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Abstrat

For non-trivial (open) queueing networks, traÆ-based deomposition often rep-

resents the only feasible { and at the same time fast { solution method besides simula-

tion. The network is partitioned into individual nodes whih are analyzed in isolation

with respet to approximate internal traÆ representations. Sine the orrelations

of network traÆ may have a onsiderable impat on performane measures, they

must be aptured to some extent by the employed traÆ desriptors. The deompo-

sition methodology presented in this paper is based on Markovian arrival proesses

(MAPs), whose orrelation struture is determined from the busy-period behavior of

the upstream queues. The resulting ompat MAPs in onnetion with sophistiated

moment mathing tehniques allow an eÆient deomposition of large queueing net-

works. Compared with [13℄, the output approximation of MAP/PH/1(/K) queues

{ the ruial step in MAP-based deomposition { is re�ned in suh a way that also

higher moments of the number of ustomers in a busy period an be taken into a-

ount. Numerial experiments demonstrate the substantially enhaned preision due

to the improved output models and plumb the new opportunities in the trade-o�

between auray and eÆieny.

1 Introdution

Open queueing networks are widely used in performane modeling of omputer and om-

muniation systems, servie enters, manufaturing systems et. Often, general servie

time distributions as well as �nite waiting rooms are required for di�erent nodes. In addi-

tion, external arrival proesses should be able to apture orrelations and burstiness, sine

real traÆ often exhibits these harateristis.

In this paper, these inputs to the queueing network are assumed to be arbitrary Marko-

vian arrival proess. MAPs are used in traÆ engineering to math orrelated and/or

bursty arrival proesses { also with self-similar properties and long-range dependene [14℄.

The nodes of the network are represented as single-server FIFO systems with or without

a �nite bu�er. Servie times may be spei�ed by their �rst two or three moments or al-

ternatively as ontinuous phase-type (PH) distributions. Thus, the network is assumed to



onsist of either �/PH/1 or �/PH/1/K nodes, between whih ustomers move aording to

a Markovian routing sheme. Customers arriving to a full queue are lost.

Besides simulation, an approximate analysis tehnique known as traÆ-based deompo-

sition may provide a feasible solution method. The network is partitioned into individual

nodes, whih are analyzed in isolation. The output traÆ of a single queueing system is

haraterized and transformed into arrival proesses to downstream queues by splitting

and by merging with other traÆ proesses aording to the network struture. Generally,

deomposition algorithms deliver various (stationary) performane measures, like mean

waiting times, mean queue lengths, et., very quikly.

Although most deomposition algorithms (e.g., [16, 29, 8, 26℄) are based on renewal pro-

esses as traÆ desriptors for ease of tratability, one should not neglet the orrelation

strutures of the external and internal ows. These orrelations have been demonstrated to

signi�antly inuene performane measures espeially for bursty input traÆ. For exam-

ple, a simulation study [19℄ showed that the average waiting time in a queue with highly

orrelated arrivals an be 40 times larger than in the unorrelated ase. The following

deomposition methods take into aount the traÆ orrelations in di�erent ways. In [1℄

trunation tehniques for the in�nite output MAP of a MAP/PH/1 queue are studied. For

dual tandem queues, very good numerial results are reported. However, depending on

the number of phases/states of the servie distribution of the queue and its arrival pro-

ess, the trunated MAPs still beome quite large in general. More preisely, their orders

depend multipliatively on the orders of the PH distribution and the input MAP. Similar

observations hold for the losely related and more exible way [25℄ to obtain �nite MAP

representations of the departure proesses of MAP/MAP/1 queues. While these trunated

MAPs have been shown to math a size-dependent number of oeÆients of orrelations

of lagged interdeparture times exatly [6℄, a di�erent approah to output modeling is to �t

a prede�ned set of traÆ desriptors to seleted performane indies of the true departure

proess. In order to arrive at more ompat representations and also avoid the problem of

overparameterization of MAPs, Bitran and Dasu de�ne the sublass of super-Erlang (SE)

hains [2℄. While aurate results { also for higher moments of the queue lengths { ould

be obtained for networks where internal traÆ exhibits squared oeÆients of variation

below and around unity, SE hains an hardly be used to desribe bursty traÆ. Mithell

and van de Liefvoort [21℄ proposed to use orrelated sequenes of matrix exponentials with

invariant marginals as traÆ desriptors in a deomposition of tandem queueing networks

with �nite apaities. The Linear Algebra Queueing Theory (LAQT) tehniques might

not result in proper density funtions for the departure proesses, whih ompliates the

design of the algorithms. Numerial results ould be substantially improved ompared

with renewal-based deomposition. The two latter approahes selet performane indies

of the departure proess, whih are related to its orrelation struture, { though di�erent

ones. In general, it is an open researh issue, whih ombination of harateristis should

be used to obtain a good and eÆient math to the original departure proess.

The approah pursued in this paper is ompletely di�erent from the methods of the

previous paragraph in that it does not attempt to apture single elements of the orrelation

struture of the departure proess diretly (e.g., by mathing the �rst oeÆients of orre-

lation). Instead the parameters of a MAP are hosen so that this traÆ desriptor reets

the busy-period behavior of the onsidered queue. In [7℄, this onept has been suess-

fully investigated for a disrete-time dual tandem queue with disrete-time semi-Markov

proesses as traÆ desriptors. In ontinuous time, a deomposition for general queueing

2



networks based on semi-Markov proesses (SMPs) and Markov-modulated Poisson pro-

esses (MMPPs) shares the same priniples [10, 9, 12℄. This paper re�nes the exible

deomposition methodology presented in [13℄, whih solely relies on MAPs as traÆ de-

sriptors. Moment �tting tehniques are extended to optionally inlude the third moments

of servie and/or residual arrival times { at no additional ost with respet to the size of

the output MAP approximation. The skeleton of the output MAP itself is revised in suh

a way that it is apable of mathing also the seond and third moment of the number of

ustomers in a busy period of the onsidered MAP/PH/1(/K) queue. While these output

models beome slightly larger than in [13℄, they retain the ruial property that their size

depends linearly on the orders of the input MAP and the PH servie time distribution

(as opposed to the trunation tehniques mentioned above, where these orders multiply).

