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Abstract

In this work we extend previous results on moment-based characterization
and minimal representation of stationary Markovian arrival processes (MAPs)
and rational arrival processes (RAPs) to transient Markovian arrival pro-
cesses (TMAPs) and Markovian binary trees (MBTs).

We show that the number of moments that characterize a TMAP of size
n with full rank marginal is n2 + 2n − 1, and an MBT of size n with full
rank marginal is n3 + 2n − 1. We provide a non-Markovian representation
for both processes based on these moments.

Next, we discuss the minimal representation of TMAPs and MBTs. In
both cases, the minimal representation, which is not necessarily Markovian,
can be found using different adaptations of the STAIRCASE algorithm pre-
sented in an earlier work by Buchholz and Telek (2011).

Finally, we heuristically investigate possible Markovian canonical repre-
sentations for TMAPs and MBTs of order 2.
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1. Introduction

Nowadays, Markovian arrival processes (MAPs) are widely used modeling
tools in several application fields from traffic analysis of telecommunication
systems to computer performance modeling. In the majority of these ap-
plications the main stochastic property of interest is the stationary model
behavior. Consequently, the considered MAPs generate an infinite number
of arrival events as time goes to infinity, and the behavior at initial time does
not affect the performance measures of interest.

In several other application fields, from population dynamics to risk anal-
ysis, the focus is on the transient behavior of the model instead of its sta-
tionary behavior. The extension of MAPs to point processes with a finite
number of generated events is referred to as transient Markovian arrival pro-
cesses (TMAPs) [1]. The underlying Markov process of these models has
an absorbing state. Therefore, they generate a finite number of arrivals be-
fore absorption, and the behavior at initial time does affect the performance
measures of interest. Basic properties of TMAPs, such as the distribution
of the number of generated arrivals or the time until the last arrival, are
presented in [1]. Apart from the above mentioned application fields, TMAPs
also find applications in biological systems, as there can, for instance, be used
to model the lifetime and reproduction epochs of individuals; see for instance
[2] where TMAPs are applied to women’s lifetime in several countries.

In this work we investigate additional properties of TMAPs, which on
the one hand help characterizing these processes, and on the other hand
play some role in TMAP fitting methods. An extension of TMAPs makes
the methodology developed here applicable in branching process models too.
Branching processes in which individuals’ lifetime and reproduction times
are controlled by TMAPs are called Markovian binary trees (MBTs) [3].
The basic properties of MBTs have been investigated in [3, 4, 5, 6, 2]. MBTs
find applications for instance in phylogenetics [6] and demography [2]. Simi-
larly to TMAPs, here we carry on the analysis of MBTs with characterizing
properties and representation results.

More precisely, in this paper we extend previous results on moment-based
characterization of stationary MAPs [7, 8], and minimal representation of
Rational Arrival processes (RAPs) [9] to TMAPs and MBTs.

We show that the number of moments that characterize a TMAP of size
n (that is, whose underlying Markov process has n transient states) with full
rank marginal is n2+2n−1, and an MBT of size n with full rank marginal is

2



n3+2n−1. These values therefore correspond to the number of independent
parameters of the models for a given size n. We provide a non-Markovian
representation for both processes based on these moments.

Next, we discuss the minimal representation of TMAPs and MBTs. In
both cases, the minimal representation, which is not necessarily Markovian,
can be found using different adaptations of the STAIRCASE algorithm pre-
sented in [9]. In some cases this non Markovian representation can be trans-
formed into an equivalent Markovian representation by adapting the algo-
rithm developed for stationary MAPs in [7].

Finally, based on the number of independent parameters characterizing
TMAPs and MBTs, we heuristically investigate the Markovian canonical
representations for TMAPs and MBTs of size 2 (denoted by TMAPs(2) and
MBTs(2)). It turns out that different Markovian canonical forms exist for
both processes, however a formal classification of TMAPs(2) and MBTs(2)
according to their canonical representation(s) seems much more challenging
to find than in the stationary MAP(2) case [10], and is out of the scope of
this paper.

The results obtained are particularly useful for the parameter fitting of
TMAPs and MBTs. Indeed, a first estimation method used for these kinds
of models is the moment method, which consists in the evaluation of a set of
experimental moments and joint moments of the observations, followed by
the computation of a TMAP or an MBT representation based on these ex-
perimental moments. The moment method for stationary MAPs is given in
[7]. The results in this paper indicate the set of moments and joint moments
that are needed in order to fit the parameters of a TMAP or an MBT, and
we provide a fitting procedure. A major drawback of the moment method is
that the procedure always generates a matrix representation, but this repre-
sentation might not be Markovian. If the obtained matrix representation can
be transformed into a Markovian representation, using the mentioned trans-
formation method developed in [7], then the obtained matrix representation
surely describes a valid TMAP or MBT with the proper set of moments. If
the matrix representation cannot be transformed into a Markovian represen-
tation, then nothing can be said about the validity of the obtained result.

Another popular estimation procedure, based on the maximum likelihood
method, is the Expectation-Maximization (EM) algorithm, see for instance
[11]. It has been used for the parameter estimation of MAPs [12, 13, 14,
15], TMAPs [14], and MBTs [16], and provides model estimates that are
optimal in terms of asymptotic variance. One drawback is that the method
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is computationally expensive, especially when the number of parameters to
estimate is large. It is therefore of high importance to know the number
of independent parameters that are to be estimated for a fixed size n, and
even better, to know a canonical representation of the model, so that the EM
method could be applied for these representations only. These motivated our
investigation of canonical forms for TMAPs and MBTs.

The rest of the paper is divided into two main parts. Section 2 is devoted
to TMAPs and Section 3 to MBTs. The structure of these two sections
is similar. The first subsections summarize the previously known proper-
ties. The second subsections provide the moments based characterizations
of the processes and present the number of independent parameters based
on them. The following two subsections give procedures for computing a
matrix representation based on a characterizing set of moments, and provide
adapted versions of the STAIRCASE method for computing a minimal ma-
trix representation based on any redundant one. In the last subsections we
investigate the possible Markovian canonical representations of TMAPs(2)
and MBTs(2). We conclude the paper in the final section.

2. Transient Markov arrival processes

2.1. Definitions and basic properties

A transient Markovian arrival process (TMAP) is a point process whose
arrivals are modulated by an underlying Markov process with state space
S = {0, 1, . . . , n}. State 0 is absorbing, and states 1, . . . , n, referred to as
phases, are transient. When the background Markov process moves to state
0, we say that the process terminates, it does not generate further arrivals and
remains in state 0 forever. TMAPs are characterized by matrices and vectors
of size n associated only with the transient states: α is the initial probability
vector, and D is the transient generator of the underlying Markov process.
If it is not defined explicitly, all row and column vectors are of size n and all
matrices are of size n×n in this section. Consequently, D1I ≤ 0 element-wise
and α1I = 1 where 1I is the column vector of ones. We denote by d = −D1I
the vector of transition rates to the absorbing phase. Furthermore we define
the matrices D0 and D1 such that D = D0 +D1; the off-diagonal elements
of D0 are the transition rates of the background Markov process without an
arrival, and the elements of D1 define the transition rates associated to an
arrival event. Similarly to the analysis of phase type distributions, the overall
behavior of a TMAP is completely defined by these matrices and vectors.
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The arrival intensity of the TMAP at time t is

λ(t) = αeDtD11I, (1)

and limt→∞ λ(t) = 0.
Throughout this paper we assume that the eigenvalues of D0 have neg-

ative real part. Consequently D0 is non-singular. We define the transient
probability matrix of the embedded process as P = (−D0)

−1D1. It is the
matrix of phase transitions at arrival instances. From D1I ≤ 0 we have
P1I ≤ 1I element-wise.

