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Abstra
t

For non-trivial (open) queueing networks, traÆ
-based de
omposition often rep-

resents the only feasible { and at the same time fast { solution method besides simula-

tion. The network is partitioned into individual nodes whi
h are analyzed in isolation

with respe
t to approximate internal traÆ
 representations. Sin
e the 
orrelations

of network traÆ
 may have a 
onsiderable impa
t on performan
e measures, they

must be 
aptured to some extent by the employed traÆ
 des
riptors. The de
ompo-

sition methodology presented in this paper is based on Markovian arrival pro
esses

(MAPs), whose 
orrelation stru
ture is determined from the busy-period behavior of

the upstream queues. The resulting 
ompa
t MAPs in 
onne
tion with sophisti
ated

moment mat
hing te
hniques allow an eÆ
ient de
omposition of large queueing net-

works. Compared with [13℄, the output approximation of MAP/PH/1(/K) queues

{ the 
ru
ial step in MAP-based de
omposition { is re�ned in su
h a way that also

higher moments of the number of 
ustomers in a busy period 
an be taken into a
-


ount. Numeri
al experiments demonstrate the substantially enhan
ed pre
ision due

to the improved output models and plumb the new opportunities in the trade-o�

between a

ura
y and eÆ
ien
y.

1 Introdu
tion

Open queueing networks are widely used in performan
e modeling of 
omputer and 
om-

muni
ation systems, servi
e 
enters, manufa
turing systems et
. Often, general servi
e

time distributions as well as �nite waiting rooms are required for di�erent nodes. In addi-

tion, external arrival pro
esses should be able to 
apture 
orrelations and burstiness, sin
e

real traÆ
 often exhibits these 
hara
teristi
s.

In this paper, these inputs to the queueing network are assumed to be arbitrary Marko-

vian arrival pro
ess. MAPs are used in traÆ
 engineering to mat
h 
orrelated and/or

bursty arrival pro
esses { also with self-similar properties and long-range dependen
e [14℄.

The nodes of the network are represented as single-server FIFO systems with or without

a �nite bu�er. Servi
e times may be spe
i�ed by their �rst two or three moments or al-

ternatively as 
ontinuous phase-type (PH) distributions. Thus, the network is assumed to




onsist of either �/PH/1 or �/PH/1/K nodes, between whi
h 
ustomers move a

ording to

a Markovian routing s
heme. Customers arriving to a full queue are lost.

Besides simulation, an approximate analysis te
hnique known as traÆ
-based de
ompo-

sition may provide a feasible solution method. The network is partitioned into individual

nodes, whi
h are analyzed in isolation. The output traÆ
 of a single queueing system is


hara
terized and transformed into arrival pro
esses to downstream queues by splitting

and by merging with other traÆ
 pro
esses a

ording to the network stru
ture. Generally,

de
omposition algorithms deliver various (stationary) performan
e measures, like mean

waiting times, mean queue lengths, et
., very qui
kly.

Although most de
omposition algorithms (e.g., [16, 29, 8, 26℄) are based on renewal pro-


esses as traÆ
 des
riptors for ease of tra
tability, one should not negle
t the 
orrelation

stru
tures of the external and internal 
ows. These 
orrelations have been demonstrated to

signi�
antly in
uen
e performan
e measures espe
ially for bursty input traÆ
. For exam-

ple, a simulation study [19℄ showed that the average waiting time in a queue with highly


orrelated arrivals 
an be 40 times larger than in the un
orrelated 
ase. The following

de
omposition methods take into a

ount the traÆ
 
orrelations in di�erent ways. In [1℄

trun
ation te
hniques for the in�nite output MAP of a MAP/PH/1 queue are studied. For

dual tandem queues, very good numeri
al results are reported. However, depending on

the number of phases/states of the servi
e distribution of the queue and its arrival pro-


ess, the trun
ated MAPs still be
ome quite large in general. More pre
isely, their orders

depend multipli
atively on the orders of the PH distribution and the input MAP. Similar

observations hold for the 
losely related and more 
exible way [25℄ to obtain �nite MAP

representations of the departure pro
esses of MAP/MAP/1 queues. While these trun
ated

MAPs have been shown to mat
h a size-dependent number of 
oeÆ
ients of 
orrelations

of lagged interdeparture times exa
tly [6℄, a di�erent approa
h to output modeling is to �t

a prede�ned set of traÆ
 des
riptors to sele
ted performan
e indi
es of the true departure

pro
ess. In order to arrive at more 
ompa
t representations and also avoid the problem of

overparameterization of MAPs, Bitran and Dasu de�ne the sub
lass of super-Erlang (SE)


hains [2℄. While a

urate results { also for higher moments of the queue lengths { 
ould

be obtained for networks where internal traÆ
 exhibits squared 
oeÆ
ients of variation

below and around unity, SE 
hains 
an hardly be used to des
ribe bursty traÆ
. Mit
hell

and van de Liefvoort [21℄ proposed to use 
orrelated sequen
es of matrix exponentials with

invariant marginals as traÆ
 des
riptors in a de
omposition of tandem queueing networks

with �nite 
apa
ities. The Linear Algebra Queueing Theory (LAQT) te
hniques might

not result in proper density fun
tions for the departure pro
esses, whi
h 
ompli
ates the

design of the algorithms. Numeri
al results 
ould be substantially improved 
ompared

with renewal-based de
omposition. The two latter approa
hes sele
t performan
e indi
es

of the departure pro
ess, whi
h are related to its 
orrelation stru
ture, { though di�erent

ones. In general, it is an open resear
h issue, whi
h 
ombination of 
hara
teristi
s should

be used to obtain a good and eÆ
ient mat
h to the original departure pro
ess.

The approa
h pursued in this paper is 
ompletely di�erent from the methods of the

previous paragraph in that it does not attempt to 
apture single elements of the 
orrelation

stru
ture of the departure pro
ess dire
tly (e.g., by mat
hing the �rst 
oeÆ
ients of 
orre-

lation). Instead the parameters of a MAP are 
hosen so that this traÆ
 des
riptor re
e
ts

the busy-period behavior of the 
onsidered queue. In [7℄, this 
on
ept has been su

ess-

fully investigated for a dis
rete-time dual tandem queue with dis
rete-time semi-Markov

pro
esses as traÆ
 des
riptors. In 
ontinuous time, a de
omposition for general queueing
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networks based on semi-Markov pro
esses (SMPs) and Markov-modulated Poisson pro-


esses (MMPPs) shares the same prin
iples [10, 9, 12℄. This paper re�nes the 
exible

de
omposition methodology presented in [13℄, whi
h solely relies on MAPs as traÆ
 de-

s
riptors. Moment �tting te
hniques are extended to optionally in
lude the third moments

of servi
e and/or residual arrival times { at no additional 
ost with respe
t to the size of

the output MAP approximation. The skeleton of the output MAP itself is revised in su
h

a way that it is 
apable of mat
hing also the se
ond and third moment of the number of


ustomers in a busy period of the 
onsidered MAP/PH/1(/K) queue. While these output

models be
ome slightly larger than in [13℄, they retain the 
ru
ial property that their size

depends linearly on the orders of the input MAP and the PH servi
e time distribution

(as opposed to the trun
ation te
hniques mentioned above, where these orders multiply).

