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Abstra
t. In order to extend their appli
ability to more 
omplex situations,

in this paper we present a new approa
h for the analysis of non-Markovian

Sto
hasti
 Petri Net (NMSPN) models, whi
h is based on a dis
rete time ap-

proximation of the sto
hasti
 behavior of the marking pro
ess. The proposed

approa
h, whi
h resulted in a new modeling tool for the analysis of NMSPNs


alled WebSPN, allows to analyze a wider 
lass of PN models with prd, prs

and pri 
on
urrently enabled generally distributed transitions. This implies

the possibility of dealing with very 
omplex systems with arbitrarily distribut-

ed events with very 
omplex interrelations among ea
h other. The adopted

te
hnique is des
ribed, an appli
ation example is solved and the results are


arefully analyzed in order to demonstrate the validity of the proposed ap-

proa
h.

Key Words: Non-Markovian Sto
hasti
 Petri Nets, Dis
rete time Markov


hain (DTMC), expansion te
hniques, performan
e and dependability analysis

1 Introdu
tion

Petri nets are 
ommonly viewed as a valid tool for the qualitative and quantitative

study of 
omputer systems [2℄. Over the years, many sto
hasti
 extensions to the ba-

si
 Petri net model have been proposed. Dealing with non-exponentially distributed

events is an extension that widened the �eld of appli
ability of this modeling ap-

proa
h to real situations. There are a great number of real 
ir
umstan
es in whi
h

deterministi
 or generally distributed event times o

ur. Events su
h as timeouts in a

proto
ol, servi
e times in a manufa
turing system and memory a

ess or instru
tion

exe
ution in a low-level hardware or software have durations whi
h are 
onstant or

have a very low 
oeÆ
ient of variation. Choi et al. have shown that the marking pro-


ess underlying a Sto
hasti
 Petri Net (SPN), where at most one generally distributed

transition is enabled in ea
h marking, belongs to the 
lass of Markov Regenerative

Pro
esses (MRGPs) [7℄. Following the line opened in [7℄, di�erent approa
hes have

been proposed to deal with non-Markovian systems [8, 14, 16℄.

All the above literature on Markov Regenerative SPNs (MRSPNs) impli
itly as-

sumed an enabling memory poli
y (as it is de�ned in [1℄). The transient analysis of a


lass of NMSPNs with age memory poli
y ([1℄) was provided in [5℄, and a preemption

me
hanism, di�erent than the ones 
onsidered in [1℄, was introdu
ed and analyzed

in [4℄. Following the 
ommon terminology used when dealing with queuing systems,



the sto
hasti
 behavior of the transitions of a SPN model has been 
lassi�ed as pre-

emptive repeat di�erent (prd), preemptive resume (prs) and preemptive repeat identi
al

(pri), respe
tively. These sto
hasti
 extensions have in
reased the des
riptive power

of SPNs, as well as the 
omputational e�ort required for their solution.

Many SPN modeling tools have re
ently been proposed or developed (e.g. ES-

P [11℄, GreatSPN [6℄, SPNP [9℄, DSPNExpress [16℄, TimeNet [13℄, UltraSAN [10℄).

Some of the above tools have also implemented the possibility of in
luding some

non-Markovian features thus extending the range of appli
ability of PNs. Their main

limitations regard the kind and number of generally distributed �ring time (GEN)

transitions and their asso
iated preemption poli
y. A very limited number of simulta-

neously enabled GEN transitions is allowed. And usually it redu
es to only one. Fur-

ther, the preemptive repeat di�erent (prd) poli
y is the only adopted. The preemptive

resume (prs) and the re
ently proposed preemptive repeat identi
al (pri) poli
ies [4℄,

although very powerful, are basi
ally not yet implemented. The �rst restri
tion 
an be

relaxed by the analyti
al results available for the analysis of PN with non-overlapping

prs general transitions [5℄, and there is an a
tive resear
h to �nd the proper way to

analyze PN with 
on
urrently a
tive general transitions [16, 17℄.

A possible approa
h for the analysis of SPN models, with 
on
urrently a
tive

prs and prd general transitions, is through the 
ontinuous time Phase type (CPH)

approximation of generally distributed �ring times [11℄. With this te
hnique, the

marking pro
ess of the NMSPN is approximated by a 
ontinuous time Markov 
hain

with an expanded state spa
e [11℄.

In this paper, we dis
uss a modeling te
hnique for the analysis of NMSPNs that

relaxes some of the restri
tions present in 
urrently available SPN analysis pa
kages.

This approa
h is based on a dis
rete time approximation of the sto
hasti
 behavior

of the marking pro
ess, hen
e it 
an be 
onsidered as a dis
rete time version of the

phase type expansion te
hnique. A similar approa
h 
an be found in [9℄, where Dis-


rete Deterministi
 and Sto
hasti
 PNs (DDSPNs) are presented and ra
e poli
ies

equivalent to our prd and prs poli
ies are 
onsidered. The main di�eren
es with our

approa
h 
onsist in the intrinsi
 assumption of a dis
rete time model, the la
k of the

pri poli
y and the absen
e of a full implementation of the proposed algorithm. A new

modeling tool for the analysis of non-Markovian sto
hasti
 Petri nets, 
alled WebSP-

N [15℄ has been su

essfully implemented. The approa
h we propose o�ers some new

features whi
h result in the possibility to analyze a wider 
lass of NMSPN models.

The main advantages of this method 
onsist of the possibility to evaluate SPNs with

transitions of pri type with �nite �ring time, besides the more traditional prd and prs,

and to analyze models with 
on
urrently enabled generally distributed transitions of

any kind.

2 Introdu
ing Petri Nets and Preemption Poli
ies

A timed Petri net is a tuple PN=(P ; T ;G;A; I;O;H;M

0

) where: P is the set of

pla
es; T is the set of transitions; G is the set of random variables 


g

asso
iated to

transitions; A is the set of age variables a

g

asso
iate to transitions; I;O and H are
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Fig. 1. Petri net model of one server.

respe
tively the set of input, output and inhibitor fun
tions (I � P �T , O � T �P ,

H � P � T ), providing their multipli
ity; M

0

is the initial marking

1

.

The �ring of an enabled transition t

k

, in a given marking M

i

, generates another

marking M

j

. M

j

is said dire
tly rea
hable from M

i

(M

i

!

t

k

M

j

). Starting from

the initial marking M

0

, the transitive 
losure of ! generates the rea
hability graph

RG(M

0

) (the set of all rea
hable markings from M

0

).

