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Abstra
t: In this paper two main problems are investigated. The �rst

one is the e�e
t of the goal fun
tion of the applied �tting method on the

goodness of Phase type �tting. We dis
uss a numeri
al method based on

a simple numeri
al optimization pro
edure that allows us to �t any non-

negative distribution with a Phase type (PH) distribution a

ording to any

arbitrary distan
e measure. By 
omparing the �tting results obtained by

minimizing di�erent distan
e measures, 
on
lusions are drawn regarding the

role of the optimization 
riteria.

The se
ond 
onsidered problem is the tail behaviour of Phase type dis-

tributions obtained via di�erent �tting methods. To limit the numeri
al


omplexity of �tting methods (basi
ally the evaluation of distan
e measures)

the 
omputations (numeri
al integration) are trun
ated at some point. Hen
e

the information on the tail behaviour of the distribution is not 
onsidered

beyond this point.

To approximate distributions with heavy tail we propose a 
omplex meth-

od that uses di�erent te
hniques to �t the main part and the tail of the distri-

bution. The proposed method 
ombines the advantages of �tting te
hniques

and this way it over
omes some of their limitations.

The goodness of the dis
ussed �tting methods are 
ompared in queuing

behaviour as well. The behaviour of the M/G/1 queue is 
ompared with the

one of the approximating M/PH/1 queue.

1 Introdu
tion

The well known Phase type �tting methods (an overview is provided in [9℄)


an be 
lassi�ed based on their optimization 
riteria. Some of them intend
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to �t only some parameters of the distribution (usually some moments),

while others intend to minimize a distan
e measure (EMPHT [2℄, MLAPH

[3℄). In the se
ond 
ase the optimization 
riteria, i.e., the distan
e measure

to minimize, was always the same, the 
ross entropy, that 
omes from the

applied maximum likelihood prin
iple. In [1℄ a se
tion is devoted to the

argument about the general advantages of this distan
e measure. Though

there are 
ases (e.g., better �tting the tail of distributions) when the weakness

of the method minimizing the 
ross entropy measure be
omes dominant and

other methods 
an outperform it.

The need to 
ompare the properties of di�erent �tting approa
hes was

re
ognized a de
ade ago, and a set of tests was de�ned during the work-

shop on Fitting Phase type distributions, Aalborg, Denmark, organized by

S. Asmussen in February 1991. In [4℄ the proposed set of tests was evalu-

ated using the MLAPH method and some new measures were proposed to

be 
onsidered as well. In [9℄ a wider set of �tting methods was 
ompared

and their �tting measures were evaluated. Some of the 
onsequen
es are

quite natural. The methods that intend to minimize the distan
e between

the original and the approximating distribution regarding a given aspe
t sur-

pass other methods regarding that aspe
t (even if it is not always the 
ase).

For example a moment mat
hing method may be superior to the MLAPH

method regarding the relative errors in the moments while MLAPH may top

it 
on
erning 
ross entropy. Based on this observation a numeri
al pro
edure

is implemented that minimizes an arbitrary distan
e measure whi
h was not

possible with the available PH �tting methods.

In re
ent tele
ommuni
ation systems the o

urren
e of heavy tail distri-

butions is reported, whi
h dire
ted the attention to the tail behaviour of PH

distributions. The tail of any Phase type distribution is known to be expo-

nential, while re
ent resear
h results indi
ate the importan
e of distributions

with \heavy" tails. When distan
e measures that are more sensitive to the

tail distribution than the 
ross entropy are used as the optimization 
riteria

better \tail �tting" 
an be a
hieved.

The PH �tting methods 
an be 
lassi�ed also by their generality. The

methods that minimize a distan
e measure (EMPHT [2℄, MLAPH [3℄) intend

to �nd a global minimum of the goal fun
tion over the valid subset of the

parameter spa
e, hen
e we refer to them as general �tting methods. Another

set of methods uses spe
ial PH stru
tures and �ts their parameters a

ording

to some heuristi
 
onsiderations, hen
e we refer to them as heuristi
 �tting

methods. Feldmann and Whitt proposed a simple but very e�e
tive heuristi


�tting method that is espe
ially appli
able for �tting the tail behaviour of

heavy tail distributions [8℄. Their method uses mixtures of exponentials and

hen
e results in distributions with de
reasing density fun
tion. The main



advantage of their method is the e�e
tive heuristi
 way of �tting. The appli-


ation of general �tting methods is 
omputationally expensive when the tail

behaviour has to be approximated due to the numeri
al integration up to a

high upper limit. The method proposed by Feldmann and Whitt provides

good approximation of the tail behaviour with negligible 
omputational ef-

fort. In this paper we provide a 
omplex method that over
ome the limitation

of this method.

The goodness of the studied Phase type �tting methods are 
ompared, on

the one hand, through several plots and parameters of the distributions, and

on the other hand by the e�e
t of PH representation of general servi
e time

distributions in queuing systems. We 
ompare the queue length distribution

of the M/G/1 queue with the one of the approximating M/PH/1 queue.

The queuing behaviour of the M/G/1 queue with heavy tail servi
e time

distribution is evaluated by the method proposed by Roughan et al. [11℄.

The analyti
al results given by this method were veri�ed by simulation for

queue length probabilities greater than 10

�5

and showed a perfe
t �t.

It should be noted that the general distributions 
onsidered in this paper

are 
ontinuous and are available in an analyti
al form. Fitting of empiri
al

distributions based on their samples is not 
onsidered here.

The rest of the paper is organized as follows. The next se
tion introdu
es

�tting parameters and di�erent distan
e measures. Se
tion 3 des
ribes the

applied �tting method with some implementation details. The e�e
t of goal

fun
tion on the goodness of �t is dis
ussed in Se
tion 4. The su

eeding

se
tion shows the e�e
t of the �tting parameters on the M/G/1 queue length

distribution. Se
tion 6 presents the 
ombined �tting method and Se
tion 7

dis
usses its features. The last se
tion gives the 
on
lusion. Several numeri
al

results are given in the Appendix.