A
tually, only the 
ompa
tness of these traÆ
 des
riptors allows to apply MAP-based de-


omposition eÆ
iently to larger networks. The 
onstru
tive pro
edure to build the output

MAPs with physi
al interpretations for ea
h of their 
omponents ex
ludes the problems of

pseudo-sto
hasti
 representations (as observed in [21℄) and overparameterization.

In the next se
tion, we brie
y sket
h the MAP-based de
omposition methodology,

whi
h arises from the provided te
hniques. Among them, moment mat
hing to a
y
li


dis
rete/
ontinuous PH distributions play a prominent role. In Se
tion 3, MAPs are for-

mally introdu
ed. In the subsequent se
tions, we fo
us on the output approximation as the

most 
riti
al elementary pro
edure of traÆ
-based de
omposition: Se
tion 4 highlights the

busy-period analysis of MAP/PH/1(/K) queues and thus provides the quantities required

for the output models dis
ussed in Se
tion 5. Numeri
al results for queueing networks are

given in Se
tion 6, followed by 
on
luding remarks.

2 MAP-Based De
omposition and Moment Mat
hing

TraÆ
-based de
omposition assumes that dependen
es between queues are suÆ
iently 
on-

veyed by the traÆ
 
hara
terizations. In the �rst phase, the algorithm determines the

parameters of these internal traÆ
 representations. In the se
ond phase, it derives perfor-

man
e indi
es for single nodes and network-wide results.

The methodology of this paper progresses in the same way. The order in whi
h the

isolated queues are analyzed does not deviate from other (iterative) approa
hes. Without

feedba
k loops, ea
h node only needs to be treated on
e { provided that the nodes have

been reordered in advan
e with respe
t to external inputs and the network stru
ture [11℄;

in the presen
e of feedba
k loops, the algorithm iterates over those nodes in
luded therein

until the rates and the squared 
oeÆ
ients of variation of the internal arrival 
ows, i.e.,

MAPs in our 
ase, have 
onverged. As for any other de
omposition algorithm of this type,

no general statements on the existen
e and uniqueness of a �xed point 
an 
urrently be

made for this iteration s
heme.

In general, the following three operations are performed at ea
h node: 1) MAP traÆ


des
riptors dire
ted to the node are merged into a single input MAP. 2) The departure

pro
ess of the queue is approximated as a MAP. 3) The output MAP is split into MAP

substreams a

ording to the Markovian routing. For the output approximation, matrix-

analyti
 te
hniques (exa
t for MAP/PH/1(/K) systems) deliver the relevant quantities via

a busy-period analysis. Corresponding pro
edures yield the performan
e measures, like

the �rst two moments of the waiting time and queue lengths as well as throughputs and

loss probabilities, in the se
ond phase of the algorithms (see [13℄ for expli
it formulae).
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Global performan
e indi
es are derived from these quantities as in [29℄. Sin
e the splitting

and merging of MAPs in the 
ontext of traÆ
-based de
omposition have been dis
ussed in

other publi
ations (e.g., [25, 12℄), this paper 
on
entrates on the output approximations

of queues. It should, however, be mentioned that the 
ommonly used merging pro
edure

ignores possible 
ross-
orrelations among the involved traÆ
 pro
esses and therefore 
annot

be exa
t in this 
ase. On this assumption, merging just like splitting of MAPs are rather

straightforward matrix operations.
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Table 1: Moment �tting with ACPH(2) and ADPH(2) distributions

For the overall algorithm to work eÆ
iently also for larger networks, the dimensions of

the blo
k matri
es in the matrix-analyti
 methods ought to remain in a reasonable range.

The major 
ontribution of the presented approa
h in this respe
t 
onsists in the fa
t that

the orders of the output MAPs depend only linearly on the orders of the input MAP and
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mom. 
ondition bounds
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Table 2: Bounds for the �rst three moments of the ACPH(2) distribution

the PH servi
e distribution of the 
onsidered queue. Moreover, these traÆ
 des
riptors


an be further 
ompressed due to their stru
ture: so more 
ompa
t PH representations

of the residual arrival time and/or of the servi
e time may be sought for based on their

moments

1

. Even more fundamentally, an output approximation may de
ide to ignore the

se
ond and third moment of the number of 
ustomers in a busy period (as in [13℄) yielding

redu
ed MAP skeletons, whi
h are suÆ
iently a

urate in many 
ases. All of the related

moment mat
hing te
hniques may be 
ombined in 
omprehensive heuristi
s (whi
h will

also take into a

ount merging situations, i.e., the sizes of the involved MAPs, see e.g.,

[12℄) in order to enfor
e that the dimensions of the mentioned blo
k matri
es range below a

given upper bound. This bound re
e
ts the user's 
hoi
e in the trade-o� between a

ura
y

and eÆ
ien
y.

As des
ribed above, analyti
 moment �tting pro
edures o

ur in various situations

of the proposed methodology { be it for 
ontinuous or dis
rete random variables { and

impart a lot of 
exibility to the MAP-based de
omposition. Many su
h �tting pro
edures

{ mainly for 
ontinuous random variables and often restri
ted to mat
hing the �rst two

moments { have been published in the literature [28, 26, 13, 7, 15℄ and may be utilized for

our purposes. Here, we give { without derivation (see [27℄) { the methods for mat
hing

an a
y
li
 
ontinuous/dis
rete phase-type distribution of order 2 (ACPH(2)/ADPH(2)) to

three given (power/fa
torial) moments, respe
tively. In both 
ases, whi
h are treated in

parallel due to their analogies, the theoreti
 bounds on the se
ond and third moments with

respe
t to the PH representation will be given expli
itly. Unlike in the above mentioned

referen
es, the resulting representations of se
ond order tolerate the ultimate ranges of the

�rst three moments, i.e., in parti
ular random variables with 
oeÆ
ients of variation less

than that of the exponential/geometri
 distribution 
an be �tted.

Note that the parameters of the ACPH(2)/ADPH(2) random variables { denoted by X

and N , respe
tively { 
an only be obtained as outlined in Table 1, if the power/fa
torial

moments satisfy spe
i�
 bounds. These moment bounds of ACPH(2) and ADPH(2) dis-

tributions are summarized in Tables 2 and 3, respe
tively, along with related 
onditions.

The bounds of Table 2 
oin
ide with those for the (more general) matrix-exponential dis-

tributions of se
ond degree [21℄. In Table 3, parameter g is de�ned as

g =

6

(2 f

1

+

p

2 d)

3

�

f

1

(2 f

1

+

p

2 d)(3 f

2

+ 2 f

1

)(f

2

� 2 (f

1

� 1))� 2 f

2

2

(f

2

�

p

2 d)

�

;

and parameter d is given in Table 1. The well-known bounds of the squared 
oeÆ
ients of

1

If the servi
e time is spe
i�ed by its moments, PH �tting will already be ne
essary during node analysis.
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mom. 
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Table 3: Bounds for the �rst three moments of the ADPH(2) distribution

variation of ACPH(2) and ADPH(2) distributions 
an be obtained from the bounds of the

se
ond moments via 


2

X

=

m

2

m

1

2

� 1 and 


2

N

=

f

2

+ f

1

� f

1

2

f

1

2

.