A 
onsistent way to introdu
e memory into a SPN is provided in [1℄ and extended

in [5℄. Ea
h timed transition t

g

is assigned a general random �ring time 


g

with a


umulative distribution fun
tion G

g

(t). A 
lo
k, asso
iated to ea
h transition, 
ounts

the time in whi
h the transition has been enabled. An age variable a

g

asso
iated to

the timed transition t

g

keeps tra
k of the 
lo
k 
ount. A timed transition �res as soon

as the memory variable a

g

rea
hes the value of the �ring time 


g

.

A timed transition has to be 
hara
terized both in terms of the distribution fun
-

tion of the random �ring time and also of its behavior when a preemption o

urs.

Thus, a preemption poli
y is required to fully des
ribe the behavior of a timed tran-

sition. In this paper we prefer an informal approa
h to the de�nition of preemption

poli
ies through the example of Figure 1.

The Petri net on Figure 1 models a server with exponential arrivals (transition

t

1

) and general servi
e time (transition t

2

). Waiting 
ustomers are represented by

the tokens in pla
e P

1

. The server is randomly preempted by higher priority jobs

(transition t

3

) for an exponentially distributed amount of time (transition t

4

), as

shown by the inhibitor ar
 from pla
e P

3

to transition t

2

.

When a 
ustomer arrives to a server, a spe
i�
 servi
e requirement 


g

has to be


ompleted. The amount of 
omputation required is sampled from the distribution

fun
tion F

g

(t) of the servi
e time. The optimal 
ase is when the server is able to 
om-

plete the job before an interruption o

urs. However, the server may be interrupted

after pro
essing only a portion of the submitted job. In this 
ase the whole behavior

is strongly a�e
ted by the preemption poli
y and the whole performan
es will depend

on the strategy adopted to deal with the preempted job, as des
ribed in the following:

{ The server drops the 
ustomer it was dealing with before the interruption.

{ The server goes ba
k to the preempted 
ustomer who still maintains the original

work requirement 


g

.

1

A marking M

i

is a tuple, whose 
ardinality is jjPjj, re
ording the number of tokens in

ea
h pla
e.



{ The server also returns to the same 
ustomer who still has the same work require-

ment 


g

.

A

ording to [5℄ and [4℄, the previous poli
ies are referred to as preemptive repeat

di�erent (prd), preemptive resume (prs) and preemptive repeat identi
al (pri), respe
-

tively. Note that in [1℄ the authors indi
ated the prd and prs type poli
ies as enabling

and age type. The pri poli
y was introdu
ed for the �rst time in [4℄. The prd poli
y

is the only 
onsidered in the available tools modeling non-Markovian SPN [16, 13,

10℄. The ESP tool [11℄ allows to deal with prs poli
y through a 
ontinuous time PH

approximation. Re
ently German developed a tool with Mathemati
a pa
kage where

the prs poli
y is also implemented adopting the method of supplementary variable

[12℄.

From the previous dis
ussion it is 
lear that the main diÆ
ulty in analyzing s-

to
hasti
 Petri nets with general transitions is related to the fa
t that the underlying

dis
rete state marking pro
ess is no longer a CTMC, as its future evolution depends

on the past history. Below, we 
all general (GEN) transitions both the transition-

s with generally distributed �ring time (in
luding the deterministi
 ones) and the

exponentially distributed �ring time transitions of pri type. For a transition with ex-

ponentially distributed �ring time the prd and the prs poli
ies have the same e�e
t,

due to the memoryless property. We denote these transitions as EXP transitions. For

a transition with deterministi
 �ring time, the prd and the pri poli
ies have the same

e�e
t, sin
e a resampling of the �ring time results in the same �ring time sample ea
h

time.

A

ording to this memory 
on
ept, at any time the marking and the individual

memory asso
iated with the GEN transitions of a NMSPN only determine the future

sto
hasti
 behavior of the NMSPN. This means that the marking pro
ess together

with the memory pro
ess of the GEN transitions is a Markov pro
ess.

Below we make a distin
tion between enabled and a
tive transitions. In Fa
t, a

GEN transition may be a
tive (the age variable a

g

is between 0 for a prs transition

or the threshold value 


g

is already set up for a pri transition) but not enabled.

The main idea behind our proposed dis
rete time approa
h is to dis
retize the


ontinuous memory pro
ess and the time to obtain a Dis
rete time Markov 
hain

(DTMC) that approximates the sto
hasti
 behavior of the 
ompound Markov pro
ess.

The time a

ess is divided into equal intervals of size Æ, while we use the 
on
ept of

dis
rete phase type distributions (DPH) to dis
retize the memory pro
ess when it is

possible.

P1
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t1 t2

t3

M1

M2
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M  = 1000
M  = 0101
M  = 0012

Fig. 2. SPN with one GEN transition



3 Dis
rete-time approa
h

In order to provide a better explanation on how to approximate the sto
hasti
 behav-

ior of 
ontinuous time SPNs, the SPN shown in Figure 2 is 
onsidered as an example.

This SPN models a system that alternates between two 
onditions: a fully operative

state (token in pla
e P

2

), where useful work 
an be produ
ed, and a failure state

(token in pla
e P

1

), where the system does not perform any work. The EXP transi-

tions t

1

and t

2

des
ribe the 
hanges in the system state from operational to failed,

and vi
e versa. Transition t

3

models the duration of the work to be performed, and

it is assumed to be non-exponentially distributed. In this example the DPH [3℄ dis-

tribution, depi
ted in Figure 3a, with generator P = fP

ij

g and initial probability

� = f1; 0; 0; : : :g is used to approximate the �ring time of t

3

. A

ording to this DPH

stru
ture, the �ring of transition t

3


an happen when the DPH is either in phase 2

or in phase 4, be
ause in those phases there are ar
s towards the absorbing phase 5

of DPH. We want to stress that the DPH of Figure 3 is used only as an example to

show how our approa
h works, but, in general, there are no restri
tion to the usable

DPHs to approximate the �ring time of a GEN transition. Similarly, �gure 3b depi
ts

the DPH we have adopted to approximate the �ring of an exponentially distributed

transition, where � is the �ring rate and Æ is the approximation step.

