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Abstract. In order to extend their applicability to more complex situations,
in this paper we present a new approach for the analysis of non-Markovian
Stochastic Petri Net (NMSPN) models, which is based on a discrete time ap-
proximation of the stochastic behavior of the marking process. The proposed
approach, which resulted in a new modeling tool for the analysis of NMSPNs
called WebSPN, allows to analyze a wider class of PN models with prd, prs
and pri concurrently enabled generally distributed transitions. This implies
the possibility of dealing with very complex systems with arbitrarily distribut-
ed events with very complex interrelations among each other. The adopted
technique is described, an application example is solved and the results are
carefully analyzed in order to demonstrate the validity of the proposed ap-
proach.
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1 Introduction

Petri nets are commonly viewed as a valid tool for the qualitative and quantitative
study of computer systems [2]. Over the years, many stochastic extensions to the ba-
sic Petri net model have been proposed. Dealing with non-exponentially distributed
events is an extension that widened the field of applicability of this modeling ap-
proach to real situations. There are a great number of real circumstances in which
deterministic or generally distributed event times occur. Events such as timeouts in a
protocol, service times in a manufacturing system and memory access or instruction
execution in a low-level hardware or software have durations which are constant or
have a very low coefficient of variation. Choi et al. have shown that the marking pro-
cess underlying a Stochastic Petri Net (SPN), where at most one generally distributed
transition is enabled in each marking, belongs to the class of Markov Regenerative
Processes (MRGPs) [7]. Following the line opened in [7], different approaches have
been proposed to deal with non-Markovian systems [8, 14, 16].

All the above literature on Markov Regenerative SPNs (MRSPNs) implicitly as-
sumed an enabling memory policy (as it is defined in [1]). The transient analysis of a
class of NMSPNs with age memory policy ([1]) was provided in [5], and a preemption
mechanism, different than the ones considered in [1], was introduced and analyzed
in [4]. Following the common terminology used when dealing with queuing systems,



the stochastic behavior of the transitions of a SPN model has been classified as pre-
emptive repeat different (prd), preemptive resume (prs) and preemptive repeat identical
(pri), respectively. These stochastic extensions have increased the descriptive power
of SPNs, as well as the computational effort required for their solution.

Many SPN modeling tools have recently been proposed or developed (e.g. ES-
P [11], GreatSPN [6], SPNP [9], DSPNExpress [16], TimeNet [13], UltraSAN [10]).
Some of the above tools have also implemented the possibility of including some
non-Markovian features thus extending the range of applicability of PNs. Their main
limitations regard the kind and number of generally distributed firing time (GEN)
transitions and their associated preemption policy. A very limited number of simulta-
neously enabled GEN transitions is allowed. And usually it reduces to only one. Fur-
ther, the preemptive repeat different (prd) policy is the only adopted. The preemptive
resume (prs) and the recently proposed preemptive repeat identical (pri) policies [4],
although very powerful, are basically not yet implemented. The first restriction can be
relaxed by the analytical results available for the analysis of PN with non-overlapping
prs general transitions [5], and there is an active research to find the proper way to
analyze PN with concurrently active general transitions [16,17].

A possible approach for the analysis of SPN models, with concurrently active
prs and prd general transitions, is through the continuous time Phase type (CPH)
approximation of generally distributed firing times [11]. With this technique, the
marking process of the NMSPN is approximated by a continuous time Markov chain
with an expanded state space [11].

In this paper, we discuss a modeling technique for the analysis of NMSPNs that
relaxes some of the restrictions present in currently available SPN analysis packages.
This approach is based on a discrete time approximation of the stochastic behavior
of the marking process, hence it can be considered as a discrete time version of the
phase type expansion technique. A similar approach can be found in [9], where Dis-
crete Deterministic and Stochastic PNs (DDSPNs) are presented and race policies
equivalent to our prd and prs policies are considered. The main differences with our
approach consist in the intrinsic assumption of a discrete time model, the lack of the
pri policy and the absence of a full implementation of the proposed algorithm. A new
modeling tool for the analysis of non-Markovian stochastic Petri nets, called WebSP-
N [15] has been successfully implemented. The approach we propose offers some new
features which result in the possibility to analyze a wider class of NMSPN models.
The main advantages of this method consist of the possibility to evaluate SPNs with
transitions of pri type with finite firing time, besides the more traditional prd and prs,
and to analyze models with concurrently enabled generally distributed transitions of
any kind.

2 Introducing Petri Nets and Preemption Policies

A timed Petri net is a tuple PN=(P,T,G, A,Z,0,H, My) where: P is the set of
places; T is the set of transitions; G is the set of random variables vy, associated to
transitions; A is the set of age variables a, associate to transitions; Z,O and H are
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Fig. 1. Petri net model of one server.

respectively the set of input, output and inhibitor functions (Z C P xT, O C T x P,
H C P x T), providing their multiplicity; My is the initial marking?.