Atually, only the ompatness of these traÆ desriptors allows to apply MAP-based de-

omposition eÆiently to larger networks. The onstrutive proedure to build the output

MAPs with physial interpretations for eah of their omponents exludes the problems of

pseudo-stohasti representations (as observed in [21℄) and overparameterization.

In the next setion, we briey sketh the MAP-based deomposition methodology,

whih arises from the provided tehniques. Among them, moment mathing to ayli

disrete/ontinuous PH distributions play a prominent role. In Setion 3, MAPs are for-

mally introdued. In the subsequent setions, we fous on the output approximation as the

most ritial elementary proedure of traÆ-based deomposition: Setion 4 highlights the

busy-period analysis of MAP/PH/1(/K) queues and thus provides the quantities required

for the output models disussed in Setion 5. Numerial results for queueing networks are

given in Setion 6, followed by onluding remarks.

2 MAP-Based Deomposition and Moment Mathing

TraÆ-based deomposition assumes that dependenes between queues are suÆiently on-

veyed by the traÆ haraterizations. In the �rst phase, the algorithm determines the

parameters of these internal traÆ representations. In the seond phase, it derives perfor-

mane indies for single nodes and network-wide results.

The methodology of this paper progresses in the same way. The order in whih the

isolated queues are analyzed does not deviate from other (iterative) approahes. Without

feedbak loops, eah node only needs to be treated one { provided that the nodes have

been reordered in advane with respet to external inputs and the network struture [11℄;

in the presene of feedbak loops, the algorithm iterates over those nodes inluded therein

until the rates and the squared oeÆients of variation of the internal arrival ows, i.e.,

MAPs in our ase, have onverged. As for any other deomposition algorithm of this type,

no general statements on the existene and uniqueness of a �xed point an urrently be

made for this iteration sheme.

In general, the following three operations are performed at eah node: 1) MAP traÆ

desriptors direted to the node are merged into a single input MAP. 2) The departure

proess of the queue is approximated as a MAP. 3) The output MAP is split into MAP

substreams aording to the Markovian routing. For the output approximation, matrix-

analyti tehniques (exat for MAP/PH/1(/K) systems) deliver the relevant quantities via

a busy-period analysis. Corresponding proedures yield the performane measures, like

the �rst two moments of the waiting time and queue lengths as well as throughputs and

loss probabilities, in the seond phase of the algorithms (see [13℄ for expliit formulae).
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Global performane indies are derived from these quantities as in [29℄. Sine the splitting

and merging of MAPs in the ontext of traÆ-based deomposition have been disussed in

other publiations (e.g., [25, 12℄), this paper onentrates on the output approximations

of queues. It should, however, be mentioned that the ommonly used merging proedure

ignores possible ross-orrelations among the involved traÆ proesses and therefore annot

be exat in this ase. On this assumption, merging just like splitting of MAPs are rather

straightforward matrix operations.
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Table 1: Moment �tting with ACPH(2) and ADPH(2) distributions

For the overall algorithm to work eÆiently also for larger networks, the dimensions of

the blok matries in the matrix-analyti methods ought to remain in a reasonable range.

The major ontribution of the presented approah in this respet onsists in the fat that

the orders of the output MAPs depend only linearly on the orders of the input MAP and
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Table 2: Bounds for the �rst three moments of the ACPH(2) distribution

the PH servie distribution of the onsidered queue. Moreover, these traÆ desriptors

an be further ompressed due to their struture: so more ompat PH representations

of the residual arrival time and/or of the servie time may be sought for based on their

moments

1

. Even more fundamentally, an output approximation may deide to ignore the

seond and third moment of the number of ustomers in a busy period (as in [13℄) yielding

redued MAP skeletons, whih are suÆiently aurate in many ases. All of the related

moment mathing tehniques may be ombined in omprehensive heuristis (whih will

also take into aount merging situations, i.e., the sizes of the involved MAPs, see e.g.,

[12℄) in order to enfore that the dimensions of the mentioned blok matries range below a

given upper bound. This bound reets the user's hoie in the trade-o� between auray

and eÆieny.

As desribed above, analyti moment �tting proedures our in various situations

of the proposed methodology { be it for ontinuous or disrete random variables { and

impart a lot of exibility to the MAP-based deomposition. Many suh �tting proedures

{ mainly for ontinuous random variables and often restrited to mathing the �rst two

moments { have been published in the literature [28, 26, 13, 7, 15℄ and may be utilized for

our purposes. Here, we give { without derivation (see [27℄) { the methods for mathing

an ayli ontinuous/disrete phase-type distribution of order 2 (ACPH(2)/ADPH(2)) to

three given (power/fatorial) moments, respetively. In both ases, whih are treated in

parallel due to their analogies, the theoreti bounds on the seond and third moments with

respet to the PH representation will be given expliitly. Unlike in the above mentioned

referenes, the resulting representations of seond order tolerate the ultimate ranges of the

�rst three moments, i.e., in partiular random variables with oeÆients of variation less

than that of the exponential/geometri distribution an be �tted.

Note that the parameters of the ACPH(2)/ADPH(2) random variables { denoted by X

and N , respetively { an only be obtained as outlined in Table 1, if the power/fatorial

moments satisfy spei� bounds. These moment bounds of ACPH(2) and ADPH(2) dis-

tributions are summarized in Tables 2 and 3, respetively, along with related onditions.

The bounds of Table 2 oinide with those for the (more general) matrix-exponential dis-

tributions of seond degree [21℄. In Table 3, parameter g is de�ned as

g =

6
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and parameter d is given in Table 1. The well-known bounds of the squared oeÆients of

1

If the servie time is spei�ed by its moments, PH �tting will already be neessary during node analysis.