LetX0, X1, . . . , denote the inter-arrival times of the process. If the process
terminates after k arrivals then Xk = Xk+1 = . . . = ∞. Consequently, Xi

(i ≥ 0) has a defective distribution. The probability density function of X0

is

fX0(x) = αeD0xD11I. (2)

Its Laplace transform is given by

f∗
X0
(s) = E[e−sX0 ] = α(sI−D0)

−1D11I. (3)

We define the defective moments of X0 as follows

E(X i
0I{X0<∞}) =

∫ ∞

x=0

xifX0(x)dx

= i!α(−D0)
−i−1D11I

= i!α(−D0)
−iP1I, (4)

where I{X0<∞} is the indicator of the event {X0 < ∞}.
The inter arrival times in TMAPs are not independent. The joint density

function of the inter-arrival times X0, X1, . . . , Xk is given by

f(x0, x1, . . . , xk) = αeD0x0D1e
D0x1D1 . . . e

D0xkD11I. (5)

Since Xi (i ≥ 0) has a defective distribution, we have

P(X0 < ∞, . . . , Xk < ∞) =

∫
(x0)

. . .

∫
(xk)

f(x0, x1, . . . , xk)dx0 . . . dxk ≤ 1.

(6)

5



From the joint density function, the defective joint moments of theX0, . . . , Xk

inter-arrival times are

E(X i0
0 X i1

1 . . . X ik
k I{X0<∞,...,Xk<∞})

=

∫
(x0)

. . .

∫
(xk)

f(x0, x1, . . . , xk)
k∏

n=0

xin
n dx0 . . . dxk

= αi0!(−D0)
−i0Pi1!(−D0)

−i1P . . . ik!(−D0)
−ikP1I. (7)

The (α,D0,D1) representation of a TMAP is not unique. If G is a
nonsingular matrix such that G1I = 1I then (αG,G−1D0G,G−1D1G) is an
other representation of the same TMAP, since

f(αG,G−1D0G,G−1D1G)(x0, x1, . . . , xk)

= αGeG
−1D0Gx0G−1D1GeG

−1D0Gx1G−1D1G . . . eG
−1D0GxkG−1D1G1I

= αeD0x0D1e
D0x1D1 . . . e

D0xkD11I

= f(α,D0,D1)(x0, x1, . . . , xk).

Among the identical representations of a TMAP some representations are
Markovian and some are non-Markovian according to the following definition.

Definition 1. The (α,D0,D1) representation of a TMAP is Markovian if
α ≥ 0 and D1 ≥ 0 element-wise, and the elements of D0 satisfy, D0ii < 0
and D0ij ≥ 0 for i ̸= j.

The degree of the denominator of f∗
X0
(s) (which is a rational function

of s) is called the order of the first inter-arrival distribution. We need the
following property of TMAPs.

Definition 2. A TMAP has full rank marginal when the order of its first
inter-arrival time distribution is identical with the size of D0 (more precisely,
with the size of the minimal representation according to Section 2.4). Other-
wise the TMAP has reduced rank marginal.

This property was referred to as non-redundant in [7, 17] and related
papers, but we found that terminology confusing with respect to the size
of the representation. In this paper we restrict our attention to the case of
full rank marginal processes. Based on the properties of stationary MAPs
with reduced rank marginal [17] we presume that the case of reduced rank
marginal TMAPs is more complex too.
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Remark 1. For having a full rank marginal we have the following structural
conditions: D0 has to be such that the eigenvalues of its Jordan blocks are
all different with negative real part, α should not be orthogonal to the right
eigenvectors and 1I to the left ones.

On the other hand if a TMAP of size n has a full rank marginal then
the set of row vectors α,αD0

−1, . . . ,αD0
−n+1 and the set of column vectors

1I,D0
−11I, . . . ,D0

−n+11I are linear independent (if it was not the case then
the marginal distribution has a smaller representation according to [9] and
the TMAP has reduced rank marginal).

Example 1. An example of a TMAP with reduced rank marginal is the fol-
lowing

α = (1, 0), D0 =

(
−1 0
0 −2

)
, D1 =

(
0.5 0.2
1 0.5

)
, d =

(
0.3
0.5

)
,

where

f ∗
X0
(s) = α(sI−D0)

−1D11I =
7

10(s+ 1)

indicates that the first inter-arrival distribution is order one.

As we restrict our attention to TMAPs with full rank marginal, the fol-
lowing set of reduced moments and joint moments completely characterize
the TMAP, as shown in Section 2.2.

µi =
E(X i

0I{X0<∞})

i!
= αEiP1I, i ≥ 0, (8)

and

ηij =
E(X i

0X
j
1I{X0<∞,X1<∞})

i!j!
= αEiPEjP1I, i, j ≥ 0, (9)

where E = (−D0)
−1.

The scalar quantities from (2) to (9) are computed such that matrix
expressions are multiplied with a row vector from the left and with a column
vector from the right. Hereafter, we refer to the row vector as the initial
vector, and to the column vector as the closing vector. In the (α,D0,D0)
representation, the initial and closing vectors are α and 1I respectively.
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2.2. Moments based characterization of TMAP

Note that µ0 = P(X0 < ∞) ≤ 1. This way, the first 2n reduced moments
µ0, µ1, . . . , µ2n−1 of X0 are independent parameters and uniquely define all
other moments as well as the distribution of X0 [8].

Theorem 1. Having the reduced moments {µi}i≥0 of X0, the number of
independent reduced joint moments ηij of (X0, X1) is at most n2 − 1.

Proof. Let N ≡ {0, 1, . . . , n − 1}. We show that, based on the reduced
moments {µi}i≥0 of X0, and the reduced joint moments {ηij}i,j∈N 2\{n−1,n−1}
of (X0, X1), all other joint moments can be computed.

First we present the computation of ηn−1,n−1. Define

M1 =


α

αE0P
...

αEn−1P

 [
1I E0P1I . . . En−1P1I

]

=


1 µ0 . . . µn−1

µ0 η0,0 . . . η0,n−1
...

...
. . .

...
µn−1 ηn−1,0 . . . ηn−1,n−1

 .

Since the matrix M1 is the product of an (n+1)×n matrix and an n×(n+1)
matrix, the determinant of M1 is 0. Consequently, ηn−1,n−1 can be computed
from the other elements of M1. Note that the fact that α1I = 1 is utilized in
the upper right element of M1.

The other joint moments can be obtained from lower moments as follows.
For i ≥ n and j fixed, define the moment matrix M2 as follows

M2 =


αE0

...
αEn−1

αEn

 [
E0P1I . . . En−1P1I Ei−nPEjP1I

]

=


µ0 . . . µn−1 ηi−n,j
...

. . .
...

...
µn−1 . . . µ2n−1 ηi−1,j

µn . . . µ2n ηi,j

 .
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Similarly to M1, the determinant of M2 is 0, and therefore ηi,j with i ≥ n
is computable from the other elements of the matrix. A similar reasoning is
applicable for ηi,j with j ≥ n and i fixed.

Theorem 2. Based on the reduced moments {µi}i∈{0,1,...,2n−1} of X0 and
the reduced joint moments {ηij}i,j∈N 2\{n−1,n−1} of (X0, X1), all other joint
moments can be computed.

Proof. The same recursive approach as the one in [8] is applicable here.

Theorem 3. The number of moments that characterize a TMAP of order n
with full rank marginal is n2 + 2n− 1.

Proof. It is a consequence of the preceding two theorems.

Remark 2. An intuitive explanation of the number of independent parameters
in a TMAP is the following. The number of elements of the matrices D0

and D1 is 2n2. The initial probability distribution α satisfies α1I = 1,
from which n − 1 elements define the initial vector. So, in total the (α,
D0, D1) representation of a TMAP counts 2n2 + n − 1 elements. However,
this representation of the TMAP is not unique. A similarity transformation
matrix G contains n2 elements and fulfills n linear constraints G1I = 1I.
Consequently, the similarity transformation has n2−n free parameters, which
need to be subtracted from the total number of parameters in (α,D0,D1).
This gives a total (2n2+n−1)−(n2−n) = n2+2n−1 independent parameters
in the TMAP.

