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GÁBOR HORVÁTH,∗∗ Dept. of Networked Systems and Services, Budapest University

of Technology and Economics
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Abstract

The steepest increase property of phase type (PH) distributions was first raised

in O’Cinneide [8] and was proved in O’Cinneide [8] and Yao [12], but since then

it got little attention in the research community. In this work we demonstrate

that the steepest increase property can be applied for proving previously

unknown moment bounds of PH distributions with infinite or finite support. Of

special interest are moment bounds free of specific PH representations except

the size of the representation. For PH distributions with infinite support, it is

shown that such a PH distribution is stochastically smaller than or equal to an

Erlang distribution of the same size. For PH distributions with finite support, a

class of distributions which was introduced and investigated in Ramaswami and

Viswanath [9], it is shown that the squared coefficient of variation (SCV ) of a

PH distribution with finite support is greater than or equal to 1/(m(m + 2)),

where m is the size of its PH representation.
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1. Introduction

Phase-type (PH) distributions were introduced by Neuts [3] for the study of queueing

systems in 1975. Since then, PH distributions have been a subject of research, and

have found applications in many areas of applied probability. For example, a serials

papers by O’Cinneide ([5], [6], [7], [8]) revealed some fundamental properties of PH

distributions. In Aldous and Shepp [1], it was shown that the SCV of a PH distribution

with a PH representation of size m is greater than or equal to 1/m. In Telek [11],

the minimal SCV of discrete phase type distributions was found. In He et al. [2],

stochastic comparison was utilized in the study of PH distributions, which also led to

moment bounds of PH distributions. Those results not only deepen our understanding

of PH distributions and PH representations, but also facilitate the applications of PH

distributions significantly.

The steepest increase property of PH distribution was first raised in O’Cinneide

[8] and was proved in O’Cinneide [8] and Yao [12]. We think that it is a very

interesting property of PH distributions, which received little attention in the literature.

This paper applies the property to find moment bounds of PH distributions, which

demonstrates the usefulness of the property.

PH distributions with finite support were introduced and investigated in Ram-

maswami and Viswanath [9]. This generalization extends the applications of PH

distributions significantly.

This paper finds a number of stochastic and moment bounds for PH distributions

with finite and infinite support. Many of the moments bounds depend only on the size

of PH representations and the eigenvalue with the largest real part of PH generators.

A highlight of this paper is that the SCV of a bounded PH distribution with a PH

representation of size m is greater than or equal to 1/(m(m+2)). The moment bounds

of PH distributions reveal fundamental properties of such probability distributions, e.g.,

they indicate which kind of general distributions can be closely approximated. The

results are useful in, not limited to, i) finding moment bounds of performance measures

for stochastic models and ii) selecting PH representations in parameter estimation of

PH distributions.

The rest of the paper is organized as follows. PH distributions with infinite support
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are introduced together with the steepest increase property and with some of their

moment bounds in Section 2. PH distributions with finite support are introduced and

their moment bounds are studied in Section 3. Section 4 concludes the paper.

2. Phase-Type Distributions with Infinite Support

In this section, we first define phase-type distributions and their corresponding PH

representations. Then we review the so-called “steepest increase lemma” (Yao [12]) on

the density function of (ordinary) PH distributions, since that turned out to be useful

to derive the moment bounds. We further extend the “steepest increase lemma” and

derive new moment bounds for ordinary PH distributions.

A non-negative random variable Y has a phase-type distribution if it is the absorp-

tion time in a finite state continuous time Markov chain (see Neuts [4]). We assume

that Y has a PH representation (α,A) of size m, where α is the initial distribution

of the underlying continuous time Markov and A contains the transition rates among

the transient states of the underlying continuous time Markov chain (referred to as

PH generator or sub-intensity matrix). That is, α is a non-negative probability vector

and A has non-negative off diagonal and negative diagonal elements such that the

diagonal element dominates each row, A1 ≤ 0 (element-wise), where 1 is a column

vector of ones with the appropriate size. Let us denote the density function of Y by

f(t) = αeAt(−A1) and the cumulative distribution function (cdf) by F (t) = 1−αeAt1

(both for t ≥ 0). To avoid the trivial case Y ≡ 0, we assume that 0 < α1 ≤ 1. We also

note that f(t) > 0 for ∀ t > 0 by O’Cinneide [6].

The steepest increase conjecture which was first published and partially proved by

O’Cinneide in [8]. Its complete proof is by Yao in [12]. The steepest increase lemma

states that f ′(t)/f(t) ≤ (m− 1)/t for t > 0, or equivalently, f(t)/tm−1 is decreasing in

t for t > 0. Next, we present and show a “sharp” form of the steepest increase lemma.

