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Abstract: In this paper two main problems are investigated. The first
one is the effect of the goal function of the applied fitting method on the
goodness of Phase type fitting. We discuss a numerical method based on
a simple numerical optimization procedure that allows us to fit any non-
negative distribution with a Phase type (PH) distribution according to any
arbitrary distance measure. By comparing the fitting results obtained by
minimizing different distance measures, conclusions are drawn regarding the
role of the optimization criteria.

The second considered problem is the tail behaviour of Phase type dis-
tributions obtained via different fitting methods. To limit the numerical
complexity of fitting methods (basically the evaluation of distance measures)
the computations (numerical integration) are truncated at some point. Hence
the information on the tail behaviour of the distribution is not considered
beyond this point.

To approximate distributions with heavy tail we propose a complex meth-
od that uses different techniques to fit the main part and the tail of the distri-
bution. The proposed method combines the advantages of fitting techniques
and this way it overcomes some of their limitations.

The goodness of the discussed fitting methods are compared in queuing
behaviour as well. The behaviour of the M/G/1 queue is compared with the
one of the approximating M/PH/1 queue.

1 Introduction

The well known Phase type fitting methods (an overview is provided in [9])
can be classified based on their optimization criteria. Some of them intend
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to fit only some parameters of the distribution (usually some moments),
while others intend to minimize a distance measure (EMPHT [2], MLAPH
[3]). In the second case the optimization criteria, i.e., the distance measure
to minimize, was always the same, the cross entropy, that comes from the
applied maximum likelihood principle. In [1] a section is devoted to the
argument about the general advantages of this distance measure. Though
there are cases (e.g., better fitting the tail of distributions) when the weakness
of the method minimizing the cross entropy measure becomes dominant and
other methods can outperform it.

The need to compare the properties of different fitting approaches was
recognized a decade ago, and a set of tests was defined during the work-
shop on Fitting Phase type distributions, Aalborg, Denmark, organized by
S. Asmussen in February 1991. In [4] the proposed set of tests was evalu-
ated using the MLAPH method and some new measures were proposed to
be considered as well. In [9] a wider set of fitting methods was compared
and their fitting measures were evaluated. Some of the consequences are
quite natural. The methods that intend to minimize the distance between
the original and the approximating distribution regarding a given aspect sur-
pass other methods regarding that aspect (even if it is not always the case).
For example a moment matching method may be superior to the MLAPH
method regarding the relative errors in the moments while MLAPH may top
it concerning cross entropy. Based on this observation a numerical procedure
is implemented that minimizes an arbitrary distance measure which was not
possible with the available PH fitting methods.

In recent telecommunication systems the occurrence of heavy tail distri-
butions is reported, which directed the attention to the tail behaviour of PH
distributions. The tail of any Phase type distribution is known to be expo-
nential, while recent research results indicate the importance of distributions
with “heavy” tails. When distance measures that are more sensitive to the
tail distribution than the cross entropy are used as the optimization criteria
better “tail fitting” can be achieved.

The PH fitting methods can be classified also by their generality. The
methods that minimize a distance measure (EMPHT [2], MLAPH [3]) intend
to find a global minimum of the goal function over the valid subset of the
parameter space, hence we refer to them as general fitting methods. Another
set of methods uses special PH structures and fits their parameters according
to some heuristic considerations, hence we refer to them as heuristic fitting
methods. Feldmann and Whitt proposed a simple but very effective heuristic
fitting method that is especially applicable for fitting the tail behaviour of
heavy tail distributions [8]. Their method uses mixtures of exponentials and
hence results in distributions with decreasing density function. The main



advantage of their method is the effective heuristic way of fitting. The appli-
cation of general fitting methods is computationally expensive when the tail
behaviour has to be approximated due to the numerical integration up to a
high upper limit. The method proposed by Feldmann and Whitt provides
good approximation of the tail behaviour with negligible computational ef-
fort. In this paper we provide a complex method that overcome the limitation
of this method.

The goodness of the studied Phase type fitting methods are compared, on
the one hand, through several plots and parameters of the distributions, and
on the other hand by the effect of PH representation of general service time
distributions in queuing systems. We compare the queue length distribution
of the M/G/1 queue with the one of the approximating M/PH/1 queue.
The queuing behaviour of the M/G/1 queue with heavy tail service time
distribution is evaluated by the method proposed by Roughan et al. [11].
The analytical results given by this method were verified by simulation for
queue length probabilities greater than 10~° and showed a perfect fit.

It should be noted that the general distributions considered in this paper
are continuous and are available in an analytical form. Fitting of empirical
distributions based on their samples is not considered here.

The rest of the paper is organized as follows. The next section introduces
fitting parameters and different distance measures. Section 3 describes the
applied fitting method with some implementation details. The effect of goal
function on the goodness of fit is discussed in Section 4. The succeeding
section shows the effect of the fitting parameters on the M/G/1 queue length
distribution. Section 6 presents the combined fitting method and Section 7
discusses its features. The last section gives the conclusion. Several numerical
results are given in the Appendix.