If the se
ond power/fa
torial moment falls outside the feasible range, we will resort to

spe
i�
 higher-order representations (see [13℄ for the 
ontinuous and [3℄ for the dis
rete


ase) during the moment mat
hing to a
hieve an exa
t �t in the �rst two moments. If the

third power/fa
torial moment does not ful�ll the requirements, one option is to set it to

the 
losest boundary value (
omputed for the given �rst two moments). To 
on
lude this

se
tion, we on
e again point out the importan
e of 
ompa
t representations of servi
e/idle

times or number of 
ustomers in a busy period for an eÆ
ient MAP-based de
omposi-

tion. The above pro
edures provide the best possible mapping of three moments into a


ontinuous or dis
rete PH representation of order 2.

3 Markovian Arrival Pro
esses (MAPs)

Markovian arrival pro
esses are a ri
h sub
lass of Markov renewal pro
esses with high

popularity in the resear
h 
ommunity of traÆ
 engineering. Let us 
onsider a MAP

with a �nite state spa
e of size m. This parameter is also 
alled the order of the MAP

and determines the dimensions of the matri
es and ve
tors introdu
ed below. Transitions

of a MAP are distinguished whether they 
ause an arrival or not. Asso
iated rates are


orrespondingly grouped into the two matri
es D

1

and D

0

:

� D

1

is a nonnegative (m�m)-rate matrix.

� D

0

of the same dimension has negative diagonal elements and nonnegative o�-

diagonal elements.

� The irredu
ible in�nitesimal generator Q is de�ned by D

0

+D

1

.

We require that D

0

is invertible. Then impli
itly Q 6= D

0

, i.e., the arrival pro
ess does

not terminate. With probability

(D

0

)

ik

(�D

0

)

ii

(1 � i; k � m; k 6= i), there will be a transition

from state i to state k without an arrival. With probability

(D

1

)

ik

(�D

0

)

ii

(1 � i; k � m), there

will be a transition from state i to state k a

ompanied by an arrival.
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For the underlying Markov pro
ess with CTMC generator Q, we de�ne the stationary

probability ve
tor � by

�Q = 0 ; �e = 1 ;

where e = (1; : : : ; 1)

T

is the 
olumn ve
tor of ones.

The mean arrival rate and squared 
oeÆ
ient of variation of a MAP are [24℄

�

MAP

=

1

E [�℄

= �D

1

e and




2

MAP

=

E [�

2

℄

(E [�℄)

2

� 1 = 2�

�

�(�D

0

)

�1

e� 1; respe
tively, (1)

where � denotes the marginal interevent (i.e., interarrival or interdeparture) time of the

traÆ
 pro
ess. In general, the interevent times of a MAP are 
orrelated. The non-zero lag


oeÆ
ients of 
orrelation �

�

(j) (j > 0) of an interval-stationary MAP 
an be derived [24℄:

�

�

(j) =

E [�

�

�

�+j

℄� E [�℄

2

E [�

2

℄� E [�℄

2

=

�

�

�[(�D

0

)

�1

D

1

℄

j

(�D

0

)

�1

e� 1

2�

�

�(�D

0

)

�1

e� 1

:

�

�

and �

�+j

denote any two intervals j lags apart in the sequen
e of interevent times.

Many familiar arrival pro
esses represent spe
ial 
ases of MAPs, among them Poisson

pro
esses, MMPPs, and { most important in view of MAP-based de
omposition for general

queueing networks { the superpositions of independent MAPs.

Continuous PH distributions

The random variable X asso
iated with a 
ontinuous PH distribution fun
tion F

X

(t) rep-

resents the time to absorption in a �nite 
ontinuous-time Markov 
hain (with m transient

states), or more formally: F

X

(t) = 1��e

T t

e. The nonsingular (m�m)-matrix T denotes

the generator of the transient Markov 
hain ((T )

ii

< 0 for 1 � i � m; (T )

ij

� 0 for i 6= j

so that Te � 0, but 6= 0). The m-dimensional ve
tor � is the initial distribution. The

tuple (�;T ) 
ompletely 
hara
terizes the PH distribution with moments

E[X

i

℄ = i!�(�T )

�i

e : (2)

The marginal distribution of the interevent time of a MAP is found to be of phase-type. If

all 
orrelations in the MAP vanish, the resulting pro
ess will be a PH renewal pro
ess (�;T )

with � =

�D

1

�D

1

e

and T = D

0

. In its MAP notation, D

1

then equals D

1

= (�Te)�. In

Se
tion 2, we already introdu
ed the ACPH(2) distribution, whose order is 2 and whose

parameters are p; �

1

and �

2

. Its representation (�;T ) is given by

� = (p; 1� p) and T =

�

�

�

�

��

1

�

1

0 ��

2

�

�

�

�

:

4 Busy-Period Analysis of MAP/PH/1(/K) Queues

The analyti
al tra
tability of MAPs manifests itself in eÆ
ient 
omputational pro
edures

of the matrix-analyti
 approa
h to queueing systems, whi
h starts from a des
ription of the

level-de�ning queue length pro
ess as a quasi-birth-death pro
ess (QBD, [23℄). We exploit


orresponding methods for the proposed de
omposition, where all nodes of the network

are analyzed as MAP/PH/1 or MAP/PH/1/K systems. We adopt the following notation:

7



K the size of a �nite bu�er in
luding the server pla
e

S the random variable for PH servi
e time with representation (�;T )

N the number of 
ustomers served during a busy period with 
onditional fa
torial mo-

ments '

1

;'

2

;'

3

(de�ned as 
olumn ve
tors)

y = (y

0

;y

1

; :::;y

K

) the stationary queue length distribution (qld) at arbitrary time

x

0

the stationary probabilities that a departure leaves behind an empty system

Throughout the paper, subs
ripts A=S and supers
ripts (A)=(S) indi
ate aÆliation to the

arrival pro
ess or servi
e time, respe
tively. The s
alars m

A

and m

S

are the orders of

the input MAP (D

(A)

0

;D

(A)

1

) and of the PH servi
e time distribution, whi
h will also

be denoted by D

(S)

0

= T and D

(S)

1

= (�Te)� in the 
hosen QBD notation. Let � =

�

A

� E [S℄ = �D

(A)

1

e � �(�T )

�1

e be the o�ered load of the queueing system with the

following QBD generator matrix of blo
k tridiagonal stru
ture:

e

Q =

2

6

6

6

6

6

6

6

4

e

A

(0)

1

e

A

0

0 � � � 0

e

A

2

e

A

1

e

A

0

.

.

.

.

.

.

0

.

.

.

.

.

.

.

.

.

0

.

.

.

.

.