Lemma 1. For a PH distribution with representation (α,A) of size m and with den-

sity function f(t) we have

f ′(t)

f(t)
≤ m− 1

t
− λ, for t > 0, (1)

where λ is the absolute value of the eigenvalue of A with the largest real part (which
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is real and negative). −λ is also referred to as the dominant eigenvalue of matrix A.

In (1), the equality holds when Y is Erlang(m,λ) distributed (i.e., Y is the sum of m

independent exponential random variables with the same parameter λ.)

Proof. The inequality just before equation (12) in O’Cinneide [8], combining with

the proof in Yao [12], leads to ((m− 1− λ)I −A)eA ≥ 0, for PH generator A, where

I is the identity matrix. For PH generator A, At is also a PH generator for t > 0.

The eigenvalue with the largest real part of At is −λt for t > 0. Setting A =: At in

the inequality, we obtain, for t > 0,

((m− 1− λt)I −At)eAt ≥ 0,

which leads to

eAtAt ≤ (m− 1− λt)eAt. (2)

Pre-multiplying and post-multiplying both sides of (2) by α and −A1, respectively,

we obtain f ′(t)t ≤ (m− 1− λt)f(t), which proves the lemma. �

Similar to Lemma 1, −λ stands for the dominant eigenvalue of A in the sequel.

Equation (1) can be written in several alternative forms. For t ≥ 0,

tf ′(t) ≤ (m− 1)f(t)− λtf(t), (3)

d

dt
(tf(t)) ≤ (m− λt)f(t), (4)

and utilizing that λ > 0, we also have, for t > 0,

d

dt
(tf(t)) < mf(t). (5)

Lemma 2. For Y with PH generator A of size m and dominant eigenvalue −λ, we

have, for 0 < t1 < t2,
f(t2)

f(t1)
≤
f(m,λ)(t2)

f(m,λ)(t1)
, (6)

where f(m,λ)(t) = λmtm−1

(m−1)! e
−λt is the density function of the Erlang random variable

with parameters (m,λ).

Proof. For t > 0, Equation (1) can be written as,

(m− 1)(ln(t))′ − (λt)′ ≥ (ln(f(t)))′. (7)
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Taking integral on both sides of (7) from t1 > 0 to t2 > t1, we obtain

ln((t2/t1)m−1f(t1)/f(t2)) ≥ λ(t2 − t1), (8)

where f(t) > 0 for ∀ t > 0 ensures that the integration can be done properly. Taking

the exponent of both sides of (8), we obtain

f(t2) ≤ f(t1)

tm−11

eλt1tm−12 e−λt2 = f(t1)
f(m,λ)(t2)

f(m,λ)(t1)
, for t2 > t1 > 0,

which leads to the desired result. �

Lemma 2 implies that f(t)/f(m,λ)(t) is decreasing in t, which is a generalization

of the monotonicity of function f(t)/tm−1. Further, Lemma 2 leads to the following

stochastic comparison result between Y and the Erlang random variable X(m,λ) with

parameters (m,λ). Random variable Y is stochastically smaller than or equal to

random variable X, denoted as Y ≤d X, if FY (t) ≥ FX(t) holds for all real t (Stoyan

and Daley [10]).

Corollary 1. The PH distributed random variable Y (of size m and with dominant

eigenvalue −λ) is stochastically smaller than or equal to X(m,λ). Consequently, we

have, for n ≥ 1,

E [Yn] ≤ E
[
Xn(m,λ)

]
=

(m+ n− 1)!

(m− 1)!λn
. (9)

Proof. Since both f(t) and f(m,λ)(t) are density functions on [0,∞), there must be

at least one intersection in (0,∞). If t∗ is an intersection (i.e., f(t∗) = f(m,λ)(t
∗)), by

Lemma 2, we must have f(t) ≤ f(m,λ)(t) for t > t∗ and f(t) ≥ f(m,λ)(t) for t < t∗.

Thus, there are only three possible cases: i) f(t) and f(m,λ)(t) are identical; ii) f(t)

and f(m,λ)(t) have exactly two intersections t = 0, t = t∗; or iii) f(t) and f(m,λ)(t) have

exactly one intersection t = t∗. Then we must have f(t) ≥ f(m,λ)(t) for 0 < t ≤ t∗ and

f(t) ≤ f(m,λ)(t) for t ≥ t∗ (> 0), which leads to F (t) ≥ FX(m,λ)
(t), where FX(m,λ)

(t) is

the cdf of X(m,λ), for 0 < t ≤ t∗, and 1−F (t) ≤ 1−FX(m,λ)
(t) for t > t∗. Consequently,

we obtain F (t) ≥ FX(m,λ)
(t) for t > 0, which leads to the first result. All the moment

bounds can be obtained from Y ≤d X(m,λ) directly. �

A random variable X is smaller in mean residual life than random variable Y ,

denoted as X ≤c Y , if E [max{0, X − t}] ≤ E [max{0, Y − t}] holds for all real t

(Stoyan and Daley [10]). By O’Cinneide [7], it is known that the Erlang distribution
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with parameters (m,m/E [Y]) is smaller in mean residual life than Y, which has the

same mean. Then the moments of Y are bounded from above and below as follows.