5



mom. ondition bounds

1. 1 � f

1

<1

2. 1 � f

1

< 2 2 (f

1

� 1) � f

2

<1

2 � f

1

2 f

1

(0:75 f

1

� 1) � f

2

<1

2 � f

1

and

2 f

1

(0:75 f

1

� 1) � f

2

� 2 (f

1

� 1)

2

g � f

3

� 6 (f

1

� 1) (f

2

� f

1

(f

1

� 1))

3. 2 (f

1

� 1)

2

� f

2

� 2 f

1

(f

1

� 1) g � f

3

�

3 f

2

(f

2

� 2 (f

1

� 1))

2 (f

1

� 1)

2 f

1

(f

1

� 1) � f

2

3 f

2

(f

2

� 2 (f

1

� 1))

2 (f

1

� 1)

� f

3

<1

Table 3: Bounds for the �rst three moments of the ADPH(2) distribution

variation of ACPH(2) and ADPH(2) distributions an be obtained from the bounds of the

seond moments via 

2
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If the seond power/fatorial moment falls outside the feasible range, we will resort to

spei� higher-order representations (see [13℄ for the ontinuous and [3℄ for the disrete

ase) during the moment mathing to ahieve an exat �t in the �rst two moments. If the

third power/fatorial moment does not ful�ll the requirements, one option is to set it to

the losest boundary value (omputed for the given �rst two moments). To onlude this

setion, we one again point out the importane of ompat representations of servie/idle

times or number of ustomers in a busy period for an eÆient MAP-based deomposi-

tion. The above proedures provide the best possible mapping of three moments into a

ontinuous or disrete PH representation of order 2.

3 Markovian Arrival Proesses (MAPs)

Markovian arrival proesses are a rih sublass of Markov renewal proesses with high

popularity in the researh ommunity of traÆ engineering. Let us onsider a MAP

with a �nite state spae of size m. This parameter is also alled the order of the MAP

and determines the dimensions of the matries and vetors introdued below. Transitions

of a MAP are distinguished whether they ause an arrival or not. Assoiated rates are

orrespondingly grouped into the two matries D

1

and D

0

:
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1

is a nonnegative (m�m)-rate matrix.
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0

of the same dimension has negative diagonal elements and nonnegative o�-

diagonal elements.
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is invertible. Then impliitly Q 6= D

0

, i.e., the arrival proess does

not terminate. With probability
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0

)
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from state i to state k without an arrival. With probability
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)

ik

(�D

0

)

ii

(1 � i; k � m), there

will be a transition from state i to state k aompanied by an arrival.
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For the underlying Markov proess with CTMC generator Q, we de�ne the stationary

probability vetor � by

�Q = 0 ; �e = 1 ;

where e = (1; : : : ; 1)

T

is the olumn vetor of ones.

The mean arrival rate and squared oeÆient of variation of a MAP are [24℄
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where � denotes the marginal interevent (i.e., interarrival or interdeparture) time of the

traÆ proess. In general, the interevent times of a MAP are orrelated. The non-zero lag

oeÆients of orrelation �

�

(j) (j > 0) of an interval-stationary MAP an be derived [24℄:
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e� 1

:

�

�

and �

�+j

denote any two intervals j lags apart in the sequene of interevent times.

Many familiar arrival proesses represent speial ases of MAPs, among them Poisson

proesses, MMPPs, and { most important in view of MAP-based deomposition for general

queueing networks { the superpositions of independent MAPs.

Continuous PH distributions

The random variable X assoiated with a ontinuous PH distribution funtion F

X

(t) rep-

resents the time to absorption in a �nite ontinuous-time Markov hain (with m transient

states), or more formally: F

X

(t) = 1��e

T t

e. The nonsingular (m�m)-matrix T denotes

the generator of the transient Markov hain ((T )

ii

< 0 for 1 � i � m; (T )

ij

� 0 for i 6= j

so that Te � 0, but 6= 0). The m-dimensional vetor � is the initial distribution. The

tuple (�;T ) ompletely haraterizes the PH distribution with moments

E[X

i

℄ = i!�(�T )

�i

e : (2)

The marginal distribution of the interevent time of a MAP is found to be of phase-type. If

all orrelations in the MAP vanish, the resulting proess will be a PH renewal proess (�;T )

with � =

�D

1

�D

1

e

and T = D

0

. In its MAP notation, D

1

then equals D

1

= (�Te)�. In

Setion 2, we already introdued the ACPH(2) distribution, whose order is 2 and whose

parameters are p; �

1

and �

2

. Its representation (�;T ) is given by

� = (p; 1� p) and T =

�

�

�

�

��

1

�

1

0 ��

2

�

�

�

�

:

4 Busy-Period Analysis of MAP/PH/1(/K) Queues

The analytial tratability of MAPs manifests itself in eÆient omputational proedures

of the matrix-analyti approah to queueing systems, whih starts from a desription of the

level-de�ning queue length proess as a quasi-birth-death proess (QBD, [23℄). We exploit

orresponding methods for the proposed deomposition, where all nodes of the network

are analyzed as MAP/PH/1 or MAP/PH/1/K systems. We adopt the following notation:
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K the size of a �nite bu�er inluding the server plae

S the random variable for PH servie time with representation (�;T )

N the number of ustomers served during a busy period with onditional fatorial mo-

ments '

1

;'

2
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3

(de�ned as olumn vetors)
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1

; :::;y

K

) the stationary queue length distribution (qld) at arbitrary time
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Throughout the paper, subsripts A=S and supersripts (A)=(S) indiate aÆliation to the

arrival proess or servie time, respetively. The salars m
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e

A

1

= D

(A)

0


 I + I 
D

(S)

0

e

A

2

= I 
D

(S)

1

e

A

(K)

1

=

e

A

0

+

e

A

1

The operator 
 denotes the Kroneker produt [5℄. For queues with unlimited apaity

(K = 1), the bottom line of matrix

e

Q beomes irrelevant and its dimension as well as

the bold-faed subsript in y

i

run to in�nity. Our de�nition of the QBD implies the same

dimensions for the vetors y

i

and x

0

, namely m

A

�m

S

, whih also is the dimension of eah

blok row/level of matrix

e

Q. The matrix-analyti tehniques [23, 18℄ eÆiently ompute

various kinds of qlds (e.g., y), their moments and many other performane measures, like

loss probabilities, et. Formulae for the �rst two moments of the waiting time an be found

in [12, 13℄. In view of the output approximation in the next setion, we disuss here how

the moments of N { the number of ustomers served in a busy period { are determined for

MAP/PH/1 and MAP/PH/1/K systems.

