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Abstrat: In this paper two main problems are investigated. The �rst

one is the e�et of the goal funtion of the applied �tting method on the

goodness of Phase type �tting. We disuss a numerial method based on

a simple numerial optimization proedure that allows us to �t any non-

negative distribution with a Phase type (PH) distribution aording to any

arbitrary distane measure. By omparing the �tting results obtained by

minimizing di�erent distane measures, onlusions are drawn regarding the

role of the optimization riteria.

The seond onsidered problem is the tail behaviour of Phase type dis-

tributions obtained via di�erent �tting methods. To limit the numerial

omplexity of �tting methods (basially the evaluation of distane measures)

the omputations (numerial integration) are trunated at some point. Hene

the information on the tail behaviour of the distribution is not onsidered

beyond this point.

To approximate distributions with heavy tail we propose a omplex meth-

od that uses di�erent tehniques to �t the main part and the tail of the distri-

bution. The proposed method ombines the advantages of �tting tehniques

and this way it overomes some of their limitations.

The goodness of the disussed �tting methods are ompared in queuing

behaviour as well. The behaviour of the M/G/1 queue is ompared with the

one of the approximating M/PH/1 queue.

1 Introdution

The well known Phase type �tting methods (an overview is provided in [9℄)

an be lassi�ed based on their optimization riteria. Some of them intend
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to �t only some parameters of the distribution (usually some moments),

while others intend to minimize a distane measure (EMPHT [2℄, MLAPH

[3℄). In the seond ase the optimization riteria, i.e., the distane measure

to minimize, was always the same, the ross entropy, that omes from the

applied maximum likelihood priniple. In [1℄ a setion is devoted to the

argument about the general advantages of this distane measure. Though

there are ases (e.g., better �tting the tail of distributions) when the weakness

of the method minimizing the ross entropy measure beomes dominant and

other methods an outperform it.

The need to ompare the properties of di�erent �tting approahes was

reognized a deade ago, and a set of tests was de�ned during the work-

shop on Fitting Phase type distributions, Aalborg, Denmark, organized by

S. Asmussen in February 1991. In [4℄ the proposed set of tests was evalu-

ated using the MLAPH method and some new measures were proposed to

be onsidered as well. In [9℄ a wider set of �tting methods was ompared

and their �tting measures were evaluated. Some of the onsequenes are

quite natural. The methods that intend to minimize the distane between

the original and the approximating distribution regarding a given aspet sur-

pass other methods regarding that aspet (even if it is not always the ase).

For example a moment mathing method may be superior to the MLAPH

method regarding the relative errors in the moments while MLAPH may top

it onerning ross entropy. Based on this observation a numerial proedure

is implemented that minimizes an arbitrary distane measure whih was not

possible with the available PH �tting methods.

In reent teleommuniation systems the ourrene of heavy tail distri-

butions is reported, whih direted the attention to the tail behaviour of PH

distributions. The tail of any Phase type distribution is known to be expo-

nential, while reent researh results indiate the importane of distributions

with \heavy" tails. When distane measures that are more sensitive to the

tail distribution than the ross entropy are used as the optimization riteria

better \tail �tting" an be ahieved.

The PH �tting methods an be lassi�ed also by their generality. The

methods that minimize a distane measure (EMPHT [2℄, MLAPH [3℄) intend

to �nd a global minimum of the goal funtion over the valid subset of the

parameter spae, hene we refer to them as general �tting methods. Another

set of methods uses speial PH strutures and �ts their parameters aording

to some heuristi onsiderations, hene we refer to them as heuristi �tting

methods. Feldmann and Whitt proposed a simple but very e�etive heuristi

�tting method that is espeially appliable for �tting the tail behaviour of

heavy tail distributions [8℄. Their method uses mixtures of exponentials and

hene results in distributions with dereasing density funtion. The main



advantage of their method is the e�etive heuristi way of �tting. The appli-

ation of general �tting methods is omputationally expensive when the tail

behaviour has to be approximated due to the numerial integration up to a

high upper limit. The method proposed by Feldmann and Whitt provides

good approximation of the tail behaviour with negligible omputational ef-

fort. In this paper we provide a omplex method that overome the limitation

of this method.

The goodness of the studied Phase type �tting methods are ompared, on

the one hand, through several plots and parameters of the distributions, and

on the other hand by the e�et of PH representation of general servie time

distributions in queuing systems. We ompare the queue length distribution

of the M/G/1 queue with the one of the approximating M/PH/1 queue.

The queuing behaviour of the M/G/1 queue with heavy tail servie time

distribution is evaluated by the method proposed by Roughan et al. [11℄.

The analytial results given by this method were veri�ed by simulation for

queue length probabilities greater than 10

�5

and showed a perfet �t.

It should be noted that the general distributions onsidered in this paper

are ontinuous and are available in an analytial form. Fitting of empirial

distributions based on their samples is not onsidered here.

The rest of the paper is organized as follows. The next setion introdues

�tting parameters and di�erent distane measures. Setion 3 desribes the

applied �tting method with some implementation details. The e�et of goal

funtion on the goodness of �t is disussed in Setion 4. The sueeding

setion shows the e�et of the �tting parameters on the M/G/1 queue length

distribution. Setion 6 presents the ombined �tting method and Setion 7

disusses its features. The last setion gives the onlusion. Several numerial

results are given in the Appendix.