.

e

A

2

e

A

1

e

A

0

0 � � � 0

e

A

2

e

A

(K)

1

3

7

7

7

7

7

7

7

5

with

e

A

(0)

1

= D

(A)

0


 I

e

A

0

= D

(A)

1


 I

e

A

1

= D

(A)

0


 I + I 
D

(S)

0

e

A

2

= I 
D

(S)

1

e

A

(K)

1

=

e

A

0

+

e

A

1

The operator 
 denotes the Krone
ker produ
t [5℄. For queues with unlimited 
apa
ity

(K = 1), the bottom line of matrix

e

Q be
omes irrelevant and its dimension as well as

the bold-fa
ed subs
ript in y

i

run to in�nity. Our de�nition of the QBD implies the same

dimensions for the ve
tors y

i

and x

0

, namely m

A

�m

S

, whi
h also is the dimension of ea
h

blo
k row/level of matrix

e

Q. The matrix-analyti
 te
hniques [23, 18℄ eÆ
iently 
ompute

various kinds of qlds (e.g., y), their moments and many other performan
e measures, like

loss probabilities, et
. Formulae for the �rst two moments of the waiting time 
an be found

in [12, 13℄. In view of the output approximation in the next se
tion, we dis
uss here how

the moments of N { the number of 
ustomers served in a busy period { are determined for

MAP/PH/1 and MAP/PH/1/K systems.

4.1 MAP/PH/1 queue: number of 
ustomers in a busy period

In order to obtain the generating fun
tion of the random variable N , we examine the

dis
rete-time Markov 
hain (DTMC with transition probability matrix �) embedded in

the QBD at the epo
hs of level swit
hing:

� =

2

6

6

6

6

4

0 A

(0)

0

0 0 � � �

A

2

0 A

0

0 � � �

0 A

2

0 A

0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3

7

7

7

7

5

with

A

(0)

0

= (�

e

A

(0)

1

)

�1

e

A

0

A

0

= (�

e

A

1

)

�1

e

A

0

A

2

= (�

e

A

1

)

�1

e

A

2

Furthermore, we de�ne f

ij

(n) = PfN = n; Z




(1;i)

0

= (0; j) jZ

0

= (1; i)g and matrix

e

F (n) =

ff

ij

(n)g (1 � i; j � m

A

�m

S

), where Z

m

stands for the state of the DTMC in terms of a

8



level number and a blo
k matrix index. The stopping time 


(1;i)

0

spe
i�es the o

urren
e

of the transition that ends the busy period having started in Z

0

= (1; i). The 
onditional

generating fun
tion F (z) of the number of 
ustomers served in a busy period is given by

F (z) =

1

X

n=1

e

F (n) � z

n

= zA

2

+A

0

F (z)

2

(see [20℄) : (3)

Note that F (1) = G, where G is the well-known fundamental-period matrix of both the

DTMC and CTMC above { the key ingredient for the 
omputational pro
edures of the

matrix-analyti
 approa
h (e.g., see [17℄ for its 
omputation). Sin
e we assume � < 1 for

the in�nite-bu�er queue (i.e., stability), G is a sto
hasti
 matrix (i.e., Ge = e).

Now, we derive the �rst three 
onditional fa
torial moments '

1

;'

2

and '

3

of random

variable N . For notational 
onvenien
e, let F

(n)

=

d

n

dz

n

F (z)j

z=1

(n � 0; where F

(0)

= G).

The derivatives of F (z) at z = 1 
an be written in the general form (where I

f�g

is the

indi
ator of event �):

F

(`)

= I

f`2f0;1gg

�A

2

+A

0

�

`

X

i=0

�

`

i

�

F

(`�i)

F

(i)

(` � 0) : (4)

Algebrai
 manipulations yield the following simple iterative pro
edures for F

(1)

(to be

determined �rst) and F

(2)

assuming G is known:

F

(1)

m+1

= (I �A

0

G)

�1

�

A

2

+A

0

F

(1)

m

G

�

F

(2)

m+1

= (I �A

0

G)

�1

A

0

�

F

(2)

m

G+ 2F

(1)

2

�

with initial values F

(1)

0

= F

(2)

0

= 0.

Finally, ve
tors '

i

= F

(i)

e (i = 1; 2; 3) for the 
onditional fa
torial moments are

obtained from (3) as

'

1

= f E[N jZ

0

= (1; i)℄ g = (I �A

0

�A

0

G)

�1

A

2

e

'

2

= f E[N(N � 1)jZ

0

= (1; i)℄ g = 2 (I �A

0

�A

0

G)

�1

A

0

F

(1)

'

1

'

3

= f E[N(N � 1)(N � 2)jZ

0

= (1; i)℄ g = 3 (I �A

0

�A

0

G)

�1

A

0

(F

(2)

'

1

+ F

(1)

'

2

)

Note that (4) allows to 
ompute the higher moments in a similar way, and to 
al
ulate the

ve
tors of the �rst ` fa
torial moments we need to 
ompute matri
es F

(0)

= G; : : : ;F

(`�1)

.

4.2 MAP/PH/1/K queue: number of 
ustomers in a busy period

Again, we start from the DTMC embedded in the QBD. The quadrati
 transition prob-

ability matrix � ends with the (K + 1)st blo
k row (i.e., the one belonging to level K),

in whi
h the next to last blo
k { the only nonzero blo
k in the last row { has to be re-

pla
ed by A

(K)

2

= (�

e

A

(K)

1

)

�1

e

A

2

. Determining the 
onditional fa
torial moments of N

for the �nite-bu�er queue pro
eeds very mu
h along the same lines as for the MAP/PH/1

system. But now { sin
e the busy-period behavior is no longer level-independent { the

9




orresponding de�nitions are expanded by a 
apa
ity information.

� =

2

6

6

6

6

6

6

6

4

0 A

(0)

0

0 : : : 0

A

2

0 A

0

.

.

.

.

.

.

0

.

.

.

.

.

.

.

.

.

0

.

.

.

.

.

.

A

2

0 A

0

0 : : : 0 A

(K)

2

0

3

7

7

7

7

7

7

7

5

with

A

(0)

0

= (�

e

A

(0)

1

)

�1

e

A

0

A

0

= (�

e

A

1

)

�1

e

A

0

A

2

= (�

e

A

1

)

�1

e

A

2

A

(K)

2

= (�

e

A

(K)

1

)

�1

e

A

2

Consequently, we have f

ij

(n; k) = PfN = n; Z




(1;i)

0

= (0; j) jZ

0

= (1; i);� = kg and

e

F (n; k) = ff

ij

(n; k)g, where the variable � 
ounts the number of levels starting from the


urrent level to the greatest one. In analogy to (3), the 
onditional generating fun
tion

F (z) of the number of 
ustomers served in a busy period of a MAP/PH/1/K system is

given by:

F (z; k) =

1

X

n=1

e

F (n; k) � z

n

=

(

z �A

(K)

2

if k = 1

zA

2

+A

0

F (z; k � 1)F (z; k) if k > 1

With F

(n)

k

=

d

n

dz

n

F (z; k)j

z=1

(n � 0; where F

(0)

k

= F (1; k)), the derivatives are (` � 0)

F

(`)

k

=

8

>

<

>

:

I

f`2f0;1gg

A

(K)

2

if k = 1

I

f`2f0;1gg

A

2

+A

0

�

`

X

i=0

�

`

i

�

F

(`�i)

k�1

F

(i)

k

if k > 1

We are interested in the 
onditional fa
torial-moment ve
tors '

i

= F

(i)

K

e (i = 1; 2; 3) for

the subs
ript k = K. Due to the more involved su

essive substitution s
heme, we now

have to 
ompute all four matri
es F

(0)

K

;F

(1)

K

;F

(2)

K

;F

(3)

K

expli
itly from:

F

(`)

k

= (I �A

0

F

(0)

k�1

)

�1

�

 

I

f`2f0;1gg

A

2

+A

0

�

`�1

X

i=0

�

`

i

�

F

(`�i)

k�1

F

(i)

k

!

