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Abstract The performance of service units may depend on various randomly
changing environmental effects. It is quite often the case that these effects vary
on different time scales. In this paper, we consider small and large scale (short
and long term) service variability, where the short term variability affects the
instantaneous service speed of the service unit and a modulating background
Markov chain characterizes the long term effect. The main modelling challenge
in this work is that the considered small and long term variation results in
randomness along different axes: short term variability along the time axis
and long term variability along the work axis.

We present a simulation approach and an explicit analytic formula for
the service time distribution in the double transform domain that allows for
the efficient computation of service time moments. Finally, we compare the
simulation results with analytic ones.
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1 Introduction

Service speed variability is a problem that has been observed in many practical
application scenarios. For example, in [7], it has been observed for vehicular
traffic. More recently this problem has been recognized in data centers [3].
The effect of variability was also studied in [1] with application to video-
streaming. Most of the previous literature, however, focused only on large-
time scale variability, where Markov-modulating models represent the random
fluctuations of the environment. These set of models are commonly referred
to as reward models and have been studied for a long time [5].

The variation in the service speed can be modelled by dividing the jobs
into “infinitesimal quantities of work to be done” and considering the “speed
at which this infinitesimal work is performed”, i.e., the random amount of
time needed to execute the infinitesimal amount of work. Then, once a model
defines how speed changes over time, the complete system can be modelled in
a straight-forward way where the amount of work increases gradually along
the analysis and the time required to execute the given amount of work is a
random process.

If the service process depends on a time-dependent random process, e.g., on
a modulating background continuous time Markov chain (CTMC) representing
the environmental state, whose “clock” evolves according to the time, then the
natural performance analysis is based on the gradually increasing time and the
randomly varying time dependent environment state.

However, in many real applications, variability is not easily predictable and
works at different time-scales. Modulating CTMCs (whose “clock” evolves ac-
cording to the time) works very well to model variability where the parameters
of the job execution remain constant for a longer random period of time, and
there are few jumps during the execution of one job. Apart from this large
scale variability, in this work, we also focus on variability that occurs at much
smaller time scales, where the execution speed changes thousands, if not mil-
lions, of times during the execution of the main job, and combine it with the
more classical modulation that works on a larger time scale.

The remainder of this paper is structured as follows. In Section 2 we start
by considering only the small time-scale variability. In Section 3 we addition-
ally introduce also the large time-scale variability. Section 4 is devoted to the
mathematical analysis of the obtained small and large time-scale system. The
effects of the considered variability is studied in Section 5 through numerical
examples, and Section 6 concludes the paper.

2 Small time-scale variability

In this section, we omit the large time-scale variability and instead focus only
on small time-scale variability. So we assume that the environmental state is
unchanged for now.
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We introduce a second order fluid model for the short time-scale variability:
assuming that a job is composed of quantums of size ∆x, each such quantum is
served in a random amount of time with distribution N(µ∆x, σ2∆x) (with µ >
0). Assuming that the service times of the different quantums are independent,
the progress of service is modeled by a Brownian motionX(w) with parameters
µ and σ2. We emphasize that in this model, the Brownian motion corresponds
to the time required to service a job as a function of the size of the job (see
Figure 1). A job of size x thus requires a random time T with distribution
N(µx, σ2x), whose probability density function is

fN(µx,σ2x)(t) =
e−

(t−µx)2

2xσ2

√
2πxσ2

, t ∈ R.

The assumption that T may take negative values does not make sense
physically. However, due to µ > 0, for macroscopic job sizes, the probability
of T < 0 is negligible, so the proposed mathematical model is a close approx-
imation of the physical system. In the mathematical analysis, T < 0 does not
cause any issues, and the performance measures of interest can be calculated
accurately.

The moments of N(µx, σ2x) are xµ, (xµ)2 + (
√
xσ)2, (xµ)3 +

3(xµ)(
√
xσ)2, (xµ)4 +(xµ)2(

√
xσ)2 +3(

√
xσ)4, . . .. In general, E[N(xµ, xσ2)k]

can be expressed as a polynomial in xµ and xσ2

E[N(xµ, xσ2)k] =

k∑
j=0

uk,j(xµ)j(
√
xσ)k−j (1)

where the coefficients uk,j are such that uk,j = 0 if k + j is odd.
Note that a Brownian motion may take negative values as well, which does

not make sense physically, but, since µ > 0, for macroscopic values of w, the
probability that T is negative is negligible.

work

time

W

T

Fig. 1: The time T required to serve a job as a function of the job size W

We focus on the service of a job in a queue whose work requirement, W ,
is generally distributed according to probability density function fW (x).
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Using the second order fluid model assumption, the probability density
function of the service time of a job, denoted by fT (t), can be computed as:

fT (t) =

∫ ∞
0

fW (x) · e
− (t−µx)2

2xσ2

√
2πxσ2

dx . (2)