2 Fitting parameters and distance measures

Participants of the Aalborg workshop proposed a set of parameters to mea-
sure the goodness of Phase type fitting methods. The original set of parame-
ters was extended in [4] and the weakness of some measures proposed at the
workshop was reported as well. Later on the following set of (non-negative)
parameters was commonly used (e.g., in [9]):
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1. Relative error in the 1st moment: é; = | (F) — c1(F) |/ e (F)

2. Relative error in the 2nd moment: &, = |cy(F) — o(F) |/ co(F)
3. Relative error in the 3rd moment: &5 = |c3(F) — es(F) |/ es(F)
4. Density absolute area difference: D = / | f(t) — f(t)|dt
0
. _ _ ™ /@)
5. Relative entropy: H, = f(t) log | = dt
0 f(@)

¢;(F) denotes the ith centered moment of F. Note that the relative
entropy and minus the cross entropy (— H = / log f(t) d F(t)) can be

0
interchangeably used in PH fitting, since they differ only in a constant H.
That is the intrinsic entropy of the original distribution, H — H, = H =

/ f(#)log(f(t))dt. The advantage of using the relative entropy measure is

that it is always non-negative and its minimum is 0 (while the lower bound of
minus the cross entropy is H, which can be a negative value as well). Authors
of papers dealing with Phase type fitting algorithms usually reported minus
the cross entropy. In order to make the comparison easier with those papers,
throughout the appendix minus the cross entropy and the intrinsic entropy
are given.

All of the above parameters can be used as a goal function that should
be minimized for fitting, but in the first three cases f(¢) and f(t) can differ
significantly even if the (non-negative) measures equal to 0. We refer to these
parameters as parameters of goodness. In contrast, the parameters that equal
to 0 if and only if f(t) = f(t) are referred to as distance measures. In this
paper we consider the following three distance measures as the goal function
of Phase type fitting:

. 00 t
Relative entropy: H.=H-H = / f(t) log (f;( )> dt
0 f@)
Area difference (L, distance): D = /Oo 1F(t) — f(t)| dt
0
Relative area difference: D, = / - M dt
0 f®)
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Figure 1: First Canonical Form (CF1)

The first two distance measures were already considered in [4]. The third
distance measure was chosen to enlarge the effect of tail behaviour (at least
compared to the area difference). In some cases the formula given for the
relative area difference may be divergent, this problem will be relaxed in
practice by defining a finite upper limit for the integral. Of course, there
are several further reasonable distance measures that are not considered in
this paper, e.g., the different parts of the distribution can be considered with
different weights:

n—1
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where to = 0 < t; < ... < t, 1 < t, < oo provides a partitioning of the
support set and a; > 0;5 € {0,1,...,n — 1} are arbitrary weights. We
consider only the above three distance measures because they are able to
exhibit the effects that we would like to investigate.

3 A fitting method for arbitrary distance mea-
sure

The fitting problem may be formulated as an optimization problem the fol-
lowing way: find the parameters (the initial vector and the transition matrix)
of the PH distribution such that the distance measure is minimal. Not having
any restriction on the structure of the n stage PH distribution the number
of free parameters is n2 4+ n. In order to decrease the number of free param-
eters only Acyclic Phase (APH) distributions are considered. The procedure
described in this section would be able to fit any Phase type structure by
relaxing some constraints, but we believe that the flexibility of the APH class
is practically equivalent to the flexibility of the whole PH class of the same
order. Cumani [6] has shown that any acyclic APH distribution of order n
may be transformed into the form represented in Figure 1 and referred to as
First Canonical Form (CF1). The approximating PH distribution is in this
form, described by the vectors o and A.

The procedure starts from a random initial point of the parameter space
that is the best of 200 random guesses, all of which has the proper mean



[tf(t)dt. The best means the random guess with the least distance according
to the applied measure. The distance measure is evaluated through numerical
integration from 0 to 7', where T is defined by 1 — F(T) = K, where K is a
small number that may have the value of 1073,10~*,1075, ... . The smaller K
the higher the upper limit of the integration and the longer the approximation
process.

Starting from the initial guess the non-linear optimization problem is
solved by an iterative linearization method. In each step the following partial
derivatives are numerically computed:

0D(fru(a, A1), f(1)  9D(fru(a, A t), f(1))
aOti ’ 8)\1 ’

where D(fpw(), f()) stands for the distance between the pdf of the PH dis-
tribution (fpg()) and the pdf of the original distribution (f()). Then, the
simplex method is applied to determine the direction in which the distance
measure decreases optimally. The constraints of the linear programming is
given by probabilistic constraints (the initial probabilities have to sum up to
one), by the restriction on the structure of the PH distribution (the \;s are
ordered [6]) and by confining the change of parameters (since the derivatives
are valid only in a small area around (a, A)). A search is performed in the di-
rection indicated by the linear programming. The next point of the iteration
is chosen to be the border of the linearized area (defined by the allowed max-
imum change in the parameters) in the optimal direction if the goal function
is decreasing in that direction all the way to the border of the area. The
next point is set to the (first) optimum if the goal function has an optimum
in the optimal direction inside the linearized area. The iteration is stopped
if the relative difference of the parameters in consecutive iteration steps are
less than a predefined limit (107°), or if the number of iterations reaches the
predefined limit (800). The allowed relative change of the parameters greater
than 1073 is less than A, where A starts from 0.1 and is multiplied by 0.995
in each step.