: (5)

Starting with initial values F

(0)

1

= F

(1)

1

= A

(K)

2

;F

(2)

1

= F

(3)

1

= 0, this substitution

s
heme suggests to 
al
ulate the terms F

(`)

k


onse
utively in the order

for ( ` = 0 to 3 ) f for ( k = 2 to K ) f F

(`)

k

= : : : Eq. (5) g g :

Finally: '

1

= F

(1)

K

e ; '

2

= F

(2)

K

e ; '

3

= F

(3)

K

e :

4.3 Quantities needed for the output approximation

As will be outlined in the next se
tion, the proposed output approximation for MAP/PH/1-

(/K>1) queues attempts to mat
h an ADPH(2) distribution to the �rst three fa
torial

moments f

1

; f

2

; f

3

of the random variable N

�

{ the number of 
ustomers served after the

�rst 
ustomer of a busy period on the 
ondition that more than one 
ustomers are served

in this busy period. Obviously, the relationship between N and N

�


an be formulated by

PfN

�

= ng = PfN = n+ 1jN > 1g =

PfN = n+ 1g

1� PfN = 1g

(n � 1) : (6)
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Before 
onverting the (
onditional) fa
torial moments '

i

(i = 1; 2; 3) of N into the (un-


onditional) fa
torial moments f

i

(i = 1; 2; 3) of N

�

, we state that for K > 1 (in
luding

K =1) p

00

� PfN = 1g 
an simply (see matri
es �) be 
omputed from:

p

00

= PfN = 1g =

x

0

x

0

e

(�D

(A)

0


 I)

�1

(D

(A)

1


 I) �A

2

e =
e
z

e

A

2

e : (7)

The ve
tor
e
z

e

=

x

0

x

0

e

(�D

(A)

0


I)

�1

(D

(A)

1


I) 
ontains the distribution of the QBD, when

the �rst 
ustomer of a busy period has just entered the system. The elements of matrixA

2


an be interpreted as the 
onditional probabilities that no other 
ustomers arrive before

the �rst 
ustomer's servi
e is �nished. For MAP/PH/1(/K) queues, x

0

is obtained from

x

0

=

1

�

A

(1� P

loss

)

y

0

(�D

(A)

0


 I) (see [4℄) ;

where P

loss

denotes the loss probability (whi
h naturally equals 0 for K = 1). Ve
tor

e
z

e

will also serve to un
ondition the fa
torial moments of N . Exploiting expression (6)

together with some algebrai
 manipulations, we 
an transform the fa
torial moments of N

into those of N

�

:

f

1

=

e
z

e

'

1

� 1

1�
e
z

e

A

2

e

; f

2

=

e
z

e

'

2

� 2
e
z

e

'

1

+ 2

1�
e
z

e

A

2

e

f

3

=

e
z

e

'

3

� 3
e
z

e

'

2

+ 6
e
z

e

'

1

� 6

1�
e
z

e

A

2

e

5 Output Models for MAP/PH/1(/K>1) Queues

In the output approximation of the systems above, we extend ideas from [13℄, where

the departure pro
esses are approximately modeled as MAPs with an SMP skeleton.

The so-
alled busy-period approa
h leads to very 
ompa
t and yet suÆ
iently a

urate

MAPs with intuitive physi
al interpretations. In analogy to [13℄, we distinguish between

MAP/PH/1(/K>1) and MAP/PH/1/1 queues in prin
iple. For the latter systems, the

exa
t departure pro
ess might often be of a reasonable size (namely m

A

� (m

S

+ 1)) for

eÆ
ient use in a MAP-based de
omposition. In the [13℄, even more 
ompressed output

models for MAP/PH/1/1 queues are additionally proposed. The output approximation

of this paper has been designed for queueing systems, where more than a single 
ustomer

may be served during a busy period (as opposed to MAP/PH/1/1 queues). Therefore,

this se
tion is dedi
ated to MAP/PH/1(/K>1) systems. First, we develop a DTMC model

that approximates the behavior (i.e., more pre
isely the �rst three moments, if it is possible

with ADPH(2)) of the number of 
ustomers in a busy period. Enhan
ing this DTMC with


onditional jump time distributions yields a semi-Markov pro
ess, from whi
h the output

MAP is easily derived by plugging in PH representations for servi
e times and idle periods.

In general, the proposed output approximations are very 
exible with respe
t to the

order of the 
orresponding MAPs, espe
ially due to moment-mat
hing te
hniques. To avoid

ambiguities, many quantities related to the output pro
ess will be indexed with subs
ript

D or supers
ript (D).

5.1 DTMC model for the number of 
ustomers in a busy period

An event in the departure pro
ess, i.e., a 
ustomer leaving the MAP/PH/1(/K>1) system,


orresponds to a transition in the proposed DTMC model. Any move to state 0 ex
lusively

11



β β

ββ

p    : F                 (t)
10 (N>1) I           +S

10

S
p    : F  (t)
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02

S
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11
p    : F  (t)

S

01
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p    : F  (t)

00
p

p    =

22

21 1p    =
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p    : F  (t)

2
p    = 1-

p    : F  (t)

00

22

00  I           +S

1
p    = 1-

(N=1)

211

p    : F                 (t)

0

00
p     = P{N=1} 

0 21

*N

Adding conditional jump time distribution functions

0 21

02

01

00

p   = (1-p)(1-p    )

p   = p (1-p    )

00

*
1ADPH(2) moment matching to N  based on f  , f  , f 2 3

Figure 1: Via the DTMC to the SMP(3)

signals the departure of the �rst 
ustomer in any busy period. Without any additional

information { as depi
ted in Figure 1 (top part) { we 
an state that { if the DTMC

follows the (solid) ar
 from 0 ba
k to the same state { a single-
ustomer busy period

must have o

urred in the queueing system (with the 
orresponding interdeparture time

being asso
iated with the previous transition of the DTMC). Thus, the probability p

00

=

PfN = 1g is attributed to transition 0 ! 0. Any path originating in state 0 and leading

to non-zero states 
omprises as many transitions as 
ustomers su

eed the �rst 
ustomer

in a busy period with more than a single 
ustomer, before this path returns ba
k to state 0

for the �rst time. So, these paths des
ribe the random variable N

�

, whi
h might have any

distribution depending on the node spe
i�
ations. If its moments are not entirely out of the

feasible range (whi
h would require a higher-order approximation), we will 
hoose to mat
h

an ADPH(2) distribution (with parameters p; �

1

; �

2

) to the �rst three fa
torial moments of

N

�

(given at the end of the pre
eding se
tion). The moment-mat
hing pro
edure of Se
tion

