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Abstract

For non-trivial (open) queueing networks, traffic-based decomposition often rep-
resents the only feasible — and at the same time fast — solution method besides simula-
tion. The network is partitioned into individual nodes which are analyzed in isolation
with respect to approximate internal traffic representations. Since the correlations
of network traffic may have a considerable impact on performance measures, they
must be captured to some extent by the employed traffic descriptors. The decompo-
sition methodology presented in this paper is based on Markovian arrival processes
(MAPs), whose correlation structure is determined from the busy-period behavior of
the upstream queues. The resulting compact MAPs in connection with sophisticated
moment matching techniques allow an efficient decomposition of large queueing net-
works. Compared with [13], the output approximation of MAP/PH/1(/K) queues
— the crucial step in MAP-based decomposition — is refined in such a way that also
higher moments of the number of customers in a busy period can be taken into ac-
count. Numerical experiments demonstrate the substantially enhanced precision due
to the improved output models and plumb the new opportunities in the trade-off
between accuracy and efficiency.

1 Introduction

Open queueing networks are widely used in performance modeling of computer and com-
munication systems, service centers, manufacturing systems etc. Often, general service
time distributions as well as finite waiting rooms are required for different nodes. In addi-
tion, external arrival processes should be able to capture correlations and burstiness, since
real traffic often exhibits these characteristics.

In this paper, these inputs to the queueing network are assumed to be arbitrary Marko-
vian arrival process. MAPs are used in traffic engineering to match correlated and/or
bursty arrival processes — also with self-similar properties and long-range dependence [14].
The nodes of the network are represented as single-server FIFO systems with or without
a finite buffer. Service times may be specified by their first two or three moments or al-
ternatively as continuous phase-type (PH) distributions. Thus, the network is assumed to



consist of either -/PH/1 or -/PH/1/K nodes, between which customers move according to
a Markovian routing scheme. Customers arriving to a full queue are lost.

Besides simulation, an approximate analysis technique known as traffic-based decompo-
sition may provide a feasible solution method. The network is partitioned into individual
nodes, which are analyzed in isolation. The output traffic of a single queueing system is
characterized and transformed into arrival processes to downstream queues by splitting
and by merging with other traffic processes according to the network structure. Generally,
decomposition algorithms deliver various (stationary) performance measures, like mean
waiting times, mean queue lengths, etc., very quickly.

Although most decomposition algorithms (e.g., [16, 29, 8, 26]) are based on renewal pro-
cesses as traffic descriptors for ease of tractability, one should not neglect the correlation
structures of the external and internal flows. These correlations have been demonstrated to
significantly influence performance measures especially for bursty input traffic. For exam-
ple, a simulation study [19] showed that the average waiting time in a queue with highly
correlated arrivals can be 40 times larger than in the uncorrelated case. The following
decomposition methods take into account the traffic correlations in different ways. In [1]
truncation techniques for the infinite output MAP of a MAP/PH/1 queue are studied. For
dual tandem queues, very good numerical results are reported. However, depending on
the number of phases/states of the service distribution of the queue and its arrival pro-
cess, the truncated MAPs still become quite large in general. More precisely, their orders
depend multiplicatively on the orders of the PH distribution and the input MAP. Similar
observations hold for the closely related and more flexible way [25] to obtain finite MAP
representations of the departure processes of MAP/MAP/1 queues. While these truncated
MAPs have been shown to match a size-dependent number of coefficients of correlations
of lagged interdeparture times exactly [6], a different approach to output modeling is to fit
a predefined set of traffic descriptors to selected performance indices of the true departure
process. In order to arrive at more compact representations and also avoid the problem of
overparameterization of MAPs, Bitran and Dasu define the subclass of super-Erlang (SE)
chains [2]. While accurate results — also for higher moments of the queue lengths — could
be obtained for networks where internal traffic exhibits squared coefficients of variation
below and around unity, SE chains can hardly be used to describe bursty traffic. Mitchell
and van de Liefvoort [21] proposed to use correlated sequences of matrix exponentials with
invariant marginals as traffic descriptors in a decomposition of tandem queueing networks
with finite capacities. The Linear Algebra Queueing Theory (LAQT) techniques might
not result in proper density functions for the departure processes, which complicates the
design of the algorithms. Numerical results could be substantially improved compared
with renewal-based decomposition. The two latter approaches select performance indices
of the departure process, which are related to its correlation structure, — though different
ones. In general, it is an open research issue, which combination of characteristics should
be used to obtain a good and efficient match to the original departure process.

The approach pursued in this paper is completely different from the methods of the
previous paragraph in that it does not attempt to capture single elements of the correlation
structure of the departure process directly (e.g., by matching the first coefficients of corre-
lation). Instead the parameters of a MAP are chosen so that this traffic descriptor reflects
the busy-period behavior of the considered queue. In [7], this concept has been success-
fully investigated for a discrete-time dual tandem queue with discrete-time semi-Markov
processes as traffic descriptors. In continuous time, a decomposition for general queueing



networks based on semi-Markov processes (SMPs) and Markov-modulated Poisson pro-
cesses (MMPPs) shares the same principles [10, 9, 12]. This paper refines the flexible
decomposition methodology presented in [13], which solely relies on MAPs as traffic de-
scriptors. Moment fitting techniques are extended to optionally include the third moments
of service and/or residual arrival times — at no additional cost with respect to the size of
the output MAP approximation. The skeleton of the output MAP itself is revised in such
a way that it is capable of matching also the second and third moment of the number of
customers in a busy period of the considered MAP/PH/1(/K) queue. While these output
models become slightly larger than in [13], they retain the crucial property that their size
depends linearly on the orders of the input MAP and the PH service time distribution
(as opposed to the truncation techniques mentioned above, where these orders multiply).
Actually, only the compactness of these traffic descriptors allows to apply MAP-based de-
composition efficiently to larger networks. The constructive procedure to build the output
MAPs with physical interpretations for each of their components excludes the problems of
pseudo-stochastic representations (as observed in [21]) and overparameterization.

In the next section, we briefly sketch the MAP-based decomposition methodology,
which arises from the provided techniques. Among them, moment matching to acyclic
discrete/continuous PH distributions play a prominent role. In Section 3, MAPs are for-
mally introduced. In the subsequent sections, we focus on the output approximation as the
most critical elementary procedure of traffic-based decomposition: Section 4 highlights the
busy-period analysis of MAP/PH/1(/K) queues and thus provides the quantities required
for the output models discussed in Section 5. Numerical results for queueing networks are
given in Section 6, followed by concluding remarks.