2 Fitting parameters and distane measures

Partiipants of the Aalborg workshop proposed a set of parameters to mea-

sure the goodness of Phase type �tting methods. The original set of parame-

ters was extended in [4℄ and the weakness of some measures proposed at the

workshop was reported as well. Later on the following set of (non-negative)

parameters was ommonly used (e.g., in [9℄):
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interhangeably used in PH �tting, sine they di�er only in a onstant H.

That is the intrinsi entropy of the original distribution,

^
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f(t)log(f(t))dt. The advantage of using the relative entropy measure is

that it is always non-negative and its minimum is 0 (while the lower bound of

minus the ross entropy isH, whih an be a negative value as well). Authors

of papers dealing with Phase type �tting algorithms usually reported minus

the ross entropy. In order to make the omparison easier with those papers,

throughout the appendix minus the ross entropy and the intrinsi entropy

are given.

All of the above parameters an be used as a goal funtion that should

be minimized for �tting, but in the �rst three ases f(t) and

^

f(t) an di�er

signi�antly even if the (non-negative) measures equal to 0. We refer to these

parameters as parameters of goodness. In ontrast, the parameters that equal

to 0 if and only if f(t) �

^

f(t) are referred to as distane measures. In this

paper we onsider the following three distane measures as the goal funtion

of Phase type �tting:
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Figure 1: First Canonial Form (CF1)

The �rst two distane measures were already onsidered in [4℄. The third

distane measure was hosen to enlarge the e�et of tail behaviour (at least

ompared to the area di�erene). In some ases the formula given for the

relative area di�erene may be divergent, this problem will be relaxed in

pratie by de�ning a �nite upper limit for the integral. Of ourse, there

are several further reasonable distane measures that are not onsidered in

this paper, e.g., the di�erent parts of the distribution an be onsidered with

di�erent weights:
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� 1 provides a partitioning of the

support set and a

j

> 0; j 2 f0; 1; : : : ; n � 1g are arbitrary weights. We

onsider only the above three distane measures beause they are able to

exhibit the e�ets that we would like to investigate.

3 A �tting method for arbitrary distane mea-

sure

The �tting problem may be formulated as an optimization problem the fol-

lowing way: �nd the parameters (the initial vetor and the transition matrix)

of the PH distribution suh that the distane measure is minimal. Not having

any restrition on the struture of the n stage PH distribution the number

of free parameters is n

2

+ n. In order to derease the number of free param-

eters only Ayli Phase (APH) distributions are onsidered. The proedure

desribed in this setion would be able to �t any Phase type struture by

relaxing some onstraints, but we believe that the exibility of the APH lass

is pratially equivalent to the exibility of the whole PH lass of the same

order. Cumani [6℄ has shown that any ayli APH distribution of order n

may be transformed into the form represented in Figure 1 and referred to as

First Canonial Form (CF1). The approximating PH distribution is in this

form, desribed by the vetors � and �.

The proedure starts from a random initial point of the parameter spae

that is the best of 200 random guesses, all of whih has the proper mean
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tf(t)dt. The best means the random guess with the least distane aording

to the applied measure. The distane measure is evaluated through numerial

integration from 0 to T , where T is de�ned by 1� F (T ) = K, where K is a

small number that may have the value of 10

�3

; 10

�4

; 10

�5

; ::: . The smallerK

the higher the upper limit of the integration and the longer the approximation

proess.

Starting from the initial guess the non-linear optimization problem is

solved by an iterative linearization method. In eah step the following partial

derivatives are numerially omputed:
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where D(f

PH

(); f()) stands for the distane between the pdf of the PH dis-

tribution (f

PH

()) and the pdf of the original distribution (f()). Then, the

simplex method is applied to determine the diretion in whih the distane

measure dereases optimally. The onstraints of the linear programming is

given by probabilisti onstraints (the initial probabilities have to sum up to

one), by the restrition on the struture of the PH distribution (the �

i

s are

ordered [6℄) and by on�ning the hange of parameters (sine the derivatives

are valid only in a small area around (�; �)). A searh is performed in the di-

retion indiated by the linear programming. The next point of the iteration

is hosen to be the border of the linearized area (de�ned by the allowed max-

imum hange in the parameters) in the optimal diretion if the goal funtion

is dereasing in that diretion all the way to the border of the area. The

next point is set to the (�rst) optimum if the goal funtion has an optimum

in the optimal diretion inside the linearized area. The iteration is stopped

if the relative di�erene of the parameters in onseutive iteration steps are

less than a prede�ned limit (10

�5

), or if the number of iterations reahes the

prede�ned limit (800). The allowed relative hange of the parameters greater

than 10

�3

is less than �, where � starts from 0:1 and is multiplied by 0:995

in eah step.

The neessary number of phases depends on the distribution to be �tted,

and the required interval of �tting. After eah �tting the measures of good-

ness may be examined and the probability density funtions may be visually

inspeted. If the �tting is not satisfatory the number of phases may be

inreased. In general, inreasing n results in better �tting but the higher n is

the more time the estimation algorithm requires. Also, beause of numerial

problems, as the number of parameters is larger the goodness of �tting does

not improve signi�antly (for instane, �tting the [0; 1℄ uniform distribution

by 32 phases do not show notable advanes ompared to the 24 phase �t-

ting). Summing up, the neessary number of phases may be determined by
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Figure 2: Pdf of Pareto I (� = 1:5, B = 4) and II (� = 1:5 and b = 2)

performing a series of �tting with di�erent number of phases and hoosing

the most appropriate one taking into aount the appliation, into whih the

PH distribution will be plugged in, as well.