2.1 Moments of the scaled distribution

There are also some interesting relations between the moments of W , the
moments of T and the parameters µ and σ2. In particular, the k-th moment
of T can be expressed as:

E[T k] =

∫ ∞
0

tkfT (t)dt =

∫ ∞
0

tk
∫ ∞
0

fW (x) · e
− (t−µx)2

2xσ2

√
2πxσ2

dx · dt =

=

∫ ∞
0

fW (x)

∫ ∞
0

tk · e
− (t−µx)2

2xσ2

√
2πxσ2

dt · dx =

=

∫ ∞
0

fW (x)E[N(xµ, xσ2)k]dx .

Since E[N(xµ, xσ2)k] can be expressed as a polynomial in xµ and xσ2 with
coefficients uk,j according to (1), we can compute the moments of T as:

E[T k] =

∫ ∞
0

fW (x)

k∑
j=0

uk,j(xµ)j(
√
xσ)k−jdx =

=

k∑
j=0

uk,jµ
jσk−j

∫ ∞
0

fW (x)xj(
√
x)k−jdx =

=

k∑
j=0

uk,jµ
jσk−jE[W

k+j
2 ] (3)

Since uk,j 6= 0 only when k+ j is even, E[W
k+j
2 ] is always an integer moment

of W . For example, for the first and second moment of T we have:

E[T ] = µE[W ], E[T 2] = µ2E[W 2] + σ2E[W ].

3 Combining large and small time-scale variability

Large scale variability can be considered using a discrete state continuous
time Markov modulating process (MMP), denoted by M(t). We assume the
MMP is a continuous time Markov chain (CTMC) on a finite state space with
infinitesimal generator matrix Q. In state i, the service is characterised by rate
µi and variance σ2

i .
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Only considering large scale variability (that is, assuming σi ≡ 0,∀i) would
lead to a standard Markov reward model. However, including small-scale vari-
ability makes for an interesting and complex model.

Assume that a job of size W = u starts service at time t = 0, with the
MMP M(t) in state i. Then the evolution of the service time X(w), 0 ≤ w ≤ u
as a function of the job size is the following:

– Let a1 denote the time of the first transition of M(t). As long as X(w)
is smaller than a1, X(w) evolves according to a Brownian motion with
parameters µi and σ2

i (denoted by BM(µi, σ
2
i )).

– At time a1, M(t) changes to some state j. Accordingly, assuming that the
first passage of X(w) to a1 occurs at work amount w1, for w ≥ w1, X(w)
evolves according to a BM(µj , σj) (starting from the point w1 and from
level a1).

– This is repeated for further possible transitions of M(t) at times a2, a3, . . . ,
up to the point u.

Note that in visualization, the horizontal axis denotes the job size, and the
vertical axis denotes time, see Figure 2. Thus for X(w), the behaviour can
be described as a type of level-dependent Brownian motion: the parameters µ
and σ of the Brownian motion change upon first passage to levels a1, a2, . . . .

This model is essentially different from second order Markov-modulated
fluid models (also referred to as Markov modulated Brownian motion) [2,6].
The main difference between the two approaches is that in second order fluid
models, it is the amount of work performed per unit of time that is assumed to
have normal distribution; in the present paper, it is the amount of time required
to perform a unit of work that is assumed to have normal distribution.

a1

a2

W2W1 W

T = X (W)

0.0 0.5 1.0 1.5
work0

1

2

3

4
time

Fig. 2: A possible realization of X(w) for job size W = 1.2

Keeping in mind that M(t) is a CTMC, the entire distribution of X(w) is
determined by the initial points t = 0 and w = 0 and the initial state of the
modulating process M(0) = i. The process X(w) can be simulated as follows:

– If W is random, generate the value of W , denoted by u.
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– X(w) starts from t = 0, w = 0, with M(0) = i.
– Generate the first transition time a1 of M(t).
– X(w) runs as a BM(µi, σ

2
i ) until either the value of X(w) reaches a1 or w

reaches u, whichever occurs first.
– If u occurred first, then the simulation is finished.
– If X(w1) = a1 for some w1 < W , then we generate the next state j

and also the next transition time a2 according to the MMP M(t), then
continue X(w) as a Brownian motion with parameters (µj , σ

2
j ) starting

from the point (w1, a1) until either the value of X(w) reaches a2 or reaches
u, whichever occurs first.

– We keep generating new transitions and new Brownian motion sections
until we reach u. The service time of the job is T = X(u) = X(W ).

The main question, similar to Section 2, is the distribution of T and per-
formance measures derived from T . The main contribution of this paper is the
analytical evaluation of the distribution of T in the double transform domain.
Several related performance measures can be obtained based on this transform
domain description numerically.