(m+ n− 1)!

(m− 1)!

(
E [Y]

m

)n
≤ E [Yn] ≤ (m+ n− 1)!

(m− 1)!

1

λn
. (10)

A by-product of the above inequalities is that E [Y] = m/λ if and only if Y has an

Erlang distribution, which can also be obtained from inequality (4) directly.

Based on Lemma 1, the next lemma refines the upper bound for the n+1-st moment

based on the n-th one, which gives Corollary 1 an alternative proof.

Lemma 3. For n = 0, 1, . . ., the n+ 1-st moment of Y (of size m and with dominant

eigenvalue −λ) is bounded by

E
[
Yn+1

]
≤ m+ n

λ
E [Yn] , (11)

and the equality holds when Y = X(m,λ).

Proof. Multiplying both sides of (4) by tn and integrating from 0 to ∞ gives the

following identities for the left-hand side (LHS) and the right-hand side (RHS):

LHS =

∫ ∞
t=0

tnd(tf(t)) = [tn+1f(t)]∞0 −
∫ ∞
t=0

tf(t)dtn

= −n
∫ ∞
t=0

tf(t)tn−1dt = −nE [Yn] ;

RHS =

∫ ∞
t=0

tn(m− λt)f(t)dt = m

∫ ∞
t=0

tnf(t)dt− λ
∫ ∞
t=0

tn+1f(t)dt

= mE [Yn]− λE
[
Yn+1

]
,

from which we have

−nE [Yn] ≤ mE [Yn]− λE
[
Yn+1

]
.

When Y is Erlang(λ,m) distributed, the equality in (11) comes from the fact that

Lemma 1 gives equality for Erlang distribution for all t > 0. �

Applying Lemma 3 for n = 0 and n = 1 enables us to derive the following upper

bounds on the mean E [Y] and the squared coefficient of variation SCVY =
E[Y2]
E[Y]2 − 1:

E [Y] ≤ m

λ
, (12)

SCVY ≤
m+ 1− λE [Y]

λE [Y]
. (13)



Bounds of PH distributions with infinite or finite suppoert 7

0 2 4 6 8 10
0

2

4

6

8

10

λE [Y]

B
ou

n
d
s

of
S
C
V

m = 2
m = 5
m = 10

Figure 1: Bounds of SCV for ordinary PH distributions. The lower bound is the well known

1/m bound provided in [1, 7], while the upper bound is provided based on the steepest increase

property.

Interestingly, equation (13) gives an upper bound for SCVY , while the lower bound for

SCVY is much more widely known as SCVY ≥ 1/m. Hence we have (see Figure 1)

1

m
≤ SCVY ≤

m+ 1

λE [Y]
− 1.

3. Phase-Type Distributions with Finite Support

PH distributions with finite support were introduced in [9], where three classes of

finite support distributions were considered (matrix exponential density from lower

bound to upper bound, from upper bound to lower bound and convex combination of

the two). Instead, we define Z to have distribution b + (Y|Y < T ). The support of

Z is thus [b, B) with b < B and B = b + T . Recall that Y is the ordinary (or infinite

support) PH distribution with density function f(t) = αeAt(−A)1. Then the density

function of Z is given by

fZ(t) =
αeA(t−b)(−A)1

1−αeAT1
, (14)

for t ∈ [b, B), and fZ(t) = 0 for t /∈ [b, B).

We denote this class of finite PH distributions by FTPH1 (with some further similar

classes FTPH2 and FTPH3 in mind: FTPH2 is defined as Z2 = B − (Y|Y < T )

and FTPH3 as the convex combination of Z and Z2; these are subject to future
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c. Quadratic distribution

Figure 2: Some interesting members of the FTPH1 class

investigations). In this paper, we shall primarily focus on the moments of FTPH1

distributions.

Although FTPH1 is obtained by just a simple truncation of an ordinary PH dis-

tribution, it has some very interesting members. A truncated exponential distribution

with a very small intensity parameter leads to a uniform distribution (Figure 2 a.),

since

lim
λ→0

fExpZ (t) = lim
λ→0

λeλt/(1− e−λ) = 1.

Similarly, a truncated Erlang-N distribution with very small intensity gives

lim
λ→0

fErl−NZ (t) = N tN−1,

yielding linear, quadratic, cubic distributions, respectively (see Figure 2 b. and c.).