An alternative interpretation of the number of independent parameters
of a TMAP can be given based on the number of independent parameters in
a stationary MAP, which is equal to n2 [7]. Indeed in a stationary MAP, the
initial probability vector α is entirely determined by D0 and D1; in a TMAP
this is no more the case, and α contains n − 1 parameters. A TMAP also
contains n additional parameters in the vector d = −(D0+D1) 1I. Therefore
the number of independent parameters of a TMAP is n2 + (n− 1) + n.

Example 2. The TMAP with representation

α = (0.6, 0.4), D0 =

(
−4 0
1 −6

)
, D1 =

(
1 2
3 0

)
, d =

(
1
2

)
.
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is entirely characterized by the following reduced moments of X0 and joint
moments of (X0, X1):

µ0 = 0.700, µ1 = 0.1667, µ2 = 0.0201, µ3 = 0.0016,

η00 = 0.4833, η01 = 0.1139, η10 = 0.1139.

2.3. Finding a TMAP representation based on the moments

Based on the reduced moments {µi}i∈{0,1,...,2n−1} of X0, using the method
of Appie van de Liefvoort [18] and its implementation from [7], we can obtain
a vector-matrix pair (ϕ,K) such that

µi = µ0ϕK
i1I, i = 0, 1, . . . , 2n− 1.

In this representation, ϕ = (1/n, . . . , 1/n). From

µi = αEiP1I = ϕKiµ01I

and [7, Theorem 1] there exists a non singular matrix H such that ϕ = αH,
K = H−1EH and µ01I = H−1P1I. Using this, from (9) we have

ηij = αH︸︷︷︸ H−1EiH︸ ︷︷ ︸ H−1PH︸ ︷︷ ︸ H−1EjH︸ ︷︷ ︸ H−1P1I︸ ︷︷ ︸,
= ϕ Ki P̂ Kj µ01I︸︷︷︸

P̂v

, (10)

where P̂ = H−1PH. This computation of the joint moments already in-
dicates that the previously used representation of TMAP with (α,D0,D1)
needs to be extended occasionally to a different representation which explic-
itly defines the closing vector on the right, because the notation (α,D0,D1)
implicitly assumes that the closing vector is 1I. The extended notation of the
TMAP (α,D0,D1) which includes the closing vector is [α,E,P, 1I], where
recall that E = (−D0)

−1 and P = ED1. In this extended representation we
replaced D0 and D1 by E and P for notational convenience. The extended
representation of the TMAP in (10) is thus [ϕ,K, P̂,v] where the closing
vector v is such that P̂v = µ01I.

Matrices Φ, Λ and Γ of size n × n are defined as follows. The ith row
of Φ is ϕKi, the ith column of Λ is Kiµ01I and the i, j element of Γ is ηij,
where rows and columns are numbered from 0 to n−1. With these notations
(10) can be written in matrix form as

Γ = ΦP̂Λ, (11)
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from which

P̂ = Φ−1ΓΛ−1, (12)

where Φ and Λ are nonsingular according to Remark 1. Taking any vector v
which satisfies P̂v = µ01I, the associated reduced moments and joint moments
satisfy

µi = ϕKiP̂v, i = 0, 1, . . . , 2n− 1

and
ηij = ϕKiP̂KjP̂v, i, j = 0, 1, . . . , n− 1.

That is, [ϕ,K, P̂,v] is an extended representation of the TMAP whose re-
duced moments and joint moments are µi and ηij. The only remaining step
is to transform the representation into another one with closing vector 1I.

Let C be a non-singular matrix such that C1I = v. For example C =
diag⟨v⟩ and in case of zero diagonal element add 1 to the diagonal and sub-
tract 1 from the first element of the row. Then

[ϕC,C−1KC,C−1P̂C,C−1v]

with closing vector C−1v = 1I, is another equivalent extended representation
of the same TMAP. The initial vector of this representation satisfies ϕC1I =
ϕv = 1. From this representation, the standard (3 elements) representation
of the TMAP is (ϕC,−(C−1KC)−1,−C−1K−1P̂C).

Remark 3. The (ϕC,−(C−1KC)−1,−C−1K−1P̂C) representation is gener-
ally non-Markovian due to the fact that the method of [18] results in a non-
Markovian representation of the distribution of X0. However, in some cases
the algorithm developed in [7] can be adapted to the TMAP case in order to
transform any non Markovian representation into an equivalent Markovian
representation. This procedure is implemented in Mathematica and Mat-
lab and publicly available as part of the special processes component of the
BuTools program package [19].

Example 3. A non-Markovian representation based on the reduced moments
and joint moments in Example 2 is given by

α = (0.51, 0.49), D0 =

(
−7.8980 3.3884
−2.1857 −2.1000

)
,

D1 =

(
0.5500 2.4499
2.5502 0.4497

)
, d =

(
1.5096
1.2857

)
,
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which can be transformed into the following equivalent Markovian represen-
tation

α = (0.5331, 0.4669), D0 =

(
−5.7918 0.8345
0.4429 −4.2061

)
,

D1 =

(
0.6655 2.3344
2.6658 0.3343

)
, d =

(
1.9575
0.7632

)
.

This Markovian representation is therefore an equivalent representation to
the one given in Example 2. The presented representations are computed by
the TRAPFromMoments and the TRAPToTMAP functions of the BuTools
package, where TRAP refers to transient rational arrival process, which is
the analogue of TMAP with non-Markovian representation.

2.4. Minimal representation of Transient MAPs

It may happen that a TMAP with representation (α,D0,D1) of size m
has an equivalent represention of smaller size n < m. In this section we
investigate the representation of a TMAP with minimal size.

Definition 3. The (α,D0,D1) representation of a TMAP is minimal if the
same TMAP does not have any representation with smaller size. In this case
the size of the representation is referred to as the rank of the TMAP.

Section 2.2 provides a moments based characterization of TMAPs with
full rank marginal. Based on that characterization, the rank of a TMAP with
full rank marginal can be obtained as the size of appropriate moment and
joint moment matrices with non-zero determinant (see for instance matrices
M1 andM2 in the proof of Theorem 1). Here we present general results which
are applicable for both, TMAPs with full and with reduced rank marginal.

We adopt the same approach as the one in [9]. If the size of the rep-
resentation (α,D0,D1) is n, then the generalized controllability matrices
are

CD0 = CD0(0) = (P1I,EP1I, . . . ,En−1P1I) ,

CD0,D1 = CD0,D1(0) = (CD0 ,PCD0 ,P
2CD0 , . . . ,P

n−1CD0) ,

CD0(ℓ+1) = (CD0,D1(ℓ),ECD0,D1(ℓ), . . . ,E
n−1CD0,D1(ℓ)) , ℓ ≥ 0

CD0,D1(ℓ+1) = (CD0(ℓ+1),PCD0(ℓ+1),P
2CD0(ℓ+1), . . . ,P

n−1CD0(ℓ+1)) , ℓ ≥ 0.
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CD0(ℓ) is an n × n2ℓ+1 matrix and CD0,D1(ℓ) is an n × n2ℓ+2 matrix. Based
on these matrices, the controllability rank is rC = rank(CD0,D1(n)).

The generalized observability matrices are

OD0 = OD0(0)=


α
αE
...

αEn−1

, OD0,D1 = OD0,D1(0)=


OD0

OD0P
...

OD0P
n−1

 ,

OD0(ℓ+1)=


OD0,D1(ℓ)
OD0,D1(ℓ)E

...
OD0,D1(ℓ)E

n−1

, OD0,D1(ℓ+1)=


OD0(ℓ+1)
OD0(ℓ+1)P

...
OD0(ℓ+1)P

n−1

 , ℓ ≥ 0.

The size of OD0(ℓ) is n
2ℓ+1 × n and the size of OD0,D1(ℓ) is n

2ℓ+2 × n. The
observability rank is rO = rank(OD0,D1(n)).