2 MAP-Based Decomposition and Moment Matching

Traffic-based decomposition assumes that dependences between queues are sufficiently con-
veyed by the traffic characterizations. In the first phase, the algorithm determines the
parameters of these internal traffic representations. In the second phase, it derives perfor-
mance indices for single nodes and network-wide results.

The methodology of this paper progresses in the same way. The order in which the
isolated queues are analyzed does not deviate from other (iterative) approaches. Without
feedback loops, each node only needs to be treated once — provided that the nodes have
been reordered in advance with respect to external inputs and the network structure [11];
in the presence of feedback loops, the algorithm iterates over those nodes included therein
until the rates and the squared coefficients of variation of the internal arrival flows, i.e.,
MAPs in our case, have converged. As for any other decomposition algorithm of this type,
no general statements on the existence and uniqueness of a fixed point can currently be
made for this iteration scheme.

In general, the following three operations are performed at each node: 1) MAP traffic
descriptors directed to the node are merged into a single input MAP. 2) The departure
process of the queue is approximated as a MAP. 3) The output MAP is split into MAP
substreams according to the Markovian routing. For the output approximation, matrix-
analytic techniques (exact for MAP/PH/1(/K) systems) deliver the relevant quantities via
a busy-period analysis. Corresponding procedures yield the performance measures, like
the first two moments of the waiting time and queue lengths as well as throughputs and
loss probabilities, in the second phase of the algorithms (see [13] for explicit formulae).
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Global performance indices are derived from these quantities as in [29]. Since the splitting
and merging of MAPs in the context of traffic-based decomposition have been discussed in
other publications (e.g., [25, 12]), this paper concentrates on the output approximations
of queues. It should, however, be mentioned that the commonly used merging procedure
ignores possible cross-correlations among the involved traffic processes and therefore cannot
be exact in this case. On this assumption, merging just like splitting of MAPs are rather
straightforward matrix operations.

ACPH(2) ADPH(2)
Canonical representations
p I-p D 1—p
QTfQT;Q B 4 b
1-81 1-=p
Constraints
0 < p <1 (initial prob.) 0 < p <1 (initial prob.)
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Table 1: Moment fitting with ACPH(2) and ADPH(2) distributions

For the overall algorithm to work efficiently also for larger networks, the dimensions of
the block matrices in the matrix-analytic methods ought to remain in a reasonable range.
The major contribution of the presented approach in this respect consists in the fact that
the orders of the output MAPs depend only linearly on the orders of the input MAP and

4



‘ mom. ‘ condition bounds ‘

1. 0<m <o
2. 1.5 m12 < mgy < 00
2 2 3 2 3/2
1.5m1 §m2§2m1 9m1m2—12m1 —3\/5(27’111 —mg)
3. S ms S 6m1 (m2 - m12)
3 2
2my? < my T2 < my < 00
2m1

Table 2: Bounds for the first three moments of the ACPH(2) distribution

the PH service distribution of the considered queue. Moreover, these traffic descriptors
can be further compressed due to their structure: so more compact PH representations
of the residual arrival time and/or of the service time may be sought for based on their
moments!. Even more fundamentally, an output approximation may decide to ignore the
second and third moment of the number of customers in a busy period (as in [13]) yielding
reduced MAP skeletons, which are sufficiently accurate in many cases. All of the related
moment matching techniques may be combined in comprehensive heuristics (which will
also take into account merging situations, i.e., the sizes of the involved MAPs, see e.g.,
[12]) in order to enforce that the dimensions of the mentioned block matrices range below a
given upper bound. This bound reflects the user’s choice in the trade-off between accuracy
and efficiency.

As described above, analytic moment fitting procedures occur in various situations
of the proposed methodology — be it for continuous or discrete random variables — and
impart a lot of flexibility to the MAP-based decomposition. Many such fitting procedures
— mainly for continuous random variables and often restricted to matching the first two
moments — have been published in the literature [28, 26, 13, 7, 15] and may be utilized for
our purposes. Here, we give — without derivation (see [27]) — the methods for matching
an acyclic continuous/discrete phase-type distribution of order 2 (ACPH(2)/ADPH(2)) to
three given (power/factorial) moments, respectively. In both cases, which are treated in
parallel due to their analogies, the theoretic bounds on the second and third moments with
respect to the PH representation will be given explicitly. Unlike in the above mentioned
references, the resulting representations of second order tolerate the ultimate ranges of the
first three moments, i.e., in particular random variables with coefficients of variation less
than that of the exponential /geometric distribution can be fitted.

Note that the parameters of the ACPH(2)/ADPH(2) random variables — denoted by X
and N, respectively — can only be obtained as outlined in Table 1, if the power/factorial
moments satisfy specific bounds. These moment bounds of ACPH(2) and ADPH(2) dis-
tributions are summarized in Tables 2 and 3, respectively, along with related conditions.
The bounds of Table 2 coincide with those for the (more general) matrix-exponential dis-
tributions of second degree [21]. In Table 3, parameter g is defined as

: 2
gzm(f1(2f1+\/ﬁ)(3f2+2f1)(f2_2(f1_1))_2f2 (f2—\/ﬁ)> |

and parameter d is given in Table 1. The well-known bounds of the squared coefficients of

'If the service time is specified by its moments, PH fitting will already be necessary during node analysis.



‘ mom. ‘ condition ‘ bounds
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Table 3: Bounds for the first three moments of the ADPH(2) distribution

variation of ACPH(2) and ADPH(2) distributions can be obtained from the bounds of the
msy 2_f2+f1—f12

second moments via ¢% = E 1 and ¢ = e

If the second power/factorial moment falls outside the feasible range, we will resort to
specific higher-order representations (see [13] for the continuous and [3] for the discrete
case) during the moment matching to achieve an exact fit in the first two moments. If the
third power /factorial moment does not fulfill the requirements, one option is to set it to
the closest boundary value (computed for the given first two moments). To conclude this
section, we once again point out the importance of compact representations of service/idle
times or number of customers in a busy period for an efficient MAP-based decomposi-
tion. The above procedures provide the best possible mapping of three moments into a

continuous or discrete PH representation of order 2.