The necessary number of phases depends on the distribution to be fitted,
and the required interval of fitting. After each fitting the measures of good-
ness may be examined and the probability density functions may be visually
inspected. If the fitting is not satisfactory the number of phases may be
increased. In general, increasing n results in better fitting but the higher n is
the more time the estimation algorithm requires. Also, because of numerical
problems, as the number of parameters is larger the goodness of fitting does
not improve significantly (for instance, fitting the [0; 1] uniform distribution
by 32 phases do not show notable advances compared to the 24 phase fit-
ting). Summing up, the necessary number of phases may be determined by

1=1,..,n,
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Figure 2: Pdf of Pareto I (« = 1.5, B=4) and II (« = 1.5 and b = 2)

performing a series of fitting with different number of phases and choosing
the most appropriate one taking into account the application, into which the
PH distribution will be plugged in, as well.

Our numerical procedure is similar in some sense to the one proposed by
Bobbio and Cumani [3], but our method is able to handle any goal function
and it evaluates the derivatives via a simple numerical approximation, instead
of the sophisticated calculation that is applicable only with the cross entropy
measure.

4 The effect of the goal function on the good-
ness of PH approximation

In this section we provide a representative set of Phase type fitting results
obtained by our numerical method applying the mentioned goal functions.
We have evaluated the complete benchmark as in [4, 9] with all distance
measures, but here we provide only the results that we found meaningful.
To investigate the goodness of fit heavy tail distributions we additionally
consider the following Pareto-like distributions [11] (Figure 2):

Pareto I: f(t) = { aBYe—t—(atl) fort > B
he —b/t
Pareto II: f(t) = ﬁx_(aﬂ)

There are significant differences between these distributions even if their
tail behaviour is the same. Pareto I starts from a positive value and has
monotone density while Pareto II starts from 0 (with 0 slope), hence it is not
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Figure 3: Pareto I distribution and its PH approximation
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Figure 4: Pareto II distribution and its PH approximation

monotone. The derivative of the density of Pareto I is not continuous, while
it is continuous for Pareto II.

The results of the approximation of distributions with heavy tail are de-
picted in two parts. The main part of the distributions is shown in a linear
— linear plot in the range of {0,%}, where # is such that F(Z) ~ 0.95 and the
tail of the distributions is shown in a logarithmic — logarithmic plot.

Figures 3 — 4 show the result of fitting with PH distributions of order 12
and with different distance measures. In the figures ML refers to fitting apply-
ing the relative entropy measure (that is related to the maximum likelihood
phenomena), AD to the area difference measure and RAD to the relative area
difference measure. The Pareto I distribution is used with o = 1.5, B = 4
and Pareto IT with o = 1.5 and b = 2. In both cases the upper limit of the
integration to evaluate the distance measure was defined by 1 —F(K) = 107*,
which results in K = 683.0 for Pareto I and K = 767.0 for Pareto II. As it
can be observed in the figures for Pareto I the tail behavior is fitted better
by using RAD as the distance measure while for Pareto II the approximation
given by ML follows the tail further. Our general observation is that RAD
fits the tail behaviour better for monotone distributions than ML does while
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Figure 5: PH approximations of distribution W2
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Figure 6: PH approximations of distribution U1

it may fail to give good approximation for non monotone distributions.

Figures 5 — 6 show other examples of the benchmark presented in [4]
(see the appendix for the summary of the test cases used in the benchmark).
W2 is a long tail weibull distribution whose tail behaviour is followed better
using RAD as the distance measure during the procedure. Ul is a uniform
distribution on [0 : 1]. Visual inspection gives the feeling that using AD
results in better approximations than using ML. On the other hand the ML
approximation gives significantly better results regarding the relative errors
in the moments. The numerical parameters of the goodness of fit is provided
in the Appendix.

Based on the fitting results of numerous different distributions applying
different distance measures we draw the following conclusions:

1. Each distance measure has a “sensitivity structure”, meaning that they
are not equally sensitive to the error of fitting at different “parts” of the
distribution. The three considered measures can be classified as follows.
The AD measure is sensitive to the main part of the distribution, the RAD
measure to its tail (till the upper bound of the numerical integration), while
the ML measure is sensitive to both, but it is less sensitive to the main part
than the AD measure and in many cases less sensitive to the tail than the



RAD measure.

2. The “shape” of the distribution also has a significant role on the goodness
of fit. Indeed the relationship between the shape of the distribution and the
sensitivity structure of the applied distance measure affects the goodness of
fit. Distributions with “non-Phase type” like behaviour in the main part
can be better approximated using the AD measure. While distributions with
“nice” behaviour at its main part and with “non-Phase type” behaviour in its
tail can be better approximated using the RAD measure. The ML measure
gives quite a robust method that works well in general without having a
“strange” distribution to fit.

3. Of course, the goodness of fit is a general term. Parameters of fitting can
be compared (next item), but the plots of the original and the approximating
PH distributions provide an intuitive feel for the behaviour of fitting. The
sensitivity structure of the applied distance measures can be recognized in
the density plots as well. The fitting by the AD measure better approximate
(when low order PH is used) the shape of the main part of the density in
Figure 4 than the others do, while it is one whose tail “disappears” first in the
case of heavy tail distributions. This trend of the tail behaviour was general
in our experience. The tail of heavy tail distributions was best approximated
by using RAD measure or ML. measure and the worst tail fitting was achieved
by using AD. (The relative error of the 3rd moment that is quite sensitive to
the tail behaviour provides the same ranking.)

4. Usually, the best fit, according to a given fitting measure was reached
by using that measure as the distance measure for the fitting, but there are
several exceptions (the exceptions are highlighted by boldface characters in
the Appendix). One potential reason of this phenomena is the numerical
inaccuracy, but we think that the “shape” of the distribution plays role as
well.