Our numerial proedure is similar in some sense to the one proposed by

Bobbio and Cumani [3℄, but our method is able to handle any goal funtion

and it evaluates the derivatives via a simple numerial approximation, instead

of the sophistiated alulation that is appliable only with the ross entropy

measure.

4 The e�et of the goal funtion on the good-

ness of PH approximation

In this setion we provide a representative set of Phase type �tting results

obtained by our numerial method applying the mentioned goal funtions.

We have evaluated the omplete benhmark as in [4, 9℄ with all distane

measures, but here we provide only the results that we found meaningful.

To investigate the goodness of �t heavy tail distributions we additionally

onsider the following Pareto-like distributions [11℄ (Figure 2):

Pareto I: f(t) =
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There are signi�ant di�erenes between these distributions even if their

tail behaviour is the same. Pareto I starts from a positive value and has

monotone density while Pareto II starts from 0 (with 0 slope), hene it is not
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Figure 3: Pareto I distribution and its PH approximation
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Figure 4: Pareto II distribution and its PH approximation

monotone. The derivative of the density of Pareto I is not ontinuous, while

it is ontinuous for Pareto II.

The results of the approximation of distributions with heavy tail are de-

pited in two parts. The main part of the distributions is shown in a linear

{ linear plot in the range of f0;

^

tg, where

^

t is suh that F (

^

t) � 0:95 and the

tail of the distributions is shown in a logarithmi { logarithmi plot.

Figures 3 { 4 show the result of �tting with PH distributions of order 12

and with di�erent distane measures. In the �gures ML refers to �tting apply-

ing the relative entropy measure (that is related to the maximum likelihood

phenomena), AD to the area di�erene measure and RAD to the relative area

di�erene measure. The Pareto I distribution is used with � = 1:5, B = 4

and Pareto II with � = 1:5 and b = 2. In both ases the upper limit of the

integration to evaluate the distane measure was de�ned by 1�F (K) = 10

�4

,

whih results in K = 683:0 for Pareto I and K = 767:0 for Pareto II. As it

an be observed in the �gures for Pareto I the tail behavior is �tted better

by using RAD as the distane measure while for Pareto II the approximation

given by ML follows the tail further. Our general observation is that RAD

�ts the tail behaviour better for monotone distributions than ML does while
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Figure 5: PH approximations of distribution W2
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it may fail to give good approximation for non monotone distributions.

Figures 5 { 6 show other examples of the benhmark presented in [4℄

(see the appendix for the summary of the test ases used in the benhmark).

W2 is a long tail weibull distribution whose tail behaviour is followed better

using RAD as the distane measure during the proedure. U1 is a uniform

distribution on [0 : 1℄. Visual inspetion gives the feeling that using AD

results in better approximations than using ML. On the other hand the ML

approximation gives signi�antly better results regarding the relative errors

in the moments. The numerial parameters of the goodness of �t is provided

in the Appendix.

Based on the �tting results of numerous di�erent distributions applying

di�erent distane measures we draw the following onlusions:

1. Eah distane measure has a \sensitivity struture", meaning that they

are not equally sensitive to the error of �tting at di�erent \parts" of the

distribution. The three onsidered measures an be lassi�ed as follows.

The AD measure is sensitive to the main part of the distribution, the RAD

measure to its tail (till the upper bound of the numerial integration), while

the ML measure is sensitive to both, but it is less sensitive to the main part

than the AD measure and in many ases less sensitive to the tail than the



RAD measure.

2. The \shape" of the distribution also has a signi�ant role on the goodness

of �t. Indeed the relationship between the shape of the distribution and the

sensitivity struture of the applied distane measure a�ets the goodness of

�t. Distributions with \non-Phase type" like behaviour in the main part

an be better approximated using the AD measure. While distributions with

\nie" behaviour at its main part and with \non-Phase type" behaviour in its

tail an be better approximated using the RAD measure. The ML measure

gives quite a robust method that works well in general without having a

\strange" distribution to �t.

3. Of ourse, the goodness of �t is a general term. Parameters of �tting an

be ompared (next item), but the plots of the original and the approximating

PH distributions provide an intuitive feel for the behaviour of �tting. The

sensitivity struture of the applied distane measures an be reognized in

the density plots as well. The �tting by the AD measure better approximate

(when low order PH is used) the shape of the main part of the density in

Figure 4 than the others do, while it is one whose tail \disappears" �rst in the

ase of heavy tail distributions. This trend of the tail behaviour was general

in our experiene. The tail of heavy tail distributions was best approximated

by using RAD measure or ML measure and the worst tail �tting was ahieved

by using AD. (The relative error of the 3rd moment that is quite sensitive to

the tail behaviour provides the same ranking.)

4. Usually, the best �t, aording to a given �tting measure was reahed

by using that measure as the distane measure for the �tting, but there are

several exeptions (the exeptions are highlighted by boldfae haraters in

the Appendix). One potential reason of this phenomena is the numerial

inauray, but we think that the \shape" of the distribution plays role as

well.

5. The �tting of distributions with low order Phase type (� 6) was usu-

ally terminated by reahing the required relative preision (i.e., the �tting

method was not able to improve the approximation), while the �tting with

higher order Phase type was terminated by reahing the maximum number

of iterations.