Theorem 4. The (α,D0,D1) representation of size n is minimal if and only
if rO = rC = n.

Proof. The same approach is applicable as in [9], here we only provide an in-
tuitive explanation. Having rC = nmeans that the repeated multiplication of
the closing vector with D0 and D1 (or with E and P) spans an n-dimensional
space. Similarly, rO = n means that the repeated multiplication of the initial
vector with D0 and D1 (or with E and P) spans an n-dimensional space.
Consequently, if the size of the representation is n then rC = n means that
CD0,D1(n) has full rank and rO = n means that OD0,D1(n) has full rank.

If, for example rC = n but rO < n then the representation is at least size
n (due to rC = n), but the rank of the observability matrix is at most rO <
n. The moment matrices (see for instance matrices M1 and M2), are the
product of an observability matrix and a controllability matrix, consequently
their rank is at most rO < n. Finally, if the rank of the moment matrices
composed as the product of an observability matrix and a controllability
matrix is at most rO < n, then there is a size rO representation of the
process. Indeed, in case of TMAP with full rank marginal the procedure in
Section 2.3 can be used to construct a representation of size rO.

Due to the close similarities between stationary MAPs and TMAPs, the
same numerical procedure as the one introduced in [9], and referred to as the
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STAIRCASE method, is applicable for the computation of the minimal repre-
sentation of TMAPs. The only differences are in the definition of the initial
and closing vectors. The definition of TMAPs contains the initial vector,
while in case of stationary MAPs, the initial vector is the stationary vector
of the stochastic matrix P. The closing vector a stationary MAP is 1I while
the closing vector of a TMAP here is P1I. Consequently the STAIRCASE
method called with (D0,D1,P1I) provides a representation with minimal
controllability rank, and the same method called with (D0

′,D1
′,α′), where ′

denotes the transpose, provides a representation with minimal observability
rank.

If we have an arbitrary representation (α,D0,D1) of a TMAP, we can
obtain a minimal representation as follows: first, we reduce the size of the
TMAP by eliminating the redundancy due to the closing vector using the
STAIRCASE method with (D0,D1,P1I), and second, we reduce the size by
eliminating the redundancy due to the initial vector using the STAIRCASE
method with (D∗

0
′,D∗

1
′,α∗′), where (α∗,D∗

0,D
∗
1) is the representation ob-

tained after the first step.

Example 4. A TMAP which is non-minimal due to the closing vector is the
following:

α = (0.1, 0.2, 0.7), D0 =

 −20 8 1
4 −16 1
1 2 −11

 ,

D1 =

 2 5 3
3 4 3
3 2 1

 , d =

 1
1
2

 .

This TMAP is lumpable into the equivalent representation of size 2

α = (0.3, 0.7), D0 =

(
−12 1
3 −11

)
, D1 =

(
7 3
5 1

)
, d =

(
1
2

)
.

The STAIRCASE method of the BuTools package [19], namely the TRAP-
Minimize function, finds the following equivalent minimal representation

α = (1.77782,−0.777817), D0 =

(
−9.29289 −0.707107
2.29289 −13.7071

)
,

D1 =

(
7.48816 1.17851
10.0404 0.51184

)
, d =

(
1.33333
0.861929

)
.
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Example 5. A TMAP which is non-minimal due to the initial vector is the
following:

α = (0.25, 0.25, 0.5), D0 =

 −20 4 3
4 −20 1
1 1 −11

 ,

D1 =

 2 3 1
4 3 5
1 1 2

 , d =

 7
3
5

 .

This TMAP is weakly-lumpable into the equivalent representation of size 2

α = (0.5, 0.5), D0 =

(
−16 2
2 −11

)
, D1 =

(
6 3
2 2

)
, d =

(
5
5

)
.

The TRAPMinimize function of the BuTools package [19] finds the following
minimal representation

α = (1, 0), D0 =

(
−10.666667 −0.83333333
−2.666667 −16.333333

)
,

D1 =

(
6 0.5
12 2

)
, d =

(
5
5

)
.

2.5. Canonical representation of transient MAPs of order 2

A canonical representation of a TMAP of size n is a unique representation
which is conveniently chosen from the infinitely many equivalent representa-
tions, and the method for choosing the unique representation is applicable
for the whole TMAP class of size n. In this paper we assume that the con-
venient canonical representation is Markovian and contains minimal num-
ber of nonzero elements. This canonical representation is a representation
(α,D0,D1) of size n where the total number of nonzero entries in the vector
α and the matrices D0 and D1 corresponds exactly to the maximal number
of independent parameters n2 + 2n− 1. It should be noted that the unique-
ness of the canonical representation is not ensured by this assumption yet,
but the main focus of our investigation is the completeness of the considered
structures. Especially, the purpose of this section is to investigate the pos-
sible Markovian canonical representations of TMAPs of order 2, denoted by
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TMAPs(2), and to find the minimal number of structures which covers the
whole set TMAPs(2).

In [10] the authors show that there are two possible Markovian canonical
forms for the stationary MAPs(2), and they give a classification of these pro-
cesses in terms of the correlation parameter γ, which is the second eigenvalue
of P = (−D0)

−1D1. We specify below the two zero entries in each of the
possible canonical representations, corresponding to γ < 0 or γ ≥ 0.

Structure No. Zero elements Use in [10]
1 D012, D122 γ < 0
2 D012, D121 γ ≥ 0

Before investigating the possible canonical form of a TMAP(2), let us ex-
amine those of a non-stationary MAPs(2). First note that, since the number
of independent parameters of a stationary MAP of size n is n2 [7], the num-
ber of independent parameters of a non-stationary MAP is n2+n− 1, where
the additional n − 1 elements come from the initial vector α (which is not
determined by D0 and D1 anymore). There are therefore five independent
parameters in a non-stationary MAP(2).

A non-stationary MAP(2) with representation (α,D0,D1) is determined
by the 2+4+4 = 10 elements of the representation. Out of these 10 elements
7 are independent because α1I = 1 and D01I + D11I = 1I. Due to the fact
that the total number of parameters of a non-stationary MAP(2) is seven
and the number of independent parameters is five, we can set two elements
of the representation to zero. A canonical representation should therefore
have five nonzero entries and two zero entries. By considering symmetric
representations (to a permutation of the two phases) only once, there is thus
a total of 15 possible structures with two zero entries.

In order to find the Markovian structures with two zero entries which
describe the whole non-stationary MAPs(2) set, randomly generated a large
number of random non-stationary MAPs(2), and we tested all their possi-
ble Markovian canonical representations. Then, we determined the smallest
subsets of canonical forms covering all random examples.

We intended to randomly generate the non-stationary MAPs(2) in such
a way that we cover the whole set of non-stationary MAPs(2) as well as
possible, by proceeding as follows. We generated a first set of 1000 random
non-stationary MAPs(2), whose seven independent entries are i.i.d. accord-
ing to a discrete uniform random variable U [0, 100]. Then, we generated

16



a second set of 1000 random non-stationary MAPs(2) of which each of the
seven entries is either 0 with probability p = 0.3, or is distributed according
to a discrete uniform random variable U [0, 100] with probability 1 − p. Fi-
nally, we generated a last set of 1500 random non-stationary MAPs(2) whose
representation corresponds to one of the 15 possible canonical forms, and
whose nonzero entries are generated according to the same procedure as for
the second set, but with p = 0.2.

We found that at least five structures are required to cover all randomly
generated MAPs(2). A set of five structures which is complete according to
our numerical investigations is the following.

Structure No. Zero elements
1 D012,D121

2 α1,D012

3 α1,D112

4 D012,D111

5 α1,D111

Apart from this set of five structures (denoted as Set 1), three other sets of
five structures covered all the generated MAPs(2). In the table, the symbol
“-” means “the same as in Set 1”.