4.1 MAP/PH/1 queue: number of ustomers in a busy period

In order to obtain the generating funtion of the random variable N , we examine the

disrete-time Markov hain (DTMC with transition probability matrix �) embedded in

the QBD at the epohs of level swithing:

� =

2

6

6

6

6

4

0 A

(0)

0

0 0 � � �

A

2

0 A

0

0 � � �

0 A

2

0 A

0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3

7

7

7

7

5

with

A

(0)

0

= (�

e

A

(0)

1

)

�1

e

A

0

A

0

= (�

e

A

1

)

�1

e

A

0

A

2

= (�

e

A

1

)

�1

e

A

2

Furthermore, we de�ne f

ij

(n) = PfN = n; Z



(1;i)

0

= (0; j) jZ

0

= (1; i)g and matrix

e

F (n) =

ff

ij

(n)g (1 � i; j � m

A

�m

S

), where Z

m

stands for the state of the DTMC in terms of a

8



level number and a blok matrix index. The stopping time 

(1;i)

0

spei�es the ourrene

of the transition that ends the busy period having started in Z

0

= (1; i). The onditional

generating funtion F (z) of the number of ustomers served in a busy period is given by

F (z) =

1

X

n=1

e

F (n) � z

n

= zA

2

+A

0

F (z)

2

(see [20℄) : (3)

Note that F (1) = G, where G is the well-known fundamental-period matrix of both the

DTMC and CTMC above { the key ingredient for the omputational proedures of the

matrix-analyti approah (e.g., see [17℄ for its omputation). Sine we assume � < 1 for

the in�nite-bu�er queue (i.e., stability), G is a stohasti matrix (i.e., Ge = e).

Now, we derive the �rst three onditional fatorial moments '

1

;'

2

and '

3

of random

variable N . For notational onveniene, let F

(n)

=

d

n

dz

n

F (z)j

z=1

(n � 0; where F

(0)

= G).

The derivatives of F (z) at z = 1 an be written in the general form (where I

f�g

is the

indiator of event �):

F

(`)

= I

f`2f0;1gg

�A

2

+A

0

�

`

X

i=0

�

`

i

�

F

(`�i)

F

(i)

(` � 0) : (4)

Algebrai manipulations yield the following simple iterative proedures for F

(1)

(to be

determined �rst) and F

(2)

assuming G is known:

F

(1)

m+1

= (I �A

0

G)

�1

�

A

2

+A

0

F

(1)

m

G

�

F

(2)

m+1

= (I �A

0

G)

�1

A

0

�

F

(2)

m

G+ 2F

(1)

2

�

with initial values F

(1)

0

= F

(2)

0

= 0.

Finally, vetors '

i

= F

(i)

e (i = 1; 2; 3) for the onditional fatorial moments are

obtained from (3) as

'

1

= f E[N jZ

0

= (1; i)℄ g = (I �A

0

�A

0

G)

�1

A

2

e

'

2

= f E[N(N � 1)jZ

0

= (1; i)℄ g = 2 (I �A

0

�A

0

G)

�1

A

0

F

(1)

'

1

'

3

= f E[N(N � 1)(N � 2)jZ

0

= (1; i)℄ g = 3 (I �A

0

�A

0

G)

�1

A

0

(F

(2)

'

1

+ F

(1)

'

2

)

Note that (4) allows to ompute the higher moments in a similar way, and to alulate the

vetors of the �rst ` fatorial moments we need to ompute matries F

(0)

= G; : : : ;F

(`�1)

.

4.2 MAP/PH/1/K queue: number of ustomers in a busy period

Again, we start from the DTMC embedded in the QBD. The quadrati transition prob-

ability matrix � ends with the (K + 1)st blok row (i.e., the one belonging to level K),

in whih the next to last blok { the only nonzero blok in the last row { has to be re-

plaed by A

(K)

2

= (�

e

A

(K)

1

)

�1

e

A

2

. Determining the onditional fatorial moments of N

for the �nite-bu�er queue proeeds very muh along the same lines as for the MAP/PH/1

system. But now { sine the busy-period behavior is no longer level-independent { the

9



orresponding de�nitions are expanded by a apaity information.

� =

2

6

6

6

6

6

6

6

4

0 A

(0)

0

0 : : : 0

A

2

0 A

0

.

.

.

.

.

.

0

.

.

.

.

.

.

.

.

.

0

.

.

.

.

.

.

A

2

0 A

0

0 : : : 0 A

(K)

2

0

3

7

7

7

7

7

7

7

5

with

A

(0)

0

= (�

e

A

(0)

1

)

�1

e

A

0

A

0

= (�

e

A

1

)

�1

e

A

0

A

2

= (�

e

A

1

)

�1

e

A

2

A

(K)

2

= (�

e

A

(K)

1

)

�1

e

A

2

Consequently, we have f

ij

(n; k) = PfN = n; Z



(1;i)

0

= (0; j) jZ

0

= (1; i);� = kg and

e

F (n; k) = ff

ij

(n; k)g, where the variable � ounts the number of levels starting from the

urrent level to the greatest one. In analogy to (3), the onditional generating funtion

F (z) of the number of ustomers served in a busy period of a MAP/PH/1/K system is

given by:

F (z; k) =

1

X

n=1

e

F (n; k) � z

n

=

(

z �A

(K)

2

if k = 1

zA

2

+A

0

F (z; k � 1)F (z; k) if k > 1

With F

(n)

k

=

d

n

dz

n

F (z; k)j

z=1

(n � 0; where F

(0)

k

= F (1; k)), the derivatives are (` � 0)

F

(`)

k

=

8

>

<

>

:

I

f`2f0;1gg

A

(K)

2

if k = 1

I

f`2f0;1gg

A

2

+A

0

�

`

X

i=0

�

`

i

�

F

(`�i)

k�1

F

(i)

k

if k > 1

We are interested in the onditional fatorial-moment vetors '

i

= F

(i)

K

e (i = 1; 2; 3) for

the subsript k = K. Due to the more involved suessive substitution sheme, we now

have to ompute all four matries F

(0)

K

;F

(1)

K

;F

(2)

K

;F

(3)

K

expliitly from:

F

(`)

k

= (I �A

0

F

(0)

k�1

)

�1

�

 

I

f`2f0;1gg

A

2

+A

0

�

`�1

X

i=0

�

`

i

�

F

(`�i)

k�1

F

(i)

k

!