2 Fitting parameters and distan
e measures

Parti
ipants of the Aalborg workshop proposed a set of parameters to mea-

sure the goodness of Phase type �tting methods. The original set of parame-

ters was extended in [4℄ and the weakness of some measures proposed at the

workshop was reported as well. Later on the following set of (non-negative)

parameters was 
ommonly used (e.g., in [9℄):
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(F ) denotes the ith 
entered moment of F . Note that the relative

entropy and minus the 
ross entropy (�

^

H =

Z

1

0

log

^

f(t) dF (t)) 
an be

inter
hangeably used in PH �tting, sin
e they di�er only in a 
onstant H.

That is the intrinsi
 entropy of the original distribution,

^

H � H

r

= H =

Z

f(t)log(f(t))dt. The advantage of using the relative entropy measure is

that it is always non-negative and its minimum is 0 (while the lower bound of

minus the 
ross entropy isH, whi
h 
an be a negative value as well). Authors

of papers dealing with Phase type �tting algorithms usually reported minus

the 
ross entropy. In order to make the 
omparison easier with those papers,

throughout the appendix minus the 
ross entropy and the intrinsi
 entropy

are given.

All of the above parameters 
an be used as a goal fun
tion that should

be minimized for �tting, but in the �rst three 
ases f(t) and

^

f(t) 
an di�er

signi�
antly even if the (non-negative) measures equal to 0. We refer to these

parameters as parameters of goodness. In 
ontrast, the parameters that equal

to 0 if and only if f(t) �

^

f(t) are referred to as distan
e measures. In this

paper we 
onsider the following three distan
e measures as the goal fun
tion

of Phase type �tting:
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Figure 1: First Canoni
al Form (CF1)

The �rst two distan
e measures were already 
onsidered in [4℄. The third

distan
e measure was 
hosen to enlarge the e�e
t of tail behaviour (at least


ompared to the area di�eren
e). In some 
ases the formula given for the

relative area di�eren
e may be divergent, this problem will be relaxed in

pra
ti
e by de�ning a �nite upper limit for the integral. Of 
ourse, there

are several further reasonable distan
e measures that are not 
onsidered in

this paper, e.g., the di�erent parts of the distribution 
an be 
onsidered with

di�erent weights:

n�1

X

j=0

a

j

Z

t

j+1

t

j

jf(t)�

^
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0

= 0 < t

1

< : : : < t

n�1

< t

n

� 1 provides a partitioning of the

support set and a

j

> 0; j 2 f0; 1; : : : ; n � 1g are arbitrary weights. We


onsider only the above three distan
e measures be
ause they are able to

exhibit the e�e
ts that we would like to investigate.

3 A �tting method for arbitrary distan
e mea-

sure

The �tting problem may be formulated as an optimization problem the fol-

lowing way: �nd the parameters (the initial ve
tor and the transition matrix)

of the PH distribution su
h that the distan
e measure is minimal. Not having

any restri
tion on the stru
ture of the n stage PH distribution the number

of free parameters is n

2

+ n. In order to de
rease the number of free param-

eters only A
y
li
 Phase (APH) distributions are 
onsidered. The pro
edure

des
ribed in this se
tion would be able to �t any Phase type stru
ture by

relaxing some 
onstraints, but we believe that the 
exibility of the APH 
lass

is pra
ti
ally equivalent to the 
exibility of the whole PH 
lass of the same

order. Cumani [6℄ has shown that any a
y
li
 APH distribution of order n

may be transformed into the form represented in Figure 1 and referred to as

First Canoni
al Form (CF1). The approximating PH distribution is in this

form, des
ribed by the ve
tors � and �.

The pro
edure starts from a random initial point of the parameter spa
e

that is the best of 200 random guesses, all of whi
h has the proper mean



R

tf(t)dt. The best means the random guess with the least distan
e a

ording

to the applied measure. The distan
e measure is evaluated through numeri
al

integration from 0 to T , where T is de�ned by 1� F (T ) = K, where K is a

small number that may have the value of 10

�3

; 10

�4

; 10

�5

; ::: . The smallerK

the higher the upper limit of the integration and the longer the approximation

pro
ess.

Starting from the initial guess the non-linear optimization problem is

solved by an iterative linearization method. In ea
h step the following partial

derivatives are numeri
ally 
omputed:

�D(f
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(�; �; t); f(t))

��

i

;

�D(f

PH

(�; �; t); f(t))

��

i

; i = 1; :::; n;

where D(f

PH

(); f()) stands for the distan
e between the pdf of the PH dis-

tribution (f

PH

()) and the pdf of the original distribution (f()). Then, the

simplex method is applied to determine the dire
tion in whi
h the distan
e

measure de
reases optimally. The 
onstraints of the linear programming is

given by probabilisti
 
onstraints (the initial probabilities have to sum up to

one), by the restri
tion on the stru
ture of the PH distribution (the �

i

s are

ordered [6℄) and by 
on�ning the 
hange of parameters (sin
e the derivatives

are valid only in a small area around (�; �)). A sear
h is performed in the di-

re
tion indi
ated by the linear programming. The next point of the iteration

is 
hosen to be the border of the linearized area (de�ned by the allowed max-

imum 
hange in the parameters) in the optimal dire
tion if the goal fun
tion

is de
reasing in that dire
tion all the way to the border of the area. The

next point is set to the (�rst) optimum if the goal fun
tion has an optimum

in the optimal dire
tion inside the linearized area. The iteration is stopped

if the relative di�eren
e of the parameters in 
onse
utive iteration steps are

less than a prede�ned limit (10

�5

), or if the number of iterations rea
hes the

prede�ned limit (800). The allowed relative 
hange of the parameters greater

than 10

�3

is less than �, where � starts from 0:1 and is multiplied by 0:995

in ea
h step.

