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Abstrat. In order to extend their appliability to more omplex situations,

in this paper we present a new approah for the analysis of non-Markovian

Stohasti Petri Net (NMSPN) models, whih is based on a disrete time ap-

proximation of the stohasti behavior of the marking proess. The proposed

approah, whih resulted in a new modeling tool for the analysis of NMSPNs

alled WebSPN, allows to analyze a wider lass of PN models with prd, prs

and pri onurrently enabled generally distributed transitions. This implies

the possibility of dealing with very omplex systems with arbitrarily distribut-

ed events with very omplex interrelations among eah other. The adopted

tehnique is desribed, an appliation example is solved and the results are

arefully analyzed in order to demonstrate the validity of the proposed ap-

proah.

Key Words: Non-Markovian Stohasti Petri Nets, Disrete time Markov

hain (DTMC), expansion tehniques, performane and dependability analysis

1 Introdution

Petri nets are ommonly viewed as a valid tool for the qualitative and quantitative

study of omputer systems [2℄. Over the years, many stohasti extensions to the ba-

si Petri net model have been proposed. Dealing with non-exponentially distributed

events is an extension that widened the �eld of appliability of this modeling ap-

proah to real situations. There are a great number of real irumstanes in whih

deterministi or generally distributed event times our. Events suh as timeouts in a

protool, servie times in a manufaturing system and memory aess or instrution

exeution in a low-level hardware or software have durations whih are onstant or

have a very low oeÆient of variation. Choi et al. have shown that the marking pro-

ess underlying a Stohasti Petri Net (SPN), where at most one generally distributed

transition is enabled in eah marking, belongs to the lass of Markov Regenerative

Proesses (MRGPs) [7℄. Following the line opened in [7℄, di�erent approahes have

been proposed to deal with non-Markovian systems [8, 14, 16℄.

All the above literature on Markov Regenerative SPNs (MRSPNs) impliitly as-

sumed an enabling memory poliy (as it is de�ned in [1℄). The transient analysis of a

lass of NMSPNs with age memory poliy ([1℄) was provided in [5℄, and a preemption

mehanism, di�erent than the ones onsidered in [1℄, was introdued and analyzed

in [4℄. Following the ommon terminology used when dealing with queuing systems,



the stohasti behavior of the transitions of a SPN model has been lassi�ed as pre-

emptive repeat di�erent (prd), preemptive resume (prs) and preemptive repeat idential

(pri), respetively. These stohasti extensions have inreased the desriptive power

of SPNs, as well as the omputational e�ort required for their solution.

Many SPN modeling tools have reently been proposed or developed (e.g. ES-

P [11℄, GreatSPN [6℄, SPNP [9℄, DSPNExpress [16℄, TimeNet [13℄, UltraSAN [10℄).

Some of the above tools have also implemented the possibility of inluding some

non-Markovian features thus extending the range of appliability of PNs. Their main

limitations regard the kind and number of generally distributed �ring time (GEN)

transitions and their assoiated preemption poliy. A very limited number of simulta-

neously enabled GEN transitions is allowed. And usually it redues to only one. Fur-

ther, the preemptive repeat di�erent (prd) poliy is the only adopted. The preemptive

resume (prs) and the reently proposed preemptive repeat idential (pri) poliies [4℄,

although very powerful, are basially not yet implemented. The �rst restrition an be

relaxed by the analytial results available for the analysis of PN with non-overlapping

prs general transitions [5℄, and there is an ative researh to �nd the proper way to

analyze PN with onurrently ative general transitions [16, 17℄.

A possible approah for the analysis of SPN models, with onurrently ative

prs and prd general transitions, is through the ontinuous time Phase type (CPH)

approximation of generally distributed �ring times [11℄. With this tehnique, the

marking proess of the NMSPN is approximated by a ontinuous time Markov hain

with an expanded state spae [11℄.

In this paper, we disuss a modeling tehnique for the analysis of NMSPNs that

relaxes some of the restritions present in urrently available SPN analysis pakages.

This approah is based on a disrete time approximation of the stohasti behavior

of the marking proess, hene it an be onsidered as a disrete time version of the

phase type expansion tehnique. A similar approah an be found in [9℄, where Dis-

rete Deterministi and Stohasti PNs (DDSPNs) are presented and rae poliies

equivalent to our prd and prs poliies are onsidered. The main di�erenes with our

approah onsist in the intrinsi assumption of a disrete time model, the lak of the

pri poliy and the absene of a full implementation of the proposed algorithm. A new

modeling tool for the analysis of non-Markovian stohasti Petri nets, alled WebSP-

N [15℄ has been suessfully implemented. The approah we propose o�ers some new

features whih result in the possibility to analyze a wider lass of NMSPN models.

The main advantages of this method onsist of the possibility to evaluate SPNs with

transitions of pri type with �nite �ring time, besides the more traditional prd and prs,

and to analyze models with onurrently enabled generally distributed transitions of

any kind.

2 Introduing Petri Nets and Preemption Poliies

A timed Petri net is a tuple PN=(P ; T ;G;A; I;O;H;M

0

) where: P is the set of

plaes; T is the set of transitions; G is the set of random variables 

g

assoiated to

transitions; A is the set of age variables a

g

assoiate to transitions; I;O and H are
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Fig. 1. Petri net model of one server.

respetively the set of input, output and inhibitor funtions (I � P �T , O � T �P ,

H � P � T ), providing their multipliity; M

0

is the initial marking

1

.

The �ring of an enabled transition t

k

, in a given marking M

i

, generates another

marking M

j

. M

j

is said diretly reahable from M

i

(M

i

!

t

k

M

j

). Starting from

the initial marking M

0

, the transitive losure of ! generates the reahability graph

RG(M

0

) (the set of all reahable markings from M

0

).