5 The e�et of PH approximation on the

M/G/1 queue length distribution

One of the most important �elds of appliation for Phase type distributions

is in the area of traÆ engineering of high speed ommuniation systems. In

this �eld the main question is not the goodness of �t of general servie or in-

terarrival time distributions, but the goodness of approximating the queuing

behaviour of network elements with general servie and/or interarrival time

distributions.

In this setion we ompare the queuing behaviour of M/G/1 queues with

the behaviour of their approximating M/PH/1 queue by onsidering the

queue length distribution. The queue length distribution of the original

M/G/1 queue with heavy tail servie time distribution is evaluated using

the method proposed by Roughan et al. [11℄.

The method of Roughan et al. [11℄ evaluates the queue length distribu-

tion by the following steps. First it alulates the asymptoti behaviour of

the probability generating funtion (PGF) of the queue length distribution

(given by the Pollazek-Khinthine formula) via Tauberian theorems. Us-

ing the result it determines the asymptoti behaviour of the queue length

distribution, then applies an Inverse Fast Fourier Transform (IFFT) on the

PGF. It is shown by Daigle [7℄ that the result of the IFFT is ontaminated

by alias terms, but knowing the asymptoti behaviour of the queue length

distribution they may be subtrated resulting in appropriate preision.

The method is appliable when the tail of the servie time distribution

has a power law tail whih is the ase for the two onsidered Pareto-like

distributions.

Assuming that the Phase type distributed servie time is given by the

initial probability vetor a (row vetor) and transition matrix B the queue

length distribution of the M/PH/1 queue an be evaluated using the matrix

geometri method [10℄:

p

0

= 1� � a B

�1

e; p

i

= p

0

a R

i

e 8i � 1 :

where � is the arrival rate, e is a olumn vetor of ones, a B

�1

e is the

mean of the Phase type distributed servie time, and matrix R is de�ned as

R = (I� e a� 1=� B)

�1

.

Figures 7 { 8 show the queue length distribution of an M/G/1 queue

with Pareto I (� = 1:5, B = 4) and Pareto II (� = 1:5, b = 2) servie

time distribution and the approximating M/PH/1 queue, where the servie

time is PH distributed with order 12 and is obtained by minimizing di�erent

distane measures (ML, AD, RAD). The ontinuous urves in Figures 7 {
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Figure 7: Queue length distribution of an M/G/1 queue (with Pareto I) and

its approximate M/PH/1 queue
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Figure 8: Queue length distribution of an M/G/1 queue (with Pareto II) and

its approximate M/PH/1 queue

8 are obtained by joining the queue length probability values evaluated at

integer points. TraÆ intensity equals to 0:8.

6 A ombined �tting method

As we have seen in the previous setions we an improve the tail �tting

of general �tting methods by applying distane measures that are sensitive

to the tail behaviour. But it is also mentioned that the appliability of

this approah is limited by its omputational omplexity, whih inreases at

least linearly with the onsidered subset of the support (the upper limit of

the numerial integration)

2

. There is a trade o� between the general and

heuristi �tting methods. Generally, the omputational omplexity of the

2

Numerial integration tehniques with exponentially inreasing step size is a way to

avoid the linear inrease of the omputational omplexity, but the omplexity problem

remains anyway.



general �tting methods is muh higher than the omplexity of heuristi �tting

methods, but the general methods are muh more exible, i.e., they better

approximate a wide range of distributions. Heuristi �tting methods that

usually use speial sublasses of the lass of Phase type distributions are less

exible. They provide muh poorer �tting for a wide range of distributions,

but there might be a set of distributions that an be approximated by a

heuristi �tting method as well as by using any general �tting method. When

only this speial set of distributions needs to be �tted it is worth applying

the heuristi �tting method.

In pratie, the main part of empirial distributions an have any gen-

eral struture, while the tail of empirial distributions is assumed to be

\nie" so that heuristi �tting methods an be used for tail �tting. Ugly

tail behaviour, like the tail of Matrix Exponential distribution f(t) = (1 +

1=(2 �)

2

) (1� os(2 � t) ) e

� t

[5, 4℄, or similar non-monotone funtions with

non-exponential deays, are not ommonly used in pratie.

Based on these onsiderations we propose one �tting method that uses a

general approah to approximate the main part and a heuristi approah to

approximate the tail of distributions. The heuristi method used for �tting

tail behaviour is based on the method proposed by Feldmann and Whitt [8℄

and the general method to �t the main part is based on the numerial proe-

dure introdued in the previous setions. Indeed, only a slight modi�ation

is needed to ombine the two methods into a ombined proedure.

The limitation of our ombined method omes from the limitation of the

heuristi method of Feldmann and Whitt. Their method is appliable only

for �tting distributions with monotone dereasing density funtion. Hene

the proposed ombined method is appliable when the tail of the distribution

is with monotone dereasing density. This restrition is quite loose sine the

border of the main part and the tail of the distribution is arbitrary, hene

the restrition of appliability is to have a positive number C suh that the

density of the distribution is monotone dereasing above C.

The result of our �tting algorithm is a Phase type distribution of or-

der n +m, where n is the number of phases used for �tting the main part

and m is the number of phases used for �tting the tail. The struture

of this Phase type distribution is depited in Figure 9. The parameters

�

1

; : : : ; �

m

; �

1

; : : : ; �

m

are omputed by onsidering the tail while the param-

eters �

1

; : : : ; �

m

; �

1

; : : : ; �

2

are determined onsidering the main part of the

distribution. The algorithm onsists of the following steps.

