, σ

2
i ) until either the value of B(x) reaches a1 or x

reaches W , whichever occurs first.
– If x = W occurred first, then the simulation is finished.
– If B(w1) = a1 for some w1 < W , then we generate the next state j and

also the next transition time a2 according to the CTMC M(t), then continue
B(x) as a Brownian motion with parameters (µj , σ

2
j ) starting from the point

(w1, a1) until either the value of B(x) reaches a2 or x reaches W , whichever
occurs first.

– We keep generating new transitions and new Brownian motion sections until
we reach W . The service time of the job is T = B(W ).

The main question, similar to Section 2, is the distribution of T and perfor-
mance measures derived from T . In this case, an analytical answer is non-trivial
even for a given job size W = x. One possible analytic formulation is to first
introduce the cumulative distribution type functions (for fixed x)

Gij(x, t) = Pr (B(x) ≤ t,M(B(x)) = j|M(0) = i,W = x) (4)

which include information about the initial and final background state of M(t)
along with the distribution of the service time. An analytic formula for Gij(W, t)
is subject to ongoing research.
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4 Simulation results

To study the effects of variability, we have applied the procedure outlined in
Section 3 to simulate the behaviour of the queue with short and long scale
variability. In particular, to find the intersection between the Brownian motion
and the level determined by the time at which the modulating process changes
state, we have discretised the work with a quantum ∆x, and during the period
when the MMP stays in state i, for each quantum we have set the evolution
of the time according to a normal distribution N(µi∆x, σ

2
i∆x) (following the

procedure outlined at the beginning of Section 2). The MMP leaves state i at
the first time instant in which the discretised BM crosses the level Tn, where Tn
is the time of the nth state transition of the MMP. When the nth state transition
occurs in state i, then Tn = Tn−1 + τi, where Tn−1 is the time of the previous
state transition and τi is exponentially distributed with parameter −Qii (the
ithe diagonal element of the generator matrix of the modulating CTMC). This
simulation approach is indeed an approximation, but it can be made arbitrarily
precise by choosing appropriately small values of ∆x.

In our numerical experiment, we have considered a two-state modulating
process with jump rates γ12 and γ21, and studied the effects of different service
speed and variability parameters µi and σi. To show a possible application,
we have used the proposed process to describe the variable service rate in an
M/G/1 queue, where jobs arrive according to a Poisson process of rate λ and are
served by a single server subject to short and long range variability according to
a first-come-first-served discipline. To compare the results for different service
time distributions we assumed that the mean service time E[W ] is identical in
each cases. The arrival rate, λ, is selected such that the queue is stable. Unless
otherwise stated, the used parameters have been the following:

λ = 1000
350 job/s, E[W ] = 100ms, ∆X = 0.05ms,
µ1 = 2, µ2 = 4, σ1 = 0.4, σ2 = 1.5,

1
γ12

= 1.25s, 1
γ21

= 0.8s.
(5)

In this framework, the discretisation interval has been chosen so that on average,
the BM for each job requires 2000 samples, and in the average sojourn time in
the two modulating states, the BM is samples respectively 25000 and 16000
times. Each simulation considers the execution of N = 10000 jobs.

We start focusing on jobs requiring a fixed amount of work (i.e. W = E[W ] is
deterministic. Figure 3a shows the service time distribution for different server
variability configuration. The Base case, considers the case in which no vari-
ability is used: in particular to µ1 = µ2 = 2.4848 and σ1 = σ2 = 0. As it is
expected, all the probability mass is centred along µE[W ] = 248.48. The Small
variability cases, differs from the Base one by adding a small variability. In the
Small (fixed) case σ1 = σ2 = 0.98773 and in the Small (variable) case we have
the state dependent variability σ1 = 0.4 and σ2 = 1.5. As it can be seen, they
both destroy the deterministic behaviour, in a slightly different way: the fixed σ
case has a more uniform effect, while the variable one presents larger tails. The
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Fig. 3: Considering different small scale and large scale variability configurations
for a fixed job length: a) service time distribution, b) response time distribution

case called Large considers only large scale variability only, i.e., σ1 = σ2 = 0.
During a sojourn in a state of the MMP the service time of a job is determin-
istic. In state 1, with µ1 = 2, the service time is exactly 200ms, and in state 2,
with µ2 = 4, it is exactly 400ms. The jumps in Figure 3a at 200ms, and 400ms
are associated with the cases when the MMP stays in state 1 (2, respectively)
for the whole period of the service. The cases when the MMP experiences state
transition during the service are represented by the continuously increasing part
of the Large curve. The case that combines both small and large scale vari-
ability (Small+Large, µ1 = 2, µ2 = 4, σ1 = 0.4, σ2 = 1.5) further smooths the
curves, and the effect is more evident near the two probability masses at 200ms,
and 400ms. Figure 3b shows the response time distribution of the corresponding
queuing models. In this case it is interesting to see that in the cases where small
variability is considered there are no jumps due to its perturbation effect.

We then study the effect of the modulating process, by changing the average
sojourn time in its two states, while maintaining the state probabilities. Figure
4 considers different combinations of sojourn times ranging from 12.5s and 8s
down to 1.25ms and 0.8ms for the deterministic job length distribution W , and
the other parameters defined as in (5). When the sojourn time is very large, ser-
vice times are correlated, and the service time distribution tend to concentrate
the probability mass near the times required in both modulating states. On the
other hand, when the switching process changes very fast, the distribution tend
to concentrate in the average case, producing results very similar to the one seen
in Figure 3 for the cases with small variability only: in this case, there is almost
no difference between large scale and small scale variability, because the quick
alternation of the modulating process eliminates the large scale effect. As a final
remark, in order to consider a switching process with 1.25ms and 0.8ms, we had
to reduce the sampling time ∆x = 0.01 to allow a sufficient number of sam-
ples during the sojourn in a modulating state. For what concerns response time
(Figure 4c), when the modulating process present deep correlation by spending
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Fig. 4: Considering different durations in the modulating process for a fixed job
length: a) service time distribution, b) response time distribution

longer times in a single state, bursts are created, decreasing considerably the
performances of the system.

We finally consider the effect of variability on different job length distribu-
tions. In particular, Figure 5a shows the service time distribution when the job
length follows, beside the deterministic distribution already discussed, an ex-
ponential distribution, an Erlang distribution with 4 stages, and the following
Hyper-Exponential (wH(x)) and Pareto (wP (x)) distributions characterised by
the following probability density functions:

wH(x) =
1

2
λ1e
−λ1x +

1

2
λ2e
−λ2x,

wP (x) =

{
20

5
4 5

4

x
9
4

x > 20,

0 x < 20,

where λ1 = 1

100(1+
√

3
5 )

and λ2 = 1

100(1−
√

3
5 )

. As it can be noted, the effect

of service variability is more evident on job length distributions with a lower
coefficient of variation. Figure 5b shows the effect on response time: indeed,
combining the effect of service variability with heavy tailed distribution, as for
the Pareto case, can create very long queues which can lead to extremely long
response times.

5 Conclusions

In this work, we have introduced a queue with a service model where the large
timescale variability is modelled by a modulating background Markov process,
and small timescale variability is modelled by a second-order fluid process for
the service time of a job. The resulting service model can be interpreted as a
certain type of level-dependent Brownian motion.
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Fig. 5: Considering small scale and large scale variability for different job length
distributions: a) service time distribution, b) response time distribution

We have presented simulation results for the service time and response time
of a job for various job size distributions. In future work, we hope to give a full
analytic description of the system, most notably by giving an analytic solution
for (4).
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