A onsistent way to introdue memory into a SPN is provided in [1℄ and extended

in [5℄. Eah timed transition t

g

is assigned a general random �ring time 

g

with a

umulative distribution funtion G

g

(t). A lok, assoiated to eah transition, ounts

the time in whih the transition has been enabled. An age variable a

g

assoiated to

the timed transition t

g

keeps trak of the lok ount. A timed transition �res as soon

as the memory variable a

g

reahes the value of the �ring time 

g

.

A timed transition has to be haraterized both in terms of the distribution fun-

tion of the random �ring time and also of its behavior when a preemption ours.

Thus, a preemption poliy is required to fully desribe the behavior of a timed tran-

sition. In this paper we prefer an informal approah to the de�nition of preemption

poliies through the example of Figure 1.

The Petri net on Figure 1 models a server with exponential arrivals (transition

t

1

) and general servie time (transition t

2

). Waiting ustomers are represented by

the tokens in plae P

1

. The server is randomly preempted by higher priority jobs

(transition t

3

) for an exponentially distributed amount of time (transition t

4

), as

shown by the inhibitor ar from plae P

3

to transition t

2

.

When a ustomer arrives to a server, a spei� servie requirement 

g

has to be

ompleted. The amount of omputation required is sampled from the distribution

funtion F

g

(t) of the servie time. The optimal ase is when the server is able to om-

plete the job before an interruption ours. However, the server may be interrupted

after proessing only a portion of the submitted job. In this ase the whole behavior

is strongly a�eted by the preemption poliy and the whole performanes will depend

on the strategy adopted to deal with the preempted job, as desribed in the following:

{ The server drops the ustomer it was dealing with before the interruption.

{ The server goes bak to the preempted ustomer who still maintains the original

work requirement 

g

.

1

A marking M

i

is a tuple, whose ardinality is jjPjj, reording the number of tokens in

eah plae.



{ The server also returns to the same ustomer who still has the same work require-

ment 

g

.

Aording to [5℄ and [4℄, the previous poliies are referred to as preemptive repeat

di�erent (prd), preemptive resume (prs) and preemptive repeat idential (pri), respe-

tively. Note that in [1℄ the authors indiated the prd and prs type poliies as enabling

and age type. The pri poliy was introdued for the �rst time in [4℄. The prd poliy

is the only onsidered in the available tools modeling non-Markovian SPN [16, 13,

10℄. The ESP tool [11℄ allows to deal with prs poliy through a ontinuous time PH

approximation. Reently German developed a tool with Mathematia pakage where

the prs poliy is also implemented adopting the method of supplementary variable

[12℄.

From the previous disussion it is lear that the main diÆulty in analyzing s-

tohasti Petri nets with general transitions is related to the fat that the underlying

disrete state marking proess is no longer a CTMC, as its future evolution depends

on the past history. Below, we all general (GEN) transitions both the transition-

s with generally distributed �ring time (inluding the deterministi ones) and the

exponentially distributed �ring time transitions of pri type. For a transition with ex-

ponentially distributed �ring time the prd and the prs poliies have the same e�et,

due to the memoryless property. We denote these transitions as EXP transitions. For

a transition with deterministi �ring time, the prd and the pri poliies have the same

e�et, sine a resampling of the �ring time results in the same �ring time sample eah

time.

Aording to this memory onept, at any time the marking and the individual

memory assoiated with the GEN transitions of a NMSPN only determine the future

stohasti behavior of the NMSPN. This means that the marking proess together

with the memory proess of the GEN transitions is a Markov proess.

Below we make a distintion between enabled and ative transitions. In Fat, a

GEN transition may be ative (the age variable a

g

is between 0 for a prs transition

or the threshold value 

g

is already set up for a pri transition) but not enabled.

The main idea behind our proposed disrete time approah is to disretize the

ontinuous memory proess and the time to obtain a Disrete time Markov hain

(DTMC) that approximates the stohasti behavior of the ompound Markov proess.

The time aess is divided into equal intervals of size Æ, while we use the onept of

disrete phase type distributions (DPH) to disretize the memory proess when it is

possible.
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M  = 1000
M  = 0101
M  = 0012

Fig. 2. SPN with one GEN transition



3 Disrete-time approah

In order to provide a better explanation on how to approximate the stohasti behav-

ior of ontinuous time SPNs, the SPN shown in Figure 2 is onsidered as an example.

This SPN models a system that alternates between two onditions: a fully operative

state (token in plae P

2

), where useful work an be produed, and a failure state

(token in plae P

1

), where the system does not perform any work. The EXP transi-

tions t

1

and t

2

desribe the hanges in the system state from operational to failed,

and vie versa. Transition t

3

models the duration of the work to be performed, and

it is assumed to be non-exponentially distributed. In this example the DPH [3℄ dis-

tribution, depited in Figure 3a, with generator P = fP

ij

g and initial probability

� = f1; 0; 0; : : :g is used to approximate the �ring time of t

3

. Aording to this DPH

struture, the �ring of transition t

3

an happen when the DPH is either in phase 2

or in phase 4, beause in those phases there are ars towards the absorbing phase 5

of DPH. We want to stress that the DPH of Figure 3 is used only as an example to

show how our approah works, but, in general, there are no restrition to the usable

DPHs to approximate the �ring time of a GEN transition. Similarly, �gure 3b depits

the DPH we have adopted to approximate the �ring of an exponentially distributed

transition, where � is the �ring rate and Æ is the approximation step.

In this paper we assume that the DPH distribution starts from the �rst phase with

probability 1. This assumption is not restritive sine any ayli DPH distribution

an be represented with an ayli DPH distribution of the same order starting from

the �rst phase with probability 1 [3℄, and a general DPH distribution of order n with

generator P and initial probability vetor � an be represented as P

0

and �

0

of order

n+ 1, where

P

0

=

0 �P

0 P

and �

0

= f1; 0; : : : ; 0g

α =11

b)

λδ

1−λδ
a)

21 3 423 34 5

332211

P45PPP

P P P P

P 25

12

44

1 2

Fig. 3. The DPH approximation of the �ring time of t

3

3.1 SPN with one generally distributed prd transition

Let us suppose that the GEN transition t

3

is assoiated with a prd memory poliy.