3 Markovian Arrival Processes (MAPs)

Markovian arrival processes are a rich subclass of Markov renewal processes with high
popularity in the research community of traffic engineering.  Let us consider a MAP
with a finite state space of size m. This parameter is also called the order of the MAP
and determines the dimensions of the matrices and vectors introduced below. Transitions
of a MAP are distinguished whether they cause an arrival or not. Associated rates are
correspondingly grouped into the two matrices Dy and Dy:

e D, is a nonnegative (m X m)-rate matrix.

e D, of the same dimension has negative diagonal elements and nonnegative off-
diagonal elements.

e The irreducible infinitesimal generator @ is defined by Dg + Dy.

We require that Dy is invertible. Then implicitly Q@ # Dy, i.e., the arrival process does
not terminate. With probability % (1 < i,k < m,k # i), there will be a transition
from state 7 to state k& without an arrival. With probability % (1 <i,k <m), there

will be a transition from state ¢ to state k£ accompanied by an arrival.
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For the underlying Markov process with CTMC generator ), we define the stationary
probability vector 7 by

QR =0, me=1,

where e = (1,...,1)7 is the column vector of ones.
The mean arrival rate and squared coefficient of variation of a MAP are [24]
1
)\MAP = m = 7TD18 and
E[?]
f = ———1=2\rm(—Dp) 'e—1 tivel 1
CAAP I rm(—Dg) e , respectively, (1)

where T' denotes the marginal interevent (i.e., interarrival or interdeparture) time of the
traffic process. In general, the interevent times of a MAP are correlated. The non-zero lag
coefficients of correlation pr(j) (j > 0) of an interval-stationary MAP can be derived [24]:

E[Lolowy] —E[I] _ Arw[(=Do) 'Dif(~Do) ‘e -1
E[r?] - E[I) 2\rm(—Dp)~'e — 1

I' and I'g4; denote any two intervals j lags apart in the sequence of interevent times.
Many familiar arrival processes represent special cases of MAPs, among them Poisson

processes, MMPPs, and — most important in view of MAP-based decomposition for general
queueing networks — the superpositions of independent MAPs.

Pr(j) =

Continuous PH distributions

The random variable X associated with a continuous PH distribution function F(t) rep-
resents the time to absorption in a finite continuous-time Markov chain (with m transient
states), or more formally: Fx(t) =1— aelte. The nonsingular (m x m)-matrix T denotes
the generator of the transient Markov chain ((T"); < 0 for 1 <i<m, (T);; > 0for i #j
so that Te < 0, but # 0). The m-dimensional vector « is the initial distribution. The
tuple (e, T') completely characterizes the PH distribution with moments

EX])=ila(-T)"e . (2)
The marginal distribution of the interevent time of a MAP is found to be of phase-type. If
all correlations in the MAP vanish, the resulting process will be a PH renewal process (a, T')
with a = :318 and T = Dy. In its MAP notation, Dy then equals D; = (—-Te)a. In
Section 2, we already introduced the ACPH(2) distribution, whose order is 2 and whose

parameters are p, \; and \y. Its representation (o, T') is given by

A A
0 =X

a=(p,1—p) and T:‘

4 Busy-Period Analysis of MAP/PH/1(/K) Queues

The analytical tractability of MAPs manifests itself in efficient computational procedures
of the matrix-analytic approach to queueing systems, which starts from a description of the
level-defining queue length process as a quasi-birth-death process (QBD, [23]). We exploit
corresponding methods for the proposed decomposition, where all nodes of the network
are analyzed as MAP/PH/1 or MAP/PH/1/K systems. We adopt the following notation:
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K the size of a finite buffer including the server place
S the random variable for PH service time with representation (e, T')

N the number of customers served during a busy period with conditional factorial mo-
ments @i, @2, @3 (defined as column vectors)

Y = (Yo, Y1, -, Yi) the stationary queue length distribution (qld) at arbitrary time
xo the stationary probabilities that a departure leaves behind an empty system

Throughout the paper, subscripts A/S and superscripts (A)/(S) indicate affiliation to the
arrival process or service time, respectively. The scalars m, and mg are the orders of
the input MAP (D{®, D) and of the PH service time distribution, which will also
be denoted by D(()S) = T and D = (—Te)a in the chosen QBD notation. Let p =
A - E[S] = 71'D£A)6 - a(—T) 'e be the offered load of the queueing system with the
following QBD generator matrix of block tridiagonal structure:

[ A” 4, 0 -~ 0 | A9 _ pWer
A, A, A, . A, =DWar
Q=| o . . . 0 with  A; = D™ @I+ 1 D
: AV2 Avl Avo %2 - I~® Df)
0o - 0 A, AP A = Ay + A,

The operator ® denotes the Kronecker product [5]. For queues with unlimited capacity
(K = 00), the bottom line of matrix @ becomes irrelevant and its dimension as well as
the bold-faced subscript in y; run to infinity. Our definition of the QBD implies the same
dimensions for the vectors y; and @o, namely my4 - mg, which also is the dimension of each
block row/level of matrix @. The matrix-analytic techniques [23, 18] efficiently compute
various kinds of qlds (e.g., ¥), their moments and many other performance measures, like
loss probabilities, etc. Formulae for the first two moments of the waiting time can be found
in [12, 13]. In view of the output approximation in the next section, we discuss here how
the moments of N — the number of customers served in a busy period — are determined for
MAP/PH/1 and MAP/PH/1/K systems.

4.1 MAP/PH/1 queue: number of customers in a busy period

In order to obtain the generating function of the random variable N, we examine the
discrete-time Markov chain (DTMC with transition probability matrix IT) embedded in
the QBD at the epochs of level switching:

o AY o o

A, 0 Ay, 0 - A(()O) = (_%&0))71:;{0
- | with Ay = (—Ay) Ay

0 A 0O A s
Cor T Ay = (A A,

Furthermore, we define f;;(n) = P{N =n, Z i) = (0,) ] Zo = (1,i)} and matrix F(n) =
0
{fijin)} (1 <4,j < my-mg), where Z,, stands for the state of the DTMC in terms of a
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level number and a block matrix index. The stopping time ’yél’i) specifies the occurrence

of the transition that ends the busy period having started in Zy = (1,4). The conditional
generating function F'(z) of the number of customers served in a busy period is given by

— Z ﬁ(n) 2" =2 A+ A F(2)? (see [20]) . (3)

Note that F(1) = G, where G is the well-known fundamental-period matrix of both the
DTMC and CTMC above — the key ingredient for the computational procedures of the
matrix-analytic approach (e.g., see [17] for its computation). Since we assume p < 1 for
the infinite-buffer queue (i.e., stability), G is a stochastic matrix (i.e., Ge = e).