The ne
essary number of phases depends on the distribution to be �tted,

and the required interval of �tting. After ea
h �tting the measures of good-

ness may be examined and the probability density fun
tions may be visually

inspe
ted. If the �tting is not satisfa
tory the number of phases may be

in
reased. In general, in
reasing n results in better �tting but the higher n is

the more time the estimation algorithm requires. Also, be
ause of numeri
al

problems, as the number of parameters is larger the goodness of �tting does

not improve signi�
antly (for instan
e, �tting the [0; 1℄ uniform distribution

by 32 phases do not show notable advan
es 
ompared to the 24 phase �t-

ting). Summing up, the ne
essary number of phases may be determined by
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Figure 2: Pdf of Pareto I (� = 1:5, B = 4) and II (� = 1:5 and b = 2)

performing a series of �tting with di�erent number of phases and 
hoosing

the most appropriate one taking into a

ount the appli
ation, into whi
h the

PH distribution will be plugged in, as well.

Our numeri
al pro
edure is similar in some sense to the one proposed by

Bobbio and Cumani [3℄, but our method is able to handle any goal fun
tion

and it evaluates the derivatives via a simple numeri
al approximation, instead

of the sophisti
ated 
al
ulation that is appli
able only with the 
ross entropy

measure.

4 The e�e
t of the goal fun
tion on the good-

ness of PH approximation

In this se
tion we provide a representative set of Phase type �tting results

obtained by our numeri
al method applying the mentioned goal fun
tions.

We have evaluated the 
omplete ben
hmark as in [4, 9℄ with all distan
e

measures, but here we provide only the results that we found meaningful.

To investigate the goodness of �t heavy tail distributions we additionally


onsider the following Pareto-like distributions [11℄ (Figure 2):

Pareto I: f(t) =

(

�B

�1

e

�

�

B

t

for t � B

�B

�

e

��

t

�(�+1)

for t > B

Pareto II: f(t) =

b

�

e

�b=t

�(�)

x

�(�+1)

There are signi�
ant di�eren
es between these distributions even if their

tail behaviour is the same. Pareto I starts from a positive value and has

monotone density while Pareto II starts from 0 (with 0 slope), hen
e it is not
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Figure 3: Pareto I distribution and its PH approximation
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Figure 4: Pareto II distribution and its PH approximation

monotone. The derivative of the density of Pareto I is not 
ontinuous, while

it is 
ontinuous for Pareto II.

The results of the approximation of distributions with heavy tail are de-

pi
ted in two parts. The main part of the distributions is shown in a linear

{ linear plot in the range of f0;

^

tg, where

^

t is su
h that F (

^

t) � 0:95 and the

tail of the distributions is shown in a logarithmi
 { logarithmi
 plot.

Figures 3 { 4 show the result of �tting with PH distributions of order 12

and with di�erent distan
e measures. In the �gures ML refers to �tting apply-

ing the relative entropy measure (that is related to the maximum likelihood

phenomena), AD to the area di�eren
e measure and RAD to the relative area

di�eren
e measure. The Pareto I distribution is used with � = 1:5, B = 4

and Pareto II with � = 1:5 and b = 2. In both 
ases the upper limit of the

integration to evaluate the distan
e measure was de�ned by 1�F (K) = 10

�4

,

whi
h results in K = 683:0 for Pareto I and K = 767:0 for Pareto II. As it


an be observed in the �gures for Pareto I the tail behavior is �tted better

by using RAD as the distan
e measure while for Pareto II the approximation

given by ML follows the tail further. Our general observation is that RAD

�ts the tail behaviour better for monotone distributions than ML does while
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it may fail to give good approximation for non monotone distributions.

Figures 5 { 6 show other examples of the ben
hmark presented in [4℄

(see the appendix for the summary of the test 
ases used in the ben
hmark).

W2 is a long tail weibull distribution whose tail behaviour is followed better

using RAD as the distan
e measure during the pro
edure. U1 is a uniform

distribution on [0 : 1℄. Visual inspe
tion gives the feeling that using AD

results in better approximations than using ML. On the other hand the ML

approximation gives signi�
antly better results regarding the relative errors

in the moments. The numeri
al parameters of the goodness of �t is provided

in the Appendix.

Based on the �tting results of numerous di�erent distributions applying

di�erent distan
e measures we draw the following 
on
lusions:

1. Ea
h distan
e measure has a \sensitivity stru
ture", meaning that they

are not equally sensitive to the error of �tting at di�erent \parts" of the

distribution. The three 
onsidered measures 
an be 
lassi�ed as follows.

The AD measure is sensitive to the main part of the distribution, the RAD

measure to its tail (till the upper bound of the numeri
al integration), while

the ML measure is sensitive to both, but it is less sensitive to the main part

than the AD measure and in many 
ases less sensitive to the tail than the



RAD measure.

2. The \shape" of the distribution also has a signi�
ant role on the goodness

of �t. Indeed the relationship between the shape of the distribution and the

sensitivity stru
ture of the applied distan
e measure a�e
ts the goodness of

�t. Distributions with \non-Phase type" like behaviour in the main part


an be better approximated using the AD measure. While distributions with

\ni
e" behaviour at its main part and with \non-Phase type" behaviour in its

tail 
an be better approximated using the RAD measure. The ML measure

gives quite a robust method that works well in general without having a

\strange" distribution to �t.

3. Of 
ourse, the goodness of �t is a general term. Parameters of �tting 
an

be 
ompared (next item), but the plots of the original and the approximating

PH distributions provide an intuitive feel for the behaviour of �tting. The

sensitivity stru
ture of the applied distan
e measures 
an be re
ognized in

the density plots as well. The �tting by the AD measure better approximate

(when low order PH is used) the shape of the main part of the density in

Figure 4 than the others do, while it is one whose tail \disappears" �rst in the


ase of heavy tail distributions. This trend of the tail behaviour was general

in our experien
e. The tail of heavy tail distributions was best approximated

by using RAD measure or ML measure and the worst tail �tting was a
hieved

by using AD. (The relative error of the 3rd moment that is quite sensitive to

the tail behaviour provides the same ranking.)