Using DPH distributions, the state of the expanded DTMC is de�ned as a pair of non

negative integers (i; u), where i is the index of a marking (M

i

2 RG(M

0

)), and u is

a phase of the DPH assoiated with the GEN transition. Thus, u is used to apture



the \memory" that is neessary to model the GEN transitions. u = � denotes that

the proess is in a state where the general transition is not inuential (i.e. it has no

memory). If 1 � u � �, the GEN transition is enabled. The pair (i; u) will be alled

desriptor and identi�es the state of the expanded DTMC.

Figure 4 gives the DTMC onstruted to approximate the stohasti behavior of

the Petri net depited in Figure 2. The hain is derived from the reahability graph.

All the states in the reahability graph are examined, and the DTMC is generated

depending on the transitions enabled in eah of them. Eah marking in the original

ontinuous proess produes a set of states of the expanded DTMC haraterized by

the same index i in the desriptor (i; u). All the states with the same marking index in

its desriptor onstitute a marostate. Of ourse, the expanded proess has as many

marostates as the number of markings of the ontinuous proess. In Figure 4 the

three marostates are outlined by ellipses with the name of the marking depited

nearby.
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Fig. 4. DTMC approximation of the SPN on Figure 2 with prd transition

In markingM

0

only one EXP transition is enabled, so that memory does not need

to be maintained, and the marostate has only one state, the state (0; �). From this

marostate only two ars an exit, relating to the �ring or not of the EXP transition.

Similar onsiderations an be done with referene to the markingM

2

. In this marking,

no transitions are enabled, thus no memory is needed.

Conversely, in marking M

1

an EXP and a GEN transition are enabled; then the

marking is expanded to desribe the evolution of the GEN transition using the DPH.

The marostate orresponding to this marking has the same number of states as the

number of phases of the DPH: the states with desriptor (1; u), with 1 � u � 4.

The absorbing state of DPH is not used to expand the marking into the marostate,

beause it represents the �ring of the GEN transition (therefore a hange into a new

marking). The states in the marostate desribe the evolution of the transition t

3

.

State (0; �) orresponds to the initial marking M

0

shown in Figure 2. Beause of

the presene of transition t

1

, in markingM

0

only two events an our in a time slot:

t

1

does not �re, t

1

�res. Thus the state (0; �) has two outgoing ars: one of them enters

the same state to model the event related to the fat that t

1

does not �re in Æ, the

other one produes a state hange sine it is related to the �ring of t

1

. The �ring of

t

1

produes a hange in marking M

1

, where the GEN transition t

3

beomes enabled.



Sine t

3

is a prd transition, when it beomes enabled its age memory starts from

zero. This means that the DTMC enters the �rst phase of the DPH, in the example

the state with desriptor (1; 1). Sine a step of the DTMC orresponds to a time slot

of length Æ, the one step probabilities of the two outgoing ars model the �ring or

not of the enabled EXP transition in an interval of length Æ. Using the �rst order

approximation for the exponential funtion it is easy to realize that: p

(0;�)!(1;1)

=

Pft

1

�res j(0; �))g = Æ �

1

and p

(0;�)!(0;�)

= Pft

1

does not �re j(0; �))g = 1 � Æ �

1

,

where �

1

is the rate of the EXP transition t

1

.

As we have already said, the marostate with states (1; u), with 1 � u � 4,

orresponds to the marking M

1

. The marking proess remains in suh marking till

one of the two transitions t

2

or t

3

�res. If both of them do not �re, the marking does

not hange. This means that the DTMC stays into the marostate, and only passages

between two phases of the DPH are possible. The one step probability must take into

aount that the EXP transition does not �re, thus the probability between a state

with desriptor (1; u) to one with desriptor (1; v) is: p

(1;u)!(1;v)

= P

uv

(1� Æ�

2

)

The outgoing ars from the marostate are due to some �ring: when t

2

�res, the

DTMC goes to a state with desriptor (0; �), beause this �ring auses the marking

proess to go to the marking M

0

; whereas the �ring of t

3

is desribed from the

ars towards the absorbing phase of the DPH, so that two ars from states with

desriptors (1; 2) and (1; 4) towards the state with desriptor (2; �) are used. The one

step probability is easily omputed with referene to the �ring events and to the DPH

struture. The only thing to note is that in a time slot Æ both transitions t

2

and t

3

an

�re, then the simultaneous �ring event has to be onsidered. In the ase when both

transitions �re in the same time slot, we uniformly distribute the probability of �ring

between the two possible destination states with desriptor (1; �) and (3; �). This is

where the fators P

25

Æ

�

2

2

and P

45

Æ

�

2

2

ome from. This problem will be extensively

disussed in Setion 4.

3.2 SPN with one generally distributed prs transition

If the GEN transition is assoiated with a prs poliy, the DTMC struture has to be

organized in order to keep trak of the amount of time the prs transition spent in an

enabled ondition before being preempted. This is beause the transition has to restart

with the same age memory value one it beomes enabled again. For this purpose, a

di�erent expanded DTMC is needed. Figure 5 shows the DTMC that approximates

the stohasti behavior of the SPN depited in Figure 2 when t

3

has a prs memory

poliy.

The only di�erene with regard to the prd ase is the marostate related to the

marking M

0

. With a prs poliy, four states with desriptors (0; u), with 1 � u � 4,

are added to the marostate. The purpose of these desriptors is remembering the

value of the age memory of transition t

3

when it is disabled by the �ring of the EXP

transition t

2

.

Thus, from eah state with desriptor (1; u), with 1 � u � 4, the DTMC an transit

either to the state with desriptor (0; u) (with one step probability p

(1;u)!(0;u)

=

P

uu

Æ�

2

) or to the state with desriptor (0; u+ 1), where 1 � u � 3 (with probability

p

(1;u)!(0;u+1)

= P

u(u+1)

Æ�

2

).