The firing of an enabled transition t, in a given marking M;, generates another
marking M;. M; is said directly reachable from M; (M; —' M;). Starting from
the initial marking My, the transitive closure of — generates the reachability graph
RG(My) (the set of all reachable markings from Mjy).

A consistent way to introduce memory into a SPN is provided in [1] and extended
in [5]. Each timed transition ¢, is assigned a general random firing time v, with a
cumulative distribution function G(t). A clock, associated to each transition, counts
the time in which the transition has been enabled. An age variable a, associated to
the timed transition ¢, keeps track of the clock count. A timed transition fires as soon
as the memory variable a, reaches the value of the firing time ~,.

A timed transition has to be characterized both in terms of the distribution func-
tion of the random firing time and also of its behavior when a preemption occurs.
Thus, a preemption policy is required to fully describe the behavior of a timed tran-
sition. In this paper we prefer an informal approach to the definition of preemption
policies through the example of Figure 1.

The Petri net on Figure 1 models a server with exponential arrivals (transition
t1) and general service time (transition t,). Waiting customers are represented by
the tokens in place P;. The server is randomly preempted by higher priority jobs
(transition t3) for an exponentially distributed amount of time (transition t4), as
shown by the inhibitor arc from place P; to transition ts.

When a customer arrives to a server, a specific service requirement ~y, has to be
completed. The amount of computation required is sampled from the distribution
function F,(t) of the service time. The optimal case is when the server is able to com-
plete the job before an interruption occurs. However, the server may be interrupted
after processing only a portion of the submitted job. In this case the whole behavior
is strongly affected by the preemption policy and the whole performances will depend
on the strategy adopted to deal with the preempted job, as described in the following:

— The server drops the customer it was dealing with before the interruption.
— The server goes back to the preempted customer who still maintains the original
work requirement 7.

! A marking M; is a tuple, whose cardinality is ||P||, recording the number of tokens in
each place.



— The server also returns to the same customer who still has the same work require-
ment y,.

According to [5] and [4], the previous policies are referred to as preemptive repeat
different (prd), preemptive resume (prs) and preemptive repeat identical (pri), respec-
tively. Note that in [1] the authors indicated the prd and prs type policies as enabling
and age type. The pri policy was introduced for the first time in [4]. The prd policy
is the only considered in the available tools modeling non-Markovian SPN [16,13,
10]. The ESP tool [11] allows to deal with prs policy through a continuous time PH
approximation. Recently German developed a tool with Mathematica package where
the prs policy is also implemented adopting the method of supplementary variable
[12].

From the previous discussion it is clear that the main difficulty in analyzing s-
tochastic Petri nets with general transitions is related to the fact that the underlying
discrete state marking process is no longer a CTMC, as its future evolution depends
on the past history. Below, we call general (GEN) transitions both the transition-
s with generally distributed firing time (including the deterministic ones) and the
exponentially distributed firing time transitions of pri type. For a transition with ex-
ponentially distributed firing time the prd and the prs policies have the same effect,
due to the memoryless property. We denote these transitions as EXP transitions. For
a transition with deterministic firing time, the prd and the pri policies have the same
effect, since a resampling of the firing time results in the same firing time sample each
time.

According to this memory concept, at any time the marking and the individual
memory associated with the GEN transitions of a NMSPN only determine the future
stochastic behavior of the NMSPN. This means that the marking process together
with the memory process of the GEN transitions is a Markov process.

Below we make a distinction between enabled and active transitions. In Fact, a
GEN transition may be active (the age variable a, is between 0 for a prs transition
or the threshold value 7, is already set up for a pri transition) but not enabled.

The main idea behind our proposed discrete time approach is to discretize the
continuous memory process and the time to obtain a Discrete time Markov chain
(DTMC) that approximates the stochastic behavior of the compound Markov process.
The time access is divided into equal intervals of size ¢, while we use the concept of
discrete phase type distributions (DPH) to discretize the memory process when it is
possible.
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Fig. 2. SPN with one GEN transition



3 Discrete-time approach

In order to provide a better explanation on how to approximate the stochastic behav-
ior of continuous time SPNs, the SPN shown in Figure 2 is considered as an example.
This SPN models a system that alternates between two conditions: a fully operative
state (token in place P»), where useful work can be produced, and a failure state
(token in place P;), where the system does not perform any work. The EXP transi-
tions t; and ¢y describe the changes in the system state from operational to failed,
and vice versa. Transition 3 models the duration of the work to be performed, and
it is assumed to be non-exponentially distributed. In this example the DPH [3] dis-
tribution, depicted in Figure 3a, with generator P = {P;;} and initial probability
a = {1,0,0,...} is used to approximate the firing time of ¢3. According to this DPH
structure, the firing of transition t3 can happen when the DPH is either in phase 2
or in phase 4, because in those phases there are arcs towards the absorbing phase 5
of DPH. We want to stress that the DPH of Figure 3 is used only as an example to
show how our approach works, but, in general, there are no restriction to the usable
DPHs to approximate the firing time of a GEN transition. Similarly, figure 3b depicts
the DPH we have adopted to approximate the firing of an exponentially distributed
transition, where X is the firing rate and 4 is the approximation step.