The analytical problem can be formulated as the cumulative distribution
type functions of the service time (for fixed w)

Gij(x,w) = Pr (X(w) ≤ x,M(X(w)) = j|M(0) = i,W = w) (w > 0, x ∈ R)
(4)

which include information about the initial and final background state of
M(t) along with the distribution of the service time. In accordance with the
mathematical model, Gij(x,w) is defined for both positive and negative values
of x, but Gij(0, w) is typically negligible.

Based on Gij(x,w), the corresponding cumulative distribution function in
case of a random W with probability density function fW (w) is

Gij(x) = Pr(X(W ) ≤ x,M(X(W )) = j|M(0) = i) =

=

∫ ∞
w=0

Gij(x,w)fW (w)dw (x ∈ R) (5)

The next section provides the mathematical analysis of Gij(x,w).

4 Job completion in small and large time-scale variable
environment

Let X(w) denote the time needed to service a job of fixed size w. We aim to
analyse the entire process {X(w), w ≥ 0}, and, based on that, derive perfor-
mance measures for X(w) (for a fixed job size w), and also for X(W ), where
W is possibly random.

The system operates in a random environment characterized by the MMP
M(t), t ≥ 0, which is a Markov chain with generator Q (and the variable t
denotes the time of the MMP). The process X(w) starts from 0 at w = 0.
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When the MMP is in state i, the main process, X(w), is a Brownian motion
with parameters µi > 0 and σi > 0 (given for each state i). Whenever the
MMP makes a transition at time t = a, i.e., when X(w) reaches level a, the
MMP switches to a new state k and the main process continues as a Brownian
motion with parameters µk > 0 and σk starting at level a. Then the same
procedure continues until the job of size u gets completed.

The main process X(w) starts from level 0 at w = 0, i.e., X(0) = 0. We
are interested in the distribution of X(u), where u is the size of the workload,
and introduce the notation

Gij(x,w) = Pr(X(w) < x,M(x) = j|M(0) = i,X(0) = 0) (w > 0, x ∈ R),

gij(x,w) =
∂

∂x
Gij(x,w) (w > 0, x ∈ R). (6)

We aim to compute

g?∗ij (v, s) =

∫ ∞
x=−∞

e−vx
∫ ∞
w=0

e−swgij(x,w)dwdx, (7)

where ? refers to the double sided Laplace transform and ∗ refers to single
sided Laplace transform. (7) is convergent when Re(s) > 0 and |v| is small
enough (depending on Re(s), that is, |v| < ε(Re(s)) for some positive function
ε(.). Convergence of the inner integral for Re(s) > 0 follows directly from the
fact that gij(x,w) is a probability density function. Convergence in v will be
addressed during the proof of Theorem 1, and the function function ε(.) is
made explicit in (16). We remark that calculating g?∗ij (v, s) in a region where
Re(s) > 0 and |v| is small enough is sufficient for the further calculation of
performance measures of interest.

Theorem 1 Matrix G?∗(v, s) = {g?∗ij (v, s)} is given by

G?∗(v, s) = (Z(s) + vI−Q)−1(Z(s)−QD + vI)A?∗(v, s), (8)

where Q is the generator of the MMP, I is the identity matrix and A?∗(v, s) =
diag〈a?∗i (v, s)〉, Z(s) = diag〈zi(s)〉, QD = diag〈qii〉 are diagonal matrices,
where qii are the diagonal elements of Q, and

a?∗i (v, s) =
zi(s) + v

zi(s)− qii + v
φ−∗(v, s, µi, σi) + φ+∗(v − qii, s, µi, σi),

zi(s) =
2s

µi +
√
µ2
i + 2sσ2

i

, (9)

where furthermore

φ−∗(v, s, µ, σ) =
σ2√

µ2 + 2sσ2
(
µ− vσ2 +

√
µ2 + 2sσ2

) ,
φ+∗(v, s, µ, σ) =

σ2√
µ2 + 2sσ2

(
−µ+ vσ2 +

√
µ2 + 2sσ2

) . (10)

(Re(s) > 0 and |v| is sufficiently small in all formulas.)
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Proof Let Wa be the first passage point along the horizontal axis, where the
BM(µi, σi) starting from level 0 reaches level a (a > 0). The CDF and PDF
of Wa are denoted by

Fi(a,w) = Pr(Wa < w|M(0) = i,X(0) = 0), fi(a,w) =
∂

∂w
Fi(a,w).

fi(a,w) is given explicitly (using Girsanov’s theorem and mirror principle, see
e.g. Theorem 6.9 in [8]) as

fi(a,w) =
a√

2πw3σi
exp

(
− (a− µiw)2

2wσ2
i

)
, 0 < a, 0 < w. (11)

When the process starts in state i, two things may happen (c.f. Figure 3):
the main process will either reach level a (along the vertical axis) before w (on
the horizontal axis), i.e. Wa < w, or not. If the main process reaches level a
before w, then the MMP switches from state i to another state k at Wa, and
the main process continues similarly with parameters (µk, σk), albeit starting
from level a.