The importance of these special FTPH1 members is that density functions of such

shapes are notoriously difficult to capture by ordinary PH distributions. Ordinary PH

distributions with a limited number of phases purely approximate them. In practical

computations the λ → 0 limit also causes difficulties, but easily computable small

positive λ values give reasonably good approximations. Those issues of approximations

and parameter estimations of PH distributions with finite support will be addressed in

a separate paper.

A general formula for computing the moments for PH distributions with finite

support can be obtained as follows.

Theorem 1. The nth moment of a FTPH1 random variable, Z with parameters
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(α,A) over interval [b, B), is expressed by

E [Zn] =

bn(1−α1) +

n∑
d=0

(
n

d

)
d!α(−A)−d

(
bn−dI − Tn−deAT

)
1

1−αeAT1
, (15)

where T = B − b.

Proof. The theorem is proved by routine calculations. �

3.1. Moment bounds for the case with b = 0

In this subsection, we assume b = 0, which is extended to b > 0 in the next

subsection. A random variable in FTPH1 is denoted asW = Y|Y < T . We derive and

prove lower and upper bounds for the moments of W. For i = 0, 1, . . . we introduce

the notation Ei(T ) = E
[
I{Y<T}Yi

]
=
∫ T
t=0

tif(t)dt, where I{a} denotes the indicator

of a. Then E
[
Wi
]

can be written as, for i = 0, 1, ...,

E
[
Wi
]

=
Ei(T )

E0(T )
. (16)

The next lemma is similar to Lemma 3 (for ordinary PH distributions), but it does

not depend on the dominant eigenvalue −λ.

Lemma 4. The moments a FTPH1 random variable, W, with support on (0, T ),

satisfies

E [Wn] ≤ (m+ n− 1)T

m+ n
E
[
Wn−1] . (17)

Proof. Multiplying both sides of equation (5) by tn−1(T − t) and integrating from

0 to T gives the following identities for the left-hand side

LHS =

∫ T

t=0

tn−1(T − t) d

dt
(tf(t))dt = −

∫ T

t=0

tf(t)d(tn−1(T − t))

=

∫ T

t=0

(ntn − (n− 1)Ttn−1)f(t)dt = nEn(T )− (n− 1)TEn−1(T ),

where we used the rule of Stieltjes integration by part in the first step∫ b

a

f(x)dg(x) = f(b)g(b)− f(a)g(a)−
∫ b

a

g(x)df(x),

and ∫ b

a

g(x)df(x) =

∫ b

a

g(x)f ′(x)dx,
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in the second step. For the right-hand side we have

RHS =

∫ T

t=0

tn−1(T − t)mf(t)dt =

∫ T

t=0

mTtn−1f(t)dt−m
∫ T

t=0

tnf(t)dt

= mTEn−1(T )−mEn(T ),

from which

nEn(T )− (n− 1)TEn−1(T ) ≤ mTEn−1(T )−mEn(T ),

(m+ n)En(T ) ≤ (m+ n− 1)TEn−1(T ),

En(T )

E0(T )
≤ (m+ n− 1)T

m+ n

En−1(T )

E0(T )
, (18)

which leads to the desired result. �

In the following corollary the upper bound for the nth moment is provided, inde-

pendent from the lower order moments.

Corollary 2. The nth moment a FTPH1 random variable,W, with support on (0, T ),

is bounded by

E [Wn] ≤ mTn

m+ n
(19)

and the upper bound is strict except for Y is Erlang(λ,m) distributed and λ tends to 0.

In particular, we have E [W] ≤ mT/(m + 1), which indicates that no PH distribution

with finite support can have a mean close to the upper bound T = B.

Proof. Recursively applying (17) for moments 1, . . . , n gives the upper bound. The

statement on the equality comes from the fact that the right part of (19) gives equality

only when (18) is equality for 1, . . . , n and it occurs only when Y is Erlang(λ,m) dis-

tributed and λ tends to 0, because (5) gives equality only for Erlang(λ,m) distribution

when λ tends to 0. �

After deriving these moment bounds, the next question is how to reach the extreme

values, what is the FTPH1 structure which realizes the moment bounds. According

to the next lemma, Erlang distributions play an important role in this respect.

Lemma 5. The upper bound in Lemma 4 is strict when W equals 0 with probability

p = 1 − (m+n−1)µn−1

mTn−1 and is truncated Erlang(λ,m) distributed with probability 1 − p

such that λ tends to 0, where µn−1 = E
[
Wn−1].
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Proof. To prove the statement we show that compared to the extreme distribution

of Lemma 5 any valid change in the probability of the mass at zero, p, decreases the n-

th moment. First we note that increasing p is not a valid change, because to maintain

E
[
Wn−1] the n − 1-st moment of a strictly positive FTPH1 needs to be increased

above mTn−1

m+n−1 (which is not possible according to Corollary 2).