4. Usually, the best �t, a

ording to a given �tting measure was rea
hed

by using that measure as the distan
e measure for the �tting, but there are

several ex
eptions (the ex
eptions are highlighted by boldfa
e 
hara
ters in

the Appendix). One potential reason of this phenomena is the numeri
al

ina

ura
y, but we think that the \shape" of the distribution plays role as

well.

5. The �tting of distributions with low order Phase type (� 6) was usu-

ally terminated by rea
hing the required relative pre
ision (i.e., the �tting

method was not able to improve the approximation), while the �tting with

higher order Phase type was terminated by rea
hing the maximum number

of iterations.



5 The e�e
t of PH approximation on the

M/G/1 queue length distribution

One of the most important �elds of appli
ation for Phase type distributions

is in the area of traÆ
 engineering of high speed 
ommuni
ation systems. In

this �eld the main question is not the goodness of �t of general servi
e or in-

terarrival time distributions, but the goodness of approximating the queuing

behaviour of network elements with general servi
e and/or interarrival time

distributions.

In this se
tion we 
ompare the queuing behaviour of M/G/1 queues with

the behaviour of their approximating M/PH/1 queue by 
onsidering the

queue length distribution. The queue length distribution of the original

M/G/1 queue with heavy tail servi
e time distribution is evaluated using

the method proposed by Roughan et al. [11℄.

The method of Roughan et al. [11℄ evaluates the queue length distribu-

tion by the following steps. First it 
al
ulates the asymptoti
 behaviour of

the probability generating fun
tion (PGF) of the queue length distribution

(given by the Polla
zek-Khint
hine formula) via Tauberian theorems. Us-

ing the result it determines the asymptoti
 behaviour of the queue length

distribution, then applies an Inverse Fast Fourier Transform (IFFT) on the

PGF. It is shown by Daigle [7℄ that the result of the IFFT is 
ontaminated

by alias terms, but knowing the asymptoti
 behaviour of the queue length

distribution they may be subtra
ted resulting in appropriate pre
ision.

The method is appli
able when the tail of the servi
e time distribution

has a power law tail whi
h is the 
ase for the two 
onsidered Pareto-like

distributions.

Assuming that the Phase type distributed servi
e time is given by the

initial probability ve
tor a (row ve
tor) and transition matrix B the queue

length distribution of the M/PH/1 queue 
an be evaluated using the matrix

geometri
 method [10℄:

p

0

= 1� � a B

�1

e; p

i

= p

0

a R

i

e 8i � 1 :

where � is the arrival rate, e is a 
olumn ve
tor of ones, a B

�1

e is the

mean of the Phase type distributed servi
e time, and matrix R is de�ned as

R = (I� e a� 1=� B)

�1

.

Figures 7 { 8 show the queue length distribution of an M/G/1 queue

with Pareto I (� = 1:5, B = 4) and Pareto II (� = 1:5, b = 2) servi
e

time distribution and the approximating M/PH/1 queue, where the servi
e

time is PH distributed with order 12 and is obtained by minimizing di�erent

distan
e measures (ML, AD, RAD). The 
ontinuous 
urves in Figures 7 {
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Figure 7: Queue length distribution of an M/G/1 queue (with Pareto I) and

its approximate M/PH/1 queue
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Figure 8: Queue length distribution of an M/G/1 queue (with Pareto II) and

its approximate M/PH/1 queue

8 are obtained by joining the queue length probability values evaluated at

integer points. TraÆ
 intensity equals to 0:8.

6 A 
ombined �tting method

As we have seen in the previous se
tions we 
an improve the tail �tting

of general �tting methods by applying distan
e measures that are sensitive

to the tail behaviour. But it is also mentioned that the appli
ability of

this approa
h is limited by its 
omputational 
omplexity, whi
h in
reases at

least linearly with the 
onsidered subset of the support (the upper limit of

the numeri
al integration)

2

. There is a trade o� between the general and

heuristi
 �tting methods. Generally, the 
omputational 
omplexity of the

2

Numeri
al integration te
hniques with exponentially in
reasing step size is a way to

avoid the linear in
rease of the 
omputational 
omplexity, but the 
omplexity problem

remains anyway.



general �tting methods is mu
h higher than the 
omplexity of heuristi
 �tting

methods, but the general methods are mu
h more 
exible, i.e., they better

approximate a wide range of distributions. Heuristi
 �tting methods that

usually use spe
ial sub
lasses of the 
lass of Phase type distributions are less


exible. They provide mu
h poorer �tting for a wide range of distributions,

but there might be a set of distributions that 
an be approximated by a

heuristi
 �tting method as well as by using any general �tting method. When

only this spe
ial set of distributions needs to be �tted it is worth applying

the heuristi
 �tting method.

In pra
ti
e, the main part of empiri
al distributions 
an have any gen-

eral stru
ture, while the tail of empiri
al distributions is assumed to be

\ni
e" so that heuristi
 �tting methods 
an be used for tail �tting. Ugly

tail behaviour, like the tail of Matrix Exponential distribution f(t) = (1 +

1=(2 �)

2

) (1� 
os(2 � t) ) e

� t

[5, 4℄, or similar non-monotone fun
tions with

non-exponential de
ays, are not 
ommonly used in pra
ti
e.

Based on these 
onsiderations we propose one �tting method that uses a

general approa
h to approximate the main part and a heuristi
 approa
h to

approximate the tail of distributions. The heuristi
 method used for �tting

tail behaviour is based on the method proposed by Feldmann and Whitt [8℄

and the general method to �t the main part is based on the numeri
al pro
e-

dure introdu
ed in the previous se
tions. Indeed, only a slight modi�
ation

is needed to 
ombine the two methods into a 
ombined pro
edure.