If the main process does not reach level a before completing w amount of
work, i.e., Wa > w, then we need the conditional distribution of the level at w
assuming that X(w) < a for ∀u < w. To obtain it, we introduce the notation

Bi(x, a, w) = Pr(X(w) < x,X(u) < a,∀u ∈ (0, w)|M(0) = i,X(0) = 0),

bi(x, a, w) =
∂

∂x
Bi(x, a, w), x < a, 0 < a, 0 < w.

Bi(x, a, w) is a CDF type function, and it describes an incomplete distribution
concentrated on (−∞, a), and it satisfies

Fi(a,w) + Bi(x, a, w)|x=a = 1, (12)

where the first term corresponds to the probability that the BM(µi, σi) hits
level a before w (Wa < w), while the second term corresponds to the proba-
bility that the BM(µi, σi) hits the vertical line at w without reaching level a
(Wa > w).

To calculate the density bi(x, a, w), we first note that the position of a
BM(µi, σi) at point w has normal distribution with parameters (µiw, σi

√
w),

so its probability density function at w is φ (x, µiw, σi
√
w), where φ(x, µ, σ)

denotes the PDF of normal distribution with parameters µ and σ2, i.e.,

φ(x, µ, σ) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
, x ∈ R.

To compute bi(x, a, w), we need to subtract the density that the BM hits level
a first. We calculate it using total probability according to the first passage
time at level a, Wa. Altogether, bi(x, a, w) can be calculated as

bi(x, a, w) = φ
(
x, µiw, σi

√
w
)
−
∫ w

u=0

fi(a, u)φ
(
x− a, µi(w−u), σi

√
w−u

)
du.

(13)
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W

a

w

f (a,u)i

B (x,a,w)i

a
work

time

Fig. 3: A trajectory reaching level a before w (Wa < w)

The level at which the MMP changes its state, a, is exponentially distributed
with parameter −qii. Using that and the probability of moving from state i to
state k at a state transition of the MMP, −qik/qii, we have

gij(x,w) =δij

∫ ∞
a=x+

bi(x, a, w)(−qii)eqiiada (14)

+
∑
k:k 6=i

∫ w

u=0

∫ ∞
a=0

qike
qiiafi(a, u)gkj(x− a,w − u)dadu,

where x+ = max(0, x) and δij denotes the Kronecker delta.

Remarks:

– The first term in (14) is the probability that the main process reaches
u = w before hitting level a averaged out according to the distribution of
a.

– In the second term, the MMP switches to state k at u < w, with the main
process at level X(w) = a.

– Even though the general idea is that the main process is increasing, using
a second order approach means that in the short term, the main process
may decrease as well. Hence we should care about negative values of x if
possible. The formula (14) is consistent with the possibility that the process
X(w) may decrease and the formula is valid for negative values of x as well.

The second integral in (14) is essentially convolution in both variables x
and w; to simplify it, we will take Laplace-transform in the variable w, and
double-sided Laplace transform in the variable x.

We look to take the Laplace-transform of the variable w in all of the im-
portant functions in (14). Denoting the transform variable by s, the Laplace-
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transform of fi(a,w) in (11) is explicit:

f∗i (a, s) =

∫ ∞
w=0

e−swfi(a,w)dw = exp

(
−2as

µi +
√
µ2
i + 2sσ2

i

)
=

= e−zi(s)a, a > 0, Re(s) > 0,

where zi(s) is given in (9).

Similarly, we have an explicit formula for the Laplace-transform of
φ (x, µw, σ

√
w) with respect to w

φ∗(x, s, µ, σ) =

∫ ∞
w=0

φ
(
x, µw, σ

√
w
)
e−swdw

=
1√

µ2 + 2sσ2
exp

(
xµ− |x|

√
µ2 + 2sσ2

σ2

)
.

Then from (13), we have

b∗i (x, a, s) =

∫ ∞
w=0

e−swbi(x, a, w)dw

= φ∗(x, s, µi, σi)− φ∗(x− a, s, µi, σi)f∗i (a, s),

and from (14), we have

g∗ij(x, s) =

∫ ∞
w=0

e−swgij(x,w)dw (15)

= δij

∫ ∞
a=x+

b∗i (x, a, s)(−qii)eqiiada︸ ︷︷ ︸
a∗i (x,s)

+
∑
k:k 6=i

qik

∫ ∞
a=0

eqiiaf∗i (a, s)g∗kj(x−a, s)da︸ ︷︷ ︸
h∗
ij(x,s)

.