: (5)

Starting with initial values F

(0)

1

= F

(1)

1

= A

(K)

2

;F

(2)

1

= F

(3)

1

= 0, this substitution

sheme suggests to alulate the terms F

(`)

k

onseutively in the order

for ( ` = 0 to 3 ) f for ( k = 2 to K ) f F

(`)

k

= : : : Eq. (5) g g :

Finally: '

1

= F

(1)

K

e ; '

2

= F

(2)

K

e ; '

3

= F

(3)

K

e :

4.3 Quantities needed for the output approximation

As will be outlined in the next setion, the proposed output approximation for MAP/PH/1-

(/K>1) queues attempts to math an ADPH(2) distribution to the �rst three fatorial

moments f

1

; f

2

; f

3

of the random variable N

�

{ the number of ustomers served after the

�rst ustomer of a busy period on the ondition that more than one ustomers are served

in this busy period. Obviously, the relationship between N and N

�

an be formulated by

PfN

�

= ng = PfN = n+ 1jN > 1g =

PfN = n+ 1g

1� PfN = 1g

(n � 1) : (6)
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Before onverting the (onditional) fatorial moments '

i

(i = 1; 2; 3) of N into the (un-

onditional) fatorial moments f

i

(i = 1; 2; 3) of N

�

, we state that for K > 1 (inluding

K =1) p

00

� PfN = 1g an simply (see matries �) be omputed from:

p

00

= PfN = 1g =

x

0

x

0

e

(�D

(A)

0


 I)

�1

(D

(A)

1


 I) �A

2

e =
e
z

e

A

2

e : (7)

The vetor
e
z

e

=

x

0

x

0

e

(�D

(A)

0


I)

�1

(D

(A)

1


I) ontains the distribution of the QBD, when

the �rst ustomer of a busy period has just entered the system. The elements of matrixA

2

an be interpreted as the onditional probabilities that no other ustomers arrive before

the �rst ustomer's servie is �nished. For MAP/PH/1(/K) queues, x

0

is obtained from

x

0

=

1

�

A

(1� P

loss

)

y

0

(�D

(A)

0


 I) (see [4℄) ;

where P

loss

denotes the loss probability (whih naturally equals 0 for K = 1). Vetor

e
z

e

will also serve to unondition the fatorial moments of N . Exploiting expression (6)

together with some algebrai manipulations, we an transform the fatorial moments of N

into those of N

�

:

f

1

=

e
z

e

'

1

� 1

1�
e
z

e

A

2

e

; f

2

=

e
z

e

'

2

� 2
e
z

e

'

1

+ 2

1�
e
z

e

A

2

e

f

3

=

e
z

e

'

3

� 3
e
z

e

'

2

+ 6
e
z

e

'

1

� 6

1�
e
z

e

A

2

e

5 Output Models for MAP/PH/1(/K>1) Queues

In the output approximation of the systems above, we extend ideas from [13℄, where

the departure proesses are approximately modeled as MAPs with an SMP skeleton.

The so-alled busy-period approah leads to very ompat and yet suÆiently aurate

MAPs with intuitive physial interpretations. In analogy to [13℄, we distinguish between

MAP/PH/1(/K>1) and MAP/PH/1/1 queues in priniple. For the latter systems, the

exat departure proess might often be of a reasonable size (namely m

A

� (m

S

+ 1)) for

eÆient use in a MAP-based deomposition. In the [13℄, even more ompressed output

models for MAP/PH/1/1 queues are additionally proposed. The output approximation

of this paper has been designed for queueing systems, where more than a single ustomer

may be served during a busy period (as opposed to MAP/PH/1/1 queues). Therefore,

this setion is dediated to MAP/PH/1(/K>1) systems. First, we develop a DTMC model

that approximates the behavior (i.e., more preisely the �rst three moments, if it is possible

with ADPH(2)) of the number of ustomers in a busy period. Enhaning this DTMC with

onditional jump time distributions yields a semi-Markov proess, from whih the output

MAP is easily derived by plugging in PH representations for servie times and idle periods.

In general, the proposed output approximations are very exible with respet to the

order of the orresponding MAPs, espeially due to moment-mathing tehniques. To avoid

ambiguities, many quantities related to the output proess will be indexed with subsript

D or supersript (D).

5.1 DTMC model for the number of ustomers in a busy period

An event in the departure proess, i.e., a ustomer leaving the MAP/PH/1(/K>1) system,

orresponds to a transition in the proposed DTMC model. Any move to state 0 exlusively

11
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p    : F                 (t)
10 (N>1) I           +S
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p    : F  (t)
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S
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11
p    : F  (t)

S
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p    : F  (t)

00
p

p    =

22

21 1p    =
10

p    : F  (t)

2
p    = 1-

p    : F  (t)

00

22

00  I           +S

1
p    = 1-

(N=1)

211

p    : F                 (t)

0

00
p     = P{N=1} 

0 21

*N

Adding conditional jump time distribution functions

0 21

02

01

00

p   = (1-p)(1-p    )

p   = p (1-p    )

00

*
1ADPH(2) moment matching to N  based on f  , f  , f 2 3

Figure 1: Via the DTMC to the SMP(3)

signals the departure of the �rst ustomer in any busy period. Without any additional

information { as depited in Figure 1 (top part) { we an state that { if the DTMC

follows the (solid) ar from 0 bak to the same state { a single-ustomer busy period

must have ourred in the queueing system (with the orresponding interdeparture time

being assoiated with the previous transition of the DTMC). Thus, the probability p

00

=

PfN = 1g is attributed to transition 0 ! 0. Any path originating in state 0 and leading

to non-zero states omprises as many transitions as ustomers sueed the �rst ustomer

in a busy period with more than a single ustomer, before this path returns bak to state 0

for the �rst time. So, these paths desribe the random variable N

�

, whih might have any

distribution depending on the node spei�ations. If its moments are not entirely out of the

feasible range (whih would require a higher-order approximation), we will hoose to math

an ADPH(2) distribution (with parameters p; �

1

; �

2

) to the �rst three fatorial moments of

N

�

(given at the end of the preeding setion). The moment-mathing proedure of Setion

2 results in the DTMC with three states of Figure 1 (middle part), whih approximates

the behavior of the random variable N

�

.