Let us now try to decrease p rather than increasing it. Consider a distribution whose

mass at zero has probability p̂ = p −∆µn−1, where ∆ is a small positive number. In

this case, the n− 1-st moment of the strictly positive part, µ+
n−1, is

µ+
n−1 =

µn−1
1− p̂

=
µn−1

1− p+ ∆µn−1
=

µn−1
(m+n−1)µn−1

mTn−1 + ∆µn−1

=
mTn−1

(m+ n− 1) + ∆mTn−1
<

mTn−1

m+ n− 1
.

When the n− 1-st moment of the strictly positive part, W+, is µ+
n−1 its nth moment

is bounded by (17), and using that we can write

(1− p̂)E
[
W+n

]
< µn−1

(
(m+ n− 1) + ∆mTn−1

mTn−1

)
︸ ︷︷ ︸

1−p̂

(m+ n− 1)T

m+ n

(
mTn−1

(m+ n− 1) + ∆mTn−1

)
︸ ︷︷ ︸

µ+
n−1

=
(m+ n− 1)Tµn−1

m+ n
,

where the inequality is strict, because the distribution ofW+ is different from Erlang(λ,m)

such that λ tends to 0, since its n− 1-st moment is less than mTn−1

m+n−1 . �

Having the dominant eigenvalue independent moment bounds derived in Lemma 4,

the following results provide moment bounds as a function of λ.

Lemma 6. For n = 1, 2, . . ., the n+ 1-st moment of W is bounded by

m+ n+ λT

λ
E [Wn]− (m+ n− 1)T

λ
E
[
Wn−1]

≤ E
[
Wn+1

]
≤ m+ n

λ
E [Wn]− Tn+1f(T )

λE0(T )
. (20)

Proof. Multiplying both sides of (4) by (T − t)tn−1 and integrating from 0 to T
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Figure 3: Upper bounds of SCV for FTPH1 distributions with parameters b = 0, B = 1

gives

LHS =

∫ T

t=0

(T − t)tn−1 d

dt
(tf(t))dt = −

∫ T

t=0

tf(t)d(Ttn−1 − tn)

= −
∫ T

t=0

tf(t)(T (n− 1)tn−2 − ntn−1)dt

= −T (n− 1)En−1(T ) + nEn(T );

RHS =

∫ T

t=0

(Ttn−1 − tn)(m− λt)f(t)dt

= mTEn−1(T )−mEn(T )− λTEn(T ) + λEn+1(T ),

from which it follows that

−T (n− 1)En−1(T ) + nEn(T ) ≤ mTEn−1(T )− (m+ λT )En(T ) + λEn+1(T ),

(m+ n+ λT )En(T )− (m+ n− 1)TEn−1(T ) ≤ λEn+1(T ).

m+ n+ λT

λ

En(T )

E0(T )
− (m+ n− 1)T

λ

En−1(T )

E0(T )
≤ En+1(T )

E0(T )
.

On the other hand, multiplying both sides of (4) by tn and integrating from 0 to T

gives

LHS =

∫ T

t=0

tn
d

dt
(tf(t))dt = Tn+1f(T )−

∫ T

t=0

tf(t)dtn

= Tn+1f(T )−
∫ T

t=0

tf(t)ntn−1dt = Tn+1f(T )− nEn(T );

RHS =

∫ T

t=0

tn(m− λt)f(t)dt = m

∫ T

t=0

tnf(t)dt− λ
∫ T

t=0

tn+1f(t)dt

= mEn(T )− λEn+1(T ),
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from which we obtain

Tn+1f(T )− nEn(T ) ≤ mEn(T )− λEn+1(T ),

λEn+1(T ) ≤ (m+ n)En(T )− Tn+1f(T ),

En+1(T )

E0(T )
≤ m+ n

λ

En(T )

E0(T )
− Tn+1f(T )

λE0(T )
,

which leads to the desired results. �

Lemma 6 gives a tight moment bound, for which the upper and the lower limits are

identical if Y is Erlang distributed. To get rid of the density function in the boundary

a loose version of Lemma 6 is

m+ n+ λT

λ
E [Wn]− (m+ n− 1)T

λ
E
[
Wn−1]

≤ E
[
Wn+1

]
≤ m+ n

λ
E [Wn]− Tn+1f(T )

λE0(T )
<
m+ n

λ
E [Wn] , (21)

where the strict inequality indicates the loose boundary.

Now, we look at lower order moments by focusing on moment bounds for the mean

and SCV for FTPH1 distributions with b = 0.