Now, we derive the first three conditional factorial moments ¢, 2 and 3 of random
variable N. For notational convenience, let F(™ = L_F(z)|,_; (n > 0, where F© = G).
The derivatives of F'(z) at z = 1 can be written in the general form (where I,y is the
indicator of event e):

0
Y4 . .
F® = 1{66{0,1}} cAx+ Ay - Z <i>F(e_Z)F(Z) (Z > 0) . (4)
i=0

Algebraic manipulations yield the following simple iterative procedures for F() (to be
determined first) and F'() assuming G is known:

Fl, = (I-AG) ' (As + AgFMG)
FZ, = (- A4G) "' A (FOG +2F0?)

with initial values F{" = F{® =
Finally, vectors ¢; = F(’)e (z = 1,2,3) for the conditional factorial moments are
obtained from (3) as

o1 = {EINIZo=(1i)] } = (I - Ao — A¢G) "Ase
2 = {EIN(N-1)|Z, = (1, )1}—2(1 Ay — 40G) " A F Mg,
s = {BIN(N = 1)(N = 2)|Z = (1i)] } = 3(I - Ag - AoG) " Ag(F@p; + FMpy)

Note that (4) allows to compute the higher moments in a similar way, and to calculate the
vectors of the first £ factorial moments we need to compute matrices F©© = @, ... , F¢-1),

-1
-1

4.2 MAP/PH/1/K queue: number of customers in a busy period

Again, we start from the DTMC embedded in the QBD. The quadratic transition prob-
ability matrix IT ends with the (K + 1)st block row (i.e., the one belonging to level K),
in which the next to last block — the only nonzero block in the last row — has to be re-
placed by A = (— A(K)) 1 A,. Determining the conditional factorial moments of N
for the finite-buffer queue proceeds very much along the same lines as for the MAP/PH/1
system. But now — since the busy-period behavior is no longer level-independent — the



corresponding definitions are expanded by a capacity information.

o A o ... o o o
— —1
A, 0 A, Ay’ = (FA; )1 A
II = 0 .. .. .. 0 with AO - (_41)_ 40
. . . A2 — (_Al)fl A2
A 04 A0 _ (LA 1 4
0o ... 0 A% o

Consequently, we have f;j(n,k) = P{N = n, Z’y(l,i) = (0,7)|Zo = (1,i),A = k} and
0

F(n, k) = {f;(n, k)}, where the variable A counts the number of levels starting from the
current level to the greatest one. In analogy to (3), the conditional generating function
F(z) of the number of customers served in a busy period of a MAP/PH/1/K system is
given by:

> A if k=1
F(zk) =Y F(nk)-2" =" 72 '
n—1 ZA2+AOF(Z,I€—1)F(Z,I€) if k>1

With F,‘En) = L F(2,k)|.=1 (n >0, where F,‘EO) = F(1,k)), the derivatives are (¢ > 0)

Teeqoy A if k=1
F = OO\ oy i
Teqoyy A2+ Ao - Y <Z> FEPRD f k>

1=0

We are interested in the conditional factorial-moment vectors ¢; = FI(g)e (1 =1,2,3) for
the subscript £ = K. Due to the more involved successive substitution scheme, we now
have to compute all four matrices FI({0 ), F1(<1 ), F1(<2 ), FI({?' ) explicitly from:

-1
14 —i) (i
Fkge) _ (I B AO F’gO_)l)—l . <I{ZE{031}} A2 + AO . Z <Z> Fkgt;]_ )Fkg )> . (5)

i=0
Starting with initial values F\” = F" = A F® = F® = 0, this substitution
scheme suggests to calculate the terms F,‘Ee) consecutively in the order

for ((=0t03){for (k=2to K){F® =... Bq. (5)}}.

Finally: goleI((—l)e, 902:F1(<2)6a 903:FI((?)6 :

4.3 Quantities needed for the output approximation

As will be outlined in the next section, the proposed output approximation for MAP/PH/1-
(/K>1) queues attempts to match an ADPH(2) distribution to the first three factorial
moments f1, fo, f3 of the random variable N* — the number of customers served after the
first customer of a busy period on the condition that more than one customers are served
in this busy period. Obviously, the relationship between N and N* can be formulated by

P{N =n+1}
1- P{N=1} (n>1) . (6)

P{N*=n}=P{N=n+1|N>1} =

10



Before converting the (conditional) factorial moments ¢; (i = 1,2,3) of N into the (un-
conditional) factorial moments f; (i = 1,2,3) of N*, we state that for K > 1 (including
K = 00) pgo = P{N = 1} can simply (see matrices IT) be computed from:
x -
po=P{N=1}=2(-D" e DDV © I) - Aze = Z. Ase. (7)
0
The vector Z, = ﬂ(—D(()A) ®I) (D ®1I) contains the distribution of the QBD, when
o€

the first customer of a busy period has just entered the system. The elements of matrix A,
can be interpreted as the conditional probabilities that no other customers arrive before
the first customer’s service is finished. For MAP/PH/1(/K) queues, xq is obtained from

1
B )\A(l - Ploss)
where Pl,gs denotes the loss probability (which naturally equals 0 for K = oo). Vector
z. will also serve to uncondition the factorial moments of N. Exploiting expression (6)

together with some algebraic manipulations, we can transform the factorial moments of N
into those of N*:

o yo(-D§V © I)  (see [4])

i = Zepr — 1 f_5e¢2—23e901+2
e 1— EeAze ’ 2 1— EeAze
f o ge‘Pi& - 3ge¢2 + 6ge‘P1 —6
b 1— geAze