In this paper we assume that the DPH distribution starts from the �rst phase with

probability 1. This assumption is not restri
tive sin
e any a
y
li
 DPH distribution


an be represented with an a
y
li
 DPH distribution of the same order starting from

the �rst phase with probability 1 [3℄, and a general DPH distribution of order n with

generator P and initial probability ve
tor � 
an be represented as P

0

and �

0

of order

n+ 1, where

P

0

=

0 �P

0 P

and �

0

= f1; 0; : : : ; 0g

α =11

b)

λδ

1−λδ
a)

21 3 423 34 5

332211

P45PPP

P P P P

P 25

12

44

1 2

Fig. 3. The DPH approximation of the �ring time of t

3

3.1 SPN with one generally distributed prd transition

Let us suppose that the GEN transition t

3

is asso
iated with a prd memory poli
y.

Using DPH distributions, the state of the expanded DTMC is de�ned as a pair of non

negative integers (i; u), where i is the index of a marking (M

i

2 RG(M

0

)), and u is

a phase of the DPH asso
iated with the GEN transition. Thus, u is used to 
apture



the \memory" that is ne
essary to model the GEN transitions. u = � denotes that

the pro
ess is in a state where the general transition is not in
uential (i.e. it has no

memory). If 1 � u � �, the GEN transition is enabled. The pair (i; u) will be 
alled

des
riptor and identi�es the state of the expanded DTMC.

Figure 4 gives the DTMC 
onstru
ted to approximate the sto
hasti
 behavior of

the Petri net depi
ted in Figure 2. The 
hain is derived from the rea
hability graph.

All the states in the rea
hability graph are examined, and the DTMC is generated

depending on the transitions enabled in ea
h of them. Ea
h marking in the original


ontinuous pro
ess produ
es a set of states of the expanded DTMC 
hara
terized by

the same index i in the des
riptor (i; u). All the states with the same marking index in

its des
riptor 
onstitute a ma
rostate. Of 
ourse, the expanded pro
ess has as many

ma
rostates as the number of markings of the 
ontinuous pro
ess. In Figure 4 the

three ma
rostates are outlined by ellipses with the name of the marking depi
ted

nearby.
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Fig. 4. DTMC approximation of the SPN on Figure 2 with prd transition

In markingM

0

only one EXP transition is enabled, so that memory does not need

to be maintained, and the ma
rostate has only one state, the state (0; �). From this

ma
rostate only two ar
s 
an exit, relating to the �ring or not of the EXP transition.

Similar 
onsiderations 
an be done with referen
e to the markingM

2

. In this marking,

no transitions are enabled, thus no memory is needed.

Conversely, in marking M

1

an EXP and a GEN transition are enabled; then the

marking is expanded to des
ribe the evolution of the GEN transition using the DPH.

The ma
rostate 
orresponding to this marking has the same number of states as the

number of phases of the DPH: the states with des
riptor (1; u), with 1 � u � 4.

The absorbing state of DPH is not used to expand the marking into the ma
rostate,

be
ause it represents the �ring of the GEN transition (therefore a 
hange into a new

marking). The states in the ma
rostate des
ribe the evolution of the transition t

3

.

State (0; �) 
orresponds to the initial marking M

0

shown in Figure 2. Be
ause of

the presen
e of transition t

1

, in markingM

0

only two events 
an o

ur in a time slot:

t

1

does not �re, t

1

�res. Thus the state (0; �) has two outgoing ar
s: one of them enters

the same state to model the event related to the fa
t that t

1

does not �re in Æ, the

other one produ
es a state 
hange sin
e it is related to the �ring of t

1

. The �ring of

t

1

produ
es a 
hange in marking M

1

, where the GEN transition t

3

be
omes enabled.



Sin
e t

3

is a prd transition, when it be
omes enabled its age memory starts from

zero. This means that the DTMC enters the �rst phase of the DPH, in the example

the state with des
riptor (1; 1). Sin
e a step of the DTMC 
orresponds to a time slot

of length Æ, the one step probabilities of the two outgoing ar
s model the �ring or

not of the enabled EXP transition in an interval of length Æ. Using the �rst order

approximation for the exponential fun
tion it is easy to realize that: p

(0;�)!(1;1)

=

Pft

1

�res j(0; �))g = Æ �

1

and p

(0;�)!(0;�)

= Pft

1

does not �re j(0; �))g = 1 � Æ �

1

,

where �

1

is the rate of the EXP transition t

1

.

As we have already said, the ma
rostate with states (1; u), with 1 � u � 4,


orresponds to the marking M

1

. The marking pro
ess remains in su
h marking till

one of the two transitions t

2

or t

3

�res. If both of them do not �re, the marking does

not 
hange. This means that the DTMC stays into the ma
rostate, and only passages

between two phases of the DPH are possible. The one step probability must take into

a

ount that the EXP transition does not �re, thus the probability between a state

with des
riptor (1; u) to one with des
riptor (1; v) is: p

(1;u)!(1;v)

= P

uv

(1� Æ�

2

)

The outgoing ar
s from the ma
rostate are due to some �ring: when t

2

�res, the

DTMC goes to a state with des
riptor (0; �), be
ause this �ring 
auses the marking

pro
ess to go to the marking M

0

; whereas the �ring of t

3

is des
ribed from the

ar
s towards the absorbing phase of the DPH, so that two ar
s from states with

des
riptors (1; 2) and (1; 4) towards the state with des
riptor (2; �) are used. The one

step probability is easily 
omputed with referen
e to the �ring events and to the DPH

stru
ture. The only thing to note is that in a time slot Æ both transitions t

2

and t

3


an

�re, then the simultaneous �ring event has to be 
onsidered. In the 
ase when both

transitions �re in the same time slot, we uniformly distribute the probability of �ring

between the two possible destination states with des
riptor (1; �) and (3; �). This is

where the fa
tors P

25

Æ

�

2

2

and P

45

Æ

�

2

2


ome from. This problem will be extensively

dis
ussed in Se
tion 4.

3.2 SPN with one generally distributed prs transition

If the GEN transition is asso
iated with a prs poli
y, the DTMC stru
ture has to be

organized in order to keep tra
k of the amount of time the prs transition spent in an

enabled 
ondition before being preempted. This is be
ause the transition has to restart

with the same age memory value on
e it be
omes enabled again. For this purpose, a

di�erent expanded DTMC is needed. Figure 5 shows the DTMC that approximates

the sto
hasti
 behavior of the SPN depi
ted in Figure 2 when t

3

has a prs memory

poli
y.

The only di�eren
e with regard to the prd 
ase is the ma
rostate related to the

marking M

0

. With a prs poli
y, four states with des
riptors (0; u), with 1 � u � 4,

are added to the ma
rostate. The purpose of these des
riptors is remembering the

value of the age memory of transition t

3

when it is disabled by the �ring of the EXP

transition t

2

.