Corollary 3. The squared coefficient of variation of W, SCVW =
E[W2]
E[W]2

− 1, is

bounded by
m+ 1 + λT

λE [W]
− mT

λ(E [W])2
− 1 ≤ SCVW <

m+ 1

λE [W]
− 1. (22)

Proof. For n = 1, Lemma 6 gives

m+ 1 + λT

λ
E [W]− mT

λ
≤ E

[
W2
]
≤ m+ 1

λ
E [W]− T 2f(T )

λE0(T )
,

whose right hand side can be upper bounded by m+1
λ E [W], from which the corollary

comes by dividing with (E [W])2 and subtracting 1. �

We note that the difference between the upper and the lower limit of SCVW in

Corollary 3 is
T

(E [W])2

(m
λ
− E [W]

)
,

for which according to (12) and the definition of W we have

E [W] = E [Y|Y < T ] < E [Y] ≤ m

λ
.
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That is, when λ tends to zero the upper bound converges to infinity. In this case, the

λ independent upper limit mT/(m + 1) from Corollary 2 can be applied. Combining

the results, we obtain E [W] ≤ min{m/λ, mT/(m+ 1)}.

Our final result of this subsection gives a lower bound of SCVW in terms of m only,

which generalizes the result of Aldous and Shepp [1] mentioned in the Introduction.

Theorem 2. The squared coefficient of variation of the FTPH1 random variable, W

with support on (0, B) is bounded by SCVW ≥ 1/(m(m+ 2)).

Proof. Recall that T = B − b = B. Define

g(t) =
(m− 1)f(t)− tf ′(t)
mF (T )− Tf(T )

, for 0 ≤ t ≤ T.

By Lemma 1, (m−1−λt)f(t)−tf ′(t) ≥ 0 for t > 0, which leads to (m−1)f(t)−tf ′(t) >

0 for t > 0. By integration from 0 to T , we obtain

mF (T )− Tf(T ) =

∫ T

0

((m− 1)f(t)− tf ′(t))dt > 0. (23)

Consequently, g(t) is a density function of a random variable, to be called YT , with

support [0, T ). Note that
∫ T
0
tndF (t) = E

[
YnI{Y<T}

]
, for n = 0, 1, 2, .... By routine

calculations, we obtain

E [YT ] =
(m+ 1)E

[
YI{Y<T}

]
− T 2f(T )

mF (T )− Tf(T )
;

E
[
Y 2
T

]
=

(m+ 2)E
[
Y2I{Y<T}

]
− T 3f(T )

mF (T )− Tf(T )
.

It is well-known that E
[
Y 2
T

]
/(E [YT ])2 ≥ 1. Using the above expressions, we obtain

(m+ 2)E
[
Y2I{Y<T}

]
≥ T 3f(T ) +

((m+ 1)E
[
YI{Y<T}

]
− T 2f(T ))2

mF (T )− Tf(T )
.

Recall that W = Y|Y < T . We also note that E
[
W2
]

= E
[
Y2I{Y<T}

]
/F (T ) and
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E [W] = E
[
YI{Y<T}

]
/F (T ). The above equation leads to

E
[
W2
]

(E [W])2

=
E
[
Y2I{Y<T}

]
F (T )(

E
[
YI{Y<T}

])2
≥
F (T )

(
T 3f(T ) +

(
(m+ 1)E

[
YI{Y<T}

]
− T 2f(T )

)2
mF (T )− Tf(T )

)
(m+ 2)

(
E
[
YI{Y<T}

])2
=
F (T )

((
(m+1)E

[
YI{Y<T}

])2−2(m+1)T 2f(T )E
[
YI{Y<T}

]
+mT 3f(T )F (T )

)
(m+ 2)(mF (T )− Tf(T ))

(
E
[
YI{Y<T}

])2
=

(m+ 1)2

m(m+ 2)

1− 2 T 2f(T )

(m+1)E[YI{Y<T}]
+ mT 3f(T )F (T )

((m+1)E[YI{Y<T}])
2

1− Tf(T )
mF (T )


=

(m+ 1)2

m(m+ 2)
Θ(T ).

We want to show that Θ(T ) ≥ 1 for all T > 0. Since mF (T ) > Tf(T ) according to

(23), Θ(T ) ≥ 1 is equivalent to

Tf(T )

mF (T )
+

mT 3f(T )F (T )(
(m+ 1)E

[
YI{Y<T}

])2 ≥ 2
T 2f(T )

(m+ 1)E
[
YI{Y<T}

] ,
which is equivalent to

1

mF (T )
+

T 2mF (T )(
(m+ 1)E

[
YI{Y<T}

])2 ≥ 2
T

(m+ 1)E
[
YI{Y<T}

] .
The last equation holds by applying the well-known inequality a2 + b2 ≥ 2ab for any

real number a and b. Thus, we have shown that Θ(T ) ≥ 1 for all T > 0. Consequently,

we have shown
E
[
W2
]