5 Output Models for MAP/PH/1(/K>1) Queues

In the output approximation of the systems above, we extend ideas from [13], where
the departure processes are approximately modeled as MAPs with an SMP skeleton.
The so-called busy-period approach leads to very compact and yet sufficiently accurate
MAPs with intuitive physical interpretations. In analogy to [13], we distinguish between
MAP/PH/1(/K>1) and MAP/PH/1/1 queues in principle. For the latter systems, the
exact departure process might often be of a reasonable size (namely my - (mg + 1)) for
efficient use in a MAP-based decomposition. In the [13], even more compressed output
models for MAP/PH/1/1 queues are additionally proposed. The output approximation
of this paper has been designed for queueing systems, where more than a single customer
may be served during a busy period (as opposed to MAP/PH/1/1 queues). Therefore,
this section is dedicated to MAP/PH/1(/K>1) systems. First, we develop a DTMC model
that approximates the behavior (i.e., more precisely the first three moments, if it is possible
with ADPH(2)) of the number of customers in a busy period. Enhancing this DTMC with
conditional jump time distributions yields a semi-Markov process, from which the output
MAP is easily derived by plugging in PH representations for service times and idle periods.

In general, the proposed output approximations are very flexible with respect to the
order of the corresponding MAPs, especially due to moment-matching techniques. To avoid
ambiguities, many quantities related to the output process will be indexed with subscript
D or superscript (D).

5.1 DTMC model for the number of customers in a busy period

An event in the departure process, i.e., a customer leaving the MAP/PH/1(/K>1) system,
corresponds to a transition in the proposed DTMC model. Any move to state 0 exclusively
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ADPH(2) moment matching to N based on f.ff
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Figure 1: Via the DTMC to the SMP(3)

signals the departure of the first customer in any busy period. Without any additional
information — as depicted in Figure 1 (top part) — we can state that — if the DTMC
follows the (solid) arc from 0 back to the same state — a single-customer busy period
must have occurred in the queueing system (with the corresponding interdeparture time
being associated with the previous transition of the DTMC). Thus, the probability pyy =
P{N = 1} is attributed to transition 0 — 0. Any path originating in state 0 and leading
to non-zero states comprises as many transitions as customers succeed the first customer
in a busy period with more than a single customer, before this path returns back to state 0
for the first time. So, these paths describe the random variable N*, which might have any
distribution depending on the node specifications. If its moments are not entirely out of the
feasible range (which would require a higher-order approximation), we will choose to match
an ADPH(2) distribution (with parameters p, 51, 32) to the first three factorial moments of
N* (given at the end of the preceding section). The moment-matching procedure of Section
2 results in the DTMC with three states of Figure 1 (middle part), which approximates
the behavior of the random variable N*.
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5.2 From the DTMC to the SMP(3)

The above DTMC contains no information on the durations of the interdeparture times
— they are simply set to unity. However, an output model to be used in a traffic-based
decomposition must reasonably reflect that interdeparture times consist of either a single
service period or of the sum of a residual arrival time and a service period. To this end,
we interpret the DTMC of the previous paragraph as a DTMC embedded in an SMP with
three states (SMP(3)) and attach a jump time distribution function conditioned on both
the source and target state to each transition (with transition probabilities p;;, see Figure 1
(bottom part)). The interdeparture time preceding the departure of a customer associated
with a move to state 1 or state 2 equals a service period S with distribution function
Fs(t) (Where S = 501 = Sll = 521 = SOQ = SQQ). I(NZI) and I(N>1) stand for the random
variables of the idle periods following a busy period with a single or more than one customer,
respectively. The service period of the first customer in a busy period is taken into account
in the conditional jump time distribution functions Fyv-1), g, (t) and Fyws1,g,,(t). This
SMP(3) skeleton distinguishes only two idle periods (as a simplification). Generally, an idle
period depends on the state of the input process right after the departure which finished
the previous busy period of the MAP/G/1(/K) queue. The state of the input process at
this instant, in turn, is influenced by the number of served customers in this busy period.

5.3 From the SMP(3) to the output MAP

By utilizing PH representations of service times and idle periods, we now derive compact
output MAPs from the SMP(3) skeleton. The SMP(3) remains invariant, if we reverse the
order of the idle periods I(V=" and I™>") and their physically succeeding service times
Soo and Sy, respectively, while keeping the event of departure at the end of each sum
of random variables. In our MAP representation, we now contract the services contained
within transitions originating from the same state into a single PH specification (e, T')
(So0, So1, So2 — 1st block row of D((,D), and analogously Sig, S1; — 3rd block row of D((,D)
and Ssy, S99 — Hth block row of D(()D)). The interchange of random variables yields a more
compact (and equally precise) MAP:

(N=1)

T Ize
T pgo(—Te) . O(N—=(1)) 0 0 0
m% e
0 D{N=! 0 0 0
(D) _ (N>1)
D, = x Ize (8)
0 0 T plg(—Te) . (]:E(T(l)e) 0
0 0 0 D(‘,N>1g 0
0 0 0 0 T
0 0 pu(—-Te)a 0 pp(—Te)
DN Veq 0 0 0 0
D) = 0 0 pu(-Te)a O 0 (9)
DN>Yeq 0 0 0 0
0 0 pgl(—Te)a 0 pgg(—Te)a

The MAPs (D{N=Y, DIV=1) and (DM, DY) describe the idle periods after a busy
period with a single customer or more than one customer, respectively. The probability
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2" =" (Ise) Y (Ise)
(N=1)
x; e
(I®e) reduces the dimension from m4-mg to m,4). If we want to capture the full behavior of
the input MAP (D(()A), DiA)) in the output model, we may set D(()N=1): D(()N>1) = D(()A)
and D£N=1) = D§N>1) = D:EA). Then the descriptions of the idle periods only differ in

their initial distributions and the output MAP can be compressed to

vectors are appropriate initial distributions (the term

T Ize
T 0 O poo(—Te)‘(;(N—zw
L1
(N>1
D x Ise
D=0 T 0 po(-Te) 2 (N>(1) ) (10)
x e
0O 0 T 0
0 0 O D
0 pgl(—Te)a pgg(—Te)a 0
0 pi(—Te)a 0 0
D _ 1
1 0 pa(—Te)a pp(—-Te)a 0 (11)
D®ea 0 0 0

In the following, we outline how the unknown quantities are determined from the
MAP/PH/1(/K>1) queue.