Structure No. Set 1 Set 2 Set 3 Set 4
1 D012,D121 - - -
2 α1,D012 - - -
3 α1,D112 - - -
4 D012,D111 D012,D111 D012,D122 D012,D122

5 α1,D111 α1,D122 α1,D111 α1,D122

Note that moving from stationary to non-stationary MAPs(2) already
increases the number of possible Markovian canonical forms from two to five
to cover the whole class.

We used exactly the same method for characterizing the Markovian canon-
ical forms of TMAPs(2). A TMAP(2) with representation (α,D0,D1) is also
determined by the 2+4+4 = 10 elements of the representation, but in case of
TMAP(2) the number of independent elements is 9 because only the α1I = 1
constraint applies for TMAPs. This way we have 9 independent elements
in the representation of a TMAP(2), while by Theorem 3 the number of
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independent parameters is seven, consequently we set two elements of the
representation to zero. There is a total of 23 possible structures with two ze-
ros in the representation. We proceeded as in the non-stationary MAP case,
and we found that there are three possible sets of five Markovian canonical
forms.

Structure No. Set 1 Set 2 Set 3
1 D012,D121 - -
2 α1,D122 - -
3 d1,D021 d1,D021 d1,D121

4 D012,D122 D012,D122 D012,D111

5 α1,D112 d1,D121 α1,D012

To ensure the uniqueness of the canonical form, a classification of non-
stationary MAP(2) and TMAPs(2) into one of the possible canonical repre-
sentations of a given set is still an open question.

3. Markovian binary trees

3.1. Definitions and basic properties

When the arrivals (observable events) of a TMAP give birth to a child
TMAP which is stochastically identical to the parent process, then the overall
process of births and terminations of TMAPs is referred to as a Markovian
binary tree (MBT).

The instances of TMAPs are defined as in Section 2, with absorbing phase
0, transient phases 1, . . . , n, transition rate matrices D0 and D1 of size n×n,
and absorption rate column vector d of size n. An MBT is initiated at time 0
with a single TMAP with known initial probability vector α of size n (where
α1I = 1). The initial phase of a child TMAP is determined by the phase
transition of its parent at the time of the observable event of the birth. It is
define by the elements of the birth rate matrix B of size n × n2. The Bi,jk

element (which is the short notation for the element Bi,(j−1)n+k) is the rate
at which a parent in phase i experiences an observable event and moves to
phase k by giving birth to a new TMAP with initial phase j. The matrix D1

can be obtained from B as D1 = B(1I ⊗ I), where I is the identity matrix
and ⊗ stands for Kronecker product. Consequently, the triple (α,D0,B) of
size (n, n× n, n× n2) completely defines an MBT.
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Let X0, X1, . . . , denote the inter-arrival times in the initial TMAP, and
Y0, Y1, . . . , denote the inter-arrival times of the first child TMAP (which
starts at time X0). The random variables Xi and Yi (i ≥ 0) have a defective
distribution. As in Section 2.1, the probability density function of X0 is

fX0(x) = αeD0xD11I = αeD0xB1II. (13)

where 1II = 1I ⊗ 1I explicitly refers to the size of the column vector of ones,
which is n2. Similarly to TMAPs, we refer to the row vector α as the
initial vector, and to the column vector 1II as the closing vector. The Laplace
transform of X0 is given by

f∗
X0
(s) = E[e−sX0 ] = α(sI−D0)

−1B1II. (14)

Let R = (−D0)
−1B be the transient probability matrix of size n× n2 of

the embedded process at observable events of births. From D1I ≤ 0 we have
R1II ≤ 1I element-wise.

The defective moments of X0 are as follows

E(X i
0I{X0<∞}) =

∫ ∞

x=0

xifX0(x)dx

= i!α(−D0)
−i−1B1II

= i!αEiR1II. (15)

The joint density function of the inter-arrival times (X0, X1, Y0) is given by

f(x0, x1, y0) = αeD0x0B
(
eD0x1B1II⊗ eD0y0B1II

)
. (16)

Since X0, X1, and Y0 have defective distributions, we have

P(X0 < ∞, X1 < ∞, Y0 < ∞) =

∫
(x0)

∫
(x1)

∫
(y0)

f(x0, x1, y0)dx0dx1dy0 ≤ 1.

(17)

From the joint density function, the defective joint moments of the inter-
arrival times (X0, X1, Y0) are

E(X i0
0 X i1

1 Y j0
0 I{X0<∞,X1<∞,Y0<∞})

=

∫
(x0)

∫
(x1)

∫
(y0)

xi0
0 x

i1
1 y

j0
0 f(x0, x1, y0)dx0dx1dy0

= i0!i1!j0! α(−D0)
−i0−1B

(
(−D0)

−i1−1B1II⊗ (−D0)
−j0−1B1II

)
= i0!i1!j0! αEi0R

(
Ei1R1II⊗ Ej0R1II

)
. (18)
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Similarly to TMAPs, the (α,D0,B) representation of an MBT is not
unique. For any nonsingular matrix G such that G1I = 1I,

(αG,G−1D0G,G−1B(G⊗G))

is an other equivalent representation of the same MBT. Indeed, we have in
particular

f(αG,G−1D0G,G−1BG⊗G)(x0, x1, y0)

= αGeG
−1D0Gx0G−1B(G⊗G)·

·
(
eG

−1D0Gx1G−1B(G⊗G)1II⊗ eG
−1D0Gy0G−1B(G⊗G)1II

)
= αeD0x0B

(
eD0x1B1II⊗ eD0y0B1II

)
= f(α,D0,B)(x0, x1, y0).

Definition 4. The (α,D0,B) representation of an MBT is Markovian if
α ≥ 0 and B ≥ 0 element-wise, and the elements of D0 satisfy, D0ii < 0
and D0ij ≥ 0 for i ̸= j.

The marginal rank property is also crucial for MBTs.

Definition 5. An MBT has full rank marginal when the order of its first
inter-arrival time distribution X0 is identical with the size of D0 (more pre-
cisely, with the size of the minimal representation according to Section 3.4).
Otherwise the MBT has reduced rank marginal.

Example 6. An example of an MBT with reduced rank marginal is the fol-
lowing

α = (1, 0), D0 =

(
−1 0
0 −2

)
, B =

(
0.5 0.1 0.2 0.1
1 0.1 0.2 0.2

)
,

where

f ∗
X0
(s) = α(sI−D0)

−1B1II =
9

10(s+ 1)

indicates that the first inter-arrival time has an order one distribution.
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In this work we assume that MBTs have full rank marginal, and we
investigate the properties of the following set of reduced moments and joint
moments

µi =
E(X i

0I{X0<∞})

i!
= αEiR1II, i ≥ 0 (19)

γijk =
E(X i

0X
j
1Y

k
0 I{X0<∞,X1<∞,Y0<∞})

i!j!k!
= αEiR

(
EjR1II⊗ EkR1II

)
, i, j, k ≥ 0

(20)

where recall that E = (−D0)
−1.

3.2. Moments based characterization of MBT

Recall from Section 2.2 that all reduced moments {µi}i≥0 of X0 can be
obtained from the first 2n reduced moments {µi}i=0,1,...,2n−1. We now in-
vestigate how many additional joint moments of (X0, X1, Y0) are needed to
obtain the reduced joint moment γi,j,k for any i, j, k ≥ 0. The next result is
the analogue of Theorem 1 for MBTs.

Theorem 5. Having the reduced moments {µi}i≥0 of X0, the number of
independent reduced joint moments γi,j,k is at most n3 − 1.

Proof. Recall that N = {0, 1, . . . , n− 1}. Using the same type of argument
as in the proof of Theorem 1, we show that, based on the reduced moments
{µi}i≥0 of X0 and the reduced joint moments {γi,j,k}i,j,k∈N 3\{n−1,n−1,n−1} of
(X0, X1, Y0), all other joint moments can be computed.