The limitation of our 
ombined method 
omes from the limitation of the

heuristi
 method of Feldmann and Whitt. Their method is appli
able only

for �tting distributions with monotone de
reasing density fun
tion. Hen
e

the proposed 
ombined method is appli
able when the tail of the distribution

is with monotone de
reasing density. This restri
tion is quite loose sin
e the

border of the main part and the tail of the distribution is arbitrary, hen
e

the restri
tion of appli
ability is to have a positive number C su
h that the

density of the distribution is monotone de
reasing above C.

The result of our �tting algorithm is a Phase type distribution of or-

der n +m, where n is the number of phases used for �tting the main part

and m is the number of phases used for �tting the tail. The stru
ture

of this Phase type distribution is depi
ted in Figure 9. The parameters

�

1

; : : : ; �

m

; �

1

; : : : ; �

m

are 
omputed by 
onsidering the tail while the param-

eters �

1

; : : : ; �

m

; �

1

; : : : ; �

2

are determined 
onsidering the main part of the

distribution. The algorithm 
onsists of the following steps.

First, we de�ne the border of the main part and the tail, t




, based on


onstant 
 by the equality 1 � F (t




) = 
 ; 
 
an depend on the distribution
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Figure 9: Stru
ture of approximate Phase type distribution

and other 
onsideration (e.g., the 
omputational 
omplexity

3

). Its typi
al

value is between 0:0001� 0:01.

The upper bound of the tail approximation t

d

is determined by an other


onstant d in a similar way by the equality 1 � F (t

d

) = d ; d 
an vary in

a wide range, e.g., 10

�20

� 10

�4

, but it 
an be smaller than 10

�20

as well.

It does not a�e
t the 
omputational 
omplexity, d is rather limited by the

applied 
oating point arithmeti
.

The method proposed by Feldmann and Whitt is a re
ursive �tting pro-


edure that results in a hyperexponential distribution whose 
umulative dis-

tribution fun
tion (
df) at a given set of points is \very 
lose" to the 
df of

the original distribution. We use a slightly modi�ed version of this algorithm

to determine the parameters �

1

; : : : ; �

m

; �

1

; : : : ; �

m

.

Based on this limit we de�ne 2m points (0 < t




= t

m

< bt

m

< t

m�1

<

bt

m�1

< : : : < t

1

= t

d

< bt

1

) at whi
h the approximate distribution is \
lose"

to the original one.

t

i

= t

d

Æ

�i+1

; i 2 f1; 2; : : : ; mg; where Æ =

m�1

s

t

d

t




; and b < Æ:

We 
hoose �

1

; �

1

to mat
h the 
omplementary 
df F




(t) at the arguments t

1

and bt

1

. Arranging the two equations

�

1

e

��

1

t

1

= F




(t

1

); and �

1

e

��

1

b t

1

= F




(b t

1

);

we obtain

�

1

=

1

(b� 1) t

1

ln(F




(t

1

)=F




(b t

1

)); and �

1

= F




(t

1

) e

�

1

t

1

:

3

The 
omplexity of the general method dominates the 
omplexity of the 
ombined

method. The larger 
 the lower the border t




, and the lower the 
omputational 
omplexity.



Throughout the pro
edure, we are assuming that �

i

; i = 2; : : : ; m will be

signi�
antly larger than �

1

, so that

m

X

i=1

�

i

e

��

i

t

� �

1

e

��

1

t

; for t � t

1

: (1)

As it is noted in [8℄ there is no guarantee that the above property holds, but

it may be 
he
ked after the pro
edure is 
omplete, and in general it is not a

problem to de�ne the set of points in su
h way that we have this property.

Using the notation

F




i

(t) = F




i�1

(t)�

i�1

X

j=1

�

j

e

��

j

t

;

where F




1

(t) = F




(t), our goal is to have

�

i

e

��

i

t

i

= F




i

(t

i

); �

i

e

��

i

bt

i

= F




i

(b t

i

);

rearranging we obtain

�

i

=

1

(b� 1) t

i

ln(F




i

(t

i

)=F




i

(b t

i

)); �

i

= F




i

(t

i

) e

�

i

t

i

; (2)

for 2 � i � m.

We have no guarantee that the sum of the initial probabilities asso
iated

with the hyperexponential part of the Phase type stru
ture (

P

�

i

) is lower

than 1. If the sum is greater than 1 it may help to de
rease d (whi
h means

to in
rease t

d

) or m. It is dis
ussed in [8℄ how the 2m points may be 
hosen

eÆ
iently.

Having �

1

; : : : ; �

m

; �

1

; : : : ; �

m

we use the algorithm des
ribed in Se
tion

3 to �t the main part of the distribution with two di�eren
es:

1. Not having the hyperexponential part �tting the tail, the initial proba-

bilities of the a
y
li
 stru
ture sums up to 1. Having the hyperexponential

part this 
onstraint has to be modi�ed as

P

n

i=1

�

i

= 1�

P

n

i=1

�

i

:

2. The stru
ture of the approximate Phase type distribution di�ers from the

one used before (Figure 1). The parameters asso
iated with the additional

m phases (�

1

; : : : ; �

m

, �

1

; : : : ; �

m

) are �xed during this stage of the �tting

pro
ess.

The upper limit for the integral to evaluate the distan
e measure during

�tting the main part is t




.

Figure 10 pi
tures how di�erent parts of the PH stru
ture (CF1,hyper-

exponential) 
ontributes to the pdf of the (� = 1:5, B = 4). The �tting

pro
edure was run to approximate the Pareto I distribution with n = 8; m =

10; 
 = 10

�2

; d = 10

�10

; t




= 31:70; t

d

= 6:83 � 10

6

.
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Figure 10: Di�erent parts of the distribution are approximated by di�erent

parts of the PH stru
ture

7 Goodness of the 
ombined �tting method

The goodness of the �tting of the main part using the general method pre-

sented in Se
tion 3 is not a�e
ted by the use of the heuristi
 pro
edure. Sin
e

the heuristi
 approa
h gives a good approximation for the tail, it is not re-

warding to apply the relative area di�eren
e for �tting the main part. With

a few ex
eptions using the relative entropy as the distan
e measure is the

most promising 
hoi
e.