Of ourse, transition t

3

annot �re from any of the states orresponding to marking

M

0

, as it is not enabled in suh marking. >From eah of these states it is possible
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Fig. 5. DTMC approximation of the SPN with prs transition

either to exit with probability p

(0;u)!(1;u)

= Æ�

1

, with u = 1; 2; 3; 4, when transition

t

2

�res, or to remain in the same state with probability p

(0;u)!(0;u)

= 1 � Æ�

1

, with

u = 1; 2; 3; 4, when t

2

does not �re in a time slot Æ.

The same onsiderations made with regard to the �ring of t

3

with a prd poliy are

valid in this ase.

3.3 SPN with one generally distributed pri transition

If a pri poliy is assumed for the GEN transition t

3

, an interrupted job must be

repeated with an idential work requirement. To apture the stohasti behavior of

this ase, a di�erent expanded DTMC is onstruted.

To model a transition t

k

with an assoiated pri preemption poliy, the following

quantities are omputed Q

k

i

= F

k

(iÆ) � F

k

((i � 1)Æ). Q

k

i

derives from the �ring

time distribution F

k

(t) of transition t

k

, and approximates the �ring probability of

transition t

k

in the i-th Æ interval. For making the model solvable in pratie, the

�ring time distribution of a pri transition is supposed to have �nite support, in order

to avoid the omputation of an in�nite number of nonzero Q

k

i

values, and to onstrut

an approximate disrete proess with in�nite state spae. Let us denote the number

of nonzero Q

k

i

quantities with q

k

; it depends on Æ, and its value is q

k

=

d

k

Æ

, where d

k

is the length of the support of the �ring time probability distribution funtion F

k

(t).

In ase of in�nite support, a trunation of F

k

(t) may be used.

The stohasti behavior of an enabled pri type transition is desribed by two

ontinuous variables: the atual sample of the �ring time and the remaining �ring

time, or alternatively, the atual sample of the �ring time and the amount of time

during whih the transition has been enabled. In the proposed expansion method, the

desriptor (i; u; w) with u � w is used in order to desribe the state of the proess,

where i indiates the marking, u indiates the duration of time while the transition

is enabled (measured in integer numbers of time slots Æ), and w is the sampled value

(measured in integer numbers of time slots Æ). The desriptor (i; 0; w) indiates that

the pri transition is disabled but it has not �red, so that the sampled �ring time w

is maintained; after beoming enabled again, the proess enters state (i; 1; w). The



desriptor (i; �; �) is used for states where the proess has no memory. In other words,

the marking itself ompletely determines the state of the proess.

The evolution of the GEN transition t

k

with pri memory poliy in isolation an

be desribed by q

k

olumns. The w-th olumn onsists of w states with desriptors

(i; u; w), where 1 � u � w. Realling that w is the sampled �ring time, when the

disrete proess enters a state with desriptor (1; 1; w), w slots of time have to pass

before the �ring. This is exatly the time spent to transit among the states of the

olumn.

Figure 6 shows the DTMC that approximates the behavior of the SPN shown in

Figure 2. In this ase, the marostate orresponding to the marking M

1

onsists of

the states approximating the GEN transition t

3

, as desribed before. From the state

with desriptor (0; �; �), the DTMC enters the marostate orresponding to marking

M

1

, and spei�ally the olumn seleted aording to the probability Q

w

. Sine this

happens if the EXP transition t

1

�res in a time slot, the one step probability is:

p

(0;�;�)!(1;1;w)

= Q

w

Æ�

1

.

The marostate referred to the marking M

0

has q states with desriptor (0; 0; w)

reahed by the DTMC when the GEN transition is disabled by the �ring of the

oniting transition t

2

. These states are used to remember the orret sampled �ring

value, so when the GEN transition is enabled again the orret olumn is reahed. The

one step probabilities between two states in this marostate are omputed aording

to the �ring events related to the EXP transition t

2

, also enabled in marking M

1

, as

in the other ases.

The GEN transition t

3

�res when u = w in the desriptor. When this happens,

the DTMC transits in the state with desriptor (2; �; �).

4 General solution

In the last three subsetions we have desribed a method to build a DTMC to ap-

proximate the stohasti behavior of Petri Nets ontaining only one GEN transition.

Using a similar approah, in this setion we show how to derive the underlying DTMC

for SPNs with more than one GEN transitions simultaneously enabled. A similar idea

an be followed to deal with the ase of more EXP transitions simultaneously enabled

in the same time slot Æ. The following notation has to be introdued:

{ N

D

, N

S

and N

I

is the number of prd, prs and pri transitions in the SPN, respe-

tively;

{ A

D

(i), A

S

(i) and A

I

(i) are the set of enabled prd, prs, pri GEN transitions in

marking M

i

, respetively;

{ P

k

i;j

is the probability of moving from phase i to phase j in the DPH struture of

the transition t

k

; it desribes how a prd or prs GEN transition hanges its phase;

{ Q

k

i

is the approximated probability that the pri GEN transition t

k

�res in the

i-th Æ interval;

{ L

k

is the number of phases in the DPH struture of the prd or prs transition t

k

.

As already disussed, we need one variable to handle transitions with prd and

prs poliy (to store the urrent phase of the expanded DTMC), and two variables

to handle transitions with pri poliy (one to store the age of the transition, and the

other to store the sampled value of the �ring time).
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Fig. 6. DTMC approximation of the SPN with pri transition

When a pri transition gets enabled, the assoiated random variable is sampled and

the age variable is set to 1

2

. If the pri transition gets preempted in the next state,

the age variable is reset to 0 and the assoiated sampled value remains the same.

Thus a generi state of the DTMC will be Z

r

= (j;D

r

; S

r

; I

r

; X

r

), where

{ j is the index of marking M

j

of the SPN;

{ D

r

is a vetor of length jjT jj, the number of the transitions in the SPN, storing

the phases in whih a prd transition is allowed to be; in partiular, its k-th element

(D

r

k

) is the phase of transition t

k

when the DTMC is in the state Z

r

; the sign �

in the k-th position indiates that the prd GEN transition t

k

has no memory (it

is not enabled).