In this paper we assume that the DPH distribution starts from the first phase with
probability 1. This assumption is not restrictive since any acyclic DPH distribution
can be represented with an acyclic DPH distribution of the same order starting from
the first phase with probability 1 [3], and a general DPH distribution of order n with
generator P and initial probability vector a can be represented as P’ and o/ of order
n + 1, where
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Fig. 3. The DPH approximation of the firing time of ¢3

3.1 SPN with one generally distributed prd transition

Let us suppose that the GEN transition ¢3 is associated with a prd memory policy.
Using DPH distributions, the state of the expanded DTMC is defined as a pair of non
negative integers (i,u), where ¢ is the index of a marking (M; € RG(My)), and u is
a phase of the DPH associated with the GEN transition. Thus, u is used to capture



the “memory” that is necessary to model the GEN transitions. © = ¢ denotes that
the process is in a state where the general transition is not influential (i.e. it has no
memory). If 1 < u < v, the GEN transition is enabled. The pair (7,u) will be called
descriptor and identifies the state of the expanded DTMC.

Figure 4 gives the DTMC constructed to approximate the stochastic behavior of
the Petri net depicted in Figure 2. The chain is derived from the reachability graph.
All the states in the reachability graph are examined, and the DTMC is generated
depending on the transitions enabled in each of them. Each marking in the original
continuous process produces a set of states of the expanded DTMC characterized by
the same index i in the descriptor (i, u). All the states with the same marking index in
its descriptor constitute a macrostate. Of course, the expanded process has as many
macrostates as the number of markings of the continuous process. In Figure 4 the
three macrostates are outlined by ellipses with the name of the marking depicted
nearby.
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Fig. 4. DTMC approximation of the SPN on Figure 2 with prd transition

In marking My only one EXP transition is enabled, so that memory does not need
to be maintained, and the macrostate has only one state, the state (0,¢). From this
macrostate only two arcs can exit, relating to the firing or not of the EXP transition.
Similar considerations can be done with reference to the marking M>. In this marking,
no transitions are enabled, thus no memory is needed.

Conversely, in marking M; an EXP and a GEN transition are enabled; then the
marking is expanded to describe the evolution of the GEN transition using the DPH.
The macrostate corresponding to this marking has the same number of states as the
number of phases of the DPH: the states with descriptor (1,u), with 1 < u < 4.
The absorbing state of DPH is not used to expand the marking into the macrostate,
because it represents the firing of the GEN transition (therefore a change into a new
marking). The states in the macrostate describe the evolution of the transition ¢3.

State (0, o) corresponds to the initial marking My shown in Figure 2. Because of
the presence of transition t;, in marking My only two events can occur in a time slot:
t1 does not fire, ¢; fires. Thus the state (0, ¢) has two outgoing arcs: one of them enters
the same state to model the event related to the fact that ¢; does not fire in §, the
other one produces a state change since it is related to the firing of ¢;. The firing of
t; produces a change in marking M, where the GEN transition ¢3 becomes enabled.



Since t3 is a prd transition, when it becomes enabled its age memory starts from
zero. This means that the DTMC enters the first phase of the DPH, in the example
the state with descriptor (1,1). Since a step of the DTMC corresponds to a time slot
of length 4, the one step probabilities of the two outgoing arcs model the firing or
not of the enabled EXP transition in an interval of length §. Using the first order
approximation for the exponential function it is easy to realize that: p(,c)—(1,1) =
P{t, fires |(0,0))} = 6 Ay and p(g,c)—s(0,0) = P{t1 does not fire [(0,0))} =1 =3 Ay,
where \; is the rate of the EXP transition #;.

As we have already said, the macrostate with states (1,u), with 1 < u < 4,
corresponds to the marking M;. The marking process remains in such marking till
one of the two transitions to or ¢3 fires. If both of them do not fire, the marking does
not change. This means that the DTMC stays into the macrostate, and only passages
between two phases of the DPH are possible. The one step probability must take into
account that the EXP transition does not fire, thus the probability between a state
with descriptor (1,u) to one with descriptor (1,v) is: p(1,u)—(1,0) = Puv(1 = X2)

The outgoing arcs from the macrostate are due to some firing: when t5 fires, the
DTMC goes to a state with descriptor (0,¢), because this firing causes the marking
process to go to the marking My; whereas the firing of #3 is described from the
arcs towards the absorbing phase of the DPH, so that two arcs from states with
descriptors (1,2) and (1,4) towards the state with descriptor (2, ¢) are used. The one
step probability is easily computed with reference to the firing events and to the DPH
structure. The only thing to note is that in a time slot § both transitions ¢ and ¢3 can
fire, then the simultaneous firing event has to be considered. In the case when both
transitions fire in the same time slot, we uniformly distribute the probability of firing
between the two possible destination states with descriptor (1,¢) and (3,¢). This is
where the factors Pas § % and Py5 6 % come from. This problem will be extensively
discussed in Section 4.