The method presented by Feldman and Whitt results in a distribution

whose pdf is os
illating around the pdf of the original distribution. The


ombined pro
edure has the same feature. The os
illation starts at t




and

ends at t

d

. The number of \bumps" equals to m. After t

d

the pdf of the

PH distribution does not follow the pdf of the original distribution. The

\amplitude" of the os
illation depends on the distan
e between t




and t

d

and

on the number of phases used for �tting the tail (m). In
reasing m de
reases

the amplitude of the os
illation. There is an upper limit for m as a result

of assumption (1) and probabilisti
 
onsiderations (the parameters given by

(2) have to be proper for a PH distribution). The method of Feldman and

Whitt is worth applying when the tail is \heavy" enough, otherwise applying

the general method alone gives as good results as the 
ombined one. As it

is mentioned in [8℄ the method works well for distributions with de
reasing

hazard rate.

The pdf of the PH distribution drops slightly 
ompared to the original

one at t




. If it is ne
essary this drop may be de
reased by using t

�




> t




as the

upper limit for the integral to evaluate the distan
e measure. This feature

is illustrated in Figure 11 with the Pareto I distribution and the following

parameters: n = 8; m = 4; 
 = 10

�2

; d = 10

�10

; t




= 34:83; t

d

= 7:67�10

6

; t

�




=

164:6; F




(t

�




) = 10

�3

. Overlapping refers to the 
ase when t

�




> t




.

The 
hoi
e for the distan
e measure used during �tting the main part has
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Figure 11: The e�e
t of using t

�




> t




as the upper limit for the integral to

evaluate the distan
e measure

no e�e
t on the pro
edure for �tting the tail.

The improvement a
hieved by �tting the tail using the heuristi
 method is

indi
ated not only by visual inspe
tion of the tail of the pdf but by the relative

moment errors as well. Some examples are given in the Appendix. Sin
e the

2nd and 3rd moments do not exist for the two Pareto-like distributions, for

these 
ases the following is given to indi
ate the improvement instead of the

original relative moment errors:

j 


�

2

(

^

F ) � 


�

2

(F ) j = 


�

2

(F ); j 


�

3

(

^

F ) � 


�

3

(F ) j = 


�

3

(F ); (3)

where




�

i

(F ) =

Z

C

x=0

(x� 


1

(F ))

i

dF (x); i = 2; 3;

with C de�ned by F




(C) = 10

�8

.

Figures 12 (14) 
ompares the behaviour of the Pareto I (Pareto II) distri-

bution and its �tting Phase type distribution. The notation n+m XX de�nes

the parameters of Phase type �tting. n is the number of phases used for

�tting the main part and m is the number of phases used for �tting the tail

of the distribution. XX (= AD or ML or RAD) gives the distan
e measure

used for �tting the main part. The relative error of the pdf is de�ned as

(f(t)�

^

f(t))=f(t), and the hazard rate is f(t)=(1� F (t)).

Figures 13 (15) shows the e�e
t of Phase type �tting on the M/G/1

queue behaviour with Pareto I (Pareto II) servi
e time. The os
illation that

appeared on the tail of the pdf of the PH distribution 
an be seen on the

queue length distribution as well.
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Figure 12: Pareto I distribution and its PH approximation with the 
ombined

method
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Figure 13: Queue length distribution of an M/G/1 queue (with Pareto I)

and its approximate M/PH/1 queue

8 Con
lusion

This paper investigates Phase type �tting te
hniques that are able to improve

the tail �tting behaviour of the existing methods.

First a Phase type �tting method is presented that is able to approximate

distributions based on any general distan
e measure. It has been shown that

the properties of Phase type �tting 
an be tuned by 
hoosing an appropriate

distan
e measure for the �tting method.
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Figure 14: Pareto II distribution and its PH approximation with the 
om-

bined method
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Figure 15: Queue length distribution of an M/G/1 queue (with Pareto II)

and its approximate M/PH/1 queue

To further improve the tail �tting properties a 
ombined Phase type

�tting method is introdu
ed. This method implements the above general

method for �tting the main part of a distribution and the e�e
tive heuristi


approa
h of Feldman and Whitt for �tting the tail behaviour.

Several numeri
al examples present the properties of the introdu
ed �t-

ting methods. The examples show that the proposed 
ombined �tting method

provides a suitable Phase type approximation of heavy tailed distributions

that is also veri�ed by the queuing behaviour of the M/G/1 queues and their



approximating M/PH/1 queue.
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A Parameters of �tting

Test 
ases of the ben
hmark presented in [4℄ extended with heavy tail distributions

Density Symbol Numeri
al Cases

Weibull

f(t) =

�

�

�

t

�

�

�� 1

e

�(

t

�

)

�

W1 � = 1 � = 1:5

W2 � = 1 � = 0:5

Lognormal

L1 � = 1 � = 1:8

f(t) =

1

� t

p

2�

exp

h

�

(log( t = � )+ �

2

=2)

2

2 �

2

i

L2 � = 1 � = 0:8

L3 � = 1 � = 0:2

Uniform on (a; b) U1 a = 0 b = 1

U2 a = 1 b = 2

Shifted Exponential

f(t) =

1

2

e

� t

+

1

2

e

� (t� 1)

I( t � 1 ) SE

Matrix Exponential

f(t) =

�

1 +

1

(2�)

2

�

(1 � 
os(2� t) ) e

� t

ME

Pareto I

f(t) =

�

�B

�1

e

�

�

B

t

for t � B

�B

�

e

��

t

�(�+1)

for t > B

P1 � = 1:5 B = 4

Pareto II

f(t) =

b

�

e

�b=t

�(�)

x

�(�+1)

P2 � = 1:5 b = 2

The �tting parameters are given in the following tables. The 
olumn labeled \Appr."

des
ribes the �tting pro
edure: the symbol of the �tted distribution, the order of the PH

distribution and the applied distan
e measure are given. In the 
ase when there is one

number in this 
olumn the �tting method given in Se
tion 3 was applied. If there are two

numbers of the form x + y, x is the number of phases to �t the main part and y is the



number phases to �t the tail of the distribution. The relative errors in the 2nd and 3rd

moments for the Pareto-like distributions (P1,P2) are given as de�ned in (3). For U1 and

U2 the absolute error in the 3rd moment is given sin
e their 3rd 
entered moments equal

to 0.