First, we de�ne the border of the main part and the tail, t



, based on

onstant  by the equality 1 � F (t



) =  ;  an depend on the distribution
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Figure 9: Struture of approximate Phase type distribution

and other onsideration (e.g., the omputational omplexity

3

). Its typial

value is between 0:0001� 0:01.

The upper bound of the tail approximation t

d

is determined by an other

onstant d in a similar way by the equality 1 � F (t

d

) = d ; d an vary in

a wide range, e.g., 10

�20

� 10

�4

, but it an be smaller than 10

�20

as well.

It does not a�et the omputational omplexity, d is rather limited by the

applied oating point arithmeti.

The method proposed by Feldmann and Whitt is a reursive �tting pro-

edure that results in a hyperexponential distribution whose umulative dis-

tribution funtion (df) at a given set of points is \very lose" to the df of

the original distribution. We use a slightly modi�ed version of this algorithm

to determine the parameters �

1

; : : : ; �

m

; �

1

; : : : ; �

m

.

Based on this limit we de�ne 2m points (0 < t



= t

m

< bt

m

< t

m�1

<

bt

m�1

< : : : < t

1

= t

d

< bt

1

) at whih the approximate distribution is \lose"

to the original one.

t

i

= t

d

Æ

�i+1

; i 2 f1; 2; : : : ; mg; where Æ =

m�1

s

t

d

t



; and b < Æ:

We hoose �

1

; �

1

to math the omplementary df F



(t) at the arguments t

1

and bt

1

. Arranging the two equations

�

1

e

��

1

t

1

= F



(t

1

); and �

1

e

��

1

b t

1

= F



(b t

1

);

we obtain

�

1

=

1

(b� 1) t

1

ln(F



(t

1

)=F



(b t

1

)); and �

1

= F



(t

1

) e

�

1

t

1

:

3

The omplexity of the general method dominates the omplexity of the ombined

method. The larger  the lower the border t



, and the lower the omputational omplexity.



Throughout the proedure, we are assuming that �

i

; i = 2; : : : ; m will be

signi�antly larger than �

1

, so that

m

X

i=1

�

i

e

��

i

t

� �

1

e

��

1

t

; for t � t

1

: (1)

As it is noted in [8℄ there is no guarantee that the above property holds, but

it may be heked after the proedure is omplete, and in general it is not a

problem to de�ne the set of points in suh way that we have this property.

Using the notation

F



i

(t) = F



i�1

(t)�

i�1

X

j=1

�

j

e

��

j

t

;

where F



1

(t) = F



(t), our goal is to have

�

i

e

��

i

t

i

= F



i

(t

i

); �

i

e

��

i

bt

i

= F



i

(b t

i

);

rearranging we obtain

�

i

=

1

(b� 1) t

i

ln(F



i

(t

i

)=F



i

(b t

i

)); �

i

= F



i

(t

i

) e

�

i

t

i

; (2)

for 2 � i � m.

We have no guarantee that the sum of the initial probabilities assoiated

with the hyperexponential part of the Phase type struture (

P

�

i

) is lower

than 1. If the sum is greater than 1 it may help to derease d (whih means

to inrease t

d

) or m. It is disussed in [8℄ how the 2m points may be hosen

eÆiently.

Having �

1

; : : : ; �

m

; �

1

; : : : ; �

m

we use the algorithm desribed in Setion

3 to �t the main part of the distribution with two di�erenes:

1. Not having the hyperexponential part �tting the tail, the initial proba-

bilities of the ayli struture sums up to 1. Having the hyperexponential

part this onstraint has to be modi�ed as

P

n

i=1

�

i

= 1�

P

n

i=1

�

i

:

2. The struture of the approximate Phase type distribution di�ers from the

one used before (Figure 1). The parameters assoiated with the additional

m phases (�

1

; : : : ; �

m

, �

1

; : : : ; �

m

) are �xed during this stage of the �tting

proess.

The upper limit for the integral to evaluate the distane measure during

�tting the main part is t



.

Figure 10 pitures how di�erent parts of the PH struture (CF1,hyper-

exponential) ontributes to the pdf of the (� = 1:5, B = 4). The �tting

proedure was run to approximate the Pareto I distribution with n = 8; m =

10;  = 10

�2

; d = 10

�10

; t



= 31:70; t

d

= 6:83 � 10

6

.
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Figure 10: Di�erent parts of the distribution are approximated by di�erent

parts of the PH struture

7 Goodness of the ombined �tting method

The goodness of the �tting of the main part using the general method pre-

sented in Setion 3 is not a�eted by the use of the heuristi proedure. Sine

the heuristi approah gives a good approximation for the tail, it is not re-

warding to apply the relative area di�erene for �tting the main part. With

a few exeptions using the relative entropy as the distane measure is the

most promising hoie.

The method presented by Feldman and Whitt results in a distribution

whose pdf is osillating around the pdf of the original distribution. The

ombined proedure has the same feature. The osillation starts at t



and

ends at t

d

. The number of \bumps" equals to m. After t

d

the pdf of the

PH distribution does not follow the pdf of the original distribution. The

\amplitude" of the osillation depends on the distane between t



and t

d

and

on the number of phases used for �tting the tail (m). Inreasing m dereases

the amplitude of the osillation. There is an upper limit for m as a result

of assumption (1) and probabilisti onsiderations (the parameters given by

(2) have to be proper for a PH distribution). The method of Feldman and

Whitt is worth applying when the tail is \heavy" enough, otherwise applying

the general method alone gives as good results as the ombined one. As it

is mentioned in [8℄ the method works well for distributions with dereasing

hazard rate.