3.2 SPN with one generally distributed prs transition

If the GEN transition is associated with a prs policy, the DTMC structure has to be
organized in order to keep track of the amount of time the prs transition spent in an
enabled condition before being preempted. This is because the transition has to restart
with the same age memory value once it becomes enabled again. For this purpose, a
different expanded DTMC is needed. Figure 5 shows the DTMC that approximates
the stochastic behavior of the SPN depicted in Figure 2 when t3 has a prs memory
policy.

The only difference with regard to the prd case is the macrostate related to the
marking My. With a prs policy, four states with descriptors (0,u), with 1 < u < 4,
are added to the macrostate. The purpose of these descriptors is remembering the
value of the age memory of transition ¢35 when it is disabled by the firing of the EXP
transition ts.

Thus, from each state with descriptor (1, ), with 1 < u < 4, the DTMC can transit
either to the state with descriptor (0,u) (with one step probability p(1 u)—(0,u) =
Pyud)2) or to the state with descriptor (0,u + 1), where 1 < u < 3 (with probability
P(1,u)—(0,u+1) = Pu(us1)0A2)-

Of course, transition ¢3 cannot fire from any of the states corresponding to marking
My, as it is not enabled in such marking. ;From each of these states it is possible
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Fig. 5. DTMC approximation of the SPN with prs transition

either to exit with probability p(o u)—1,u) = A1, with u = 1,2,3,4, when transition
ta fires, or to remain in the same state with probability p( u)—(0,u) = 1 — dA1, with
uw=1,2,3,4, when t5 does not fire in a time slot 4.

The same considerations made with regard to the firing of t3 with a prd policy are
valid in this case.

3.3 SPN with one generally distributed pri transition

If a pri policy is assumed for the GEN transition ¢3, an interrupted job must be
repeated with an identical work requirement. To capture the stochastic behavior of
this case, a different expanded DTMC is constructed.

To model a transition ¢; with an associated pri preemption policy, the following
quantities are computed Q¥ = F¥(i§) — F¥((i — 1)d). Q¥ derives from the firing
time distribution F*(t) of transition #;, and approximates the firing probability of
transition ¢ in the i-th § interval. For making the model solvable in practice, the
firing time distribution of a pri transition is supposed to have finite support, in order
to avoid the computation of an infinite number of nonzero Q¥ values, and to construct
an approximate discrete process with infinite state space. Let us denote the number
of nonzero Q¥ quantities with ¢*; it depends on 4, and its value is ¢* = %, where d*
is the length of the support of the firing time probability distribution function F*(t).
In case of infinite support, a truncation of F*(¢) may be used.

The stochastic behavior of an enabled pri type transition is described by two
continuous variables: the actual sample of the firing time and the remaining firing
time, or alternatively, the actual sample of the firing time and the amount of time
during which the transition has been enabled. In the proposed expansion method, the
descriptor (i,u,w) with v < w is used in order to describe the state of the process,
where i indicates the marking, u indicates the duration of time while the transition
is enabled (measured in integer numbers of time slots §), and w is the sampled value
(measured in integer numbers of time slots §). The descriptor (7,0, w) indicates that
the pri transition is disabled but it has not fired, so that the sampled firing time w
is maintained; after becoming enabled again, the process enters state (i,1,w). The



descriptor (i, ¢, ¢) is used for states where the process has no memory. In other words,
the marking itself completely determines the state of the process.

The evolution of the GEN transition #; with pri memory policy in isolation can
be described by ¢* columns. The w-th column consists of w states with descriptors
(i,u,w), where 1 < u < w. Recalling that w is the sampled firing time, when the
discrete process enters a state with descriptor (1,1, w), w slots of time have to pass
before the firing. This is exactly the time spent to transit among the states of the
column.

Figure 6 shows the DTMC that approximates the behavior of the SPN shown in
Figure 2. In this case, the macrostate corresponding to the marking M; consists of
the states approximating the GEN transition t3, as described before. From the state
with descriptor (0, ¢, ¢), the DTMC enters the macrostate corresponding to marking
My, and specifically the column selected according to the probability Q.. Since this
happens if the EXP transition ¢; fires in a time slot, the one step probability is:
P0,0,0)—=(1,1,w) = Qw1

The macrostate referred to the marking My has ¢ states with descriptor (0,0, w)
reached by the DTMC when the GEN transition is disabled by the firing of the
conflicting transition 5. These states are used to remember the correct sampled firing
value, so when the GEN transition is enabled again the correct column is reached. The
one step probabilities between two states in this macrostate are computed according
to the firing events related to the EXP transition to, also enabled in marking M, as
in the other cases.

The GEN transition t3 fires when v = w in the descriptor. When this happens,
the DTMC transits in the state with descriptor (2, ¢,©).