(E [W])2
≥ (m+ 1)2

m(m+ 2)
,

which is equivalent to SCVW ≥ 1/(m(m+ 2)). �

By Corollary 2, the lower bound of SCVW is strict for all PH distributions with finite

support. The following lemma and corollary show how the lower bound of SCVW can

be attained approximately by bounded Erlang distributions. Denote by, for t ≥ 0,

Fm(t) = 1− e−λt − λte−λt − ...− (λt)m−1

(m− 1)!
e−λt;

fm(t) = f(m,λ)(t) =
λmtm−1

(m− 1)!
e−λt,

(24)
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the distribution function and density function of Erlang random variable X(m,λ), re-

spectively. By routine calculations, we obtain

E
[
X(m,λ)|X(m,λ) < T

]
=

∫ T
0
tfm(t)dt

Fm(T )
=
m

λ

Fm+1(T )

Fm(T )
;

E
[
X 2

(m,λ)|X(m,λ) < T
]

=

∫ T
0
t2fm(t)dt

Fm(T )
=
m(m+ 1)

λ2
Fm+2(T )

Fm(T )
;

SCV{X(m,λ)|X(m,λ)<T} =
E
[
X 2

(m,λ)|X(m,λ) < T
]

(E
[
X(m,λ)|X(m,λ) < T

]
)2
− 1

=
(
m+ 1
m

)
Fm(T )Fm+2(T )

(Fm+1(T ))2
− 1.

(25)

Lemma 7. For all T > 0, the following bounds apply for the distribution functions of

Erlang random variables

m+ 1

m+ 2
≤ Fm(T )Fm+2(T )

(Fm+1(T ))2
≤ 1. (26)

In addition, we have limT→0 Fm(T )Fm+2(T )/(Fm+1(T ))2 = (m + 1)/(m + 2) and

limT→∞ Fm(T )Fm+2(T )/(Fm+1(T ))2 = 1.

Proof. For convenience, we denote λT as t in this proof. First, we prove the upper

bound. Since eλt =
∑∞
k=0(λt)k/k!, we need to show( ∞∑

k=m+2

tk

k!

)(
tm

m!
+

tm+1

(m+ 1)!
+

∞∑
k=m+2

tk

k!

)
≤

(
tm+1

(m+ 1)!
+

∞∑
k=m+2

tk

k!

)2

,

which can be reduced to( ∞∑
k=m+2

tk

k!

)
tm

m!
≤

( ∞∑
k=m+2

tk

k!

)
tm+1

(m+ 1)!
+

(
tm+1

(m+ 1)!

)2

.

Next, we compare the coefficients of tk on both sides. For k = 2m+ 2, the left-hand-

side is 1/((m!(m + 2)!) and the right-hand-side is 1/((m + 1)!)2. From 1
m!(m+2)! =

m+1
m+2

(
1

(m+1)!

)2
, it follows that the left-hand-side is smaller than the right-hand-side.

For k ≥ 2m+ 3, we have, for k = j +m,

1

j!m!
≤ 1

(j − 1)!(m+ 1)!
, (27)

which is equivalent to m+ 1 ≤ j, and is true since j = k −m ≥ m+ 3. Consequently,

we have shown the upper bound.
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The proof of the lower bound is similar but tedious. The lower bound expression

can be rewritten as (m + 1)F 2
m+1(t/λ) ≤ (m + 2)Fm(t/λ)Fm+2(t/λ), which can be

rewritten explicitly as

(m+ 1)

( ∞∑
k=m

tk

k!
− tm

m!

)2

≤ (m+ 2)

( ∞∑
k=m

tk

k!

)( ∞∑
k=m

tk

k!
− tm

m!
− tm+1

(m+ 1)!

)
,

which leads to

(m+ 2)

( ∞∑
k=m

tk

k!

)
tm+1

(m+ 1)!
+ (m+ 1)

(
tm

m!

)2

≤

( ∞∑
k=m

tk

k!

)2

+m

( ∞∑
k=m

tk

k!

)
tm

m!
.

To prove the above inequality, we compare the coefficients of tn on both sides. For

n = 2m, we have
m+ 1

m!m!
≤ 1

m!m!
+

m

m!m!
,

which is true. For n ≥ 2m+ 1, we need to prove

m+ 2

(n−m− 1)!(m+ 1)!
≤ m

(n−m)!m!
+

n−m∑
i=m

1

i!(n− i)!
.