The pdf of the PH distribution drops slightly ompared to the original

one at t



. If it is neessary this drop may be dereased by using t

�



> t



as the

upper limit for the integral to evaluate the distane measure. This feature

is illustrated in Figure 11 with the Pareto I distribution and the following

parameters: n = 8; m = 4;  = 10

�2

; d = 10

�10

; t



= 34:83; t

d

= 7:67�10

6

; t

�



=

164:6; F



(t

�



) = 10

�3

. Overlapping refers to the ase when t

�



> t



.

The hoie for the distane measure used during �tting the main part has
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Figure 11: The e�et of using t

�



> t



as the upper limit for the integral to

evaluate the distane measure

no e�et on the proedure for �tting the tail.

The improvement ahieved by �tting the tail using the heuristi method is

indiated not only by visual inspetion of the tail of the pdf but by the relative

moment errors as well. Some examples are given in the Appendix. Sine the

2nd and 3rd moments do not exist for the two Pareto-like distributions, for

these ases the following is given to indiate the improvement instead of the

original relative moment errors:

j 

�

2

(

^

F ) � 

�

2

(F ) j = 

�

2

(F ); j 

�

3

(

^

F ) � 

�

3

(F ) j = 

�

3

(F ); (3)

where



�

i

(F ) =

Z

C

x=0

(x� 

1

(F ))

i

dF (x); i = 2; 3;

with C de�ned by F



(C) = 10

�8

.

Figures 12 (14) ompares the behaviour of the Pareto I (Pareto II) distri-

bution and its �tting Phase type distribution. The notation n+m XX de�nes

the parameters of Phase type �tting. n is the number of phases used for

�tting the main part and m is the number of phases used for �tting the tail

of the distribution. XX (= AD or ML or RAD) gives the distane measure

used for �tting the main part. The relative error of the pdf is de�ned as

(f(t)�

^

f(t))=f(t), and the hazard rate is f(t)=(1� F (t)).

Figures 13 (15) shows the e�et of Phase type �tting on the M/G/1

queue behaviour with Pareto I (Pareto II) servie time. The osillation that

appeared on the tail of the pdf of the PH distribution an be seen on the

queue length distribution as well.
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Figure 12: Pareto I distribution and its PH approximation with the ombined

method
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Figure 13: Queue length distribution of an M/G/1 queue (with Pareto I)

and its approximate M/PH/1 queue

8 Conlusion

This paper investigates Phase type �tting tehniques that are able to improve

the tail �tting behaviour of the existing methods.

First a Phase type �tting method is presented that is able to approximate

distributions based on any general distane measure. It has been shown that

the properties of Phase type �tting an be tuned by hoosing an appropriate

distane measure for the �tting method.
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Figure 14: Pareto II distribution and its PH approximation with the om-

bined method
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Figure 15: Queue length distribution of an M/G/1 queue (with Pareto II)

and its approximate M/PH/1 queue

To further improve the tail �tting properties a ombined Phase type

�tting method is introdued. This method implements the above general

method for �tting the main part of a distribution and the e�etive heuristi

approah of Feldman and Whitt for �tting the tail behaviour.

Several numerial examples present the properties of the introdued �t-

ting methods. The examples show that the proposed ombined �tting method

provides a suitable Phase type approximation of heavy tailed distributions

that is also veri�ed by the queuing behaviour of the M/G/1 queues and their



approximating M/PH/1 queue.
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A Parameters of �tting

Test ases of the benhmark presented in [4℄ extended with heavy tail distributions

Density Symbol Numerial Cases

Weibull

f(t) =

�

�

�

t

�

�

�� 1

e

�(

t

�

)

�

W1 � = 1 � = 1:5

W2 � = 1 � = 0:5

Lognormal

L1 � = 1 � = 1:8

f(t) =

1

� t

p

2�

exp

h

�

(log( t = � )+ �

2

=2)

2

2 �

2

i

L2 � = 1 � = 0:8

L3 � = 1 � = 0:2

Uniform on (a; b) U1 a = 0 b = 1

U2 a = 1 b = 2

Shifted Exponential

f(t) =

1

2

e

� t

+

1

2

e

� (t� 1)

I( t � 1 ) SE

Matrix Exponential

f(t) =

�

1 +

1

(2�)

2

�

(1 � os(2� t) ) e

� t

ME

Pareto I

f(t) =

�

�B

�1

e

�

�

B

t

for t � B

�B

�

e

��

t

�(�+1)

for t > B

P1 � = 1:5 B = 4

Pareto II

f(t) =

b

�

e

�b=t

�(�)

x

�(�+1)

P2 � = 1:5 b = 2

The �tting parameters are given in the following tables. The olumn labeled \Appr."

desribes the �tting proedure: the symbol of the �tted distribution, the order of the PH

distribution and the applied distane measure are given. In the ase when there is one

number in this olumn the �tting method given in Setion 3 was applied. If there are two

numbers of the form x + y, x is the number of phases to �t the main part and y is the



number phases to �t the tail of the distribution. The relative errors in the 2nd and 3rd

moments for the Pareto-like distributions (P1,P2) are given as de�ned in (3). For U1 and

U2 the absolute error in the 3rd moment is given sine their 3rd entered moments equal

to 0.