Thus, from ea
h state with des
riptor (1; u), with 1 � u � 4, the DTMC 
an transit

either to the state with des
riptor (0; u) (with one step probability p

(1;u)!(0;u)

=

P

uu

Æ�

2

) or to the state with des
riptor (0; u+ 1), where 1 � u � 3 (with probability

p

(1;u)!(0;u+1)

= P

u(u+1)

Æ�

2

).

Of 
ourse, transition t

3


annot �re from any of the states 
orresponding to marking

M

0

, as it is not enabled in su
h marking. >From ea
h of these states it is possible
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Fig. 5. DTMC approximation of the SPN with prs transition

either to exit with probability p

(0;u)!(1;u)

= Æ�

1

, with u = 1; 2; 3; 4, when transition

t

2

�res, or to remain in the same state with probability p

(0;u)!(0;u)

= 1 � Æ�

1

, with

u = 1; 2; 3; 4, when t

2

does not �re in a time slot Æ.

The same 
onsiderations made with regard to the �ring of t

3

with a prd poli
y are

valid in this 
ase.

3.3 SPN with one generally distributed pri transition

If a pri poli
y is assumed for the GEN transition t

3

, an interrupted job must be

repeated with an identi
al work requirement. To 
apture the sto
hasti
 behavior of

this 
ase, a di�erent expanded DTMC is 
onstru
ted.

To model a transition t

k

with an asso
iated pri preemption poli
y, the following

quantities are 
omputed Q

k

i

= F

k

(iÆ) � F

k

((i � 1)Æ). Q

k

i

derives from the �ring

time distribution F

k

(t) of transition t

k

, and approximates the �ring probability of

transition t

k

in the i-th Æ interval. For making the model solvable in pra
ti
e, the

�ring time distribution of a pri transition is supposed to have �nite support, in order

to avoid the 
omputation of an in�nite number of nonzero Q

k

i

values, and to 
onstru
t

an approximate dis
rete pro
ess with in�nite state spa
e. Let us denote the number

of nonzero Q

k

i

quantities with q

k

; it depends on Æ, and its value is q

k

=

d

k

Æ

, where d

k

is the length of the support of the �ring time probability distribution fun
tion F

k

(t).

In 
ase of in�nite support, a trun
ation of F

k

(t) may be used.

The sto
hasti
 behavior of an enabled pri type transition is des
ribed by two


ontinuous variables: the a
tual sample of the �ring time and the remaining �ring

time, or alternatively, the a
tual sample of the �ring time and the amount of time

during whi
h the transition has been enabled. In the proposed expansion method, the

des
riptor (i; u; w) with u � w is used in order to des
ribe the state of the pro
ess,

where i indi
ates the marking, u indi
ates the duration of time while the transition

is enabled (measured in integer numbers of time slots Æ), and w is the sampled value

(measured in integer numbers of time slots Æ). The des
riptor (i; 0; w) indi
ates that

the pri transition is disabled but it has not �red, so that the sampled �ring time w

is maintained; after be
oming enabled again, the pro
ess enters state (i; 1; w). The



des
riptor (i; �; �) is used for states where the pro
ess has no memory. In other words,

the marking itself 
ompletely determines the state of the pro
ess.

The evolution of the GEN transition t

k

with pri memory poli
y in isolation 
an

be des
ribed by q

k


olumns. The w-th 
olumn 
onsists of w states with des
riptors

(i; u; w), where 1 � u � w. Re
alling that w is the sampled �ring time, when the

dis
rete pro
ess enters a state with des
riptor (1; 1; w), w slots of time have to pass

before the �ring. This is exa
tly the time spent to transit among the states of the


olumn.

Figure 6 shows the DTMC that approximates the behavior of the SPN shown in

Figure 2. In this 
ase, the ma
rostate 
orresponding to the marking M

1


onsists of

the states approximating the GEN transition t

3

, as des
ribed before. From the state

with des
riptor (0; �; �), the DTMC enters the ma
rostate 
orresponding to marking

M

1

, and spe
i�
ally the 
olumn sele
ted a

ording to the probability Q

w

. Sin
e this

happens if the EXP transition t

1

�res in a time slot, the one step probability is:

p

(0;�;�)!(1;1;w)

= Q

w

Æ�

1

.

The ma
rostate referred to the marking M

0

has q states with des
riptor (0; 0; w)

rea
hed by the DTMC when the GEN transition is disabled by the �ring of the


on
i
ting transition t

2

. These states are used to remember the 
orre
t sampled �ring

value, so when the GEN transition is enabled again the 
orre
t 
olumn is rea
hed. The

one step probabilities between two states in this ma
rostate are 
omputed a

ording

to the �ring events related to the EXP transition t

2

, also enabled in marking M

1

, as

in the other 
ases.

The GEN transition t

3

�res when u = w in the des
riptor. When this happens,

the DTMC transits in the state with des
riptor (2; �; �).

4 General solution

In the last three subse
tions we have des
ribed a method to build a DTMC to ap-

proximate the sto
hasti
 behavior of Petri Nets 
ontaining only one GEN transition.

Using a similar approa
h, in this se
tion we show how to derive the underlying DTMC

for SPNs with more than one GEN transitions simultaneously enabled. A similar idea


an be followed to deal with the 
ase of more EXP transitions simultaneously enabled

in the same time slot Æ. The following notation has to be introdu
ed:

{ N

D

, N

S

and N

I

is the number of prd, prs and pri transitions in the SPN, respe
-

tively;

{ A

D

(i), A

S

(i) and A

I

(i) are the set of enabled prd, prs, pri GEN transitions in

marking M

i

, respe
tively;

{ P

k

i;j

is the probability of moving from phase i to phase j in the DPH stru
ture of

the transition t

k

; it des
ribes how a prd or prs GEN transition 
hanges its phase;

{ Q

k

i

is the approximated probability that the pri GEN transition t

k

�res in the

i-th Æ interval;

{ L

k

is the number of phases in the DPH stru
ture of the prd or prs transition t

k

.

As already dis
ussed, we need one variable to handle transitions with prd and

prs poli
y (to store the 
urrent phase of the expanded DTMC), and two variables

to handle transitions with pri poli
y (one to store the age of the transition, and the

other to store the sampled value of the �ring time).
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Fig. 6. DTMC approximation of the SPN with pri transition

When a pri transition gets enabled, the asso
iated random variable is sampled and

the age variable is set to 1

2

. If the pri transition gets preempted in the next state,

the age variable is reset to 0 and the asso
iated sampled value remains the same.