{ S

r

is the same as D

r

but for prs GEN transitions; S

r

k

= � means that the prs

transition t

k

is not ative, thus it has no memory;

{ I

r

is a vetor of length jjT jj. The k-th element of I

r

(I

r

k

) is the age of the pri

GEN transition t

k

when the DTMC is in the state Z

r

; similarly to the ase of prs

transitions, I

r

k

= � indiates that transition t

k

is not ative;

{ X

r

is a vetor whose k-th element (X

r

k

) is the sampled value of the pri GEN

transition t

k

when the DTMC is in the state Z

r

.

2

Note that as time inreases by Æ, at step i the total elapsed time is i � Æ. This explains

why only the index indiating the time interval has to be reorded.



Given a state Z

r

= (i;D

r

;S

r

; I

r

;X

r

) of the DTMC, we onsider �rst the ase

when none of the enabled transitions �res in a time slot Æ, and then we show the more

omplex ase when some �rings our.

4.1 Initial states and probability vetor

When the algorithm starts to generate the approximated disrete proess, a set of

initial states are reated together with an initial probability vetor. The number of

initial states depends on the transitions enabled in the initial markingM

0

. The prd and

prs transitions are onsidered without memory when the proess starts, thus, using

the assumption that the DPH distribution starts from the �rst phase, the memory

variables assoiated to these transitions are desribed by the following equations:

D

0

k

=

�

1 t

k

2 A

D

(0)

� otherwise

; S

0

k

=

�

1 t

k

2 A

D

(0)

� otherwise

(1)

Instead, if pri transitions are enabled in the initial markingM

0

, a set of states has

to be reated to remember the di�erent levels of sampled values Q

k

i

, with t

k

2 A

I

(0).

To explain how to build the initial states, a new notation has to be introdued. Let

q

k

be the maximum value of X

r

k

; q

k

is the number of di�erent possible values, Q

k

i

,

for the �ring probability of t

k

(if the pri transition t

k

is not enabled in the marking

M

0

, then q

k

= 0). The number of initially built states is s =

Q

t

k

2A

I

(0)

q

k

, and eah

of them orresponds to a di�erent ombination of the possible values assumed by X

k

.

To formally onstrut the desriptor, we de�ne a funtion that assoiates eah

possible state with an index starting from the values assumed by the omponents of

X. Let k

l

be the index of the l-th pri transition enabled in M

0

(t

k

l

2 A

I

(0)). With

this formalism the index is r =

P

jjA

I

(0)jj�1

l=0

(X

k

l

� 1) l

Vie versa given a value of index r, the ombination that generated it an be

found. We denote this funtion v(r; l).

With these de�nitions, it is possible to desribe all the omponents of the state

desriptors generated at the beginning. The di�erent omponents of states Z

r

=

(i;D

r

;S

r

; I

r

;X

r

); 8r = 0; � � � ; s � 1 are the vetors D

r

= D

0

, and S

r

= S

0

,

whereas I

r

and X

r

assume the following value:

I

r

k

=

�

1 t

k

2 A

I

(0)

� otherwise

; X

r

k

=

�

v(r; l(k)) t

k

2 A

I

(0)

� otherwise

(2)

where l(k) is the position of transition t

k

among the enabled pri transitions in M

0

.

The generi element of the initial probability vetor is:

�

r

(0) =

Y

t

k

2A

I

(0)

Q

k

v(r;l(k))

; 8r = 0; � � � ; s (3)

4.2 No �ring

In this setion we desribe how to generate a new state of the expanded disrete

proess starting from a given state of the expanded proess itself, in the ourrene

of no �ring of the enabled transitions.



Let Z

r

= (i;D

r

;S

r

; I

r

;X

r

) be a desriptor of state of the disrete proess. Under

the assumption that no transition �res in a time slot Æ in M

i

, the marking of the

PN remains the same, and the DPH of the enabled transitions hange their phase

aordingly to their desription. This implies that the prd and prs enabled transitions

are not allowed to enter their absorbing state (phase hange to the absorbing phase

means that the transition �res), and all the enabled pri transitions have an age value

less than the �ring value originally sampled (I

r

t

< X

r

t

). The phase of the disabled prd

transitions is indiated as � (they have no memory), while a phase indiator exists for

the prs and pri transitions.

Let Z

r

= (i;D

r

;S

r

; I

r

;X

r

) be the desriptor of the atual onsidered state, and

Z

r

0

= (i;D

r

0

;S

r

0

; I

r

0

;X

r

0

) the desriptor of the state we want to generate. Note

that the �rst omponent of the desriptor Z

r

0

is the same of Z

r

beause no �ring is

supposed and the marking does not hange. The di�erent omponents of the desriptor

Z

r

0

= (i;D

r

0

;S

r

0

; I

r

0

;X

r

0

) are built as follows:

D

r

0

k

=

�

a; 1 � a � L

k

t

k

2 A

D

(i)

� t

k

62 A

D

(i)

(4)

where a = next(t

k

; D

r

), being next(t; p) a funtion that omputes the index of a

phase of the DPH assoiated to transition t reahable from the phase with index p.

Equation (4) means that a new phase (1 � a � L

k

) of the prd transitions enabled

in markingM

i

(t

k

2 A

D

(i)) is onsidered in the new state Z

r

0

. Otherwise (t

k

62 A

D

(i))

the memory is reset (D

r

0

k

= �).

S

r

0

k

=

�

b; 1 � b � L

k

t

k

2 A

S

(i)

S

r

k

t

k

62 A

S

(i)

(5)

Equation (5) is very similar to the (4), but if in markingM

i

a prs transition is disabled

(t

k

62 A

S

(i)), the same value of the memory is maintained (S

r

0

k

= S

r

k

).