12



5.2 From the DTMC to the SMP(3)

The above DTMC ontains no information on the durations of the interdeparture times

{ they are simply set to unity. However, an output model to be used in a traÆ-based

deomposition must reasonably reet that interdeparture times onsist of either a single

servie period or of the sum of a residual arrival time and a servie period. To this end,

we interpret the DTMC of the previous paragraph as a DTMC embedded in an SMP with

three states (SMP(3)) and attah a jump time distribution funtion onditioned on both

the soure and target state to eah transition (with transition probabilities p

ij

, see Figure 1

(bottom part)). The interdeparture time preeding the departure of a ustomer assoiated

with a move to state 1 or state 2 equals a servie period S with distribution funtion

F

S

(t) (where S = S

01

= S

11

= S

21

= S

02

= S

22

). I

(N=1)

and I

(N>1)

stand for the random

variables of the idle periods following a busy period with a single or more than one ustomer,

respetively. The servie period of the �rst ustomer in a busy period is taken into aount

in the onditional jump time distribution funtions F

I

(N=1)

+S

00

(t) and F

I

(N>1)

+S

10

(t). This

SMP(3) skeleton distinguishes only two idle periods (as a simpli�ation). Generally, an idle

period depends on the state of the input proess right after the departure whih �nished

the previous busy period of the MAP/G/1(/K) queue. The state of the input proess at

this instant, in turn, is inuened by the number of served ustomers in this busy period.

5.3 From the SMP(3) to the output MAP

By utilizing PH representations of servie times and idle periods, we now derive ompat

output MAPs from the SMP(3) skeleton. The SMP(3) remains invariant, if we reverse the

order of the idle periods I

(N=1)

and I

(N>1)

and their physially sueeding servie times

S

00

and S

10

, respetively, while keeping the event of departure at the end of eah sum

of random variables. In our MAP representation, we now ontrat the servies ontained

within transitions originating from the same state into a single PH spei�ation (�;T )

(S

00

; S

01

; S

02

! 1st blok row of D

(D)

0

, and analogously S

10

; S

11

! 3rd blok row of D

(D)

0

and S

21

; S

22

! 5th blok row ofD

(D)

0

). The interhange of random variables yields a more

ompat (and equally preise) MAP:

D

(D)

0

=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

T p

00

(�Te) �

x

(N=1)

0

(

I
e

)

x

(N=1)

0

e

0 0 0

0 D

(N=1)

0

0 0 0

0 0 T p

10

(�Te) �

x

(N>1)

0

(

I
e

)

x

(N>1)

0

e

0

0 0 0 D

(N>1)

0

0

0 0 0 0 T

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(8)

D

(D)

1

=

�

�

�

�

�

�

�

�

�

�

�

0 0 p

01

(�Te)� 0 p

02

(�Te)�

D

(N=1)

1

e� 0 0 0 0

0 0 p

11

(�Te)� 0 0

D

(N>1)

1

e� 0 0 0 0

0 0 p

21

(�Te)� 0 p

22

(�Te)�

�

�

�

�

�

�

�

�

�

�

�

(9)

The MAPs (D

(N=1)

0

;D

(N=1)

1

) and (D

(N>1)

0

;D

(N>1)

1

) desribe the idle periods after a busy

period with a single ustomer or more than one ustomer, respetively. The probability
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vetors

x

(N=1)

0

(

I
e

)

x

(N=1)

0

e

and

x

(N>1)

0

(

I
e

)

x

(N>1)

0

e

are appropriate initial distributions (the term

(I
e) redues the dimension fromm

A

�m

S

tom

A

). If we want to apture the full behavior of

the input MAP (D

(A)

0

;D

(A)

1

) in the output model, we may set D

(N=1)

0

= D

(N>1)

0

= D

(A)

0

and D

(N=1)

1

= D

(N>1)

1

= D

(A)

1

. Then the desriptions of the idle periods only di�er in

their initial distributions and the output MAP an be ompressed to

D

(D)

0

=

�

�

�

�

�

�

�

�

�

�

�

�

�

T 0 0 p

00

(�Te) �

x

(N=1)

0

(

I
e

)

x

(N=1)

0

e

0 T 0 p

10

(�Te) �

x

(N>1)

0

(

I
e

)

x

(N>1)

0

e

0 0 T 0

0 0 0 D

(A)

0

�

�

�

�

�

�

�

�

�

�

�

�

�

(10)

D

(D)

1

=

�

�

�

�

�

�

�

�

0 p

01

(�Te)� p

02

(�Te)� 0

0 p

11

(�Te)� 0 0

0 p

21

(�Te)� p

22

(�Te)� 0

D

(A)

1

e� 0 0 0

�

�

�

�

�

�

�

�

(11)

In the following, we outline how the unknown quantities are determined from the

MAP/PH/1(/K>1) queue.

Determining x

(N=1)

0

and x

(N>1)

0

As indiated by the notation, our hoie for x

(N=1)

0

is the vetor of the stationary prob-

abilities of ending a single-ustomer busy period in the QBD. Obviously (see also 4.3),

x

(N=1)

0

an be omputed from

x

(N=1)

0

=
e
z

e

A

2

Vetor x

(N>1)

0

is a ompound analogue of x

(N=1)

0

for the idle period after a busy period

with more than one ustomer resulting from x

(N=1)

0

+ x

(N>1)

0

=

1

x

0

e

x

0

.

Moment �tting for the idle periods and servie times

Unless the order of the output MAP beomes too large, (D

(N=1)

0

;D

(N=1)

1

) and (D

(N>1)

0

;

D

(N>1)

1

) are hosen idential to the input MAP matries (D

(A)

0

; D

(A)

1

). The orrespond-

ing output model (10)/(11) has the order m

A

+ 3m

S

, whih is linear in m

A

and m

S

.

Considering the seond and third moments of the number of ustomers served in a busy

period only added m

S

additional states (ompared to [13℄). If the distintion between

I

(N=1)

and I

(N>1)

is ompletely ignored, we will substitute

x

0

(

I
e

)

x

0

e

for

x

(N=1)

0

(

I
e

)

x

(N=1)

0

e

and

x

(N>1)

0

(

I
e

)

x

(N>1)

0

e

in D

(D)

0

of (10), whih allows to �nd an even more onise output MAP.