4 General solution

In the last three subsections we have described a method to build a DTMC to ap-
proximate the stochastic behavior of Petri Nets containing only one GEN transition.
Using a similar approach, in this section we show how to derive the underlying DTMC
for SPNs with more than one GEN transitions simultaneously enabled. A similar idea
can be followed to deal with the case of more EXP transitions simultaneously enabled
in the same time slot §. The following notation has to be introduced:

— NP NS and N' is the number of prd, prs and pri transitions in the SPN, respec-
tively;

— AP(i), A%(i) and AL(i) are the set of enabled prd, prs, pri GEN transitions in
marking M;, respectively;

- Pi’fj is the probability of moving from phase ¢ to phase j in the DPH structure of
the transition #y; it describes how a prd or prs GEN transition changes its phase;

— Q¥ is the approximated probability that the pri GEN transition #; fires in the
i-th § interval;

— Ly is the number of phases in the DPH structure of the prd or prs transition tg.

As already discussed, we need one variable to handle transitions with prd and
prs policy (to store the current phase of the expanded DTMC), and two variables
to handle transitions with pri policy (one to store the age of the transition, and the
other to store the sampled value of the firing time).



Fig. 6. DTMC approximation of the SPN with pri transition

When a pri transition gets enabled, the associated random variable is sampled and
the age variable is set to 1 2. If the pri transition gets preempted in the next state,
the age variable is reset to 0 and the associated sampled value remains the same.

Thus a generic state of the DTMC will be Z" = (j, D", S",I", X"), where

— j is the index of marking M; of the SPN;

— D" is a vector of length ||T||, the number of the transitions in the SPN, storing
the phases in which a prd transition is allowed to be; in particular, its k-th element
(Dy) is the phase of transition ¢, when the DTMC is in the state Z"; the sign o
in the k-th position indicates that the prd GEN transition ¢; has no memory (it
is not enabled).

— 8" is the same as D" but for prs GEN transitions; SI = ¢ means that the prs
transition t; is not active, thus it has no memory;

— I" is a vector of length ||7||. The k-th element of I" (I}) is the age of the pri
GEN transition t; when the DTMC is in the state Z"; similarly to the case of prs
transitions, I}, = ¢ indicates that transition #; is not active;

— X" is a vector whose k-th element (X]) is the sampled value of the pri GEN
transition ¢, when the DTMC is in the state Z".

2 Note that as time increases by 8, at step ¢ the total elapsed time is ¢ * §. This explains
why only the index indicating the time interval has to be recorded.



Given a state Z" = (i, D", 8", I", X") of the DTMC, we consider first the case
when none of the enabled transitions fires in a time slot §, and then we show the more
complex case when some firings occur.

4.1 Initial states and probability vector

When the algorithm starts to generate the approximated discrete process, a set of
initial states are created together with an initial probability vector. The number of
initial states depends on the transitions enabled in the initial marking Mj. The prd and
prs transitions are considered without memory when the process starts, thus, using
the assumption that the DPH distribution starts from the first phase, the memory
variables associated to these transitions are described by the following equations:

Do — {1 ty € AD(O) g0 — {1 ty € AD(O) (1)

k=) o otherwise ’ E 71 o otherwise

Instead, if pri transitions are enabled in the initial marking My, a set of states has
to be created to remember the different levels of sampled values Q¥, with ¢, € A%(0).
To explain how to build the initial states, a new notation has to be introduced. Let
¢* be the maximum value of XJ; ¢* is the number of different possible values, Q¥,
for the firing probability of ¢ (if the pri transition #; is not enabled in the marking
My, then ¢* = 0). The number of initially built states is s = [Tipcaro) ¢*, and each
of them corresponds to a different combination of the possible values assumed by Xj,.

To formally construct the descriptor, we define a function that associates each
possible state with an index starting from the values assumed by the components of
X. Let k; be the index of the I-th pri transition enabled in My (t, € A’(0)). With

this formalism the index is r = Zl‘:g(o)”*l (Xw, — 1)1

Vice versa given a value of index r, the combination that generated it can be
found. We denote this function v(r, ).

With these definitions, it is possible to describe all the components of the state
descriptors generated at the beginning. The different components of states Z" =
(i,D",8",I",X"), ¥r = 0,---,5 — 1 are the vectors D" = D° and 8" = §°,
whereas I" and X" assume the following value:

r_ J 1tk € AT(0) X7 = o(r,1(k)) ty € AT(0) (2)
k=) ¢ otherwise °’ E7 o otherwise

where [(k) is the position of transition t; among the enabled pri transitions in Mj.
The generic element of the initial probability vector is:

I1,(0) = H Qﬁ(r,l(k))’ Vr=0,---,s (3)

te €AL(0)

4.2 No firing

In this section we describe how to generate a new state of the expanded discrete
process starting from a given state of the expanded process itself, in the occurrence
of no firing of the enabled transitions.



Let Z" = (i,D",S",I", X") be a descriptor of state of the discrete process. Under
the assumption that no transition fires in a time slot § in M;, the marking of the
PN remains the same, and the DPH of the enabled transitions change their phase
accordingly to their description. This implies that the prd and prs enabled transitions
are not allowed to enter their absorbing state (phase change to the absorbing phase
means that the transition fires), and all the enabled pri transitions have an age value
less than the firing value originally sampled (I < X/). The phase of the disabled prd
transitions is indicated as ¢ (they have no memory), while a phase indicator exists for
the prs and pri transitions.