The vetors for pri transitions are omputed as follows:

I

r

0

k

=

�

I

r

k

+ 1 t

k

2 A

I

(i)

I

r

k

t

k

62 A

I

(i)

; X

r

0

k

= X

r

k

: (6)

These last two equations desribe how to manage the two variables for the pri transi-

tions: the �rst one updates the age memory either inrementing it, if the transition is

enabled in markingM

i

, or maintaining the same value if the transition is not enabled

(note that I

r

k

= � if transition has not memory, and I

r

k

= 0 if it has memory but it is

not enabled); the seond equation says that the residual time for the transition �ring

is the same with respet to that in state Z

r

, sine it is not enabled.

The state transition probability from Z

r

to Z

r

0

in a time slot is omputed as

the produt of the probability that none of the EXP transitions will �re times the

probabilities that the prd and prs GEN transitions hange their phase. This transition

probability an be expressed as follows:

P

Z

r

!Z

r

0

=

Y

k2A

D

(i)

B

k

D

r

k

;D

r

0

k

| {z }

en. prd tr.-s

Y

l2A

S

(i)

B

l

S

r

l

;S

r

0

l

| {z }

en. prs tr.-s

; (7)



Note that EXP transitions are represented with the DPH depited Figure 3b, and

they are onsidered by the same standard as GEN transitions. Their presene is taken

into aount in the equation (7) by the �rst term (

Y

k2A

D

(i)

B

k

D

r

k

;D

r

0

k

) of that equation.

Below we will not make speial onsiderations on the EXP transitions and we will

manage them by using the assoiated DPH.

4.3 Firing of one or more transitions

In this setion we deal with the problem of one or more transitions �ring in a time

slot Æ. In order to address this goal, we deide �rst to identify the main steps and

then to proeed with their formal treatment. Assuming that the expanded DTMC is

in state Z

r

, we want to identify all the reahable states Z

r

0

and all the transitions

probabilities assoiated to the onneting ars.

Given a state Z

r

= (i;D

r

;S

r

; I

r

;X

r

), only a subset of the enabled transitions is

allowed to �re in a time slot Æ. Transition t

k

2 A

D

(i) (an enabled prd transition) an

�re if P

k

D

r

k

;L

k

> 0, i.e. if the probability of immediately reahing the absorbing state

from phase D

r

k

is positive; similarly, a transition t

k

2 A

S

(i) an �re if P

k

S

r

k

;L

k

> 0. A

transition t

k

2 A

I

(i) is allowed to �re if I

r

k

= X

r

k

, i.e. if its age is equal to the sampled

�ring time. We use these onditions to de�ne the following set:

F

r

= ft

k

j(t

k

2 A

D

(i) ^ P

D

r

k

;L

k

> 0)_

(t

k

2 A

S

(i) ^ P

S

r

k

;L

k

> 0)_

(t

k

2 A

I

(i) ^ I

r

k

= X

r

k

)g

(8)

F

r

is the set of all the transitions that are allowed to �re when the proess is in

state Z

r

. The elements of this set, whose ardinality is jjF

r

jj, an be grouped into

2

jjF

r

jj

� 1 di�erent subsets, orresponding to all the possible ombinations of the

transitions allowed to �re in markingM

i

. A generi subset of the F

r

will be indiated

as F

r

p

, with p = 1; � � � ; 2

jjF

r

jj

� 1.

Considering the generi state Z

r

0

= (j;D

r

0

;S

r

0

; I

r

0

;X

r

0

) reahable from Z

r

when

the transitions belonging to F

r

p

�re, the values of the omponents of its desriptor are

omputed as follows:

D

r

0

k

=

8

<

:

1 t

k

2 (A

D

(j) \ F

r

p

) [ (A

D

(j)nA

D

(i))

a; 1 � a < L

k

t

k

2 (A

D

(i)nF

r

p

)

� otherwise

(9)

where, as in the equation (4), a = next(t

k

; D

r

0

k

). The �rst term in the equation (9)

sets the phase of transition t

k

to 1 if t

k

�res in marking M

i

and is re-enabled in

marking M

j

(i.e. t

k

2 A

D

(j) \ F

r

p

), or it is not enabled in marking M

i

and beomes

enabled in marking M

j

(t

k

2 A

D

(j)nA

D

(i)); the seond term updates the new phase

of the transition t

k

when it is not �red in marking M

i

(t

k

2 A

D

(i)nF

r

p

);

S

r

0

k

=

8

>

>

<

>

>

:

� t

k

2 (F

r

p

nA

S

(j))

1 t

k

2 A

S

(j) \ F

r

p

b; 1 � b < L

k

t

k

2 (A

S

(i) \ A

S

(j))nF

r

p

S

r

k

otherwise

(10)



where b = next(t

k

; S

r

k

); in equation (10) the set F

r

p

nA

S

(j) identi�es the transitions

�red in marking M

i

and not enabled again in marking M

j

, so they do not need to

maintain their memory (S

r

0

k

= �); when transition t

k

beomes enabled (t

k

2 A

S

(j) \

F

r

p

), its phase is set to 1; when the transition is enabled in both the markings M

i

and M

j

without �ring (t

k

2 A

S

(i) \A

S

(j))nF

r

p

) its memory is updated by hanging

the phase of the assoiated DPH. In all the other ases, the same phase is maintained

(S

r

0

k

= S

r

k

) beause the transition is not enabled, but it is still ative;

I

r

0

k

=

8

>

>

<

>

>

:

� t

k

2 (F

r

p

nA

I

(j))

1 t

k

2 A

I

(j) \ F

r

p

I

r

k

+ 1 t

k

2 (A

I

(i) \ A

I

(j))nF

r

p

I

r

k

otherwise

(11)