Then we might as well math a low-order PH distribution (�;U

(I)

) to the �rst moments

of the idle period (preferentially an ACPH(2) one to the �rst three power moments, see

Setion 2). The residual arrival time orresponds to the absorption time of a CTMC
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(with initial distribution

x

0

(

I
e

)

x

0

e

). So, it is itself a PH distribution with representation

(

x

0

(

I
e

)

x

0

e

;D

(A)

0

), whose moments an easily be alulated (see (2)). This results in the

following replaements in (10)/(11):

D

(A)

0

 U

(I)

D

(A)

1

e �U

(I)

e

x

0

(

I
e

)

x

0

e

 �

Similar substitutions { typially of order 2 in form of an ACPH(2) distribution, unless the

squared oeÆient of variation is less than 0.5) { an be performed for the idle periods of

the output model (8)/(9) (of order 2m

A

+ 3m

S

) and in general for possibly unneessarily

large PH servie time distributions. Espeially, when the two types of idle periods need to

be distinguished (for reasons of auray), the appliation of moment mathing to (8)/(9)

often yields the most ompat approximation of the departure proess.

The busy queue

A speial situation arises, if the system almost never beomes empty, i.e., x

0

e � 0. Then,

the output proess an be modeled as a PH renewal proess, where the PH interarrival

time distribution orresponds to the servie time (�;T ) (either exat or approximate).

6 Numerial experiments

In this setion, we examine the output approximation (10)/(11) of the previous setion.

We onentrate on the mean queue length E [N

t

℄ at arbitrary time (see [18, 22℄ for the

omputation for MAP/PH/1(/K) systems). In order to assess the auray of the deom-

position results, we perform simulations by means of the SPNL omponent of TimeNET

[30℄ with 99% on�dene level and a maximum relative error of 1%. We �rst study the

dual tandem queue in Figure 2 taken from [13℄. External arrivals our aording to a

bursty and nonrenewal MMPP with two states whose parameters are given in the �gure

and result in the MAP notation

D

(A)

0

=

�

�

�

�

�(r

0

+ �

0

) r

0

r

1

�(r

1

+ �

1

)

�

�

�

�

and D

(A)

1

=

�

�

�

�

�

0

0

0 �

1

�

�

�

�

:

While the �rst queue proesses requests in exponentially distributed servie times (with

rate 2.0), the seond queue (with in�nite apaity) has an Erlang-2 servie time distribution

of expetation 0.8. Sine in the MAP-based deomposition the analysis of the �rst node

in a tandem queueing network will always be exat (exept for numerial errors), we fous

on the mean queue length at the seond node. In three sets of experiments, we vary

spei�ations at the �rst queue (i.e., bu�er size, servie rate and mean arrival rate) in

10 λ1 λ 0

MMPP

(r = 0.9375, r  = 0.0625,      = 6.0,      =  0.1333)
erlang(0.8,2)exponential(2.0)

K

mean rate = 0.5, scv = 4.1

Figure 2: The dual tandem queue
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Simulation Deomposition Simulation Deomposition

K mql onf. int. mql rel. err. K mql onf. int. mql rel. err.

1 2:0401 �0:0128 2:0795 +1:9% 10 1:2779 �0:0090 1:2809 +0:2%

(results from ref. [13℄: 1:8789 �7:9% 1:2671 �0:8%)

30 1:9696 �0:0141 2:0157 +2:3% 6 0:9017 �0:0086 0:8847 �1:9%

25 1:9199 �0:0159 1:9540 +1:8% 4 0:6748 �0:0036 0:6451 �4:4%

20 1:8083 �0:0127 1:8380 +1:6% 3 0:5632 �0:0045 0:5025 �10:8%

15 1:6068 �0:0118 1:6287 +1:4% 2 0:4311 �0:0023 0:3307 �23:3%

Table 4: Mean queue lengths (mql) at seond node for the dual tandem queue (varied K)

Series for varied parameter at �rst queue

servie rate mean arrival rate

Simulation Deomposition Simulation Deomposition

� mql onf. int. mql rel. err. mql onf. int. mql rel. err.

0:1 2:8038 �0:0219 2:5636 �8:6% 0:2032 �0:0020 0:2035 +0:1%

0:2 2:3016 �0:0155 2:3267 +1:1% 0:4809 �0:0041 0:4880 +1:5%

0:3 1:7402 �0:0170 1:8152 +4:3% 0:8187 �0:0060 0:8422 +2:9%

0:4 1:2543 �0:0095 1:3200 +4:6% 1:2542 �0:0099 1:3120 +4:6%

0:5 0:9479 �0:0073 0:9762 +3:0% 1:8458 �0:0152 1:9696 +6:7%

0:6 0:7964 �0:0052 0:8064 +1:3% 2:7272 �0:0242 2:9567 +8:4%

0:7 0:7141 �0:0060 0:7163 +0:3% 4:1579 �0:0325 4:6005 +10:6%

0:8 0:6514 �0:0045 0:6619 +1:6% 6:9917 �0:0399 7:8729 +12:6%

0:9 0:6290 �0:0055 0:6258 �0:5% 15:402 �0:1299 17:573 +14:1%

Table 5: Mean queue lengths (mql) at seond node for the dual tandem queue (K =1)

order to investigate their impat on the proposed output approximation as observed in the

queueing behavior of the downstream queue.

Table 4 lists simulation data and deomposition results for di�erent values of apaity

K at the �rst queue. In [13℄, where the MAP-based deomposition ignores higher moments

of the number of ustomers served in a busy period, the onsidered dual tandem queue

is evaluated for K = 1 and K = 10. Comparing rows 3 and 4 shows that an additional

mathing of the seond and third moment of this random variable N signi�antly improves

the numerial auray (from �7:9% to +1:9% and from �0:8% to +0:2%, respetively).