Separating the first and last term of the summation and applying k! = k(k − 1)!, we

obtain
(m+ 2)(n−m)

(n−m)!(m+ 1)!
≤ (m+ 2)(m+ 1)

(n−m)!(m+ 1)!
+

n−m−1∑
i=m+1

1

i!(n− i)!
,

which leads to
(m+ 2)(n− 2m− 1)

(n−m)!(m+ 1)!
≤
n−m−1∑
i=m+1

1

i!(n− i)!
. (28)

For any i ∈ {m+ 1, . . . , n−m− 1}, we have i ≤ n−m and m+ 1 ≤ n− i, from which

we can write(
i

n−m
i− 1

n−m− 1
. . .

m+ 2

n− i+ 2

)
m+ 2

n− i+ 1
≤ 1(

i(i− 1) . . . (m+ 2)

)
(m+ 2) ≤ (n−m)(n−m− 1) . . . (n− i+ 1)

i!

(m+ 1)!
(m+ 2) ≤ (n−m)!

(n− i)!
m+ 2

(n−m)!(m+ 1)!
≤ 1

i!(n− i)!

Considering that n−m−1−(m+1)+1 = n−2m−1 terms are summed up on the right

hand side of (28) each of which is greater than or equal to m+2
(n−m)!(m+1)! , inequality
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(28) as well as the lower bound of Lemma 7 are proved. This completes the proof of

the lemma. �

Immediate consequences of Lemma 7 are a lower bound and an upper bound of the

SCV for bounded X(m,λ).

Corollary 4. Assume that X has an Erlang distribution with parameters (m,λ). For

all T > 0, we have

1

m(m+ 2)
≤ SCV{X(m,λ)|X(m,λ)<T} ≤

1

m
. (29)

3.2. Case of b > 0

Let Z = b+W = b+ (Y|Y < T ), then for E [Zn] we have

E [Zn] =

n∑
i=0

(
n

i

)
bn−i

Ei(T )

E0(T )
=

n∑
i=0

(
n

i

)
bn−iE

[
Wi
]
,

where Ei(T ) is defined as before. That is, for n = 1, 2 we have

E [Z] = b+ E [W] and E
[
Z2
]

= b2 + 2bE [W] + E
[
W2
]
.

Corollary 5. The nth moment of a FTPH1 random variable, Z, with support on

(b, B) is bounded by

bn ≤ E [Zn] ≤
n∑
i=0

(
n

i

)
bn−i

mT i

m+ i
. (30)

Proof. Equation (30) directly follows from Corollary 2. �

For lower order moments, according to (30) the mean of Z is bounded by

b ≤ E [Z] ≤ b+
mT

m+ 1
=
b+mB

m+ 1
< B,

where both moment bounds are tight. The lower boundary is reached when E [Y]

tends to 0 and the upper boundary is reached when Y is Erlang(λ,m) distributed and

λ tends to 0.

For the SCV , we have

Corollary 6. SCVZ is bounded by the following λ independent and dependent moment

bounds

SCVZ =
E
[
W2
]
− E [W]

2

(b+ E [W])2
≤

m+1
m+2E [W]T − E [W]

2

(b+ E [W])2
(31)
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−mT + (m+ 1 + λT )E [W]− λE [W]
2

λ(b+ E [W])2
≤ SCVZ <

(m+ 1)E [W]− λE [W]
2

λ(b+ E [W])2
(32)

Proof. From Lemma 4 and Lemma 6 we have E
[
W2
]
≤ m+1

m+2TE [W] and

m+ 1 + λT

λ
E [W]− mT

λ
≤ E

[
W2
]
<
m+ 1

λ
E [W] , (33)

respectively. Subtracting E [W]
2

and then dividing by (b + E [W])2 in Equation (33)

gives the corollary. �

Different from the case with b = 0, the SCVZ can reach zero for the case with b > 0.

4. Discussion and Conclusion

This paper presents new moment bounds on phase-type distributions with infinite

and finite support by using the steepest increase property. For PH distributions with

infinite support and PH representation (α,A) of size m, denoted as Y,

• we have shown that any PH distribution is stochastically smaller than or equal

to an Erlang distribution X(m,λ) with λ be the absolute value of the dominant

eigenvalue of A; and

• we have obtained upper bounds of moments in terms of m and λ (e.g., E [Y] ≤

m/λ).

For PH distributions with finite support (for the set FTPH1), denoted asW = Y|Y <

T ,

• we have obtained upper bounds of moments in terms of m and T ;

• we have obtained lower and upper bounds of moments depending on λ;

• we have shown that E [W] ≤ min{mT/(m+ 1), m/λ};

• we have shown that SCVW ≥ 1/(m(m+ 2)).

For the finite support case, we focused on the distribution set FTPH1. Results for

the set FTPH2 can be obtained similarly. The set FTPH3 is a convex mixture of

FTPH1 and FTPH2. Moment bounds can also be obtained as convex mixture of the

moment bounds obtained for FTPH1 and FTPH2, but it is out of the scope of the

current work.
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