Determining "~ " and z{" "
As indicated by the notation, our choice for :c(()N=1) is the vector of the stationary prob-

abilities of ending a single-customer busy period in the QBD. Obviously (see also 4.3),

V=Y can be computed from

m((]N=1) = geA2

Vector mgN>1) is a compound analogue of mgNZI) for the idle period after a busy period
with more than one customer resulting from CB(()N=1) + a:(()N>1) = m%)eilfo-

Moment fitting for the idle periods and service times

Unless the order of the output MAP becomes too large, (D((,Nzl), DgNZl)) and (D((,N>1),
D£N>1)) are chosen identical to the input MAP matrices (D(()A), D§A)). The correspond-
ing output model (10)/(11) has the order m4 + 3mg, which is linear in my and mg.
Considering the second and third moments of the number of customers served in a busy
period only added mg additional states (compared to [13]). If the distinction between

zo(Ive) . xi" " (Ise)

To€ for N=1) and

IN=1 and IV>1) is completely ignored, we will substitute

zo " (Ize)
a:(()N>1)e
Then we might as well match a low-order PH distribution (8, U®) to the first moments
of the idle period (preferentially an ACPH(2) one to the first three power moments, see
Section 2). The residual arrival time corresponds to the absorption time of a CTMC

in D((,D) of (10), which allows to find an even more concise output MAP.
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zo(Iwe)

To€ ). So, it is itself a PH distribution with representation

(with initial distribution

(%, D((,A)), whose moments can easily be calculated (see (2)). This results in the

following replacements in (10)/(11):

zo(Ize)

DM UM DWe  —UWe o 8

Similar substitutions — typically of order 2 in form of an ACPH(2) distribution, unless the
squared coefficient of variation is less than 0.5) — can be performed for the idle periods of
the output model (8)/(9) (of order 2m4 + 3 mg) and in general for possibly unnecessarily
large PH service time distributions. Especially, when the two types of idle periods need to
be distinguished (for reasons of accuracy), the application of moment matching to (8)/(9)
often yields the most compact approximation of the departure process.

The busy queue

A special situation arises, if the system almost never becomes empty, i.e., xge =~ 0. Then,
the output process can be modeled as a PH renewal process, where the PH interarrival
time distribution corresponds to the service time (a, T') (either exact or approximate).

6 Numerical experiments

In this section, we examine the output approximation (10)/(11) of the previous section.
We concentrate on the mean queue length E[NV;] at arbitrary time (see [18, 22] for the
computation for MAP/PH/1(/K) systems). In order to assess the accuracy of the decom-
position results, we perform simulations by means of the SPNL component of TimeNET
[30] with 99% confidence level and a maximum relative error of 1%. We first study the
dual tandem queue in Figure 2 taken from [13]. External arrivals occur according to a
bursty and nonrenewal MMPP with two states whose parameters are given in the figure
and result in the MAP notation

—(TO + )\0) To
™ —(7’1 + )\1)

X O
0 X\

(A)

DM = and D = ‘

While the first queue processes requests in exponentially distributed service times (with
rate 2.0), the second queue (with infinite capacity) has an Erlang-2 service time distribution
of expectation 0.8. Since in the MAP-based decomposition the analysis of the first node
in a tandem queueing network will always be exact (except for numerical errors), we focus
on the mean queue length at the second node. In three sets of experiments, we vary
specifications at the first queue (i.e., buffer size, service rate and mean arrival rate) in

K

MMPP ~ C ©—>
(r=0.9375, 1, =0.0625, A ;= 6.0, A, = 0.1333)

mean rate = 0.5, scv = 4.1 exponential (2.0) erlang(0.8,2)

Figure 2: The dual tandem queue
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Simulation Decomposition Simulation Decomposition

K mql conf. int. mqgl rel.err. K mql conf int. mql rel. err.
oo 2.0401 +0.0128 2.0795 +1.9% 10 1.2779 =+0.0090 1.2809 +0.2%
(results from ref. [13]: 1.8789 —7.9% 1.2671 —0.8%)

0.9017 +0.0086 0.8847 —1.9%
0.6748 +0.0036 0.6451 —4.4%
0.5632 +0.0045 0.5025 —10.8%
0.4311 +0.0023 0.3307 —23.3%

30 1.9696 +0.0141 2.0157 +2.3%
25 1.9199 +0.0159 1.9540 +1.8%
20 1.8083 +0.0127 1.8380 +1.6%
15 1.6068 +0.0118 1.6287 +1.4%

N W k= O

Table 4: Mean queue lengths (mql) at second node for the dual tandem queue (varied K)

Series for varied parameter at first queue
service rate mean arrival rate

Simulation Decomposition Simulation Decomposition
P mql conf. int. mql rel. err. mql conf. int. mql rel. err.
0.1 2.8038 +0.0219 2.5636 —8.6% 0.2032 +0.0020 0.2035 +0.1%
0.2 23016 =+0.0155 2.3267 +1.1% 0.4809 +0.0041 0.4880 +1.5%
0.3 1.7402 +0.0170 1.8152 +4.3% 0.8187 +0.0060 0.8422 +2.9%
0.4 1.2543 +0.0095 1.3200 +4.6% 1.2542 +0.0099 1.3120 +4.6%
0.5 0.9479 +0.0073 0.9762 +3.0% 1.8458 +0.0152 1.9696 +6.7%
0.6 0.7964 =+0.0052 0.8064 +1.3% 2.7272 +0.0242 2.9567 +8.4%
0.7 0.7141 +0.0060 0.7163 +0.3% 4.1579 +0.0325 4.6005 +10.6%
0.8 0.6514 =+0.0045 0.6619 +1.6% 6.9917 +0.0399 7.8729 +12.6%
0.9 0.6290 +0.0055 0.6258 —0.5% 15.402 +0.1299 17.573 +14.1%

Table 5: Mean queue lengths (mql) at second node for the dual tandem queue (K = c0)

order to investigate their impact on the proposed output approximation as observed in the
queueing behavior of the downstream queue.