Equation (11) desribes the updating of the memory assoiated with a pri transition

t

k

. We reall that the vetor I

r

0

stores the amount of time sine when the transitions

are enabled (measured in time slots Æ). Thus, the k-th so one omponent is inreased

by a unit (I

r

0

k

= I

r

k

+1) when the orresponding transition t

k

remains enabled (A

I

(i)\

A

I

(j))nF

r

p

). The other terms of equation (11) have the same meaning of those of the

equation (10);

X

r

0

k

=

8

<

:

� t

k

2 (WnA

I

(j))

x t

k

2 (A

I

(j) \W ) _ (t

k

2 A

I

(j) ^X

r

k

= �)

X

r

k

otherwise

(12)

The equation (12) is introdued for onsidering the sampled �ring values of the pri

transitions (the q

k

values introdued in setion 4.1); also in this ase the sampled

�ring time is measured in time slots. The seond term is referred to the enabling of

the pri transition t

k

either when it �res in marking M

i

and it beomes enabled again

(t

k

2 A

I

(j) \ F

r

p

), or it beomes enabled in marking M

j

when it has no memory

((t

k

2 A

I

(j)) ^ (X

r

k

= �)); when these onditions are true, the new desriptor must

store one of the q

k

possible sampled values from the df F

k

(�). The other two terms

are more trivial: the �rst term of the equation 12 is used when the proess does not

need to maintain any memory on the evolution of the transition t

k

beause it has

already �red and is not enabled again (t

k

2 F

r

p

nA

I

(j)); the third one is used to store

the memory of the proess when t

k

is not enabled, but it is still ative.

Due to the time disretization approah we have adopted, the df assoiated to

eah timed transition will have a time disontinuity at the end of eah time slot Æ.

Thus, if in marking M

i

several transitions are enabled, there is a non null probability

that they simultaneously �re. The probability that the transitions belonging to F

r

p

simultaneously �re an be expressed as follows:

f

r

p

= Pfall transitions inF

r

p

�re j Z

r

g =

Y

k2(F

r

p

\A

D

(i))

P

k

D

r

k

;L

k

Y

l2(F

r

p

\A

S

(i))

P

l

S

r

k

;L

k

(13)

Equation (13) does not inlude any referene to pri transitions Beause, if pri

�re, their ontribution to f

r

p

is equal to 1. This probability will ause the swithing

from the generi marking M

i

(where the proess is now) to a marking M

j

. Sine the

transitions in F

r

p

may be in onit, the markingM

j

is reahed with a probabilityW

ij



(the method to ompute the reahed marking M

j

and the probability W

ij

is deeply

analyzed in [18℄).

The probability assoiated with the ar from Z

r

to Z

r

0

is evaluated as:
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r
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(14)

where eah term has the following meaning:

{ p

ij

= f

r

p

�W

ij

is the probability that the proess arrives in marking M

j

, starting

from marking M

i

, due to the �ring of the transitions belonging to F

r

p

in a time

slot of size Æ;

{ the seond (third) term takes into aount the hanging of phase of the enabled

prd (prs) transitions;

{ the last term is used for onsidering the ase that some pri transitions beome en-

abled, thus a new value has to be sampled aording to the assoiated distribution

funtion.

5 The algorithm

The algorithm is based on a disretization of the ontinuous random variables for

approximating the ontinuous proess. The phase type distributions, used in ase of

prd and prs GEN transitions, are given by the users, whereas the probabilities Q

k

i

are

diretly omputed from the df assoiated with the pri transition t

k

.

The main steps of the implemented solution method are the following:

1. generation of the reahability graph (with tangible and vanishing states) and

redution of the reahability graph to tangible states only;

2. generation and analysis of the expanded DTMC;

3. evaluation of the �nal measures at the net level, based on the solution of the

expanded DTMC.

Aording to the results shown in the previous setions, given the reahability

graph and the disrete phase type distributions assoiated to the GEN transitions,

the elementary step 2 of the approximation method is as follows:

{ Initialization Step

Initialization onsists of reating the set of states originated in the initial marking

M

0

. Equations (1), and (2) are used to ompute these states; equation (3) is used

to ompute the initial state probability vetor on the generated states. Note that

if no pri transition is enabled in M

0

, only one state is built in this step of the

algorithm. The reated states are put in a list of states to expand (list expand).

{ Iteration Step

1. a state Z

r

to be expanded is extrated from the list expand list;

2. new expanded states Z

r

0

are omputed in ase of no �ring events using the

equations (4), (5), and (6).

3. using equation (7) the transition state probabilities from Z

r

to Z

r

0

are om-

puted and stored;



4. all the states Z

r

0

, not previously reated, are stored in list expand;

5. sets F

r

p

, with p = 1; � � � ; 2

jjF

r

jj

�1, are omputed; aording to these sets, other

reahable markingsM

j

are omputed, and expanded states Z

r

0

are built using

equations (9), (10), (11), and (12) (these states are the states assoiated to

the �ring of some transitions);

6. using equation (14) the transition probabilities from Z

r

to Z

r

0

are omputed

and stored;

7. all states Z

r

0

, not previously reated, are stored in list expand; the state Z

r

is stored in another list named expanded;

8. if the list list expand is not empty, the algorithm proeeds with step 1,

otherwise it terminates.

Similarly to [9℄, the system behavior is approximated by a Disrete Time Markov

Chain (DTMC) over an expanded state spae determined by the ross produt of the

system states (the markings of the Petri net) and the disretized values of the asso-

iated age variables. This approah is also losely related with the DPH expansion

method proposed by Cumani in [11℄. The main di�erene is that, in this ase, the sys-

tem behavior is approximated by an expanded DTMC while in the PH approximation

ase an expanded CTMC is obtained. The present approah inherits some similarities

also from the supplementary variable approah [14℄, sine the supplementary (age)

variables are onstrained to assume values in a disretized set.