Let Z" = (i, D", S",I", X") be the descriptor of the actual considered state, and
zr = (i,D"I,S’J,IT’,XT’) the descriptor of the state we want to generate. Note
that the first component of the descriptor Z " is the same of Z" because no firing is
supposed and the marking does not change. The different components of the descriptor
Zr = (1, D’"I7 S’"I,IT’,X’"I) are built as follows:

v fa,1<a< Lyt € AP(i) ()
ko o tr & AP (i)

where @ = next(ty, D"), being next(t,p) a function that computes the index of a
phase of the DPH associated to transition ¢ reachable from the phase with index p.

Equation (4) means that a new phase (1 < a < Ly,) of the prd transitions enabled
in marking M; (t;, € AP gz)) is considered in the new state Z" . Otherwise (t; & AP (i))
the memory is reset (D, = o).

o b,leSthkGAS(i)
S R ®)

Equation (5) is very similar to the (4), but if in marking M; a prs transition is disabled
(tx & A°(i)), the same value of the memory is maintained (S} = S}).
The vectors for pri transitions are computed as follows:
o [ IE 4+ 1t € AT(i) —
I _{ Ity d AT(i) X =X}, (6)

These last two equations describe how to manage the two variables for the pri transi-
tions: the first one updates the age memory either incrementing it, if the transition is
enabled in marking M;, or maintaining the same value if the transition is not enabled
(note that I = o if transition has not memory, and I = 0 if it has memory but it is
not enabled); the second equation says that the residual time for the transition firing
is the same with respect to that in state Z", since it is not enabled.

The state transition probability from Z” to Z" in a time slot is computed as
the product of the probability that none of the EXP transitions will fire times the
probabilities that the prd and prs GEN transitions change their phase. This transition
probability can be expressed as follows:

— k l
Pyr_gr = H B r.or H B I (7)
kEAD (i) 1€AS (i)

~~

en. prd tr.-s en. prs tr.-s



Note that EXP transitions are represented with the DPH depicted Figure 3b, and
they are considered by the same standard as GEN transitions. Their presence is taken
into account in the equation (7) by the first term ( H B* p) of that equation.

keAD()) "
Below we will not make special considerations on the EXP transitions and we will
manage them by using the associated DPH.

4.3 Firing of one or more transitions

In this section we deal with the problem of one or more transitions firing in a time
slot 0. In order to address this goal, we decide first to identify the main steps and
then to proceed with their formal treatment. Assuming that the expanded DTMC is
in state Z”, we want to identify all the reachable states Z" and all the transitions
probabilities associated to the connecting arcs.

Given a state Z" = (i, D", S",I", X"), only a subset of the enabled transitions is
allowed to fire in a time slot 6. Transition t; € AP (i) (an enabled prd transition) can
fire if Pl’%;, 1, > 0, i.e. if the probability of immediately reaching the absorbing state

from phase DY is positive; similarly, a transition ¢, € A(i) can fire if Pg,’;,Lk >0.A

transition t; € A!(i) is allowed to fire if I} = X7}, i.e. if its age is equal to the sampled
firing time. We use these conditions to define the following set:

Fr={ti|(tr € AP(i) A Ppr ., > 0)V
(tr € AS(i) A Psr 1, > 0)V (8)
(tx € AT(i) AT} = X7)}

FT is the set of all the transitions that are allowed to fire when the process is in
state Z". The elements of this set, whose cardinality is ||F"||, can be grouped into
21771 — 1 different subsets, corresponding to all the possible combinations of the
transitions allowed to fire in marking M;. A generic subset of the F" will be indicated
as F,, with p=1,---, 217" — 1.

Considering the generic state Z™ = (j, D'J, s" , I , XT’) reachable from Z" when
the transitions belonging to ?; fire, the values of the components of its descriptor are
computed as follows:

, 1 te € (AP(j) N F,) U (AP ()\AP (i)
Dy =< a,1<a< Lyt € (AP()\F,) 9)
o otherwise

where, as in the equation (4), a = next(t, DZ’). The first term in the equation (9)
sets the phase of transition ¢; to 1 if ¢ fires in marking M; and is re-enabled in
marking M; (i.e. ty € AP(j) N F,), or it is not enabled in marking M; and becomes
enabled in marking M; (t; € AP (j)\\A”(i)); the second term updates the new phase
of the transition #; when it is not fired in marking M; (t;, € AP (i)\?;);

o tr € (F,\A9(j))
)1 tr € AS(j)NTF, (10)
b,1 <b< Ly ty € (A%(5) N AS(H)\F,
Sk otherwise



where b = next(ty, S}); in equation (10) the set 7—';\./45(]') identifies the transitions
fired in marking M; and not enabled again in marking M;, so they do not need to
maintain their memory (S = o); when transition ¢ becomes enabled (¢ € AS(j) N
?;), its phase is set to 1; when the transition is enabled in both the markings M;
and M; without firing (¢, € A°(i) N .A° (j))\?;) its memory is updated by changing
the phase of the associated DPH. In all the other cases, the same phase is maintained
(S;' = SI) because the transition is not enabled, but it is still active;

ot e (FA)
/ 1 the AT(H)NF,
Ip+1t, € (AT(i)n AI(j))\?;
Iy otherwise

(11)