To transform the level variable x as well using two-sided Laplace transform,
we will use the functions φ−∗(v, s, µ, σ) and φ+∗(v, s, µ, σ) as defined in (10):

φ−∗(v, s, µ, σ) =

∫ 0

x=−∞
e−vxφ∗(x, s, µ, σ)dx

=
σ2√

µ2 + 2sσ2
(
µ− vσ2 +

√
µ2 + 2sσ2

) ,
φ+∗(v, s, µ, σ) =

∫ ∞
x=0

e−vxφ∗(x, s, µ, σ)dx

=
σ2√

µ2 + 2sσ2
(
−µ+ vσ2 +

√
µ2 + 2sσ2

) ,
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where convergence in either integral holds when the real part of the associated

denominators are positive. For Re(s) > 0, we have µ < Re
(√

µ2 + 2sσ2
)

,

from which the denominators are positive when

|v| <
Re
(√

µ2 + 2sσ2
)
− µ

σ2
;

from this, we have that (7) and (8) are valid when Re(s) > 0 and

|v| < ε(Re(s)) := min
i

Re
(√

µ2
i + 2sσ2

i

)
− µi

σ2
i

. (16)

To compute g?∗ij (v, s) =
∫∞
x=−∞ e−vxg∗ij(x, s)dx, we start by investigating

the transform of first term a∗i (x, s) on the right hand side in (15):

a?∗i (v, s) =

∫ ∞
x=−∞

e−vxa∗i (x, s)dx =

∫ ∞
x=−∞

e−vx
∫ ∞
a=x+

b∗i (x, a, s)(−qii)eqiiadadx

=

∫ ∞
x=−∞

e−vx
∫ ∞
a=x+

φ∗(x, s, µi, σi)(−qii)eqiiadadx

−
∫ ∞
x=−∞

e−vx
∫ ∞
a=x+

φ∗(x− a, s, µi, σi)f∗i (a, s)(−qii)eqiiadadx.

(17)

The first term on the right hand side of (17) is

∫ ∞
x=−∞

e−vxφ∗(x, s, µi, σi)

∫ ∞
a=x+

(−qii)eqiiadadx

= (−qii)
∫ 0

x=−∞
e−vxφ∗(x, s, µi, σi)

∫ ∞
a=0

eqiiadadx

+ (−qii)
∫ ∞
x=0

e−vxφ∗(x, s, µi, σi)

∫ ∞
a=x

eqiiadadx

= (−qii)
∫ 0

x=−∞
e−vxφ∗(x, s, µi, σi)

1

−qii
dx

+ (−qii)
∫ ∞
x=0

e−vxφ∗(x, s, µi, σi)
eqiix

−qii
dx

=

∫ 0

x=−∞
e−vxφ∗(x, s, µi, σi)dx+

∫ ∞
x=0

e−(v−qii)xφ∗(x, s, µi, σi)dx

= φ−∗(v, s, µi, σi) + φ+∗(v − qii, s, µi, σi). (18)
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The second term on the right hand side of (17) is∫ ∞
x=−∞

e−vx
∫ ∞
a=x+

φ∗(x− a, s, µi, σi)f∗i (a, s)(−qii)eqiiadadx

= (−qii)
∫ ∞
x=−∞

e−vx
∫ ∞
a=x+

φ∗(x− a, s, µi, σi)e−(zi(s)−qii)adadx

= (−qii)
∫ ∞
a=0

e−(zi(s)−qii)a
∫ a

x=−∞
e−vxφ∗(x− a, s, µi, σi)dxda

= (−qii)
∫ ∞
a=0

e−(zi(s)−qii)ae−va
∫ a

x=−∞
e−v(x−a)φ∗(x− a, s, µi, σi)dxda

= (−qii)
∫ ∞
a=0

e−(zi(s)−qii+v)ada

∫ 0

x=−∞
e−vxφ∗(x, s, µi, σi)dx

=
−qii

zi(s)− qii + v

∫ 0

x=−∞
e−vxφ∗(x, s, µi, σi)dx

=
−qii

zi(s)− qii + v
φ−∗(v, s, µi, σi). (19)

Altogether, expressing (17) as the total of (18) and (19), we get

a?∗i (v, s) =φ−∗(v, s, µi, σi) + φ+∗(v − qii, s, µi, σi)

− −qii
zi(s)− qii + v

φ−∗(v, s, µi, σi)

=
zi(s) + v

zi(s)− qii + v
φ−∗(v, s, µi, σi) + φ+∗(v − qii, s, µi, σi). (20)