2 results in the DTMC with three states of Figure 1 (middle part), whi
h approximates

the behavior of the random variable N

�

.
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5.2 From the DTMC to the SMP(3)

The above DTMC 
ontains no information on the durations of the interdeparture times

{ they are simply set to unity. However, an output model to be used in a traÆ
-based

de
omposition must reasonably re
e
t that interdeparture times 
onsist of either a single

servi
e period or of the sum of a residual arrival time and a servi
e period. To this end,

we interpret the DTMC of the previous paragraph as a DTMC embedded in an SMP with

three states (SMP(3)) and atta
h a jump time distribution fun
tion 
onditioned on both

the sour
e and target state to ea
h transition (with transition probabilities p

ij

, see Figure 1

(bottom part)). The interdeparture time pre
eding the departure of a 
ustomer asso
iated

with a move to state 1 or state 2 equals a servi
e period S with distribution fun
tion

F

S

(t) (where S = S

01

= S

11

= S

21

= S

02

= S

22

). I

(N=1)

and I

(N>1)

stand for the random

variables of the idle periods following a busy period with a single or more than one 
ustomer,

respe
tively. The servi
e period of the �rst 
ustomer in a busy period is taken into a

ount

in the 
onditional jump time distribution fun
tions F

I

(N=1)

+S

00

(t) and F

I

(N>1)

+S

10

(t). This

SMP(3) skeleton distinguishes only two idle periods (as a simpli�
ation). Generally, an idle

period depends on the state of the input pro
ess right after the departure whi
h �nished

the previous busy period of the MAP/G/1(/K) queue. The state of the input pro
ess at

this instant, in turn, is in
uen
ed by the number of served 
ustomers in this busy period.

5.3 From the SMP(3) to the output MAP

By utilizing PH representations of servi
e times and idle periods, we now derive 
ompa
t

output MAPs from the SMP(3) skeleton. The SMP(3) remains invariant, if we reverse the

order of the idle periods I

(N=1)

and I

(N>1)

and their physi
ally su

eeding servi
e times

S

00

and S

10

, respe
tively, while keeping the event of departure at the end of ea
h sum

of random variables. In our MAP representation, we now 
ontra
t the servi
es 
ontained

within transitions originating from the same state into a single PH spe
i�
ation (�;T )

(S

00

; S

01

; S

02

! 1st blo
k row of D

(D)

0

, and analogously S

10

; S

11

! 3rd blo
k row of D

(D)

0

and S

21

; S

22

! 5th blo
k row ofD

(D)

0

). The inter
hange of random variables yields a more


ompa
t (and equally pre
ise) MAP:

D

(D)

0

=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

T p

00

(�Te) �

x

(N=1)

0

(

I
e

)

x

(N=1)

0

e

0 0 0

0 D

(N=1)

0

0 0 0

0 0 T p

10

(�Te) �

x

(N>1)

0

(

I
e

)

x

(N>1)

0

e

0

0 0 0 D

(N>1)

0

0

0 0 0 0 T

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(8)

D

(D)

1

=

�

�

�

�

�

�

�

�

�

�

�

0 0 p

01

(�Te)� 0 p

02

(�Te)�

D

(N=1)

1

e� 0 0 0 0

0 0 p

11

(�Te)� 0 0

D

(N>1)

1

e� 0 0 0 0

0 0 p

21

(�Te)� 0 p

22

(�Te)�

�

�

�

�

�

�

�

�

�

�

�

(9)

The MAPs (D

(N=1)

0

;D

(N=1)

1

) and (D

(N>1)

0

;D

(N>1)

1

) des
ribe the idle periods after a busy

period with a single 
ustomer or more than one 
ustomer, respe
tively. The probability
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ve
tors

x

(N=1)

0

(

I
e

)

x

(N=1)

0

e

and

x

(N>1)

0

(

I
e

)

x

(N>1)

0

e

are appropriate initial distributions (the term

(I
e) redu
es the dimension fromm

A

�m

S

tom

A

). If we want to 
apture the full behavior of

the input MAP (D

(A)

0

;D

(A)

1

) in the output model, we may set D

(N=1)

0

= D

(N>1)

0

= D

(A)

0

and D

(N=1)

1

= D

(N>1)

1

= D

(A)

1

. Then the des
riptions of the idle periods only di�er in

their initial distributions and the output MAP 
an be 
ompressed to

D

(D)

0

=

�

�

�

�

�

�

�

�

�

�

�

�

�

T 0 0 p

00

(�Te) �

x

(N=1)

0

(

I
e

)

x

(N=1)

0

e

0 T 0 p

10

(�Te) �

x

(N>1)

0

(

I
e

)

x

(N>1)

0

e

0 0 T 0

0 0 0 D

(A)

0

�

�

�

�

�

�

�

�

�

�

�

�

�

(10)

D

(D)

1

=

�

�

�

�

�

�

�

�

0 p

01

(�Te)� p

02

(�Te)� 0

0 p

11

(�Te)� 0 0

0 p

21

(�Te)� p

22

(�Te)� 0

D

(A)

1

e� 0 0 0

�

�

�

�

�

�

�

�

(11)

In the following, we outline how the unknown quantities are determined from the

MAP/PH/1(/K>1) queue.

Determining x

(N=1)

0

and x

(N>1)

0

As indi
ated by the notation, our 
hoi
e for x

(N=1)

0

is the ve
tor of the stationary prob-

abilities of ending a single-
ustomer busy period in the QBD. Obviously (see also 4.3),

x

(N=1)

0


an be 
omputed from

x

(N=1)

0

=
e
z

e

A

2

Ve
tor x

(N>1)

0

is a 
ompound analogue of x

(N=1)

0

for the idle period after a busy period

with more than one 
ustomer resulting from x

(N=1)

0

+ x

(N>1)

0

=

1

x

0

e

x

0

.

Moment �tting for the idle periods and servi
e times

Unless the order of the output MAP be
omes too large, (D

(N=1)

0

;D

(N=1)

1

) and (D

(N>1)

0

;

D

(N>1)

1

) are 
hosen identi
al to the input MAP matri
es (D

(A)

0

; D

(A)

1

). The 
orrespond-

ing output model (10)/(11) has the order m

A

+ 3m

S

, whi
h is linear in m

A

and m

S

.

Considering the se
ond and third moments of the number of 
ustomers served in a busy

period only added m

S

additional states (
ompared to [13℄). If the distin
tion between

I

(N=1)

and I

(N>1)

is 
ompletely ignored, we will substitute

x

0

(

I
e

)

x

0

e

for

x

(N=1)

0

(

I
e

)

x

(N=1)

0

e

and

x

(N>1)

0

(

I
e

)

x

(N>1)

0

e

in D

(D)

0

of (10), whi
h allows to �nd an even more 
on
ise output MAP.