Equation (11) describes the updating of the memory associated with a pri transition
t;. We recall that the vector I ™ stores the amount of time since when the transitions
are enabled (measured in time slots §). Thus, the k-th so one component is increased
by a unit (I;;’ = IT +1) when the corresponding transition ¢, remains enabled (A’ (i)N
Al(4 ))\?;) The other terms of equation (11) have the same meaning of those of the
equation (10);

(o te(MAG)
X, =Xz tpe (AL NW)V (ty € AL(j) A X] = 0) (12)
X otherwise

The equation (12) is introduced for considering the sampled firing values of the pri
transitions (the ¢* values introduced in section 4.1); also in this case the sampled
firing time is measured in time slots. The second term is referred to the enabling of
the pri transition ¢ either when it fires in marking M; and it becomes enabled again
(ty € AL(j) N ?;), or it becomes enabled in marking M; when it has no memory
((t € AL(4)) A (XJ = ©0)); when these conditions are true, the new descriptor must
store one of the ¢* possible sampled values from the cdf F*(-). The other two terms
are more trivial: the first term of the equation 12 is used when the process does not
need to maintain any memory on the evolution of the transition t; because it has
already fired and is not enabled again (, € F,\A’(j)); the third one is used to store
the memory of the process when t; is not enabled, but it is still active.

Due to the time discretization approach we have adopted, the cdf associated to
each timed transition will have a time discontinuity at the end of each time slot §.
Thus, if in marking M; several transitions are enabled, there is a non null probability
that they simultaneously fire. The probability that the transitions belonging to ?;
simultaneously fire can be expressed as follows:

[, = P{all transitions in?; fire | Z" } = H Pl%;’Lk H Péz’Lk
ke(F,NAP (i) Le(F,NAS (i)
(13)
Equation (13) does not include any reference to pri transitions Because, if pri
fire, their contribution to f; is equal to 1. This probability will cause the switching
from the generic marking M; (where the process is now) to a marking M. Since the
transitions in ?; may be in conflict, the marking M; is reached with a probability W;;



(the method to compute the reached marking M; and the probability W;; is deeply
analyzed in [18]).
The probability associated with the arc from Z” to Z" is evaluated as:

Py =pij [ Pppo II | ”
he (AP ()\F}) kE(AS ()NAS ()\F,, te Al (j)AXT =0
(14)
where each term has the following meaning;:

— pij = f, - Wij is the probability that the process arrives in marking Mj, starting
from marking M;, due to the firing of the transitions belonging to ?; in a time
slot of size §;

— the second (third) term takes into account the changing of phase of the enabled
prd (prs) transitions;

— the last term is used for considering the case that some pri transitions become en-
abled, thus a new value has to be sampled according to the associated distribution
function.

5 The algorithm

The algorithm is based on a discretization of the continuous random variables for
approximating the continuous process. The phase type distributions, used in case of
prd and prs GEN transitions, are given by the users, whereas the probabilities Q¥ are
directly computed from the cdf associated with the pri transition t.

The main steps of the implemented solution method are the following;:

1. generation of the reachability graph (with tangible and vanishing states) and
reduction of the reachability graph to tangible states only;

2. generation and analysis of the expanded DTMC;

3. evaluation of the final measures at the net level, based on the solution of the
expanded DTMC.

According to the results shown in the previous sections, given the reachability
graph and the discrete phase type distributions associated to the GEN transitions,
the elementary step 2 of the approximation method is as follows:

— Initialization Step
Initialization consists of creating the set of states originated in the initial marking
My. Equations (1), and (2) are used to compute these states; equation (3) is used
to compute the initial state probability vector on the generated states. Note that
if no pri transition is enabled in My, only one state is built in this step of the
algorithm. The created states are put in a list of states to expand (1ist_expand).
— Iteration Step
1. a state Z" to be expanded is extracted from the 1ist_expand list;
2. new expanded states Z" are computed in case of no firing events using the
equations (4), (5), and (6).
3. using equation (7) the transition state probabilities from Z” to Z " are com-
puted and stored;



4. all the states Z" , not previously created, are stored in 1ist_expand;

5. sets f;, withp=1,---, 21177 —1, are computed; according to these sets, other
reachable markings M; are computed, and expanded states Z " are built using
equations (9), (10), (11), and (12) (these states are the states associated to
the firing of some transitions);

6. using equation (14) the transition probabilities from Z" to Z" are computed
and stored;

7. all states Z", not previously created, are stored in 1ist_expand; the state Z"
is stored in another list named expanded;

8. if the list 1ist_expand is not empty, the algorithm proceeds with step 1,
otherwise it terminates.