5. The fitting of distributions with low order Phase type (< 6) was usu-
ally terminated by reaching the required relative precision (i.e., the fitting
method was not able to improve the approximation), while the fitting with
higher order Phase type was terminated by reaching the maximum number
of iterations.



5 The effect of PH approximation on the
M/G/1 queue length distribution

One of the most important fields of application for Phase type distributions
is in the area of traffic engineering of high speed communication systems. In
this field the main question is not the goodness of fit of general service or in-
terarrival time distributions, but the goodness of approximating the queuing
behaviour of network elements with general service and/or interarrival time
distributions.

In this section we compare the queuing behaviour of M/G/1 queues with
the behaviour of their approximating M/PH/1 queue by considering the
queue length distribution. The queue length distribution of the original
M/G/1 queue with heavy tail service time distribution is evaluated using
the method proposed by Roughan et al. [11].

The method of Roughan et al. [11] evaluates the queue length distribu-
tion by the following steps. First it calculates the asymptotic behaviour of
the probability generating function (PGF) of the queue length distribution
(given by the Pollaczek-Khintchine formula) via Tauberian theorems. Us-
ing the result it determines the asymptotic behaviour of the queue length
distribution, then applies an Inverse Fast Fourier Transform (IFFT) on the
PGF. It is shown by Daigle [7] that the result of the IFFT is contaminated
by alias terms, but knowing the asymptotic behaviour of the queue length
distribution they may be subtracted resulting in appropriate precision.

The method is applicable when the tail of the service time distribution
has a power law tail which is the case for the two considered Pareto-like
distributions.

Assuming that the Phase type distributed service time is given by the
initial probability vector a (row vector) and transition matrix B the queue
length distribution of the M/PH/1 queue can be evaluated using the matrix
geometric method [10]:

pp=1-XaB e p=paRe Vix1.

where A is the arrival rate, e is a column vector of ones, a B™! e is the
mean of the Phase type distributed service time, and matrix R is defined as
R=(I-¢ea—1/2B)L

Figures 7 — 8 show the queue length distribution of an M/G/1 queue
with Pareto I (o« = 1.5, B = 4) and Pareto II (o = 1.5, b = 2) service
time distribution and the approximating M/PH/1 queue, where the service
time is PH distributed with order 12 and is obtained by minimizing different
distance measures (ML, AD, RAD). The continuous curves in Figures 7 —
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Figure 7: Queue length distribution of an M/G/1 queue (with Pareto I) and
its approximate M/PH/1 queue
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Figure 8: Queue length distribution of an M/G/1 queue (with Pareto IT) and
its approximate M /PH/1 queue

8 are obtained by joining the queue length probability values evaluated at
integer points. Traffic intensity equals to 0.8.

6 A combined fitting method

As we have seen in the previous sections we can improve the tail fitting
of general fitting methods by applying distance measures that are sensitive
to the tail behaviour. But it is also mentioned that the applicability of
this approach is limited by its computational complexity, which increases at
least linearly with the considered subset of the support (the upper limit of
the numerical integration)?. There is a trade off between the general and

heuristic fitting methods. Generally, the computational complexity of the

2Numerical integration techniques with exponentially increasing step size is a way to
avoid the linear increase of the computational complexity, but the complexity problem
remains anyway.



general fitting methods is much higher than the complexity of heuristic fitting
methods, but the general methods are much more flexible, i.e., they better
approximate a wide range of distributions. Heuristic fitting methods that
usually use special subclasses of the class of Phase type distributions are less
flexible. They provide much poorer fitting for a wide range of distributions,
but there might be a set of distributions that can be approximated by a
heuristic fitting method as well as by using any general fitting method. When
only this special set of distributions needs to be fitted it is worth applying
the heuristic fitting method.

In practice, the main part of empirical distributions can have any gen-
eral structure, while the tail of empirical distributions is assumed to be
“nice” so that heuristic fitting methods can be used for tail fitting. Ugly
tail behaviour, like the tail of Matrix Exponential distribution f(t) = (1 +
1/(2m)?) (1 —cos(2mt)) e~ [5, 4], or similar non-monotone functions with
non-exponential decays, are not commonly used in practice.

Based on these considerations we propose one fitting method that uses a
general approach to approximate the main part and a heuristic approach to
approximate the tail of distributions. The heuristic method used for fitting
tail behaviour is based on the method proposed by Feldmann and Whitt [8]
and the general method to fit the main part is based on the numerical proce-
dure introduced in the previous sections. Indeed, only a slight modification
is needed to combine the two methods into a combined procedure.

The limitation of our combined method comes from the limitation of the
heuristic method of Feldmann and Whitt. Their method is applicable only
for fitting distributions with monotone decreasing density function. Hence
the proposed combined method is applicable when the tail of the distribution
is with monotone decreasing density. This restriction is quite loose since the
border of the main part and the tail of the distribution is arbitrary, hence
the restriction of applicability is to have a positive number C' such that the
density of the distribution is monotone decreasing above C'.

The result of our fitting algorithm is a Phase type distribution of or-
der n + m, where n is the number of phases used for fitting the main part
and m is the number of phases used for fitting the tail. The structure
of this Phase type distribution is depicted in Figure 9. The parameters
Biyevvy Bms 1y - - - M are computed by considering the tail while the param-
eters aq, ..., Quy,, Ap, ..., Ay are determined considering the main part of the
distribution. The algorithm consists of the following steps.