6 Numerial results

For testing the desribed method, two kinds of experiments were done:

1. in the �rst experiment a preemptive M/G/1/2/2 queue model, whose ustomer-

s belong to di�erent user lasses, was solved. This Petri net model belongs to

the MRSPN lass and is analytially solvable; the results (transient analysis of

state probabilities) were ompared with the solution obtained by solving the same

example using the Laplae transform method [5, 4℄;

2. the seond experiment involves the preemptive M/G/1/2/2 queue model again;

this time all the transitions in the model have a non exponentially distributed

�ring time, but one, and the model annot be solved with any of the available

analytial tehniques. Thus the obtained results were validated by simulation.

The purpose of these experiments is to show that the results obtained by applying

the method desribed in the previous setion an be ompared with those produed

by other analytial solution methods, when available. Moreover, more general lasses

of models, not analytially solvable by others tehniques, an be studied. The tool

WebSPN

3

[15℄ was used to solve the models under exam.

6.1 Experiment 1 - Preemptive M/G/1/2/2 queue with di�erent

ustomers

The SPN of Figure 7a models an M/G/1/2/2 queue in whih the jobs submitted by

ustomer 2 have higher priority and preempt the jobs submitted by ustomer 1. The

3

The tool WebSPN is aessible through Internet at the address

http://sun195.iit.unit.it/webspn
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Fig. 7. Preemptive M/G/1/2/2 queue with two lasses of ustomers

assoiated reahability graph is shown in Figure 7b. Plae P

1

(P

3

) represents ustomer

1 (2) thinking, while plae P

2

(P

4

) indiates job 1 (2) under servie. Transitions t

1

and t

3

are EXP and model the submission of jobs of type 1 or 2, respetively. t

2

is a GEN transition and represents the ompletion of servie of the lower priority

job. Transition t

4

models the servie time of a higher priority job. Its �ring time

is exponentially distributed. The inhibitor ar from P

4

to t

2

models the desribed

preemption mehanism: as soon as a type 2 job joins the queue, the type 1 job under

servie (if any) is interrupted.

The server an adopt all kinds of preemption poliies. Assuming a prd and prs

memory poliy, the model was solved with the following numerial values:

{ �ring rate of the EXP transitions t

1

and t

3

: �

1

= �

3

= 0:5;

{ the servie times of both the lower and higher priority jobs (represented by

t

2

and t

4

) are deterministially distributed with �ring time 1:0;

{ time slot: Æ = 0:05.

The results obtained solving the model either with inverse Laplae transform and

disrete expansion tehnique are depited in Figure 8 a) and b) respetively. The

symbols �, �, �, and 2 are used to plot the results obtained with Laplae transform

method, whereas the ontinuous lines refer to the results obtained with the disrete

expansion approah.

From these graphs it is evident that the method works well and the results are

almost oinident with those omputed with the inverse Laplae method, that is

extensively disussed in literature.

The model of Figure 7 was solved also assuming a pri poliy assoiated to the

transition t

2

. The deterministi df was not used with pri poliy beause the behavior

of the preempted transition would be the same as in the prd ase, sine every time the

transition is preempted it loses its memory and remembers the sampled �ring time.

But the possible �ring time sampled by a deterministi df is always the same, thus

remembering the �ring time has no e�et. In this ase, the �ring time was uniformly

distributed between 0:5 and 1:0. The obtained results are depited in Figure 8 ).

As in the previous ases (the prd and the prs ases) also this experiment produed
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Fig. 8. State probabilities of the Petri net of Figure 7 when t

2

has a prd (a), prs (b) and pri

() memory poliy

the same results of those obtained with the inverse Laplae method. The omparison

with the expansion method using CPH is not possible due to the fat that the pri

preemption poliy annot be modeled using the CPH approximation.

6.2 Experiment 2 - Preemptive M/G/1/2/2 queue with di�erent

ustomers

The seond experiment was done by assigning deterministially distributed �ring time

to transition t

3

. In this ase, in the stateM

1

there are two transitions (t

2

and t

3

) with

generally distributed �ring time, and this model annot be solved using neither the

Markov regenerative theory nor the supplementary variable method. The results are

thus ompared with those obtained from a simulator.

The following numerial value are used:

{ �ring rate of EXP transition t

1

: �

1

= 1:0;

{ �ring time of deterministi transition t

3

: � = 0:5;

{ servie time of lower (transition t

2

) and higher (transition t

4

) priority job: uni-

formly distributed between 0.5 and 1.0.

Figure 9 shows the results obtained. The results of the simulation are depited

as two dashed lines, identifying the interval of on�dene (95%) of the omputed

measure (the probability that the proess is in state M

0

). The ontinuous lines are

the results obtained with the disrete expansion approah. Also in this ase the three

kind of poliy are adopted for transition t

2

, and a Æ = 0:05 was used to disretize the



model. As it an be noted, the results of disretization are always inside the interval

of on�dene omputed by simulation, showing that the disrete expansion produes

a orret result.
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Fig. 9. State probabilities of the Petri net of Figure 7 when t

2

has a prd (a), prs (b) and pri

() memory poliy.

7 Conlusions

A numerial approah for the solution of NMSPNs has been proposed. It is based

on a disrete time approximation of the stohasti behaviour of the marking proess,

whih results in the possibility of analyzing a wider lass of SPN models with prd,

prs and pri onurrently enabled generally distributed transitions. In ase of prd, prs

poliies distributions with in�nite support are onsidered, for pri poliy the �ring

distribution is limited to �nite support distributions. We obtained that a pri type

transition, whih an be desribed, in transform domain, by the inlusion of a single

transform variable [4℄, requires the inlusion of 2 memory variables in time domain.

This explains why the representation of pri transitions is quite expensive.

We disussed the way the time-disretization algorithm works both in the ase of

only one general transition in the model and also when an arbitrary number of GEN

transitions are simultaneously ative.

The desribed algorithm has been implemented and embedded in the WebSPN

tool, for spei�ation and automati solution of non-Markovian SPN. Due to the use

of the Java programming language, WebSPN ([15℄) is easily aessible from any node

onneted with the Internet as long as it possesses a Java-enabled Web browser.
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