Now we focus on the second term on the right hand side of (15).

h?∗ij (v, s) =

∫ ∞
x=−∞

e−vxh∗ij(x, s)dx

=
∑
k:k 6=i

∫ ∞
x=−∞

e−vxqik

∫ ∞
a=0

eqiiaf∗i (a, s)g∗kj(x− a, s)dadx

=
∑
k:k 6=i

qik

∫ ∞
x=−∞

e−vx
∫ ∞
a=0

e−(zi(s)−qii)ag∗kj(x− a, s)dadx

=
∑
k:k 6=i

qik

∫ ∞
a=0

e−(zi(s)−qii+v)a
∫ ∞
x=−∞

e−v(x−a)g∗kj(x− a, s)dxda

=
∑
k:k 6=i

qik

∫ ∞
a=0

e−(zi(s)−qii+v)ada g?∗kj (v, s)

=
∑
k:k 6=i

qik
zi(s)− qii + v

g?∗kj (v, s), (21)
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from which we get

g?∗ij (v, s) = δija
?∗
i (v, s) +

∑
k,k 6=i

qik
zi(s)− qii + v

g?∗kj (v, s)

(zi(s)− qii + v)g?∗ij (v, s) = δij(zi(s)− qii + v)a?∗i (v, s) +
∑
k,k 6=i

qijg
?∗
kj (v, s)

(zi(s) + v)g?∗ij (v, s) = δij(zi(s)− qii + v)a?∗i (v, s) +
∑
k

qkjg
?∗
kj (v, s).

(22)

Introducing matrix G?∗(v, s) = {g?∗ij (v, s)}, and diagonal matrices

A?∗(v, s) = diag〈a?∗i (v, s)〉, Z(s) = diag〈zi(s)〉, QD = diag〈qii〉, (22) can
be written as

(Z(s) + vI)G?∗(v, s) = (Z(s)−QD + vI)A?∗(v, s) + QG?∗(v, s),

whose solution is (8). �

Theorem 1 provides an explicit expression (involving a matrix inversion)
for the double transform domain description of the service time distribution.
For the s→ w one-sided inverse Laplace transformation, we applied different
approaches depending on the distribution of the work requirement W . To
simplify calculations, we decided to avoid doing a v → x two-sided inverse
Laplace transformation, instead calculating the moments of X(w) explicitly,
which can be obtained from

E(X(w)k) = (−1)kL−1s→w
(
∂k

∂vk
g?∗ij (v, s)

∣∣
v=0

)
, (23)

where L−1s→w denotes inverse Laplace transformation from parameter s to pa-
rameter w. To compute these moments it is important to note that the eigen-
values of Z(s) −Q are all positive, which provides a symbolic derivative ac-
cording to v also for the matrix inverse, e.g., to compute the mean of X(w)
we have

∂

∂v
G?∗(v, s)

∣∣∣∣
v=0

= −(Z(s)−Q)−2(Z(s)−QD)A?∗(0, s)

+ (Z(s)−Q)−1A?∗(0, s)

+ (Z(s)−Q)−1(Z(s)−QD)
∂

∂v
A?∗(v, s)

∣∣∣∣
v=0

.

The explicit formulas for ∂k

∂vk
A?∗(v, s)

∣∣∣∣
v=0

with higher k values are omitted

here, but symbolic mathematical packages can compute them easily.
For deterministic work requirement (W = w) we applied the numerical

inverse Laplace transformation method from [4] with order 24. This numerical
inverse Laplace transform procedure evaluates the Laplace transform function
only in points with a positive real part.
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For exponentially distributed work requirement (W is exponentially dis-
tributed with rate ϑ) we use an explicit inversion formula based on

gij(x) =

∫ ∞
w=0

gij(x,w)fW (w)dw = ϑ

∫ ∞
w=0

gij(x,w)e−ϑwdw = ϑg∗ij(x, s)

∣∣∣∣
s=ϑ

.

Consequently, the kth moment of the service time for an exponentially dis-
tributed work requirement (W ) with rate ϑ can be computed explicitly as

E(X(W )k|M(0) = i) = (−1)kϑ
∂k

∂vk

∑
j

g?∗ij (v, s)

∣∣∣∣
v=0,s=ϑ

. (24)

5 Numerical examples

5.1 Simulation results

To study the effects of variability, we have applied the procedure outlined
in Section 3 to simulate the behaviour of the queue with short and long scale
variability. In particular, to find the intersection between the Brownian motion
and the level determined by the time at which the modulating process changes
state, we have discretised the work with a quantum ∆x, and during the period
when the MMP stays in state i, for each quantum we have set the evolution
of the time according to a normal distribution N(µi∆x, σ

2
i∆x) (following the

procedure outlined at the beginning of Section 2). The MMP leaves state i at
the first time instant in which the discretised BM crosses the level Tn, where
Tn is the time of the nth state transition of the MMP. When the nth state
transition occurs in state i, then Tn = Tn−1 +τi, where Tn−1 is the time of the
previous state transition and τi is exponentially distributed with parameter
−qii (the ith diagonal element of the generator matrix Q of the MMP). This
simulation approach is indeed an approximation, but it can be made arbitrarily
precise by choosing appropriately small values of ∆x (at the cost of simulation
time). Simulations were run for several choices of ∆x to examine the error of
this approximation.