Thus a generi
 state of the DTMC will be Z

r

= (j;D

r

; S

r

; I

r

; X

r

), where

{ j is the index of marking M

j

of the SPN;

{ D

r

is a ve
tor of length jjT jj, the number of the transitions in the SPN, storing

the phases in whi
h a prd transition is allowed to be; in parti
ular, its k-th element

(D

r

k

) is the phase of transition t

k

when the DTMC is in the state Z

r

; the sign �

in the k-th position indi
ates that the prd GEN transition t

k

has no memory (it

is not enabled).

{ S

r

is the same as D

r

but for prs GEN transitions; S

r

k

= � means that the prs

transition t

k

is not a
tive, thus it has no memory;

{ I

r

is a ve
tor of length jjT jj. The k-th element of I

r

(I

r

k

) is the age of the pri

GEN transition t

k

when the DTMC is in the state Z

r

; similarly to the 
ase of prs

transitions, I

r

k

= � indi
ates that transition t

k

is not a
tive;

{ X

r

is a ve
tor whose k-th element (X

r

k

) is the sampled value of the pri GEN

transition t

k

when the DTMC is in the state Z

r

.

2

Note that as time in
reases by Æ, at step i the total elapsed time is i � Æ. This explains

why only the index indi
ating the time interval has to be re
orded.



Given a state Z

r

= (i;D

r

;S

r

; I

r

;X

r

) of the DTMC, we 
onsider �rst the 
ase

when none of the enabled transitions �res in a time slot Æ, and then we show the more


omplex 
ase when some �rings o

ur.

4.1 Initial states and probability ve
tor

When the algorithm starts to generate the approximated dis
rete pro
ess, a set of

initial states are 
reated together with an initial probability ve
tor. The number of

initial states depends on the transitions enabled in the initial markingM

0

. The prd and

prs transitions are 
onsidered without memory when the pro
ess starts, thus, using

the assumption that the DPH distribution starts from the �rst phase, the memory

variables asso
iated to these transitions are des
ribed by the following equations:

D

0

k

=

�

1 t

k

2 A

D

(0)

� otherwise

; S

0

k

=

�

1 t

k

2 A

D

(0)

� otherwise

(1)

Instead, if pri transitions are enabled in the initial markingM

0

, a set of states has

to be 
reated to remember the di�erent levels of sampled values Q

k

i

, with t

k

2 A

I

(0).

To explain how to build the initial states, a new notation has to be introdu
ed. Let

q

k

be the maximum value of X

r

k

; q

k

is the number of di�erent possible values, Q

k

i

,

for the �ring probability of t

k

(if the pri transition t

k

is not enabled in the marking

M

0

, then q

k

= 0). The number of initially built states is s =

Q

t

k

2A

I

(0)

q

k

, and ea
h

of them 
orresponds to a di�erent 
ombination of the possible values assumed by X

k

.

To formally 
onstru
t the des
riptor, we de�ne a fun
tion that asso
iates ea
h

possible state with an index starting from the values assumed by the 
omponents of

X. Let k

l

be the index of the l-th pri transition enabled in M

0

(t

k

l

2 A

I

(0)). With

this formalism the index is r =

P

jjA

I

(0)jj�1

l=0

(X

k

l

� 1) l

Vi
e versa given a value of index r, the 
ombination that generated it 
an be

found. We denote this fun
tion v(r; l).

With these de�nitions, it is possible to des
ribe all the 
omponents of the state

des
riptors generated at the beginning. The di�erent 
omponents of states Z

r

=

(i;D

r

;S

r

; I

r

;X

r

); 8r = 0; � � � ; s � 1 are the ve
tors D

r

= D

0

, and S

r

= S

0

,

whereas I

r

and X

r

assume the following value:

I

r

k

=

�

1 t

k

2 A

I

(0)

� otherwise

; X

r

k

=

�

v(r; l(k)) t

k

2 A

I

(0)

� otherwise

(2)

where l(k) is the position of transition t

k

among the enabled pri transitions in M

0

.

The generi
 element of the initial probability ve
tor is:

�

r

(0) =

Y

t

k

2A

I

(0)

Q

k

v(r;l(k))

; 8r = 0; � � � ; s (3)

4.2 No �ring

In this se
tion we des
ribe how to generate a new state of the expanded dis
rete

pro
ess starting from a given state of the expanded pro
ess itself, in the o

urren
e

of no �ring of the enabled transitions.



Let Z

r

= (i;D

r

;S

r

; I

r

;X

r

) be a des
riptor of state of the dis
rete pro
ess. Under

the assumption that no transition �res in a time slot Æ in M

i

, the marking of the

PN remains the same, and the DPH of the enabled transitions 
hange their phase

a

ordingly to their des
ription. This implies that the prd and prs enabled transitions

are not allowed to enter their absorbing state (phase 
hange to the absorbing phase

means that the transition �res), and all the enabled pri transitions have an age value

less than the �ring value originally sampled (I

r

t

< X

r

t

). The phase of the disabled prd

transitions is indi
ated as � (they have no memory), while a phase indi
ator exists for

the prs and pri transitions.

Let Z

r

= (i;D

r

;S

r

; I

r

;X

r

) be the des
riptor of the a
tual 
onsidered state, and

Z

r

0

= (i;D

r

0

;S

r

0

; I

r

0

;X

r

0

) the des
riptor of the state we want to generate. Note

that the �rst 
omponent of the des
riptor Z

r

0

is the same of Z

r

be
ause no �ring is

supposed and the marking does not 
hange. The di�erent 
omponents of the des
riptor

Z

r

0

= (i;D

r

0

;S

r

0

; I

r

0

;X

r

0

) are built as follows:

D

r

0

k

=

�

a; 1 � a � L

k

t

k

2 A

D

(i)

� t

k

62 A

D

(i)

(4)

where a = next(t

k

; D

r

), being next(t; p) a fun
tion that 
omputes the index of a

phase of the DPH asso
iated to transition t rea
hable from the phase with index p.

Equation (4) means that a new phase (1 � a � L

k

) of the prd transitions enabled

in markingM

i

(t

k

2 A

D

(i)) is 
onsidered in the new state Z

r

0

. Otherwise (t

k

62 A

D

(i))

the memory is reset (D

r

0

k

= �).

S

r

0

k

=

�

b; 1 � b � L

k

t

k

2 A

S

(i)

S

r

k

t

k

62 A

S

(i)

(5)

Equation (5) is very similar to the (4), but if in markingM

i

a prs transition is disabled

(t

k

62 A

S

(i)), the same value of the memory is maintained (S

r

0

k

= S

r

k

).