Appr. Cr. Ent. (

^

H) Area D. RME 1 RME 2 RME 3

W1/4 H = 7:869e � 01

ML 7.8714e-01 8.9011e-03 1.3734e-04 4.8522e-03 4.0876e-02

AD 7.8728e-01 7.2039e-03 2.8943e-03 2.4579e-02 1.0107e-01

W1/8

ML 7.8702e-01 3.5172e-03 9.2808e-05 9.0348e-04 9.7635e-03

AD 7.8725e-01 3.1405e-03 2.0490e-03 1.6044e-03 1.3276e-02

W1/16

ML 7.8696e-01 1.8287e-03 1.5028e-05 7.5074e-04 4.8582e-03

AD 7.8773e-01 5.3185e-03 8.2319e-04 5.6408e-04 5.5515e-04

W2/4 H = 1:1546e + 00

ML 1.1631e+00 8.2830e-02 1.2918e-02 2.2862e-01 5.7052e-01

AD 1.1933e+00 1.1162e-01 8.9610e-02 4.5281e-01 7.8482e-01

RAD 1.2945e+00 3.0036e-01 2.1358e-02 1.6789e-01 3.7917e-01

W2/8

ML 1.1626e+00 6.0275e-02 9.8517e-03 1.9015e-01 4.9798e-01

AD 1.1828e+00 9.4857e-02 4.8308e-02 2.0663e-01 6.0035e-01

RAD 1.2078e+00 1.4406e-01 7.5972e-04 4.4718e-02 1.6866e-01

W2/8+3

ML 1.1544e+00 5.3229e-02 1.0493e-02 1.0160e-01 2.7704e-01

W2/16

ML 1.1643e+00 5.9088e-02 1.3257e-02 1.8740e-01 4.8400e-01

AD 1.1827e+00 8.9019e-02 2.7044e-01 8.0677e-01 9.9291e-01

RAD 1.1908e+00 1.0993e-01 1.4096e-02 1.1377e-01 3.2936e-01

L1/4 H = 3:745e � 01

ML 4.0322e-01 4.1789e-02 1.6090e-01 7.6213e-01 9.7536e-01

AD 4.2514e-01 4.2115e-02 2.8016e-01 8.7027e-01 9.9189e-01

RAD 4.7847e-01 3.3306e-01 2.1285e-02 6.6316e-01 9.4266e-01

L1/8

ML 4.0025e-01 3.3545e-02 1.6095e-01 7.5461e-01 9.7293e-01

AD 3.9838e-01 2.3236e-02 1.6794e-01 7.4279e-01 9.6790e-01

RAD 3.9489e-01 2.3912e-02 1.2947e-01 6.8020e-01 9.4964e-01

L1/16

ML 3.9767e-01 2.2141e-02 1.5709e-01 7.4466e-01 9.7000e-01

AD 4.1918e-01 2.6217e-02 2.7960e-01 8.6512e-01 9.9089e-01

RAD 3.9570e-01 6.3266e-02 1.3474e-01 6.7170e-01 9.4684e-01

L2/4 H = 8:575e � 01

ML 8.7843e-01 3.7793e-02 9.2433e-04 4.9473e-02 2.7973e-01

AD 8.8427e-01 2.6330e-02 4.7449e-02 2.9014e-01 6.5015e-01

L2/8

ML 8.7602e-01 7.2309e-03 3.1555e-04 1.7827e-02 1.2628e-01

AD 8.7946e-01 1.4181e-02 2.5898e-02 1.8984e-01 5.1514e-01

L2/16

ML 8.7608e-01 6.6401e-03 4.6425e-04 1.2390e-02 1.0484e-01

AD 8.8048e-01 9.9469e-03 2.6237e-02 2.0412e-01 5.4638e-01

L3/4 H = �2:104e � 01

ML 3.0658e-01 8.4828e-01 1.4604e-04 5.1277e+00 2.3693e+01

AD 3.0661e-01 8.4824e-01 3.3590e-03 5.0848e+00 2.3434e+01

L3/8

ML 2.9635e-02 5.4836e-01 7.3630e-05 2.0634e+00 5.1719e+00

AD 7.8277e-02 6.0827e-01 1.0497e-02 2.4274e+00 6.8083e+00

L3/16

ML -1.3451e-01 2.8779e-01 3.4638e-05 7.5127e-01 1.0167e+00

AD -1.1618e-01 3.2116e-01 1.1931e-02 8.4018e-01 1.2541e+00



Appr. Cr. Ent. (

^

H) Area D. RME 1 RME 2 RME 3

U1/4 H = 0:0

ML 1.3891e-01 3.1453e-01 6.8431e-05 2.6496e-01 2.754e-02

AD 1.6007e-01 2.7496e-01 8.3465e-02 6.9141e-01 4.946e-02

U1/8

ML 9.8786e-02 2.2803e-01 8.1970e-05 1.0497e-01 1.112e-02

AD 1.1882e-01 2.0160e-01 4.9737e-02 3.6159e-01 2.217e-02

U1/16

ML 7.1136e-02 1.6767e-01 1.8894e-04 4.1393e-02 4.863e-03

AD 9.7424e-02 1.6509e-01 3.4785e-02 2.4784e-01 1.391e-02

U2/4 H = 0:0

ML 7.0956e-01 9.9978e-01 1.0420e-04 5.7514e+00 7.498e-01

AD 7.1263e-01 9.9720e-01 3.8192e-02 5.2442e+00 6.672e-01

U2/8