In our numerical experiment, we have considered a two-state modulating
process with jump rates q12 and q21, and studied the effects of different service
speed and variability parameters µi and σi (i = 1, 2). Apart from computing
performance measures related to the service time distribution, we also included
simulation results for the response time in an M/G/1 queue, where jobs arrive
according to a Poisson process of rate λ and are served by a single server
subject to short and long term variability according to a first-come-first-served
discipline. Job sizes may be either deterministic or random. λ is set so that
the queue is stable.

For the first batch of simulations, we examine the effect of short and long
term variability of the server by changing µ and σ while leaving the other
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parameters fixed:

λ =
1000

350
job/s, W = E[W ] = 100ms,

1

q12
= 1.25s,

1

q21
= 0.8s.

We compare the following cases:

– Base: no variability, µ1 = µ2 = 2.4848 and σ1 = σ2 = 0.
– Small (fixed): small term variability with µ1 = µ2 = 2.4848 and σ1 = σ2 =

0.98773.
– Small (variable): small term variability with µ1 = µ2 = 2.4848 and σ1 = 0.4

and σ2 = 1.5.
– Large: Long term variability is present, but no short term variability: µ1 =

2, µ2 = 4, σ1 = σ2 = 0.
– Small+Large: both effects are combined: µ1 = 2, µ2 = 4, σ1 = 0.4, σ2 = 1.5

(For this set of simulation results, the discretization interval ∆x is set to
0.05ms so that on average, the BM for each job requires 2000 samples. Each
simulation considers the execution of N = 10000 jobs.)

Figure 4a shows the service time distribution for the different server vari-
ability configurations. For the Base case, as it is expected, all the proba-
bility mass is centered along µ1E[W ] = µ2E[W ] = 248.48. For the Small
(fixed) case, the introduction of small term variability destroys the deter-
ministic behaviour, resulting in a smooth distribution still concentrated near
µ1E[W ] = µ2E[W ] = 248.48. For the Small (fixed) case, the distribution is
similar, with larger tails due to the long term variability in σ. For the Large
case, in state 1, service time is exactly µ1E[W ] = 200ms, and in state 2, ser-
vice time is exactly µ2E[W ] = 400ms. The probability masses in Figure 4a at
200ms and 400ms are associated with the cases when the MMP stays in state
1 (2, respectively) for the whole period of the service. The cases when the
MMP experiences state transition during the service are represented by the
continuously increasing part of the Large curve. The case that combines both
small and large scale variability (Small+Large) further smooths the curves,
and the effect is more evident near the two probability masses at 200ms, and
400ms.

Figure 4b shows the response time distribution of the corresponding queu-
ing models. It is interesting to see that in the cases where small variability is
considered there are no jumps due to its perturbation effect.

The second batch of simulations focuses on the MMP by changing the
speed of the background MMP. We set

λ =
1000

350
job/s, W = E[W ] = 100ms, ∆x = 0.05ms

as before, along with

µ1 = 2, µ2 = 4, σ1 = 0.4, σ2 = 1.5,

but the values of the average sojourn times 1/q12 and 1/q21 change from

1

q12
= 12.5s,

1

q21
= 8s
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Fig. 4: Considering different small scale and large scale variability configu-
rations for a fixed job length: a) service time distribution, b) response time
distribution

all the way through to

1

q12
= 1.25ms,

1

q21
= 0.8s

with each step corresponding to a factor of 10.
Figure 5 shows simulation results for the second batch of simulations. When

the sojourn times are very large, the service time distribution tends to concen-
trate the probability mass near the times required in either state (200ms and
400ms). On the other hand, when the MMP changes rapidly, the distribution
tends to concentrate on the average case, producing results very similar to the
one seen in Figure 4 for the cases with small variability only: in this case, there
is almost no difference between large scale and small scale variability, because
the quick alternation of the modulating process eliminates the large scale ef-
fect. As a final remark, to consider the case with sojourn times 1.25ms and
0.8ms, the sampling time was reduced to ∆x = 0.01 to allow a sufficient num-
ber of samples during the sojourn in a modulating state. As for the response
time (Figure 5c), longer sojourn times create bursts when the MMP remains
in a single state, considerably decreasing the performances of the system.