Table 4 lists simulation data and decomposition results for different values of capacity
K at the first queue. In [13], where the MAP-based decomposition ignores higher moments
of the number of customers served in a busy period, the considered dual tandem queue
is evaluated for K = oo and K = 10. Comparing rows 3 and 4 shows that an additional
matching of the second and third moment of this random variable /N significantly improves
the numerical accuracy (from —7.9% to +1.9% and from —0.8% to +0.2%, respectively).
At the same time, the order of the output MAP approximations only increases from 4 to
5. Note that the orders of the exact output MAPs are substantially larger (i.e., infinite
for K = oo or m$** = mu(1 + Kmg) = 22 for K = 10). Medium-sized and large
capacities lead to satisfactory relative errors, even though in cases K = 20,15,10,6 the
third (factorial) moment is set to the closest permissible boundary value as outlined in
Section 2. The largest relative modification occurs for K = 15, where the true value
f3 = 2098.0 is replaced by 2222.9. Very small buffer sizes (see K = 2,3) appear to be
unfavorable to the proposed output approximation. This drawback, however, need not be
overrated, since in these cases the exact output MAPs are usually so compact themselves
that they can directly be employed in the context of MAP-based decomposition (as it is
done for the MAP/PH/1/1 system, see [13]).
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mean rate= 0.5, scv = 8.1
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Figure 3: The four-node queueing network

In the next two series of experiments, we look into the dependence of decomposition
results on the utility of the first queue, which is tuned in two ways: either by changing the
service rate of the exponential distribution or by uniformly scaling all parameters of the
arrival process so that its squared coefficient of variation (see (1)) remains constant, while
the mean arrival rate varies. Capacity K is fixed to infinity. In the first series (left-hand
side of Table 5), all other specifications of the network of Figure 2 are left untouched so
that the utility at the second queue does not change. In the second series (right-hand
side of Table 5), the expectation of the Erlang-2 distribution is additionally altered to
0.5 so that we have identical utilities at both queues. The last column suggests that the
approximations of the mean queue lengths at the second node deteriorate with increasing
utility of the first queue, which however cannot be confirmed in general with respect to the
fiftth column. While overall results might be regarded acceptable, the deviations of more
than 10% for few values in the last column arouse the conjecture that in some cases the
fourth and fifth moments of the random variable N ought to be taken into account, too.

An important feature of the proposed MAP output models, which is indispensible for an
efficient network decomposition, consists in their moderate orders. Table 6 demonstrates

q.-- MAP Simulation Decomposition q.- MAP Simulation Decomposition

no. mp mql mql rel. err. no. mp mql mql  rel. err.
1 8 0.2800 0.2804 +0.1% 6 38 0.2527  0.2680 +6.1%
2 14 0.2661 0.2716 +21% 7 44 0.2544 0.2671 +5.0%
3 20 0.2615 0.2706 +3.5% 8 50 0.2538 0.2662 +4.9%
4 26 0.2584 0.2698 +4.4% 9 o6 0.2536 0.2654 +4.7%
D 32 0.2542 0.2689 +5.8% 10 (62) 0.2493 0.2646 +6.1%

Table 6: Mean queue lengths (mql) for 10-node tandem network
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queue input MAP output MAP Simulation Decomposition

number order my4 order mp mql conf. int. mql rel. err.
1 2 8 0.4630 +0.0042 0.4635 +0.1%
2 32 41 0.7994 +0.0078 0.8240 +3.1%
3 41 (44) 0.2726 +0.0016 0.2799 +2.7%
4 41 (47) 0.2613 +0.0024 0.2683 +2.7%

Table 7: Mean queue lengths (mql) for four-node queueing network

how these orders (see columns labeled mp) grow only linearly in a tandem network of ten
homogeneous infinite-buffer queues with Erlang-2 service distributions (mean rate 1.9).
The two-state MAP depicted in Figure 3 as the arrival process to queue 1 also serves as the
external input to the tandem network. However, it is scaled to a mean arrival rate of 0.38
(with the squared coefficient of variation kept at 8.1). The first two queues of this network
are also analyzed by MAP-based decomposition in [25]. Therein, MAP representations of
order 134 for the departure process of the first queue deliver excellent results for the mean
queue length at the second node. In order to proceed in the analysis of longer tandem
networks, more compact representations are required. In the methodology of this paper,
the internal MAP sizes evolve according to the formula mp = m4 + 3-mg = my + 6 from
queue to queue so that the output of the tenth queue in series is of order 62 only (brackets
indicate that this MAP is actually not used in the computations). In a comparison between
decomposition and simulation results (confidence intervals range from +0.0012 to +0.0026),
the analytic values come off well both quantitatively and qualitatively. The mean queue
lengths are slightly overestimated, but their falling off due to decreasing squared coefficients
of variation of the internal traffic is correctly captured (unlike simulation, see queues 6/7).
Finally, we present a general four-node queueing network with splitting and merging
(Figure 3) to emphasize the potential of an obvious decomposition approach to such net-
works based on the output approximation of Section 5. Again two bursty external inputs
— MAPs of orders 2 and 4 with the given squared coefficients of variation (scv) — are taken
from [25] with their mean rates being scaled to the stated values. Besides the known
specifications for the exponential and Erlang distributions — here Erlang-3 at queue 2 —,
a mixed Erlang and a hyperexponential service time distribution — as also used in [1] —
are represented in PH notation in Figure 3 below the corresponding queues. They cover
variabilities ranging from 3 to 12. Furthermore, routing probabilities and a finite buffer
size are depicted. Table 7 collects the errors of the decomposition results (all below 3.1%)
relative to the simulated values along with the orders of the involved traffic descriptors.
Note that both splitting (invariant to MAP order) and merging (multiplies orders of in-
volved MAPs) are performed as exact operations. The data illustrates that the provided
output approximation allows a reasonable trade-off between accuracy and efficiency.

7 Conclusions

A compact output approximation of MAP/PH/1(/K) queues has been presented suggesting
an efficient decomposition of networks of such queues. The key quantity in this approxima-
tion is the random variable N — the number of customers served in a busy period — whose
first three moments are matched by the output MAP model. Thus, the approach in [13]
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is extended. Since the orders of these MAPs depend only linearly on those of the input
MAP and the PH service representation, queueing networks with several nodes can be
decomposed quickly. Due to the fact that these traffic descriptors appropriately reflect the
correlation structure of the internal traffic, numerical results for the mean queue lengths
show good coincidence with simulation data. The short response times of the related algo-
rithm together with its capability to deliver a wide range of performance measures make it
an attractive (and often the only) alternative to simulation. As indicated by experiments,
it might be worthwhile in some situations to take into account yet higher moments — say
fourth and fifth — of random variable N for enhanced precision. This can be achieved by
means of an ADPH(3) skeleton for the output MAP. For larger networks, a finely tuned
heuristic, which applies moment-matching techniques (see Section 5) to service and/or
residual arrival times as they explicitly occur in the output MAP model, can still com-
press the involved traffic descriptors. This opens even further-reaching opportunities in
the trade-off between accuracy and efficiency.