ML 4.7837e-01 7.3796e-01 1.5747e-04 2.8584e+00 1.378e-01

AD 4.8372e-01 7.3290e-01 3.8091e-02 2.5689e+00 1.226e-01

U2/16

ML 2.7843e-01 4.4080e-01 8.1234e-05 1.0769e+00 5.581e-02

AD 2.8100e-01 4.3575e-01 1.9523e-02 9.9713e-01 4.965e-02

SE/4 H = 1:295e + 00

ML 1.3258e+00 1.8387e-01 3.5709e-04 2.7466e-02 1.9046e-01

AD 1.3278e+00 1.7478e-01 2.6355e-02 3.3976e-02 1.2472e-01

RAD 1.3449e+00 2.3464e-01 1.0494e-02 8.9644e-04 5.6800e-02

SE/8

ML 1.3162e+00 1.3527e-01 4.5258e-04 8.3997e-04 2.4375e-02

AD 1.3179e+00 1.2575e-01 9.7610e-03 4.8098e-03 3.6399e-02

RAD 1.3278e+00 1.7125e-01 2.6487e-02 3.5088e-02 5.6718e-02

SE/16

ML 1.3101e+00 1.0094e-01 5.1215e-04 2.7437e-03 2.4322e-02

AD 1.3129e+00 9.8741e-02 2.9152e-03 2.9267e-02 1.1545e-01

RAD 1.3138e+00 1.0919e-01 4.5643e-04 9.5314e-03 4.2254e-03

ME/4 H = 7:277e � 01

ML 8.9794e-01 4.4689e-01 1.3964e-02 6.3662e-02 1.8893e-01

AD 9.1015e-01 4.3606e-01 3.0798e-02 2.2010e-01 7.7306e-01

RAD 3.6212e+00 1.1907e+00 7.4910e-01 9.3050e-01 5.0741e-01

ME/8

ML 8.5417e-01 3.5047e-01 1.3729e-02 6.8973e-02 2.7284e-01

AD 8.6532e-01 3.2532e-01 1.3120e-02 6.5389e-02 2.4569e-01

RAD 3.7799e+00 1.1416e+00 7.1318e-01 8.5348e-01 1.0191e+00

ME/16

ML 8.2535e-01 2.8761e-01 1.4200e-02 4.8011e-02 1.7391e-01

AD 8.3318e-01 2.6575e-01 8.9693e-03 9.1900e-02 3.6612e-01

RAD 3.6503e+00 9.6673e-01 5.3353e-01 1.0375e+01 8.2788e+02

P1/4 H = 2:1295e + 00

ML 2.2323e+00 4.4603e-02 5.6533e-02 9.7564e-01 9.9998e-01

AD 2.2635e+00 3.2399e-02 1.6432e-01 9.9199e-01 1.0000e-00

RAD 2.2338e+00 6.6204e-02 1.1868e-01 9.8327e-01 9.9999e-01

P1/4+10

ML 2.2246e+00 1.7881e-02 2.6115e-03 6.7019e-04 6.1649e-04

AD 2.2247e+00 1.8119e-02 8.5872e-03 9.7804e-04 6.1535e-04

P1/8

ML 2.2292e+00 1.3672e-02 7.1673e-02 9.7659e-01 9.9998e-01

AD 2.2470e+00 2.7601e-02 1.2395e-01 9.8867e-01 1.0000e-00

RAD 2.2378e+00 8.9478e-02 1.2673e-01 9.8322e-01 9.9999e-01

P1/8+10

ML 2.2245e+00 6.5659e-03 2.5887e-03 6.4993e-04 6.1648e-04

AD 2.2244e+00 5.6568e-03 1.2990e-03 7.3505e-04 6.1608e-04

P1/16

ML 2.2282e+00 1.3221e-02 3.8874e-02 9.5945e-01 9.9993e-01

AD 2.2562e+00 2.4655e-02 1.4066e-01 9.9123e-01 1.0000e-00

RAD 2.2644e+00 4.6493e-01 1.5008e-01 8.1545e-01 9.9891e-01

P2/4 H=1.9811e+00

ML 2.0768e+00 2.2020e-01 6.3924e-02 9.7417e-01 9.9997e-01

AD 2.1098e+00 1.7385e-01 2.0160e-01 9.9262e-01 1.0000e-00

RAD 2.1435e+00 3.1506e-01 6.9994e-02 9.8428e-01 9.9999e-01

P2/8

ML 2.0414e+00 4.4020e-02 6.0110e-02 9.7176e-01 9.9997e-01

AD 2.0752e+00 9.8591e-02 2.2906e-01 9.9466e-01 1.0000e-00

RAD 2.0954e+00 3.7922e-01 6.2820e-02 9.8458e-01 9.9999e-01

P2/8+10

ML 2.0598e+00 4.4354e-02 3.0374e-02 1.3027e-01 1.3101e-01

AD 2.0778e+00 8.3044e-02 1.1807e-03 1.2998e-01 1.3101e-01

P2/16

ML 2.0363e+00 2.7991e-02 7.6029e-02 9.7586e-01 9.9997e-01

AD 2.0908e+00 5.5272e-02 2.4299e-01 9.9506e-01 1.0000e-00

RAD 2.1027e+00 2.2861e-01 8.6895e-02 9.8338e-01 9.9999e-01

P2/16+10

ML 2.0336e+00 2.5536e-02 3.0803e-02 1.3033e-01 1.3101e-01

AD 2.0573e+00 5.8133e-02 4.0151e-02 1.2967e-01 1.3102e-01