Then we might as well mat
h a low-order PH distribution (�;U

(I)

) to the �rst moments

of the idle period (preferentially an ACPH(2) one to the �rst three power moments, see

Se
tion 2). The residual arrival time 
orresponds to the absorption time of a CTMC

14



(with initial distribution

x

0

(

I
e

)

x

0

e

). So, it is itself a PH distribution with representation

(

x

0

(

I
e

)

x

0

e

;D

(A)

0

), whose moments 
an easily be 
al
ulated (see (2)). This results in the

following repla
ements in (10)/(11):

D

(A)

0

 U

(I)

D

(A)

1

e �U

(I)

e

x

0

(

I
e

)

x

0

e

 �

Similar substitutions { typi
ally of order 2 in form of an ACPH(2) distribution, unless the

squared 
oeÆ
ient of variation is less than 0.5) { 
an be performed for the idle periods of

the output model (8)/(9) (of order 2m

A

+ 3m

S

) and in general for possibly unne
essarily

large PH servi
e time distributions. Espe
ially, when the two types of idle periods need to

be distinguished (for reasons of a

ura
y), the appli
ation of moment mat
hing to (8)/(9)

often yields the most 
ompa
t approximation of the departure pro
ess.

The busy queue

A spe
ial situation arises, if the system almost never be
omes empty, i.e., x

0

e � 0. Then,

the output pro
ess 
an be modeled as a PH renewal pro
ess, where the PH interarrival

time distribution 
orresponds to the servi
e time (�;T ) (either exa
t or approximate).

6 Numeri
al experiments

In this se
tion, we examine the output approximation (10)/(11) of the previous se
tion.

We 
on
entrate on the mean queue length E [N

t

℄ at arbitrary time (see [18, 22℄ for the


omputation for MAP/PH/1(/K) systems). In order to assess the a

ura
y of the de
om-

position results, we perform simulations by means of the SPNL 
omponent of TimeNET

[30℄ with 99% 
on�den
e level and a maximum relative error of 1%. We �rst study the

dual tandem queue in Figure 2 taken from [13℄. External arrivals o

ur a

ording to a

bursty and nonrenewal MMPP with two states whose parameters are given in the �gure

and result in the MAP notation

D

(A)

0

=

�

�

�

�

�(r

0

+ �

0

) r

0

r

1

�(r

1

+ �

1

)

�

�

�

�

and D

(A)

1

=

�

�

�

�

�

0

0

0 �

1

�

�

�

�

:

While the �rst queue pro
esses requests in exponentially distributed servi
e times (with

rate 2.0), the se
ond queue (with in�nite 
apa
ity) has an Erlang-2 servi
e time distribution

of expe
tation 0.8. Sin
e in the MAP-based de
omposition the analysis of the �rst node

in a tandem queueing network will always be exa
t (ex
ept for numeri
al errors), we fo
us

on the mean queue length at the se
ond node. In three sets of experiments, we vary

spe
i�
ations at the �rst queue (i.e., bu�er size, servi
e rate and mean arrival rate) in

10 λ1 λ 0

MMPP

(r = 0.9375, r  = 0.0625,      = 6.0,      =  0.1333)
erlang(0.8,2)exponential(2.0)

K

mean rate = 0.5, scv = 4.1

Figure 2: The dual tandem queue
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Simulation De
omposition Simulation De
omposition

K mql 
onf. int. mql rel. err. K mql 
onf. int. mql rel. err.

1 2:0401 �0:0128 2:0795 +1:9% 10 1:2779 �0:0090 1:2809 +0:2%

(results from ref. [13℄: 1:8789 �7:9% 1:2671 �0:8%)

30 1:9696 �0:0141 2:0157 +2:3% 6 0:9017 �0:0086 0:8847 �1:9%

25 1:9199 �0:0159 1:9540 +1:8% 4 0:6748 �0:0036 0:6451 �4:4%

20 1:8083 �0:0127 1:8380 +1:6% 3 0:5632 �0:0045 0:5025 �10:8%

15 1:6068 �0:0118 1:6287 +1:4% 2 0:4311 �0:0023 0:3307 �23:3%

Table 4: Mean queue lengths (mql) at se
ond node for the dual tandem queue (varied K)

Series for varied parameter at �rst queue

servi
e rate mean arrival rate

Simulation De
omposition Simulation De
omposition

� mql 
onf. int. mql rel. err. mql 
onf. int. mql rel. err.

0:1 2:8038 �0:0219 2:5636 �8:6% 0:2032 �0:0020 0:2035 +0:1%

0:2 2:3016 �0:0155 2:3267 +1:1% 0:4809 �0:0041 0:4880 +1:5%

0:3 1:7402 �0:0170 1:8152 +4:3% 0:8187 �0:0060 0:8422 +2:9%

0:4 1:2543 �0:0095 1:3200 +4:6% 1:2542 �0:0099 1:3120 +4:6%

0:5 0:9479 �0:0073 0:9762 +3:0% 1:8458 �0:0152 1:9696 +6:7%

0:6 0:7964 �0:0052 0:8064 +1:3% 2:7272 �0:0242 2:9567 +8:4%

0:7 0:7141 �0:0060 0:7163 +0:3% 4:1579 �0:0325 4:6005 +10:6%

0:8 0:6514 �0:0045 0:6619 +1:6% 6:9917 �0:0399 7:8729 +12:6%

0:9 0:6290 �0:0055 0:6258 �0:5% 15:402 �0:1299 17:573 +14:1%

Table 5: Mean queue lengths (mql) at se
ond node for the dual tandem queue (K =1)

order to investigate their impa
t on the proposed output approximation as observed in the

queueing behavior of the downstream queue.

Table 4 lists simulation data and de
omposition results for di�erent values of 
apa
ity

K at the �rst queue. In [13℄, where the MAP-based de
omposition ignores higher moments

of the number of 
ustomers served in a busy period, the 
onsidered dual tandem queue

is evaluated for K = 1 and K = 10. Comparing rows 3 and 4 shows that an additional

mat
hing of the se
ond and third moment of this random variable N signi�
antly improves

the numeri
al a

ura
y (from �7:9% to +1:9% and from �0:8% to +0:2%, respe
tively).

At the same time, the order of the output MAP approximations only in
reases from 4 to

5. Note that the orders of the exa
t output MAPs are substantially larger (i.e., in�nite

for K = 1 or m

exa
t

D

= m

A

(1 + Km

S

) = 22 for K = 10). Medium-sized and large


apa
ities lead to satisfa
tory relative errors, even though in 
ases K = 20; 15; 10; 6 the

third (fa
torial) moment is set to the 
losest permissible boundary value as outlined in

Se
tion 2. The largest relative modi�
ation o

urs for K = 15, where the true value

f

3

= 2098:0 is repla
ed by 2222.9. Very small bu�er sizes (see K = 2; 3) appear to be

unfavorable to the proposed output approximation. This drawba
k, however, need not be

overrated, sin
e in these 
ases the exa
t output MAPs are usually so 
ompa
t themselves

that they 
an dire
tly be employed in the 
ontext of MAP-based de
omposition (as it is

done for the MAP/PH/1/1 system, see [13℄).
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 =  ( 0.2, 0.8 )
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0

 =  ( 0.6, 0.4 )
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0
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0.1111
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0.1111