Appr. Cr. Ent. (

^

H) Area D. RME 1 RME 2 RME 3

W1/4 H = 7:869e � 01

ML 7.8714e-01 8.9011e-03 1.3734e-04 4.8522e-03 4.0876e-02

AD 7.8728e-01 7.2039e-03 2.8943e-03 2.4579e-02 1.0107e-01

W1/8

ML 7.8702e-01 3.5172e-03 9.2808e-05 9.0348e-04 9.7635e-03

AD 7.8725e-01 3.1405e-03 2.0490e-03 1.6044e-03 1.3276e-02

W1/16

ML 7.8696e-01 1.8287e-03 1.5028e-05 7.5074e-04 4.8582e-03

AD 7.8773e-01 5.3185e-03 8.2319e-04 5.6408e-04 5.5515e-04

W2/4 H = 1:1546e + 00

ML 1.1631e+00 8.2830e-02 1.2918e-02 2.2862e-01 5.7052e-01

AD 1.1933e+00 1.1162e-01 8.9610e-02 4.5281e-01 7.8482e-01

RAD 1.2945e+00 3.0036e-01 2.1358e-02 1.6789e-01 3.7917e-01

W2/8

ML 1.1626e+00 6.0275e-02 9.8517e-03 1.9015e-01 4.9798e-01

AD 1.1828e+00 9.4857e-02 4.8308e-02 2.0663e-01 6.0035e-01

RAD 1.2078e+00 1.4406e-01 7.5972e-04 4.4718e-02 1.6866e-01

W2/8+3

ML 1.1544e+00 5.3229e-02 1.0493e-02 1.0160e-01 2.7704e-01

W2/16

ML 1.1643e+00 5.9088e-02 1.3257e-02 1.8740e-01 4.8400e-01

AD 1.1827e+00 8.9019e-02 2.7044e-01 8.0677e-01 9.9291e-01

RAD 1.1908e+00 1.0993e-01 1.4096e-02 1.1377e-01 3.2936e-01

L1/4 H = 3:745e � 01

ML 4.0322e-01 4.1789e-02 1.6090e-01 7.6213e-01 9.7536e-01

AD 4.2514e-01 4.2115e-02 2.8016e-01 8.7027e-01 9.9189e-01

RAD 4.7847e-01 3.3306e-01 2.1285e-02 6.6316e-01 9.4266e-01

L1/8

ML 4.0025e-01 3.3545e-02 1.6095e-01 7.5461e-01 9.7293e-01

AD 3.9838e-01 2.3236e-02 1.6794e-01 7.4279e-01 9.6790e-01

RAD 3.9489e-01 2.3912e-02 1.2947e-01 6.8020e-01 9.4964e-01

L1/16

ML 3.9767e-01 2.2141e-02 1.5709e-01 7.4466e-01 9.7000e-01

AD 4.1918e-01 2.6217e-02 2.7960e-01 8.6512e-01 9.9089e-01

RAD 3.9570e-01 6.3266e-02 1.3474e-01 6.7170e-01 9.4684e-01

L2/4 H = 8:575e � 01

ML 8.7843e-01 3.7793e-02 9.2433e-04 4.9473e-02 2.7973e-01

AD 8.8427e-01 2.6330e-02 4.7449e-02 2.9014e-01 6.5015e-01

L2/8

ML 8.7602e-01 7.2309e-03 3.1555e-04 1.7827e-02 1.2628e-01

AD 8.7946e-01 1.4181e-02 2.5898e-02 1.8984e-01 5.1514e-01

L2/16

ML 8.7608e-01 6.6401e-03 4.6425e-04 1.2390e-02 1.0484e-01

AD 8.8048e-01 9.9469e-03 2.6237e-02 2.0412e-01 5.4638e-01

L3/4 H = �2:104e � 01

ML 3.0658e-01 8.4828e-01 1.4604e-04 5.1277e+00 2.3693e+01

AD 3.0661e-01 8.4824e-01 3.3590e-03 5.0848e+00 2.3434e+01

L3/8

ML 2.9635e-02 5.4836e-01 7.3630e-05 2.0634e+00 5.1719e+00

AD 7.8277e-02 6.0827e-01 1.0497e-02 2.4274e+00 6.8083e+00

L3/16

ML -1.3451e-01 2.8779e-01 3.4638e-05 7.5127e-01 1.0167e+00

AD -1.1618e-01 3.2116e-01 1.1931e-02 8.4018e-01 1.2541e+00



Appr. Cr. Ent. (

^

H) Area D. RME 1 RME 2 RME 3

U1/4 H = 0:0

ML 1.3891e-01 3.1453e-01 6.8431e-05 2.6496e-01 2.754e-02

AD 1.6007e-01 2.7496e-01 8.3465e-02 6.9141e-01 4.946e-02

U1/8

ML 9.8786e-02 2.2803e-01 8.1970e-05 1.0497e-01 1.112e-02

AD 1.1882e-01 2.0160e-01 4.9737e-02 3.6159e-01 2.217e-02

U1/16

ML 7.1136e-02 1.6767e-01 1.8894e-04 4.1393e-02 4.863e-03

AD 9.7424e-02 1.6509e-01 3.4785e-02 2.4784e-01 1.391e-02

U2/4 H = 0:0

ML 7.0956e-01 9.9978e-01 1.0420e-04 5.7514e+00 7.498e-01

AD 7.1263e-01 9.9720e-01 3.8192e-02 5.2442e+00 6.672e-01

U2/8