At the same time, the order of the output MAP approximations only inreases from 4 to

5. Note that the orders of the exat output MAPs are substantially larger (i.e., in�nite

for K = 1 or m

exat

D

= m

A

(1 + Km

S

) = 22 for K = 10). Medium-sized and large

apaities lead to satisfatory relative errors, even though in ases K = 20; 15; 10; 6 the

third (fatorial) moment is set to the losest permissible boundary value as outlined in

Setion 2. The largest relative modi�ation ours for K = 15, where the true value

f

3

= 2098:0 is replaed by 2222.9. Very small bu�er sizes (see K = 2; 3) appear to be

unfavorable to the proposed output approximation. This drawbak, however, need not be

overrated, sine in these ases the exat output MAPs are usually so ompat themselves

that they an diretly be employed in the ontext of MAP-based deomposition (as it is

done for the MAP/PH/1/1 system, see [13℄).
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Figure 3: The four-node queueing network

In the next two series of experiments, we look into the dependene of deomposition

results on the utility of the �rst queue, whih is tuned in two ways: either by hanging the

servie rate of the exponential distribution or by uniformly saling all parameters of the

arrival proess so that its squared oeÆient of variation (see (1)) remains onstant, while

the mean arrival rate varies. Capaity K is �xed to in�nity. In the �rst series (left-hand

side of Table 5), all other spei�ations of the network of Figure 2 are left untouhed so

that the utility at the seond queue does not hange. In the seond series (right-hand

side of Table 5), the expetation of the Erlang-2 distribution is additionally altered to

0.5 so that we have idential utilities at both queues. The last olumn suggests that the

approximations of the mean queue lengths at the seond node deteriorate with inreasing

utility of the �rst queue, whih however annot be on�rmed in general with respet to the

�fth olumn. While overall results might be regarded aeptable, the deviations of more

than 10% for few values in the last olumn arouse the onjeture that in some ases the

fourth and �fth moments of the random variable N ought to be taken into aount, too.

An important feature of the proposed MAP output models, whih is indispensible for an

eÆient network deomposition, onsists in their moderate orders. Table 6 demonstrates

q.- MAP Simulation Deomposition q.- MAP Simulation Deomposition

no. m

D

mql mql rel. err. no. m

D

mql mql rel. err.

1 8 0:2800 0:2804 +0:1% 6 38 0:2527 0:2680 +6:1%

2 14 0:2661 0:2716 +2:1% 7 44 0:2544 0:2671 +5:0%

3 20 0:2615 0:2706 +3:5% 8 50 0:2538 0:2662 +4:9%

4 26 0:2584 0:2698 +4:4% 9 56 0:2536 0:2654 +4:7%

5 32 0:2542 0:2689 +5:8% 10 (62) 0:2493 0:2646 +6:1%

Table 6: Mean queue lengths (mql) for 10-node tandem network
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queue input MAP output MAP Simulation Deomposition

number order m

A

order m

D

mql onf. int. mql rel. err.

1 2 8 0:4630 �0:0042 0:4635 +0:1%

2 32 41 0:7994 �0:0078 0:8240 +3:1%

3 41 (44) 0:2726 �0:0016 0:2799 +2:7%

4 41 (47) 0:2613 �0:0024 0:2683 +2:7%

Table 7: Mean queue lengths (mql) for four-node queueing network

how these orders (see olumns labeled m

D

) grow only linearly in a tandem network of ten

homogeneous in�nite-bu�er queues with Erlang-2 servie distributions (mean rate 1.9).

The two-state MAP depited in Figure 3 as the arrival proess to queue 1 also serves as the

external input to the tandem network. However, it is saled to a mean arrival rate of 0.38

(with the squared oeÆient of variation kept at 8.1). The �rst two queues of this network

are also analyzed by MAP-based deomposition in [25℄. Therein, MAP representations of

order 134 for the departure proess of the �rst queue deliver exellent results for the mean

queue length at the seond node. In order to proeed in the analysis of longer tandem

networks, more ompat representations are required. In the methodology of this paper,

the internal MAP sizes evolve aording to the formula m

D

= m

A

+ 3 �m

S

= m

A

+ 6 from

queue to queue so that the output of the tenth queue in series is of order 62 only (brakets

indiate that this MAP is atually not used in the omputations). In a omparison between

deomposition and simulation results (on�dene intervals range from�0:0012 to�0:0026),

the analyti values ome o� well both quantitatively and qualitatively. The mean queue

lengths are slightly overestimated, but their falling o� due to dereasing squared oeÆients

of variation of the internal traÆ is orretly aptured (unlike simulation, see queues 6/7).

Finally, we present a general four-node queueing network with splitting and merging

(Figure 3) to emphasize the potential of an obvious deomposition approah to suh net-

works based on the output approximation of Setion 5. Again two bursty external inputs

{ MAPs of orders 2 and 4 with the given squared oeÆients of variation (sv) { are taken

from [25℄ with their mean rates being saled to the stated values. Besides the known

spei�ations for the exponential and Erlang distributions { here Erlang-3 at queue 2 {,

a mixed Erlang and a hyperexponential servie time distribution { as also used in [1℄ {

are represented in PH notation in Figure 3 below the orresponding queues. They over

variabilities ranging from

1

3

to 1

2

9

. Furthermore, routing probabilities and a �nite bu�er

size are depited. Table 7 ollets the errors of the deomposition results (all below 3.1%)

relative to the simulated values along with the orders of the involved traÆ desriptors.

Note that both splitting (invariant to MAP order) and merging (multiplies orders of in-

volved MAPs) are performed as exat operations. The data illustrates that the provided

output approximation allows a reasonable trade-o� between auray and eÆieny.

7 Conlusions

A ompat output approximation of MAP/PH/1(/K) queues has been presented suggesting

an eÆient deomposition of networks of suh queues. The key quantity in this approxima-

tion is the random variable N { the number of ustomers served in a busy period { whose

�rst three moments are mathed by the output MAP model. Thus, the approah in [13℄
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is extended. Sine the orders of these MAPs depend only linearly on those of the input

MAP and the PH servie representation, queueing networks with several nodes an be

deomposed quikly. Due to the fat that these traÆ desriptors appropriately reet the

orrelation struture of the internal traÆ, numerial results for the mean queue lengths

show good oinidene with simulation data. The short response times of the related algo-

rithm together with its apability to deliver a wide range of performane measures make it

an attrative (and often the only) alternative to simulation. As indiated by experiments,

it might be worthwhile in some situations to take into aount yet higher moments { say

fourth and �fth { of random variable N for enhaned preision. This an be ahieved by

means of an ADPH(3) skeleton for the output MAP. For larger networks, a �nely tuned

heuristi, whih applies moment-mathing tehniques (see Setion 5) to servie and/or

residual arrival times as they expliitly our in the output MAP model, an still om-

press the involved traÆ desriptors. This opens even further-reahing opportunities in

the trade-o� between auray and eÆieny.
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