First, we define the border of the main part and the tail, ¢., based on
constant ¢ by the equality 1 — F'(t.) = ¢ ; ¢ can depend on the distribution
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Figure 9: Structure of approximate Phase type distribution

and other consideration (e.g., the computational complexity?®). Its typical
value is between 0.0001 — 0.01.

The upper bound of the tail approximation ¢4 is determined by an other
constant d in a similar way by the equality 1 — F'(t;) = d ; d can vary in
a wide range, e.g., 1072° — 10~*, but it can be smaller than 1072 as well.
It does not affect the computational complexity, d is rather limited by the
applied floating point arithmetic.

The method proposed by Feldmann and Whitt is a recursive fitting pro-
cedure that results in a hyperexponential distribution whose cumulative dis-
tribution function (cdf) at a given set of points is “very close” to the cdf of
the original distribution. We use a slightly modified version of this algorithm
to determine the parameters 5y, ..., B, f1y -« - fom-

Based on this limit we define 2m points (0 < t. = t,, < bty < 1 <
btm 1 < ...<ty =tq <bty) at which the approximate distribution is “close”
to the original one.

) t
ti=tg6"", i€ {1,2,...,m}, where §= mﬂt—d , and b < 6.
C

We choose 1, 5 to match the complementary cdf F¢(¢) at the arguments ¢;
and bt;. Arranging the two equations

Bleiﬂltl = Fc(tl), and Bleiﬂlb b — Fc(b tl),

we obtain

_ 1
M=0-1n
3The complexity of the general method dominates the complexity of the combined
method. The larger ¢ the lower the border ¢., and the lower the computational complexity.

IH(FC(tl)/FC(b tl)), and ﬁl = Fc(tl) e’“tl.




Throughout the procedure, we are assuming that p;, ¢ = 2,...,m will be
significantly larger than g, so that

m
Zﬁie’“it ~ By e Mt fort>t. (1)
i=1

As it is noted in [8] there is no guarantee that the above property holds, but

it may be checked after the procedure is complete, and in general it is not a

problem to define the set of points in such way that we have this property.
Using the notation

i—1
FE(t) = Fy(t) = > B e7,
7j=1

where F{(t) = F*(t), our goal is to have
By e M = Ff(t;), B e "™ = Ff(bty),

rearranging we obtain

ot
M= 1)

for 2 <i<m.

We have no guarantee that the sum of the initial probabilities associated
with the hyperexponential part of the Phase type structure (X ;) is lower
than 1. If the sum is greater than 1 it may help to decrease d (which means
to increase t4) or m. It is discussed in [8] how the 2m points may be chosen
efficiently.

Having (4, ..., Bm, 41, - - -, fhm, We use the algorithm described in Section
3 to fit the main part of the distribution with two differences:

In(Ff(t:)/Fi(b 1), B = Ff(t:) e, (2)

1. Not having the hyperexponential part fitting the tail, the initial proba-
bilities of the acyclic structure sums up to 1. Having the hyperexponential
part this constraint has to be modified as >/, o, =1 -3, G

2. The structure of the approximate Phase type distribution differs from the
one used before (Figure 1). The parameters associated with the additional
m phases (51, .-, Bm, M1,---,m) are fixed during this stage of the fitting
process.

The upper limit for the integral to evaluate the distance measure during
fitting the main part is ..

Figure 10 pictures how different parts of the PH structure (CF1,hyper-
exponential) contributes to the pdf of the (« = 1.5, B = 4). The fitting
procedure was run to approximate the Pareto I distribution with n =8 m =
10,¢ =1072,d = 1071° ¢, = 31.70, ¢, = 6.83 - 10°.
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Figure 10: Different parts of the distribution are approximated by different
parts of the PH structure

7 Goodness of the combined fitting method

The goodness of the fitting of the main part using the general method pre-
sented in Section 3 is not affected by the use of the heuristic procedure. Since
the heuristic approach gives a good approximation for the tail, it is not re-
warding to apply the relative area difference for fitting the main part. With
a few exceptions using the relative entropy as the distance measure is the
most promising choice.

The method presented by Feldman and Whitt results in a distribution
whose pdf is oscillating around the pdf of the original distribution. The
combined procedure has the same feature. The oscillation starts at ¢, and
ends at f;. The number of “bumps” equals to m. After t; the pdf of the
PH distribution does not follow the pdf of the original distribution. The
“amplitude” of the oscillation depends on the distance between ¢. and ¢, and
on the number of phases used for fitting the tail (m). Increasing m decreases
the amplitude of the oscillation. There is an upper limit for m as a result
of assumption (1) and probabilistic considerations (the parameters given by
(2) have to be proper for a PH distribution). The method of Feldman and
Whitt is worth applying when the tail is “heavy” enough, otherwise applying
the general method alone gives as good results as the combined one. As it
is mentioned in [8] the method works well for distributions with decreasing
hazard rate.

The pdf of the PH distribution drops slightly compared to the original
one at t.. If it is necessary this drop may be decreased by using t> > ¢, as the
upper limit for the integral to evaluate the distance measure. This feature
is illustrated in Figure 11 with the Pareto I distribution and the following
parameters: n =8 m =4,c=10"%d = 1070, ¢, = 34.83,t, = 7.67-10°%, ¢* =
164.6, F°(t:) = 1073, Overlapping refers to the case when ¢ > ¢,.