ML 4.7837e-01 7.3796e-01 1.5747e-04 2.8584e+00 1.378e-01

AD 4.8372e-01 7.3290e-01 3.8091e-02 2.5689e+00 1.226e-01

U2/16

ML 2.7843e-01 4.4080e-01 8.1234e-05 1.0769e+00 5.581e-02

AD 2.8100e-01 4.3575e-01 1.9523e-02 9.9713e-01 4.965e-02

SE/4 H = 1:295e + 00

ML 1.3258e+00 1.8387e-01 3.5709e-04 2.7466e-02 1.9046e-01

AD 1.3278e+00 1.7478e-01 2.6355e-02 3.3976e-02 1.2472e-01

RAD 1.3449e+00 2.3464e-01 1.0494e-02 8.9644e-04 5.6800e-02

SE/8

ML 1.3162e+00 1.3527e-01 4.5258e-04 8.3997e-04 2.4375e-02

AD 1.3179e+00 1.2575e-01 9.7610e-03 4.8098e-03 3.6399e-02

RAD 1.3278e+00 1.7125e-01 2.6487e-02 3.5088e-02 5.6718e-02

SE/16

ML 1.3101e+00 1.0094e-01 5.1215e-04 2.7437e-03 2.4322e-02

AD 1.3129e+00 9.8741e-02 2.9152e-03 2.9267e-02 1.1545e-01

RAD 1.3138e+00 1.0919e-01 4.5643e-04 9.5314e-03 4.2254e-03

ME/4 H = 7:277e � 01

ML 8.9794e-01 4.4689e-01 1.3964e-02 6.3662e-02 1.8893e-01

AD 9.1015e-01 4.3606e-01 3.0798e-02 2.2010e-01 7.7306e-01

RAD 3.6212e+00 1.1907e+00 7.4910e-01 9.3050e-01 5.0741e-01

ME/8

ML 8.5417e-01 3.5047e-01 1.3729e-02 6.8973e-02 2.7284e-01

AD 8.6532e-01 3.2532e-01 1.3120e-02 6.5389e-02 2.4569e-01

RAD 3.7799e+00 1.1416e+00 7.1318e-01 8.5348e-01 1.0191e+00

ME/16

ML 8.2535e-01 2.8761e-01 1.4200e-02 4.8011e-02 1.7391e-01

AD 8.3318e-01 2.6575e-01 8.9693e-03 9.1900e-02 3.6612e-01

RAD 3.6503e+00 9.6673e-01 5.3353e-01 1.0375e+01 8.2788e+02

P1/4 H = 2:1295e + 00

ML 2.2323e+00 4.4603e-02 5.6533e-02 9.7564e-01 9.9998e-01

AD 2.2635e+00 3.2399e-02 1.6432e-01 9.9199e-01 1.0000e-00

RAD 2.2338e+00 6.6204e-02 1.1868e-01 9.8327e-01 9.9999e-01

P1/4+10

ML 2.2246e+00 1.7881e-02 2.6115e-03 6.7019e-04 6.1649e-04

AD 2.2247e+00 1.8119e-02 8.5872e-03 9.7804e-04 6.1535e-04

P1/8

ML 2.2292e+00 1.3672e-02 7.1673e-02 9.7659e-01 9.9998e-01

AD 2.2470e+00 2.7601e-02 1.2395e-01 9.8867e-01 1.0000e-00

RAD 2.2378e+00 8.9478e-02 1.2673e-01 9.8322e-01 9.9999e-01

P1/8+10

ML 2.2245e+00 6.5659e-03 2.5887e-03 6.4993e-04 6.1648e-04

AD 2.2244e+00 5.6568e-03 1.2990e-03 7.3505e-04 6.1608e-04

P1/16

ML 2.2282e+00 1.3221e-02 3.8874e-02 9.5945e-01 9.9993e-01

AD 2.2562e+00 2.4655e-02 1.4066e-01 9.9123e-01 1.0000e-00

RAD 2.2644e+00 4.6493e-01 1.5008e-01 8.1545e-01 9.9891e-01

P2/4 H=1.9811e+00

ML 2.0768e+00 2.2020e-01 6.3924e-02 9.7417e-01 9.9997e-01

AD 2.1098e+00 1.7385e-01 2.0160e-01 9.9262e-01 1.0000e-00

RAD 2.1435e+00 3.1506e-01 6.9994e-02 9.8428e-01 9.9999e-01

P2/8

ML 2.0414e+00 4.4020e-02 6.0110e-02 9.7176e-01 9.9997e-01

AD 2.0752e+00 9.8591e-02 2.2906e-01 9.9466e-01 1.0000e-00

RAD 2.0954e+00 3.7922e-01 6.2820e-02 9.8458e-01 9.9999e-01

P2/8+10

ML 2.0598e+00 4.4354e-02 3.0374e-02 1.3027e-01 1.3101e-01

AD 2.0778e+00 8.3044e-02 1.1807e-03 1.2998e-01 1.3101e-01

P2/16

ML 2.0363e+00 2.7991e-02 7.6029e-02 9.7586e-01 9.9997e-01

AD 2.0908e+00 5.5272e-02 2.4299e-01 9.9506e-01 1.0000e-00

RAD 2.1027e+00 2.2861e-01 8.6895e-02 9.8338e-01 9.9999e-01

P2/16+10

ML 2.0336e+00 2.5536e-02 3.0803e-02 1.3033e-01 1.3101e-01

AD 2.0573e+00 5.8133e-02 4.0151e-02 1.2967e-01 1.3102e-01