We first show that γi,j,k, for i ≥ n and j, k fixed, can be computed from
lower moments. Indeed, define the moments matrixM3 of size (n+1)×(n+1)
as

M3 =


αEi−n

...
αEi−1

αEi

 [
E0R1II · · · En−1R1II R(EjR1II⊗ EkR1II)

]

=


µi−n · · · µi−1 γi−n,j,k
...

. . .
...

...
µi−1 · · · µi+n−2 γi−1,j,k

µi · · · µi+n−1 γi,j,k

 .
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Since M3 is the product of an (n+1)× n matrix and an n× (n+1) matrix,
its determinant is 0, and its lower right element γi,j,k is determined by the
other elements.

We show similarly that γi,j,k, for j ≥ n and i, k fixed, respectively for
k ≥ n and i, j fixed, can be computed from lower moments. Indeed, define
the moments matrices M4 and M5 of size (n+ 1)× (n+ 1) as follows

M4 =


αE0 ⊗α

...
αEn−1 ⊗α

αEiR

×

×
[
Ej−nR1II⊗ EkR1II · · · Ej−1R1II⊗ EkR1II EjR1II⊗ EkR1II

]

=


µj−nµk · · · µj−1µk µjµk

...
. . .

...
...

µj−1µk · · · µn+j−2µk µn+j−1µk

γi,j−n,k · · · γi,j−1,k γi,j,k

 .

M5 =


αE0 ⊗α

...
αEn−1 ⊗α

αEiR

×

×
[
EjR1II⊗ Ek−nR1II · · · EjR1II⊗ Ek−1R1II EjR1II⊗ EkR1II

]

=


µjµk−n · · · µjµk−1 µjµk

...
. . .

...
...

µn−1+jµk−n · · · µn−1+jµk−1 µn−1+jµk

γi,j,k−n · · · γi,j,k−1 γi,j,k

 .

The matrices M4 and M5 are the product of an (n+ 1)× n2 matrix and an
n2 × (n + 1) matrix. If the rank of the n2 × (n + 1) matrices is n, then the
determinant of M4 and M5 is 0, and therefore their lower right element is
determined by the other elements.

To show that the two n2 × (n + 1) matrices in the composition of M4

and M5 are indeed of rank n, first observe that the n2 × 1 vector z = v⊗w
obtained as the Kronecker product of two n × 1 vectors v and w satsifies
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the following property: for each 0 ≤ j ≤ n − 1, the ratio zjn+k1/zjn+k2

is independent of v for any k1, k2 ∈ {1, 2, . . . , n}, and similarly, for each
1 ≤ k ≤ n, the ratio zj1n+k/zj2n+k is independent of w for any j1, j2 ∈
{0, 1, . . . , n − 1}. As a consequence, in the n2 × (n + 1) matrix composing
M4, for each 0 ≤ j ≤ n − 1, the rows jn + k for k = 1, . . . , n are linearly
dependent, and in the n2 ×n+1 matrix composing M5, for each 1 ≤ k ≤ n,
the rows jn+k for j = 0, . . . , n−1 are linearly dependent. So the maximum
number of independent rows is n in both matrices, and therefore they are of
rank n.

Using matrices M3, M4 and M5, we can therefore compute all the re-
duced joint moments γi,j,k based on the n3 joint moments {γi,j,k}i,j,k∈N 3 . The
number of independent moments further reduces by one using the following
relation among this set of moments: define the moments matrix M6 of size
(n2 + 1)× (n2 + 1) as

M6 =



α⊗α
αE0R

...
αEn−1R
αEnR

...

αEn2−1R


×

×
[
1II E0R1II⊗ E0R1II E0R1II⊗ E1R1II · · · En−1R1II⊗ En−1R1II

]

=



1 µ0µ0 µ0µ1 · · · µn−1µn−1

µ0 γ0,0,0 γ0,0,1 · · · γ0,n−1,n−1
...

...
...

. . .
...

µn−1 γn−1,0,0 γn−1,0,1 · · · γn−1,n−1,n−1

µn γn,0,0 γn,0,1 · · · γn,n−1,n−1
...

...
...

. . .
...

µn2−1 γn2−1,0,0 γn2−1,0,1 · · · γn2−1,n−1,n−1


.

The matrix M6 is the product of an (n2+1)×n2 matrix and an n2× (n2+1)
matrix, and therefore its determinant is 0, and the element γn−1,n−1,n−1 can be
determined by the other elements. Moreover, according to M3, the moments
below the horizontal line can be obtained from the moments above the line.
Consequently, the element γn−1,n−1,n−1 can be obtained from the moments
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above the line too, which reduces the number of independent γi,j,k moments
to n3 − 1.

Theorem 6. Based on the reduced moments {µi}i∈{0,1,...,2n−1} of X0, and the
reduced joint moments {γi,j,k}i,j,k∈N 3\{n−1,n−1,n−1} of (X0, X1, Y0), all other
joint moments can be computed.

Proof. The same recursive approach as the one in [8] is applicable here.

Theorem 7. The number of moments that characterize an MBT of size n
with full rank marginal is n3 + 2n− 1.

Proof. It is a consequence of the preceding two theorems.

Remark 4. As for TMAPs, we can give two intuitive interpretations for the
number of independent parameters in an MBT. First, note that the total
number of elements in the vectors and matrices of the (α,D0,B) represen-
tation of an MBT is (n − 1) + n2 + n3. As the (α,D0,B) representation
is not unique and a similarity transformation matrix G contains n2 − n
free parameters, the total number of independent parameters is reduced to
(n− 1) + n2 + n3 − (n2 − n) = n3 + 2n− 1.

Alternatively, an MBT (α,D0,B) is entirely characterized by a TMAP
(α,D0,D1) which governs the lifetime and reproduction of individuals and
contains n2 + 2n − 1 independent parameters, and by a stochastic n2 × n
matrix S whose entries Sik,j are such that Bi,jk = D1ik Sik,j. As the matrix S
contains n2(n−1) independent parameters, the total number of independent
parameters of an MBT is (n2 + 2n− 1) + n2(n− 1) = n3 + 2n− 1.

Example 7. The MBT with representation

α = (0.6, 0.4), D0 =

(
−4 0
1 −6

)
, B =

(
1 1 0 1
3 0 1 0

)
, d =

(
1
1

)
is entirely characterized by the following reduced moments of X0 and joint
moments of (X0, X1, Y0)

µ0 = 0.7667, µ1 = 0.0421, µ2 = 0.0211, µ3 = 0.0017,

γ0,0,0 = 0.4492, γ0,0,1 = 0.1034, γ0,1,0 = 0.1060, γ0,1,1 = 0.0245,

γ1,0,0 = 0.1046, γ1,0,1 = 0.0238, γ1,1,0 = 0.0246.
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3.3. Finding an MBT representation based on the moments

Similarly to Section 2.3, based on the reduced moments {µi}i∈{0,1,...,2n−1}
of X0, we can obtain a vector-matrix pair (ϕ,K) such that

µi = µ0ϕK
i1I, i = 0, 1, . . . , n− 1,

where ϕ = (1/n, . . . , 1/n). From

µi = αEiR1II = ϕKiµ01I (21)

and [7, Theorem 1] there exists a non singular matrix H such that ϕ = αH,
K = H−1EH and µ01I = H−1R1II. Using this, from (20) we have

γijk =

αH︸︷︷︸H−1EiH︸ ︷︷ ︸H−1R(H⊗H)︸ ︷︷ ︸ (H−1EjH︸ ︷︷ ︸H−1R1II︸ ︷︷ ︸⊗H−1EkH︸ ︷︷ ︸H−1R1II︸ ︷︷ ︸) =

ϕ Ki R̂
(

Kj µ01I ⊗ Kk µ01I
)
,

(22)

where R̂ = H−1RH is of size n×n2. The same approach as in Section 2.3 is
applicable here: we define the matrices Φ of size n×n, Λ of size n2×n2 and
Γ of size n×n2, such that the ith row of Φ is ϕKi, the jn+kth column of Λ
is Kjµ01I⊗Kkµ01I and the (i, jn + k) element of Γ is γi,j,k, where rows and
columns are numbered from 0 to n − 1 or to n2 − 1. With these notations
(20) can be written in matrix form as