The choice for the distance measure used during fitting the main part has
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Figure 11: The effect of using t; > t. as the upper limit for the integral to

evaluate the distance measure

no effect on the procedure for fitting the tail.

The improvement achieved by fitting the tail using the heuristic method is
indicated not only by visual inspection of the tail of the pdf but by the relative
moment errors as well. Some examples are given in the Appendix. Since the
2nd and 3rd moments do not exist for the two Pareto-like distributions, for
these cases the following is given to indicate the improvement instead of the
original relative moment errors:

| 3(F) = &(F) |/ &(F), |&(F) = &(F)|/e(F), (3)

where
c

G(F) = [ @=a(F)dF@), i=23,

=0
with C defined by F¢(C) =108,

Figures 12 (14) compares the behaviour of the Pareto I (Pareto IT) distri-
bution and its fitting Phase type distribution. The notation n+m XX defines
the parameters of Phase type fitting. n is the number of phases used for
fitting the main part and m is the number of phases used for fitting the tail
of the distribution. XX (= AD or ML or RAD) gives the distance measure
used for fitting the main part. The relative error of the pdf is defined as
(f(t) = f(£))/f(t), and the hazard rate is f(t)/(1 — F(t)).

Figures 13 (15) shows the effect of Phase type fitting on the M/G/1
queue behaviour with Pareto I (Pareto II) service time. The oscillation that
appeared on the tail of the pdf of the PH distribution can be seen on the
queue length distribution as well.
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Figure 12: Pareto I distribution and its PH approximation with the combined
method
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Figure 13: Queue length distribution of an M/G/1 queue (with Pareto I)
and its approximate M/PH/1 queue

8 Conclusion

This paper investigates Phase type fitting techniques that are able to improve
the tail fitting behaviour of the existing methods.

First a Phase type fitting method is presented that is able to approximate
distributions based on any general distance measure. It has been shown that
the properties of Phase type fitting can be tuned by choosing an appropriate
distance measure for the fitting method.
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Figure 14: Pareto II distribution and its PH approximation with the com-
bined method
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Figure 15: Queue length distribution of an M/G/1 queue (with Pareto II)
and its approximate M/PH/1 queue

To further improve the tail fitting properties a combined Phase type
fitting method is introduced. This method implements the above general
method for fitting the main part of a distribution and the effective heuristic
approach of Feldman and Whitt for fitting the tail behaviour.

Several numerical examples present the properties of the introduced fit-
ting methods. The examples show that the proposed combined fitting method
provides a suitable Phase type approximation of heavy tailed distributions
that is also verified by the queuing behaviour of the M/G/1 queues and their



approximating M/PH/1 queue.
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A Parameters of fitting

Test cases of the benchmark presented in [4] extended with heavy tail distributions

| Density | Symbol | Numerical Cases |
Weibull
=T
t ¢
fy =5 (—) e () Wi | n=1 B=15
n\n
w2 n=1 =05
Lognormal
L1 p=1 o=18
2 2
J(t) = ripmexp [ - st g ot/ L2 | ¢=1 o=08
L3 p=1 o=02
Uniform on (a,b) U1 a=0 b=1
U2 a=1 b =2
Shifted Exzponential
1 1
f(t) = 5e—f+-§e—<f—1>1(tz 1) SE
Matrixz Exponential
1
fit) = <1+ W) (1 — cos(27t))e ! ME
Pareto I
aB le™B ! fort < B
f@)—{ QB e—op—(at) for £ > B P1 a=15 B=4
Pareto IT
bae—b/t

f(t) g—(eth) P2 a=15 b=2

I(«)

The fitting parameters are given in the following tables. The column labeled “Appr.”
describes the fitting procedure: the symbol of the fitted distribution, the order of the PH
distribution and the applied distance measure are given. In the case when there is one
number in this column the fitting method given in Section 3 was applied. If there are two
numbers of the form x + y, x is the number of phases to fit the main part and y is the



number phases to fit the tail of the distribution. The relative errors in the 2nd and 3rd
moments for the Pareto-like distributions (P1,P2) are given as defined in (3). For Ul and
U2 the absolute error in the 3rd moment is given since their 3rd centered moments equal
to 0.