The ve
tors for pri transitions are 
omputed as follows:

I

r

0

k

=

�

I

r

k

+ 1 t

k

2 A

I

(i)

I

r

k

t

k

62 A

I

(i)

; X

r

0

k

= X

r

k

: (6)

These last two equations des
ribe how to manage the two variables for the pri transi-

tions: the �rst one updates the age memory either in
rementing it, if the transition is

enabled in markingM

i

, or maintaining the same value if the transition is not enabled

(note that I

r

k

= � if transition has not memory, and I

r

k

= 0 if it has memory but it is

not enabled); the se
ond equation says that the residual time for the transition �ring

is the same with respe
t to that in state Z

r

, sin
e it is not enabled.

The state transition probability from Z

r

to Z

r

0

in a time slot is 
omputed as

the produ
t of the probability that none of the EXP transitions will �re times the

probabilities that the prd and prs GEN transitions 
hange their phase. This transition

probability 
an be expressed as follows:

P

Z

r

!Z

r

0

=

Y

k2A

D

(i)

B

k

D

r

k

;D

r

0

k

| {z }

en. prd tr.-s

Y

l2A

S

(i)

B

l

S

r

l

;S

r

0

l

| {z }

en. prs tr.-s

; (7)



Note that EXP transitions are represented with the DPH depi
ted Figure 3b, and

they are 
onsidered by the same standard as GEN transitions. Their presen
e is taken

into a

ount in the equation (7) by the �rst term (

Y

k2A

D

(i)

B

k

D

r

k

;D

r

0

k

) of that equation.

Below we will not make spe
ial 
onsiderations on the EXP transitions and we will

manage them by using the asso
iated DPH.

4.3 Firing of one or more transitions

In this se
tion we deal with the problem of one or more transitions �ring in a time

slot Æ. In order to address this goal, we de
ide �rst to identify the main steps and

then to pro
eed with their formal treatment. Assuming that the expanded DTMC is

in state Z

r

, we want to identify all the rea
hable states Z

r

0

and all the transitions

probabilities asso
iated to the 
onne
ting ar
s.

Given a state Z

r

= (i;D

r

;S

r

; I

r

;X

r

), only a subset of the enabled transitions is

allowed to �re in a time slot Æ. Transition t

k

2 A

D

(i) (an enabled prd transition) 
an

�re if P

k

D

r

k

;L

k

> 0, i.e. if the probability of immediately rea
hing the absorbing state

from phase D

r

k

is positive; similarly, a transition t

k

2 A

S

(i) 
an �re if P

k

S

r

k

;L

k

> 0. A

transition t

k

2 A

I

(i) is allowed to �re if I

r

k

= X

r

k

, i.e. if its age is equal to the sampled

�ring time. We use these 
onditions to de�ne the following set:

F

r

= ft

k

j(t

k

2 A

D

(i) ^ P

D

r

k

;L

k

> 0)_

(t

k

2 A

S

(i) ^ P

S

r

k

;L

k

> 0)_

(t

k

2 A

I

(i) ^ I

r

k

= X

r

k

)g

(8)

F

r

is the set of all the transitions that are allowed to �re when the pro
ess is in

state Z

r

. The elements of this set, whose 
ardinality is jjF

r

jj, 
an be grouped into

2

jjF

r

jj

� 1 di�erent subsets, 
orresponding to all the possible 
ombinations of the

transitions allowed to �re in markingM

i

. A generi
 subset of the F

r

will be indi
ated

as F

r

p

, with p = 1; � � � ; 2

jjF

r

jj

� 1.

Considering the generi
 state Z

r

0

= (j;D

r

0

;S

r

0

; I

r

0

;X

r

0

) rea
hable from Z

r

when

the transitions belonging to F

r

p

�re, the values of the 
omponents of its des
riptor are


omputed as follows:

D

r

0

k

=

8

<

:

1 t

k

2 (A

D

(j) \ F

r

p

) [ (A

D

(j)nA

D

(i))

a; 1 � a < L

k

t

k

2 (A

D

(i)nF

r

p

)

� otherwise

(9)

where, as in the equation (4), a = next(t

k

; D

r

0

k

). The �rst term in the equation (9)

sets the phase of transition t

k

to 1 if t

k

�res in marking M

i

and is re-enabled in

marking M

j

(i.e. t

k

2 A

D

(j) \ F

r

p

), or it is not enabled in marking M

i

and be
omes

enabled in marking M

j

(t

k

2 A

D

(j)nA

D

(i)); the se
ond term updates the new phase

of the transition t

k

when it is not �red in marking M

i

(t

k

2 A

D

(i)nF

r

p

);

S

r

0

k

=

8

>

>

<

>

>

:

� t

k

2 (F

r

p

nA

S

(j))

1 t

k

2 A

S

(j) \ F

r

p

b; 1 � b < L

k

t

k

2 (A

S

(i) \ A

S

(j))nF

r

p

S

r

k

otherwise

(10)



where b = next(t

k

; S

r

k

); in equation (10) the set F

r

p

nA

S

(j) identi�es the transitions

�red in marking M

i

and not enabled again in marking M

j

, so they do not need to

maintain their memory (S

r

0

k

= �); when transition t

k

be
omes enabled (t

k

2 A

S

(j) \

F

r

p

), its phase is set to 1; when the transition is enabled in both the markings M

i

and M

j

without �ring (t

k

2 A

S

(i) \A

S

(j))nF

r

p

) its memory is updated by 
hanging

the phase of the asso
iated DPH. In all the other 
ases, the same phase is maintained

(S

r

0

k

= S

r

k

) be
ause the transition is not enabled, but it is still a
tive;

I

r

0

k

=

8

>

>

<

>

>

:

� t

k

2 (F

r

p

nA

I

(j))

1 t

k

2 A

I

(j) \ F

r

p

I

r

k

+ 1 t

k

2 (A

I

(i) \ A

I

(j))nF

r

p

I

r

k

otherwise

(11)

Equation (11) des
ribes the updating of the memory asso
iated with a pri transition

t

k

. We re
all that the ve
tor I

r

0

stores the amount of time sin
e when the transitions

are enabled (measured in time slots Æ). Thus, the k-th so one 
omponent is in
reased

by a unit (I

r

0

k

= I

r

k

+1) when the 
orresponding transition t

k

remains enabled (A

I

(i)\

A

I

(j))nF

r

p

). The other terms of equation (11) have the same meaning of those of the

equation (10);

X

r

0

k

=

8

<

:

� t

k

2 (WnA

I

(j))

x t

k

2 (A

I

(j) \W ) _ (t

k

2 A

I

(j) ^X

r

k

= �)

X

r

k

otherwise

(12)

The equation (12) is introdu
ed for 
onsidering the sampled �ring values of the pri

transitions (the q

k

values introdu
ed in se
tion 4.1); also in this 
ase the sampled

�ring time is measured in time slots. The se
ond term is referred to the enabling of

the pri transition t

k

either when it �res in marking M

i

and it be
omes enabled again

(t

k

2 A

I

(j) \ F

r

p

), or it be
omes enabled in marking M

j

when it has no memory

((t

k

2 A

I

(j)) ^ (X

r

k

= �)); when these 
onditions are true, the new des
riptor must

store one of the q

k

possible sampled values from the 
df F

k

(�). The other two terms

are more trivial: the �rst term of the equation 12 is used when the pro
ess does not

need to maintain any memory on the evolution of the transition t

k

be
ause it has

already �red and is not enabled again (t

k

2 F

r

p

nA

I

(j)); the third one is used to store

the memory of the pro
ess when t

k

is not enabled, but it is still a
tive.

Due to the time dis
retization approa
h we have adopted, the 
df asso
iated to

ea
h timed transition will have a time dis
ontinuity at the end of ea
h time slot Æ.

Thus, if in marking M

i

several transitions are enabled, there is a non null probability

that they simultaneously �re. The probability that the transitions belonging to F

r

p

simultaneously �re 
an be expressed as follows:

f

r

p

= Pfall transitions inF

r

p

�re j Z

r

g =

Y

k2(F

r

p

\A

D

(i))

P

k

D

r

k

;L

k

Y

l2(F

r

p

\A

S

(i))

P

l

S

r

k

;L

k

(13)

Equation (13) does not in
lude any referen
e to pri transitions Be
ause, if pri

�re, their 
ontribution to f

r

p

is equal to 1. This probability will 
ause the swit
hing

from the generi
 marking M

i

(where the pro
ess is now) to a marking M

j

. Sin
e the

transitions in F

r

p

may be in 
on
i
t, the markingM

j

is rea
hed with a probabilityW

ij



(the method to 
ompute the rea
hed marking M

j

and the probability W

ij

is deeply

analyzed in [18℄).

The probability asso
iated with the ar
 from Z

r

to Z

r

0

is evaluated as:

P

Z

r

!Z

r

0

= p

ij

Y

h2(A

D

(i)nF

r

p

)

P

h

D

r

h

;D

r

0

h

Y

k2(A

S

(i)\A

S

(j))nF

r

p

P

t

S

r

k

;S

r

0

k

Y

t2A

I

(j)^X

r

k

=�

Q

l

X

r

0

l

(14)

where ea
h term has the following meaning:

{ p

ij

= f

r

p

�W

ij

is the probability that the pro
ess arrives in marking M

j

, starting

from marking M

i

, due to the �ring of the transitions belonging to F

r

p

in a time

slot of size Æ;

{ the se
ond (third) term takes into a

ount the 
hanging of phase of the enabled

prd (prs) transitions;

{ the last term is used for 
onsidering the 
ase that some pri transitions be
ome en-

abled, thus a new value has to be sampled a

ording to the asso
iated distribution

fun
tion.

5 The algorithm

The algorithm is based on a dis
retization of the 
ontinuous random variables for

approximating the 
ontinuous pro
ess. The phase type distributions, used in 
ase of

prd and prs GEN transitions, are given by the users, whereas the probabilities Q

k

i

are

dire
tly 
omputed from the 
df asso
iated with the pri transition t

k

.

The main steps of the implemented solution method are the following:

1. generation of the rea
hability graph (with tangible and vanishing states) and

redu
tion of the rea
hability graph to tangible states only;

2. generation and analysis of the expanded DTMC;

3. evaluation of the �nal measures at the net level, based on the solution of the

expanded DTMC.

A

ording to the results shown in the previous se
tions, given the rea
hability

graph and the dis
rete phase type distributions asso
iated to the GEN transitions,

the elementary step 2 of the approximation method is as follows:

{ Initialization Step

Initialization 
onsists of 
reating the set of states originated in the initial marking

M

0

. Equations (1), and (2) are used to 
ompute these states; equation (3) is used

to 
ompute the initial state probability ve
tor on the generated states. Note that

if no pri transition is enabled in M

0

, only one state is built in this step of the

algorithm. The 
reated states are put in a list of states to expand (list expand).

{ Iteration Step

1. a state Z

r

to be expanded is extra
ted from the list expand list;

2. new expanded states Z

r

0

are 
omputed in 
ase of no �ring events using the

equations (4), (5), and (6).

3. using equation (7) the transition state probabilities from Z

r

to Z

r

0

are 
om-

puted and stored;



4. all the states Z

r

0

, not previously 
reated, are stored in list expand;

5. sets F

r

p

, with p = 1; � � � ; 2

jjF

r

jj

�1, are 
omputed; a

ording to these sets, other

rea
hable markingsM

j

are 
omputed, and expanded states Z

r

0

are built using

equations (9), (10), (11), and (12) (these states are the states asso
iated to

the �ring of some transitions);

6. using equation (14) the transition probabilities from Z

r

to Z

r

0

are 
omputed

and stored;

7. all states Z

r

0

, not previously 
reated, are stored in list expand; the state Z

r

is stored in another list named expanded;

8. if the list list expand is not empty, the algorithm pro
eeds with step 1,

otherwise it terminates.

Similarly to [9℄, the system behavior is approximated by a Dis
rete Time Markov

Chain (DTMC) over an expanded state spa
e determined by the 
ross produ
t of the

system states (the markings of the Petri net) and the dis
retized values of the asso-


iated age variables. This approa
h is also 
losely related with the DPH expansion

method proposed by Cumani in [11℄. The main di�eren
e is that, in this 
ase, the sys-

tem behavior is approximated by an expanded DTMC while in the PH approximation


ase an expanded CTMC is obtained. The present approa
h inherits some similarities

also from the supplementary variable approa
h [14℄, sin
e the supplementary (age)

variables are 
onstrained to assume values in a dis
retized set.