Γ = ΦR̂Λ, (23)

from which

R̂ = Φ−1ΓΛ−1, (24)

where Φ and Λ are nonsingular according to Remark 1. Now, (α,E,R) with
closing vector 1II = 1I⊗ 1I, and [ϕ,K, R̂,v⊗ v] with closing vector v⊗ v, are
two equivalent representations of the same MBT. From

µi = ϕKiµ01I = ϕKiR̂(v ⊗ v), i = 0, 1, . . . 2n− 1,

we have that v must satisfy µ01I = R̂(v⊗v) and ϕv = 1. Relations (21) and
(22) indicate that any v satisfying this conditions is a proper closing vector
for the [ϕ,K, R̂,v ⊗ v] representation.
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Finally, we need to transform this representation such that the closing
vector becomes 1I. Let C be a non-singular matrix such that C1I = v and
ϕC1I = 1. Then

(ϕC,C−1KC,C−1R̂ (C⊗C))

with closing vector C−1v = 1I is another equivalent representation of the
same MBT.

Remark 5. As in the TMAP case, the representation found with this method
is generally non-Markovian, but in some cases the algorithm developed in [7]
can be adapted to the MBT case too in order to transform any non Markovian
representation into an equivalent Markovian representation [19].

Example 8. Using the RBTFromMoments function of the BuTools package
we can compute the following non-Markovian representation based on the
reduced moments and joint moments in Example 7

α = (0.4969, 0.5031),

D0=

(
−7.8437 3.3280
−2.1295 −2.1562

)
, B=

(
3.9473 −3.9669 −4.1036 7.6388
5.4557 −5.1895 −3.3262 6.3458

)
.

This representation can be transformed into the following equivalent Marko-
vian representation by the RBTToMBT function of the BuTools package

α = (0.4538, 0.5462),

D0 =

(
−5.9486 0.1193
0.8390 −4.0514

)
, B =

(
0.2406 1.5950 0.5791 2.4146
0.9876 0.0603 1.0444 0.1199

)
.

3.4. Minimal representation of MBTs

In this section, we present a procedure to compute a minimal representa-
tion of any general MBT. We note again that the minimal representation is
not necessarily Markovian. For the analysis of MBTs we need to generalize
the approach used in [9] and in Section 2.4.

We start with the relation between the minimal size of MBTs and the min-
imal size of the related transient marked MAPs (TMMAPs), mainly because
the later ones can be analyzed by the marked version of the STAIRCASE
method (denoted as MSTAIRCASE hereafter) [9]. The class of TMMAPs
is obtained by the extension of marked MAPs (MMAPs) with an absorbing
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state in a similar way as TMAPs are obtained from MAPs. The minimal
representation of MMAPs is provided in [9].

Let D1 = B(1I ⊗ I) and D2 = B(I ⊗ 1I). The next theorem presents a
sufficient condition for the minimality of MBTs which can be checked with
the MSTAIRCASE method [9]

Theorem 8. If the TMMAP(α,D0,D1,D2) is minimal, then the MBT with
representation (α,D0,B) is also minimal.

Proof. First we consider the minimality of the representations with respect
to the initial vector.

A TMMAP(α,D0,D1,D2) of size (1× n, n× n, n× n, n× n) is minimal
with respect to the initial vector if there is no size s < n and non-singular
similarity matrix of size n× n with unit row sum, W, such that (αW)ℓ = 0
for ℓ = s+1, s+2, . . . , n, and (W−1DiW)kℓ = 0 for i = 0, 1, 2, k = 1, 2, . . . , s,
and ℓ = s+ 1, s+ 2, . . . , n.

Since D1 = B(1I⊗ I) and D2 = B(I⊗ 1I), it also means that there is no
size s < n and non-singular similarity matrix with unit row sum W such that
(αW)ℓ = 0, (W−1D0W)k,ℓ = 0 for k = 1, 2, . . . , s, and ℓ = s+1, s+2, . . . , n,
and (W−1B(W ⊗ W))k,(ℓ−1)n+m for k = 1, 2, . . . , s, ℓ = s + 1, s + 2, . . . , n,
and m = 1, 2, . . . , n, and for k = 1, 2, . . . , s, ℓ = 1, 2, . . . , n, and m = s +
1, s+ 2, . . . , n. If it was the case that such s and W exist, then

W−1B(W ⊗W)(1I⊗ I) = W−1B(W1I⊗WI) =
W−1B(1I⊗W) = W−1B(1I⊗ I)W = W−1D1W,

where W1I = 1I due to the unit row sum of W. Similarly,

W−1B(W ⊗W)(I⊗ 1I) = W−1D2W

would contain zero elements at positions (k, ℓ) for k = 1, 2, . . . , s, and ℓ =
s+1, s+2, . . . , n, which contradicts the fact that the TMMAP(α,D0,D1,D2)
is minimal with respect to the initial vector.

A similar argument with respect to the closing vector completes the proof.

Unfortunately, the opposite of Theorem 8 does not hold in general, be-
cause in case of non-Markovian representations it might happen thatW−1D1W
andW−1D2W contain only zero elements at positions (k, ℓ) for k = 1, 2, . . . , s,
and ℓ = s+1, s+2, . . . , n, but there are nonzero elements among (W−1B(W⊗
W))k,(ℓ−1)n+m for k = 1, 2, . . . , s, ℓ = s+ 1, s+ 2, . . . , n, and m = 1, 2, . . . , n,
or for k = 1, 2, . . . , s, ℓ = 1, 2, . . . , n, m = s+ 1, s+ 2, . . . , n.
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Theorem 9. Suppose that for an MBT(α,D0,B) of size m there exists a
non singular m×m transformation matrix W such that

W−1B(W ⊗W) =

 B̂1 ⋆
0 ⋆

· · · B̂n ⋆
0 ⋆︸ ︷︷ ︸

n

⋆ ⋆
⋆ ⋆

· · · ⋆ ⋆
⋆ ⋆︸ ︷︷ ︸

m−n

 ,

W−1D0W =

(
D̂0 ⋆
0 ⋆

)
and W−11Im =

(
1In
0

)
,

where the matrix blocks (between vertical lines) are of size m×m and their
sub-blocks from left to right and from top to bottom are n × n, n × (m−n),
(m−n)×n and (m−n)×(m−n), and the ⋆ symbols indicate possibly non-zero
(irrelevant) matrix blocks. Then (α̂, D̂0, B̂) is an equivalent representation
of the same MBT of size n < m, where αW =

(
α̂ ⋆

)
and matrix B̂ of

size n× n2 is composed by B̂1, . . . , B̂n of size n× n.

Proof. None of the ⋆ blocks play role in the behavior of the
MBT(αW,W−1D0W,W−1B(W⊗W)), because all of them are multiplied
by a zero element of the closing vector, see for instance (16).

The following modified version of the STAIRCASE method computes the
minimal representation of MBTs with respect to the closing vector. The
implementation of the method is available in the BuTools package [19].
———————————
1. STAIRCASE MBT Cont(X, Y, Z)
2. i = 0; {m, j} =SIZE(X); U∗ = I; r0 = m;
3. REPEAT
4. i = i+ 1 ; ri = rank(Z) ; {Ui,Si,Ti} =SVD(Z) ;

5.

(
Z1

0

)
= U∗

iZ ;

(
X1 X2

X3 X4

)
= U∗

iXUi ;

/∗ X1 is of size ri × ri ∗/

6.