[ Appr. | Cr.Ent. (H) [ AreaD. RME 1 RME 2 RME 3
W1i/4 H = 7.869¢ — 01
ML 7.8714e-01 8.9011e-03 1.3734e-04 | 4.8522e-03 | 4.0876e-02
AD 7.8728e-01 7.2039e-03 2.8943e-03 | 2.4579e-02 1.0107e-01
W1/8
ML 7.8702e-01 3.5172e-03 9.2808e-05 | 9.0348e-04 | 9.7635e-03
AD 7.8725e-01 3.1405e-03 2.0490e-03 | 1.6044e-03 1.3276e-02
W1/16
ML 7.8696e-01 1.8287e-03 | 1.5028e-05 | 7.5074e-04 | 4.8582e-03
AD 7.8773e-01 5.3185e-03 8.2319e-04 | 5.6408e-04 5.5515e-04
W2/4 H = 1.1546¢ + 00
ML 1.1631e+00 8.2830e-02 | 1.2918e-02 | 2.2862e-01 5.7052e-01
AD 1.1933e+00 1.1162e-01 8.9610e-02 | 4.5281e-01 7.8482e-01
RAD 1.2945e400 3.0036e-01 2.1358e-02 | 1.6789e-01 3.7917e-01
W2/8
ML 1.1626e+00 6.0275e-02 | 9.8517e-03 | 1.9015e-01 4.9798e-01
AD 1.1828e+00 9.4857e-02 4.8308e-02 | 2.0663e-01 6.0035e-01
RAD 1.2078e400 1.4406e-01 7.5972e-04 | 4.4718e-02 1.6866e-01
W2/8+3
ML 1.1544e+00 5.3229e-02 1.0493e-02 | 1.0160e-01 2.7704e-01
W2/16
ML 1.1643e+00 5.9088e-02 | 1.3257e-02 | 1.8740e-01 4.8400e-01
AD 1.1827e+400 8.9019e-02 2.7044e-01 | 8.0677e-01 9.9291e-01
RAD 1.1908e400 1.0993e-01 1.4096e-02 | 1.1377e-01 3.2936e-01
Li/4 H = 3.745¢ — 01
ML 4.0322e-01 4.1789e-02 | 1.6090e-01 | 7.6213e-01 9.7536e-01
AD 4.2514e-01 4.2115e-02 2.8016e-01 | 8.7027e-01 9.9189e-01
RAD 4.7847e-01 3.3306e-01 2.1285e-02 | 6.6316e-01 9.4266e-01
L1/8
ML 4.0025e-01 3.3545e-02 1.6095e-01 | 7.5461e-01 9.7293e-01
AD 3.9838e-01 2.3236e-02 1.6794e-01 | 7.4279e-01 9.6790e-01
RAD 3.9489e-01 2.3912e-02 1.2947e-01 | 6.8020e-01 9.4964e-01
L1/16
ML 3.9767e-01 2.2141e-02 | 1.5709e-01 | 7.4466e-01 9.7000e-01
AD 4.1918e-01 2.6217e-02 2.7960e-01 | 8.6512e-01 9.9089e-01
RAD 3.9570e-01 6.3266e-02 1.3474e-01 | 6.7170e-01 9.4684e-01
L2/4 H =8.575e — 01
ML 8.7843e-01 3.7793e-02 9.2433e-04 | 4.9473e-02 2.7973e-01
AD 8.8427e-01 2.6330e-02 4.7449e-02 | 2.9014e-01 6.5015e-01
L2/8
ML 8.7602e-01 7.2309e-038 | 3.1555e-04 | 1.7827e-02 1.2628e-01
AD 8.7946e-01 1.4181e-02 2.5898e-02 | 1.8984e-01 5.1514e-01
L2/16
ML 8.7608e-01 6.6401e-03 | 4.6425e-04 | 1.2390e-02 1.0484e-01
AD 8.8048e-01 9.9469e-03 2.6237e-02 | 2.0412e-01 5.4638e-01
L3/4 H = —2.104e — 01
ML 3.0658e-01 8.4828e-01 1.4604e-04 | 5.1277e+00 | 2.3693e+01
AD 3.0661e-01 8.4824e-01 3.3590e-03 | 5.0848e+00 | 2.3434e+01
L3/8
ML 2.9635e-02 5.4836e-01 | 7.3630e-05 | 2.0634e400 | 5.1719e+00
AD 7.8277e-02 6.0827e-01 1.0497e-02 | 2.4274e400 | 6.8083e+00
L3/16
ML -1.3451e-01 2.8779e-01 | 3.4638¢-05 | 7.5127e-01 | 1.0167e+00
AD -1.1618e-01 3.2116e-01 1.1931e-02 | 8.4018e-01 | 1.2541e+00