The third batch of simulations focuses on the effect of variability on differ-
ent job length distributions. In particular,

λ =
1000

350
job/s, E[W ] = 100ms, ∆x = 0.05ms

µ1 = 2, µ2 = 4, σ1 = 0.4, σ2 = 1.5, (25)

1

q12
= 1.25ms,

1

q21
= 0.8s

and we examine the following job size distributions for W :

– Deterministic W = 100ms,
– Exponential with mean 100ms,
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Fig. 5: Considering different durations in the modulating process for a fixed
job length: a) service time distribution, b) response time distribution

– Erlang with 4 stages with mean 100ms,
– Hyper-Exponential with probability density function

fW (x) =
1

2
λ1e
−λ1x +

1

2
λ2e
−λ2x x > 0

with parameters λ1 = 1/(100(1 +
√

0.6)), λ2 = 1/100((1−
√

0.6))
– Pareto with probability density function

fW (x) =

{
5
4 ·20

5
4

x
9
4

x > 20,

0 x < 20

(To make the results easily comparable, E[W ] = 100ms is identical in each
case.)

In particular, Figure 6a shows the service time distribution for each job
size distribution. The effect of service variability is more evident on job length
distributions with a lower coefficient of variation. Figure 6b shows the effect on
response time: indeed, combining the effect of service variability with a heavy
tailed distribution, as for the Pareto case, can create very long queues which
can lead to extremely long response times.

5.2 Comparison of analytical and simulation results

For the last batch of simulations, we compare empirical moments from the sim-
ulation to moments calculated using the double transform method of Section
4.

The system parameters are the same as in (25). Two different job size dis-
tributions are examined: deterministic and exponential. To test the inaccuracy
of the simulation with finite discretization steps, we run each simulation with
two different choices of ∆x: ∆x = 0.05ms and ∆x = 0.005ms.
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Fig. 6: Considering small scale and large scale variability for different job length
distributions: a) service time distribution, b) response time distribution

deterministic job size
sim. 1 sim. 2 transform

E(X(W )|M(0) = 1) 215.5 215.8 213.0
E(X(W )|M(0) = 2) 367.1 364.9 359.3
E(X(W )2|M(0) = 1) 4.689·104 4.835·104 4.818·104

E(X(W )2|M(0) = 2) 1.383·105 1.368·105 1.332·105

E(X(W )3|M(0) = 1) 1.133·107 1.140·107 1.082·107

E(X(W )3|M(0) = 2) 5.303·107 5.23·107 5.054·107

E(X(W )4|M(0) = 1) 2.846·109 2.87·109 2.656·109

E(X(W )4|M(0) = 2) 2.060·1010 2.03·1010 1.950·1010

exponential job size
sim. 1 sim. 2 transform

E(X(W )|M(0) = 1) 226.1 224.9 219.3
E(X(W )|M(0) = 2) 322.5 330.0 339.7
E(X(W )2|M(0) = 1) 1.081·105 1.108·105 1.055·105

E(X(W )2|M(0) = 2) 2.030·105 2.089·105 2.165·105

E(X(W )3|M(0) = 1) 8.171·107 8.820·107 8.226·107

E(X(W )3|M(0) = 2) 1.892·108 1.981·108 2.007·108

E(X(W )4|M(0) = 1) 8.680·1010 9.810·1010 9.044·1010

E(X(W )4|M(0) = 2) 2.352·1011 2.580·1011 2.443·1011

Table 1: Comparison of the numerical analysis and the simulation results

Table 1 presents the moments of the service time distribution obtained from
the simulator and the transform domain description. ∆x = 0.05ms corresponds
to sim. 1 and ∆x = 0.005ms corresponds to sim. 2.

From Table 1, we observe increasing relative error for higher moments.

For the mean, the relative error is around or smaller than 2%. The relative
error of the mean decreases as ∆x is refined from ∆x = 0.05ms (sim. 1) to
∆x = 0.005ms (sim. 2). We note that for the exponential case, the service time
moments were calculated using an analytic formula, while for deterministic
job size, some inaccuracy might also come from the numerical inverse Laplace
transformation method.
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6 Conclusions

In this work, we have introduced a queue with a service model where a modu-
lating background Markov process models the large timescale variability, and a
second-order fluid process models the service capacity on small timescale. The
resulting service model can be interpreted as a certain type of level-dependent
Brownian motion.

We have presented both a simulation approach for the service time and
response time of a job for various job size distributions and a double Laplace
transform domain analysis of the service time distribution. A numerical ex-
ample illustrates the effect of small and large scales of service variability. Us-
ing that example, we compared the results obtained from simulation and the
Laplace transform domain analytical description.
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