0 0

0 00

0

0

0

0 0

0
D =

0.5

0.5

0.6

0.4
exponential(1.0)hyperexponential:

K= 6

erlang(1.0,3)

mixed-Erlang:
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mean rate = 0.25, scv = 2.2

MAP(4)

D =
1

0.1111

0

0.3443

0.3443

0.0216

0.0216

0.0216

0.02160

0

0 0

0

0.1111

0.0014

0.0014

Figure 3: The four-node queueing network

In the next two series of experiments, we look into the dependen
e of de
omposition

results on the utility of the �rst queue, whi
h is tuned in two ways: either by 
hanging the

servi
e rate of the exponential distribution or by uniformly s
aling all parameters of the

arrival pro
ess so that its squared 
oeÆ
ient of variation (see (1)) remains 
onstant, while

the mean arrival rate varies. Capa
ity K is �xed to in�nity. In the �rst series (left-hand

side of Table 5), all other spe
i�
ations of the network of Figure 2 are left untou
hed so

that the utility at the se
ond queue does not 
hange. In the se
ond series (right-hand

side of Table 5), the expe
tation of the Erlang-2 distribution is additionally altered to

0.5 so that we have identi
al utilities at both queues. The last 
olumn suggests that the

approximations of the mean queue lengths at the se
ond node deteriorate with in
reasing

utility of the �rst queue, whi
h however 
annot be 
on�rmed in general with respe
t to the

�fth 
olumn. While overall results might be regarded a

eptable, the deviations of more

than 10% for few values in the last 
olumn arouse the 
onje
ture that in some 
ases the

fourth and �fth moments of the random variable N ought to be taken into a

ount, too.

An important feature of the proposed MAP output models, whi
h is indispensible for an

eÆ
ient network de
omposition, 
onsists in their moderate orders. Table 6 demonstrates

q.- MAP Simulation De
omposition q.- MAP Simulation De
omposition

no. m

D

mql mql rel. err. no. m

D

mql mql rel. err.

1 8 0:2800 0:2804 +0:1% 6 38 0:2527 0:2680 +6:1%

2 14 0:2661 0:2716 +2:1% 7 44 0:2544 0:2671 +5:0%

3 20 0:2615 0:2706 +3:5% 8 50 0:2538 0:2662 +4:9%

4 26 0:2584 0:2698 +4:4% 9 56 0:2536 0:2654 +4:7%

5 32 0:2542 0:2689 +5:8% 10 (62) 0:2493 0:2646 +6:1%

Table 6: Mean queue lengths (mql) for 10-node tandem network
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queue input MAP output MAP Simulation De
omposition

number order m

A

order m

D

mql 
onf. int. mql rel. err.

1 2 8 0:4630 �0:0042 0:4635 +0:1%

2 32 41 0:7994 �0:0078 0:8240 +3:1%

3 41 (44) 0:2726 �0:0016 0:2799 +2:7%

4 41 (47) 0:2613 �0:0024 0:2683 +2:7%

Table 7: Mean queue lengths (mql) for four-node queueing network

how these orders (see 
olumns labeled m

D

) grow only linearly in a tandem network of ten

homogeneous in�nite-bu�er queues with Erlang-2 servi
e distributions (mean rate 1.9).

The two-state MAP depi
ted in Figure 3 as the arrival pro
ess to queue 1 also serves as the

external input to the tandem network. However, it is s
aled to a mean arrival rate of 0.38

(with the squared 
oeÆ
ient of variation kept at 8.1). The �rst two queues of this network

are also analyzed by MAP-based de
omposition in [25℄. Therein, MAP representations of

order 134 for the departure pro
ess of the �rst queue deliver ex
ellent results for the mean

queue length at the se
ond node. In order to pro
eed in the analysis of longer tandem

networks, more 
ompa
t representations are required. In the methodology of this paper,

the internal MAP sizes evolve a

ording to the formula m

D

= m

A

+ 3 �m

S

= m

A

+ 6 from

queue to queue so that the output of the tenth queue in series is of order 62 only (bra
kets

indi
ate that this MAP is a
tually not used in the 
omputations). In a 
omparison between

de
omposition and simulation results (
on�den
e intervals range from�0:0012 to�0:0026),

the analyti
 values 
ome o� well both quantitatively and qualitatively. The mean queue

lengths are slightly overestimated, but their falling o� due to de
reasing squared 
oeÆ
ients

of variation of the internal traÆ
 is 
orre
tly 
aptured (unlike simulation, see queues 6/7).

Finally, we present a general four-node queueing network with splitting and merging

(Figure 3) to emphasize the potential of an obvious de
omposition approa
h to su
h net-

works based on the output approximation of Se
tion 5. Again two bursty external inputs

{ MAPs of orders 2 and 4 with the given squared 
oeÆ
ients of variation (s
v) { are taken

from [25℄ with their mean rates being s
aled to the stated values. Besides the known

spe
i�
ations for the exponential and Erlang distributions { here Erlang-3 at queue 2 {,

a mixed Erlang and a hyperexponential servi
e time distribution { as also used in [1℄ {

are represented in PH notation in Figure 3 below the 
orresponding queues. They 
over

variabilities ranging from

1

3

to 1

2

9

. Furthermore, routing probabilities and a �nite bu�er

size are depi
ted. Table 7 
olle
ts the errors of the de
omposition results (all below 3.1%)

relative to the simulated values along with the orders of the involved traÆ
 des
riptors.

Note that both splitting (invariant to MAP order) and merging (multiplies orders of in-

volved MAPs) are performed as exa
t operations. The data illustrates that the provided

output approximation allows a reasonable trade-o� between a

ura
y and eÆ
ien
y.

7 Con
lusions

A 
ompa
t output approximation of MAP/PH/1(/K) queues has been presented suggesting

an eÆ
ient de
omposition of networks of su
h queues. The key quantity in this approxima-

tion is the random variable N { the number of 
ustomers served in a busy period { whose

�rst three moments are mat
hed by the output MAP model. Thus, the approa
h in [13℄
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is extended. Sin
e the orders of these MAPs depend only linearly on those of the input

MAP and the PH servi
e representation, queueing networks with several nodes 
an be

de
omposed qui
kly. Due to the fa
t that these traÆ
 des
riptors appropriately re
e
t the


orrelation stru
ture of the internal traÆ
, numeri
al results for the mean queue lengths

show good 
oin
iden
e with simulation data. The short response times of the related algo-

rithm together with its 
apability to deliver a wide range of performan
e measures make it

an attra
tive (and often the only) alternative to simulation. As indi
ated by experiments,

it might be worthwhile in some situations to take into a

ount yet higher moments { say

fourth and �fth { of random variable N for enhan
ed pre
ision. This 
an be a
hieved by

means of an ADPH(3) skeleton for the output MAP. For larger networks, a �nely tuned

heuristi
, whi
h applies moment-mat
hing te
hniques (see Se
tion 5) to servi
e and/or

residual arrival times as they expli
itly o

ur in the output MAP model, 
an still 
om-

press the involved traÆ
 des
riptors. This opens even further-rea
hing opportunities in

the trade-o� between a

ura
y and eÆ
ien
y.
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