References

[1] N. G. Bean, D. A. Green, and P. G. Taylor. Approximations to the output process of MAP/PH/1/
queues. In Proc. 2nd Int. Workshop on Matriz-Analytic Methods, pages 151-159, 1998.

[2] G. R. Bitran, S. Dasu. Analysis of the )" Ph;/Ph/1 queue. Operations Research, 42:158-174, 1994.

[3] A. Bobbio, A. Horvdth, M. Scarpa, and M. Telek. Acyclic discrete phase type distributions - Part 1:
Properties and canonical forms. (submitted for publication in 2002).

[4] P. Bocharov. Analysis of the queue length and the output flow in single server with finite waiting room
and phase type distributions. Problems of Control and Information Theory, 16(3):211-222, 1987.

[5] A. Graham. Kronecker Products and Matriz Calculus with Applications. Ellis Horwood, Chichester,
UK, 1981.

[6] D. Green. Lag correlations of approximating departure processes of MAP/PH/1 queues. In Proc. 3rd
Int. Conf. on Matriz-Analytic Methods in Stochastic Models, pages 135-151, 2000.

[7] G. Hasslinger. Waiting time, busy periods and output models of a server analyzed via Wiener-Hopf
factorization. Performance Evaluation, 40:3-26, 2000.

[8] B. R. Haverkort. Approximate analysis of networks of PH/PH/1/K queues with customer losses:
Test results. Annals of Operations Research, 79:271-291, 1998.

[9] A. Heindl. Decomposition of general queueing networks with MMPP input and finite buffers based on
SMPs and MMPPs. In Proc. 4th Int. Workshop on Queueing Networks with Finite Capacity, pages
20/1-15, Iikley, UK, 2000.

[10] A. Heindl. Decomposition of general tandem queueing networks with MMPP input. Performance
Evaluation, 44:5-23, 2001.

[11] A. Heindl. Node reordering for improved performance of traffic-based decomposition. In Proc. 5th
Int. Workshop on Performability Modeling of Computer and Communication Systems, pages 16—20,
Erlangen, Germany, 2001.

[12] A. Heindl. Traffic-Based Decomposition of General Queueing Networks with Correlated Input Pro-
cesses. Shaker Verlag, Aachen, Germany, 2001.

[13] A. Heindl and M. Telek. MAP-based decomposition of tandem networks of -/PH/1(/K) queues with
MAP input. In Proc. 11th GI/ITG Conference on Measuring, Modelling and Evaluation of Computer
and Communication Systems, pages 179-194, Aachen, Germany, 2001.

[14] A. Horvath and M. Telek. A Markovian point process exhibiting multifractal behavior and its appli-
cation to traffic modeling. In Proc. Jth Int. Conf. on Maitriz-Analytic Methods in Stochastic Models,
Adelaide, Australia, 2002.

19



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

[27]

[28]

[29]
[30]

M. A. Johnson and M. R. Taaffe. Matching moments to phase distributions: Mixtures of Erlang
distributions of common order. Commun. Statist.-Stochastic Models, 5(4):711-743, 1989.

P. J. Kiihn. Approximate analysis of general queueing networks by decomposition. IEEE Trans.
Communications, COM-27:113-126, 1979.

G. Latouche and V. Ramaswami. A logarithmic reduction algorithm for quasi birth-and-death pro-
cesses. Journal of Applied Probability, 30:650-674, 1993.

G. Latouche and V. Ramaswami. Introduction to Matriz-Analytic Methods in Stochastic Modeling.
Series on statistics and applied probability. ASA-STAM, 1999.

M. Livny, B. Melamed, and A. K. Tsiolis. The impact of autocorrelation on queueing systems.
Management Science, 39:322-339, 1993.

D. M. Lucantoni and M. Neuts. Some steady-state distributions for the MAP/SM/1 queue. Commun.
Statist.-Stochastic Models, 10:575-598, 1994.

K. Mitchell and A. van de Liefvoort. Approximation models of feed-forward G/G/1/N queueing
networks with correlated arrivals. In Proc. Jth Int. Workshop on Queueing Networks with Finite
Capacity, pages 32/1-12, Tlkley, UK, 2000. Networks UK.

V. A. Naoumov, U. Krieger, and D. Wagner. Analysis of a multi-server delay-loss system with a
general Markovian arrival process. In Chakravarthy and Alfa, editors, Matriz-Analytic Methods in
Stochastic Models, pages 43—66, New York, 1997. Marcel Dekker.

M. Neuts. Matriz-Geometric Solutions in Stochastic Models. John Hopkins University Press, 1981.
M. Neuts. Algorithmic Probability: A Collection of Problems. Chapman and Hall, 1995.

R. Sadre and B. Haverkort. Characterizing traffic streams in networks of MAP/MAP/1 queues. In
Proc. 11th GI/ITG Conference on Measuring, Modelling and Evaluation of Computer and Commu-
nication Systems, Aachen, Germany, 2001.

R. Sadre, B. Haverkort, and A. Ost. An efficient and accurate decomposition method for open finite
and infinite buffer queueing networks. In Proc. 3rd Int. Workshop on Numerical Solution of Markov
Chains, pages 1-20, Zaragoza, Spain, 1999.

M. Telek and A. Heindl. Moment bounds for acyclic discrete and continuous phase-type distributions
of second order. (submitted for publication in 2002).

W. Whitt. Approximating a point process by a renewal process, I. Two basic methods. Operations
Research, 30:125-147, 1982.

W. Whitt. The queueing network analyzer. The Bell System Technical Journal, 62:2779-2815, 1983.

A. Zimmermann, J. Freiheit, R. German, and G. Hommel. Petri net modelling and performability
evaluation with TimeNET 3.0. In Proc. 11th Int. Conf. on Modelling Techniques and Tools for
Computer Performance Evaluation, pages 188-202, Chicago, USA, 2000.

20