6 Numeri
al results

For testing the des
ribed method, two kinds of experiments were done:

1. in the �rst experiment a preemptive M/G/1/2/2 queue model, whose 
ustomer-

s belong to di�erent user 
lasses, was solved. This Petri net model belongs to

the MRSPN 
lass and is analyti
ally solvable; the results (transient analysis of

state probabilities) were 
ompared with the solution obtained by solving the same

example using the Lapla
e transform method [5, 4℄;

2. the se
ond experiment involves the preemptive M/G/1/2/2 queue model again;

this time all the transitions in the model have a non exponentially distributed

�ring time, but one, and the model 
annot be solved with any of the available

analyti
al te
hniques. Thus the obtained results were validated by simulation.

The purpose of these experiments is to show that the results obtained by applying

the method des
ribed in the previous se
tion 
an be 
ompared with those produ
ed

by other analyti
al solution methods, when available. Moreover, more general 
lasses

of models, not analyti
ally solvable by others te
hniques, 
an be studied. The tool

WebSPN

3

[15℄ was used to solve the models under exam.

6.1 Experiment 1 - Preemptive M/G/1/2/2 queue with di�erent


ustomers

The SPN of Figure 7a models an M/G/1/2/2 queue in whi
h the jobs submitted by


ustomer 2 have higher priority and preempt the jobs submitted by 
ustomer 1. The

3

The tool WebSPN is a

essible through Internet at the address

http://sun195.iit.uni
t.it/webspn
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Fig. 7. Preemptive M/G/1/2/2 queue with two 
lasses of 
ustomers

asso
iated rea
hability graph is shown in Figure 7b. Pla
e P

1

(P

3

) represents 
ustomer

1 (2) thinking, while pla
e P

2

(P

4

) indi
ates job 1 (2) under servi
e. Transitions t

1

and t

3

are EXP and model the submission of jobs of type 1 or 2, respe
tively. t

2

is a GEN transition and represents the 
ompletion of servi
e of the lower priority

job. Transition t

4

models the servi
e time of a higher priority job. Its �ring time

is exponentially distributed. The inhibitor ar
 from P

4

to t

2

models the des
ribed

preemption me
hanism: as soon as a type 2 job joins the queue, the type 1 job under

servi
e (if any) is interrupted.

The server 
an adopt all kinds of preemption poli
ies. Assuming a prd and prs

memory poli
y, the model was solved with the following numeri
al values:

{ �ring rate of the EXP transitions t

1

and t

3

: �

1

= �

3

= 0:5;

{ the servi
e times of both the lower and higher priority jobs (represented by

t

2

and t

4

) are deterministi
ally distributed with �ring time 1:0;

{ time slot: Æ = 0:05.

The results obtained solving the model either with inverse Lapla
e transform and

dis
rete expansion te
hnique are depi
ted in Figure 8 a) and b) respe
tively. The

symbols �, �, �, and 2 are used to plot the results obtained with Lapla
e transform

method, whereas the 
ontinuous lines refer to the results obtained with the dis
rete

expansion approa
h.

From these graphs it is evident that the method works well and the results are

almost 
oin
ident with those 
omputed with the inverse Lapla
e method, that is

extensively dis
ussed in literature.

The model of Figure 7 was solved also assuming a pri poli
y asso
iated to the

transition t

2

. The deterministi
 
df was not used with pri poli
y be
ause the behavior

of the preempted transition would be the same as in the prd 
ase, sin
e every time the

transition is preempted it loses its memory and remembers the sampled �ring time.

But the possible �ring time sampled by a deterministi
 
df is always the same, thus

remembering the �ring time has no e�e
t. In this 
ase, the �ring time was uniformly

distributed between 0:5 and 1:0. The obtained results are depi
ted in Figure 8 
).

As in the previous 
ases (the prd and the prs 
ases) also this experiment produ
ed
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Fig. 8. State probabilities of the Petri net of Figure 7 when t

2

has a prd (a), prs (b) and pri

(
) memory poli
y

the same results of those obtained with the inverse Lapla
e method. The 
omparison

with the expansion method using CPH is not possible due to the fa
t that the pri

preemption poli
y 
annot be modeled using the CPH approximation.

6.2 Experiment 2 - Preemptive M/G/1/2/2 queue with di�erent


ustomers

The se
ond experiment was done by assigning deterministi
ally distributed �ring time

to transition t

3

. In this 
ase, in the stateM

1

there are two transitions (t

2

and t

3

) with

generally distributed �ring time, and this model 
annot be solved using neither the

Markov regenerative theory nor the supplementary variable method. The results are

thus 
ompared with those obtained from a simulator.

The following numeri
al value are used:

{ �ring rate of EXP transition t

1

: �

1

= 1:0;

{ �ring time of deterministi
 transition t

3

: � = 0:5;

{ servi
e time of lower (transition t

2

) and higher (transition t

4

) priority job: uni-

formly distributed between 0.5 and 1.0.

Figure 9 shows the results obtained. The results of the simulation are depi
ted

as two dashed lines, identifying the interval of 
on�den
e (95%) of the 
omputed

measure (the probability that the pro
ess is in state M

0

). The 
ontinuous lines are

the results obtained with the dis
rete expansion approa
h. Also in this 
ase the three

kind of poli
y are adopted for transition t

2

, and a Æ = 0:05 was used to dis
retize the



model. As it 
an be noted, the results of dis
retization are always inside the interval

of 
on�den
e 
omputed by simulation, showing that the dis
rete expansion produ
es

a 
orre
t result.
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Fig. 9. State probabilities of the Petri net of Figure 7 when t

2

has a prd (a), prs (b) and pri

(
) memory poli
y.

7 Con
lusions

A numeri
al approa
h for the solution of NMSPNs has been proposed. It is based

on a dis
rete time approximation of the sto
hasti
 behaviour of the marking pro
ess,

whi
h results in the possibility of analyzing a wider 
lass of SPN models with prd,

prs and pri 
on
urrently enabled generally distributed transitions. In 
ase of prd, prs

poli
ies distributions with in�nite support are 
onsidered, for pri poli
y the �ring

distribution is limited to �nite support distributions. We obtained that a pri type

transition, whi
h 
an be des
ribed, in transform domain, by the in
lusion of a single

transform variable [4℄, requires the in
lusion of 2 memory variables in time domain.

This explains why the representation of pri transitions is quite expensive.

We dis
ussed the way the time-dis
retization algorithm works both in the 
ase of

only one general transition in the model and also when an arbitrary number of GEN

transitions are simultaneously a
tive.

The des
ribed algorithm has been implemented and embedded in the WebSPN

tool, for spe
i�
ation and automati
 solution of non-Markovian SPN. Due to the use

of the Java programming language, WebSPN ([15℄) is easily a

essible from any node


onne
ted with the Internet as long as it possesses a Java-enabled Web browser.
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