 Y11 Y21

Y31 Y41
· · · Y1ri Y2ri

Y3ri Y4ri︸ ︷︷ ︸
ri

Y51 Y61

Y71 Y81
· · · Y5ri−1−ri Y6ri−1−ri

Y7ri−1−ri Y8ri−1−ri︸ ︷︷ ︸
ri−1−ri


= U∗

iY(Ui ⊗Ui) ;
/∗ Y1 is of size ri × r2i ∗/
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7. U∗ =

(
I∑i−1

j=1 rj
0

0 U∗
i

)
U∗ ;

8. X = X4; Y = Y8; Z = (X3 Y3) ;
9. UNTIL rank(Z) = m−

∑i
j=1 rj or Z = 0 ;

10. IF (Z = 0) THEN
11. n =

∑i
j=1 rj ;

12.

(
x

0m−n

)
= U∗1Im ;

13. IF (x ̸= 0) THEN R = I ELSE R = non-singular matrix such
that Rx ̸= 0

/∗ element-wise ∗/

14. y = Rx ; Γ = diag(y) ; W =

[(
Γ−1 0
0 Im−n

)(
R 0
0 Im−n

)
U∗

]−1

;
15. ELSE n = m ; W = I ; /* no reduction is possible */
16. RETURN(n,W) ;
———————————
There is a kind of symmetry in the roles of the initial and closing vectors

of traditional or transient MAPs, and rational arrival processes (RAPs, the
analogue of MAPs with non-Markovian representation). Unfortunately, this
symmetry neither holds for MBTs nor for rational binary trees (RBTs, the
analogue of MBTs with non-Markovian representation). As a consequence an
essentially different method reduces the size of MBTs which are non-minimal
due to the initial vector.

Theorem 10. If for an MBT(α,D0,B) of size m there exists a non singular
m×m transformation matrix W such that

W−1B(W ⊗W) =

 B̂1 0
⋆ ⋆

· · · B̂n 0
⋆ ⋆︸ ︷︷ ︸

n

0 0
⋆ ⋆

· · · 0 0
⋆ ⋆︸ ︷︷ ︸

m−n

 ,

W−1D0W =

(
D̂0 0
⋆ ⋆

)
and αW =

(
α̂ 0

)
,

then (α̂, D̂0, B̂) is an equivalent representation of size n < m, where matrix
B̂ of size n× n2 is composed by B̂1, . . . , B̂n of size n× n.

Proof. None of the ⋆ elements plays role in the behavior of the
MBT(αW,W−1D0W,W−1B(W ⊗W)) when the matrix blocks indicated
by 0 contain only zero elements.
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The decomposition of the matrix W−1B(W⊗W) suggests a simple im-
plementation for finding such matrixW based on the MSTAIRCASE method
available for TMMAPs. Let the matrix Bi of size m×m be the ith block of
matrix B such that B = (B1, . . . ,Bm).

Theorem 11. The MBT(α,D0,B) and the TMMAP(α,D0,B1, . . . ,Bm)
are minimal with respect to the initial vector at the same time.

Proof. Practically the same structural properties are required for the two pro-
cesses to be non-minimal. If there is a matrix W which fulfils the conditions
of Theorem 10, then W also transforms the TMMAP(α,D0,B1, . . . ,Bm)
into a form which fulfils the structural conditions for being non-minimal
[9].

As a consequence of this theorem, the MSTAIRCASE method applied for
finding the minimal representation of the TMMAP(α,D0,B1, . . . ,Bm) with
respect to the initial vector computes an appropriate matrix W for finding
the minimal representation of the MBT(α,D0,B) with respect to the initial
vector. This procedure is also implemented in the BuTools package [19].

Example 9. An example of an MBT which is non-minimal due to the closing
vector is the following:

α = (0.1, 0.2, 0.7), D0 =

 −24 8 1
4 −20 1
1 2 −21

 ,

B =

 1 2 2 1 1 2 0 3 2
2 0 1 1 2 3 1 2 2
1 1 4 1 1 2 2 0 4

 , d =

 1
1
2

 .

This MBT is lumpable into the equivalent representation of size 2

α = (0.3, 0.7), D0 =

(
−16 1
3 −21

)
, B =

(
5 4 3 2
4 6 2 4

)
, d =

(
1
2

)
.

RBTMinimize function of the BuTools package gives the minimal represen-
tation

α = (0.222183, 0.777817), D0 =

(
−13.8787 −2.1213
5.70711 −23.1213

)
,

B =

(
8.87174 4.85212 0.609476 0.333333
7.32639 7.00694 −0.235702 1.51184

)
, d =

(
1.33333
1.80474

)
.
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Example 10. An example of an MBT which is non-minimal due to the initial
vector is the following:

α = (0.25, 0.25, 0.5), D0 =

 −25 4 3
4 −25 1
1 1 −31

 ,

B =

 1 2 3 0 1.5 0 2 1 0
2 1 1 3 1.5 4 0 1 2
3 3 4 3 3 4 2 2 1

 , d =

 7.5
4.5
4

 .

This MBT is weakly-lumpable into the equivalent representation of size 2

α = (0.5, 0.5), D0 =

(
−21 2
2 −31

)
, B =

(
6 4 2 1
12 8 4 1

)
, d =

(
6
4

)
.

The RBTMinimize function gives the minimal representation

α = (1, 0), D0 =

(
−25.6667 1.66667
17.3333 −26.3333

)
,

B =

(
13.7778 1.55556 3.55556 0.111111
1.77778 −0.444444 −0.444444 0.111111

)
, d =

(
5
8

)
.

3.5. Canonical representation of MBT of order 2

To investigate the possible Markovian canonical forms of an MBT of order
2 (MBT(2)), we proceeded exactly in the same way as for non-stationary
MAPs(2) and TMAPs(2), as described in Section 2.5.

The total number of parameters in an arbitrary representation (α,D0,B)
of an MBT(2) is 13 (which comes from the number of elements in the rep-
resentation, 2 + 4 + 8 = 14, reduced by one due to the constraint α1I = 1),
while the number of independent parameters is 11 by Theorem 7. A canonical
representation should thus have two zero entries. By considering symmetric
representations only once, there is thus a total of 47 possible canonical forms.

We randomly generated about 3500 random MBTs(2) with the same
method as for non-stationary MAPs(2) and TMAPs(2). We found out that
there are 12 sets of 13 possible Markovian canonical forms covering all ran-
dom examples. We show here only two of these sets, and we specify the zero
entries of their 13 canonical forms (where, as before, the symbol “-” means
“the same as in Set 1”).
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Structure No. Set 1 Set 2
1 d1,B2,11 -
2 d1,B2,12 -
3 d1,B2,21 -
4 d1,B2,22 -
5 d1,D021 -
6 D012,B2,11 -
7 D012,B2,12 -
8 D012,B2,21 -
9 D012,B2,22 -
10 B1,11,B2,22 B1,11,B1,12

11 B1,12,B2,11 B1,12,B2,11

12 B1,12,B2,21 B1,21,B2,12

13 B1,21,B2,12 α1,B1,11.

Compared to the case of TMAPs(2) it is an even more challenging open
question therefore to find a classification of MBTs(2) into one of the 13
possible canonical forms of a given set.

4. Conclusion

Markov modulated stochastic processes have several interesting analyti-
cal and computational properties, and practical applications; however, the
parameters estimation of such processes is still an open problem and a cur-
rent research topic. For efficient parameter estimation we need a proper
understanding of the structural properties of these processes.

MAPs are studied for several years, but the properties of other Markov
modulated processes, more recently introduced, are not deeply studied yet.
In this work we investigated some basic properties of TMAPs and MBTs, and
we found that there are several similarities between their properties and the
ones of stationary MAPs. Based on these similarities, we collected a set of
structural properties, including the number of independent parameters, the
set of characterizing moments, and some procedures for computing matrix
representations based on the characterizing moments sets, and representa-
tions of minimal size. We also investigated the possible canonical forms of
TMAPs and MBTs of order 2, and found that several different forms needs to
be considered in order to represent the whole TMAP(2) and MBT(2) classes.
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