Appr. Cr. Ent. () | AreaD. | RME1 | RME2 RME 3
U1/4 H =0.0
ML 1.3891e-01 3.1453e-01 | 6.8431e-05 | 2.6496e-01 2.754e-02
AD 1.6007e-01 2.7496e-01 | 8.3465e-02 | 6.9141e-01 4.946e-02
U1/8
ML 9.8786e-02 2.2803e-01 | 8.1970e-05 | 1.0497e-01 1.112e-02
AD 1.1882e-01 2.0160e-01 | 4.9737e-02 | 3.6159e-01 2.217e-02
UL/16
ML 7.1136e-02 1.6767e-01 1.8894e-04 | 4.1393e-02 4.863e-03
AD 9.7424e-02 1.6509e-01 | 3.4785e-02 | 2.4784e-01 1.391e-02
U2/4 H =0.0
ML 7.0956e-01 9.9978e-01 1.0420e-04 | 5.7514e+00 7.498e-01
AD 7.1263e-01 9.9720e-01 | 3.8192e-02 | 5.2442e+00 6.672e-01
U2/8
ML 4.7837e-01 7.3796e-01 1.5747e-04 | 2.8584e+00 1.378e-01
AD 4.8372e-01 7.3290e-01 | 3.8091e-02 | 2.5689e+00 1.226e-01
U2/16
ML 2.7843e-01 4.4080e-01 | 8.1234e-05 | 1.0769e+00 5.581e-02
AD 2.8100e-01 4.3575e-01 1.9523e-02 | 9.9713e-01 4.965e-02
SE/4 H = 1.295¢ + 00
ML 1.3258e+00 1.8387e-01 | 3.5709e-04 | 2.7466e-02 1.9046e-01
AD 1.3278e+00 1.7478e-01 2.6355e-02 | 3.3976e-02 1.2472e-01
RAD 1.3449e+00 2.3464e-01 1.0494e-02 | 8.9644e-04 5.6800e-02
SE/8
ML 1.3162e+00 1.3527e-01 | 4.5258e-04 | 8.3997e-04 2.4375e-02
AD 1.3179e+00 1.2575e-01 | 9.7610e-03 | 4.8098e-03 3.6399e-02
RAD 1.3278e+00 1.7125e-01 2.6487e-02 | 3.5088e-02 5.6718e-02
SE/16
ML 1.3101e+00 1.0094e-01 5.1215e-04 | 2.7437e-03 2.4322e-02
AD 1.3129e+00 9.8741e-02 | 2.9152e-03 | 2.9267e-02 1.1545e-01
RAD 1.3138e+00 1.0919e-01 | 4.5643e-04 | 9.5314e-03 4.2254e-03
ME/4 H = 7.277e — 01
ML 8.9794e-01 4.4689e-01 1.3964e-02 | 6.3662e-02 1.8893e-01
AD 9.1015e-01 4.3606e-01 | 3.0798e-02 | 2.2010e-01 7.7306e-01
RAD 3.6212e+400 1.1907e+00 | 7.4910e-01 | 9.3050e-01 5.0741e-01
ME/8
ML 8.5417e-01 3.5047e-01 1.3729¢-02 | 6.8973e-02 2.7284e-01
AD 8.6532e-01 3.2532e-01 1.3120e-02 | 6.5389e-02 2.4569e-01
RAD 3.7799e+00 1.1416e+00 | 7.1318e-01 | 8.5348e-01 | 1.0191e+400
ME/16
ML 8.2535e-01 2.8761e-01 1.4200e-02 | 4.8011e-02 1.7391e-01
AD 8.3318e-01 2.6575e-01 | 8.9693e-03 | 9.1900e-02 3.6612e-01
RAD 3.6503e+00 9.6673e-01 5.3353e-01 | 1.0375e+01 | 8.2788e+02
P1/4 H = 2.1295¢ + 00
ML 2.2323e+00 4.4603e-02 | 5.6533e-02 | 9.7564e-01 9.9998e-01
AD 2.2635e+00 3.2399e-02 1.6432e-01 | 9.9199e-01 1.0000e-00
RAD 2.2338e+00 6.6204e-02 1.1868e-01 | 9.8327e-01 9.9999e-01
P1/4+10
ML 2.2246e+00 1.7881e-02 | 2.6115¢-03 | 6.7019e-04 6.1649e-04
AD 2.2247e+400 1.8119¢-02 | 8.5872e-03 | 9.7804e-04 6.1535e-04
P1/8
ML 2.2292e+00 1.3672e-02 | 7.1673e-02 | 9.7659e-01 9.9998e-01
AD 2.2470e+00 2.7601e-02 1.2395¢-01 | 9.8867e-01 1.0000e-00
RAD 2.2378e+00 8.9478e-02 1.2673e-01 | 9.8322e-01 9.9999e-01
P1/8+10
ML 2.2245e+-00 6.5659e-03 | 2.5887e-03 | 6.4993e-04 6.1648e-04
AD 2.2244e400 5.6568e-03 | 1.2990e-03 | 7.3505e-04 6.1608e-04
P1/16
ML 2.2282e+00 1.3221e-02 | 3.8874e-02 | 9.5945e-01 9.9993e-01
AD 2.2562e+00 2.4655e-02 | 1.4066e-01 | 9.9123e-01 1.0000e-00
RAD 2.2644e+00 4.6493e-01 1.5008e-01 | 8.1545e-01 9.9891e-01
P2/4 H=1.9811e+00
ML 2.0768e+-00 2.2020e-01 | 6.3924e-02 | 9.7417e-01 9.9997e-01
AD 2.1098e+-00 1.7385e-01 2.0160e-01 | 9.9262e-01 1.0000e-00
RAD 2.1435e+00 3.1506e-01 | 6.9994e-02 | 9.8428e-01 9.9999e-01
P2/8
ML 2.0414e+00 4.4020e-02 | 6.0110e-02 | 9.7176e-01 9.9997e-01
AD 2.0752e+-00 9.8591e-02 | 2.2906e-01 | 9.9466e-01 1.0000e-00
RAD 2.0954e+00 3.7922e-01 | 6.2820e-02 | 9.8458e-01 9.9999e-01
P2/8+10
ML 2.0598e+-00 4.4354e-02 | 3.0374e-02 | 1.3027e-01 1.3101e-01
AD 2.0778e+00 8.3044e-02 1.1807e-03 | 1.2998e-01 1.3101e-01
P2/16
ML 2.0363e+00 2.7991e-02 | 7.6029e-02 | 9.7586e-01 9.9997e-01
AD 2.0908e+-00 5.5272e-02 | 2.4299e-01 | 9.9506e-01 1.0000e-00
RAD 2.1027e+00 2.2861e-01 | 8.6895e-02 | 9.8338e-01 9.9999e-01
P2/16+10
ML 2.0336e+00 2.5536e-02 | 3.0803e-02 | 1.3033e-01 1.3101e-01
AD 2.0573e+00 5.8133e-02 | 4.015le-02 | 1.2967e-01 1.3102e-01