Similarly to [9], the system behavior is approximated by a Discrete Time Markov
Chain (DTMC) over an expanded state space determined by the cross product of the
system states (the markings of the Petri net) and the discretized values of the asso-
ciated age variables. This approach is also closely related with the DPH expansion
method proposed by Cumani in [11]. The main difference is that, in this case, the sys-
tem behavior is approximated by an expanded DTMC while in the PH approximation
case an expanded CTMC is obtained. The present approach inherits some similarities
also from the supplementary variable approach [14], since the supplementary (age)
variables are constrained to assume values in a discretized set.

6 Numerical results

For testing the described method, two kinds of experiments were done:

1. in the first experiment a preemptive M/G/1/2/2 queue model, whose customer-
s belong to different user classes, was solved. This Petri net model belongs to
the MRSPN class and is analytically solvable; the results (transient analysis of
state probabilities) were compared with the solution obtained by solving the same
example using the Laplace transform method [5,4];

2. the second experiment involves the preemptive M/G/1/2/2 queue model again;
this time all the transitions in the model have a non exponentially distributed
firing time, but one, and the model cannot be solved with any of the available
analytical techniques. Thus the obtained results were validated by simulation.

The purpose of these experiments is to show that the results obtained by applying
the method described in the previous section can be compared with those produced
by other analytical solution methods, when available. Moreover, more general classes
of models, not analytically solvable by others techniques, can be studied. The tool
WebSPN? [15] was used to solve the models under exam.

6.1 Experiment 1 - Preemptive M/G/1/2/2 queue with different
customers

The SPN of Figure 7a models an M/G/1/2/2 queue in which the jobs submitted by
customer 2 have higher priority and preempt the jobs submitted by customer 1. The

8 The tool WebSPN is accessible through Internet at the address
http://sunl95.iit.unict.it /webspn
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Fig. 7. Preemptive M/G/1/2/2 queue with two classes of customers

associated reachability graph is shown in Figure 7b. Place P; (P;) represents customer
1 (2) thinking, while place P» (P;) indicates job 1 (2) under service. Transitions ¢
and t3 are EXP and model the submission of jobs of type 1 or 2, respectively. ¢5
is a GEN transition and represents the completion of service of the lower priority
job. Transition t4 models the service time of a higher priority job. Its firing time
is exponentially distributed. The inhibitor arc from P, to t» models the described
preemption mechanism: as soon as a type 2 job joins the queue, the type 1 job under
service (if any) is interrupted.

The server can adopt all kinds of preemption policies. Assuming a prd and prs
memory policy, the model was solved with the following numerical values:

— firing rate of the EXP transitions ¢; and t3: Ay = A3 = 0.5;

— the service times of both the lower and higher priority jobs (represented by
t2 and t4) are deterministically distributed with firing time 1.0;

— time slot: § = 0.05.

The results obtained solving the model either with inverse Laplace transform and
discrete expansion technique are depicted in Figure 8 a) and b) respectively. The
symbols X, %, ¢, and O are used to plot the results obtained with Laplace transform
method, whereas the continuous lines refer to the results obtained with the discrete
expansion approach.

From these graphs it is evident that the method works well and the results are
almost coincident with those computed with the inverse Laplace method, that is
extensively discussed in literature.

The model of Figure 7 was solved also assuming a pri policy associated to the
transition t5. The deterministic cdf was not used with pri policy because the behavior
of the preempted transition would be the same as in the prd case, since every time the
transition is preempted it loses its memory and remembers the sampled firing time.
But the possible firing time sampled by a deterministic cdf is always the same, thus
remembering the firing time has no effect. In this case, the firing time was uniformly
distributed between 0.5 and 1.0. The obtained results are depicted in Figure 8 c).
As in the previous cases (the prd and the prs cases) also this experiment produced
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Fig. 8. State probabilities of the Petri net of Figure 7 when ¢» has a prd (a), prs (b) and pri
(¢) memory policy

the same results of those obtained with the inverse Laplace method. The comparison
with the expansion method using CPH is not possible due to the fact that the pri
preemption policy cannot be modeled using the CPH approximation.

6.2 Experiment 2 - Preemptive M/G/1/2/2 queue with different
customers

The second experiment was done by assigning deterministically distributed firing time
to transition ¢3. In this case, in the state M; there are two transitions (¢2 and t3) with
generally distributed firing time, and this model cannot be solved using neither the
Markov regenerative theory nor the supplementary variable method. The results are
thus compared with those obtained from a simulator.

The following numerical value are used:

— firing rate of EXP transition t1: A; = 1.0;

— firing time of deterministic transition t3: 7 = 0.5;

— service time of lower (transition ¢») and higher (transition t4) priority job: uni-
formly distributed between 0.5 and 1.0.

Figure 9 shows the results obtained. The results of the simulation are depicted
as two dashed lines, identifying the interval of confidence (95%) of the computed
measure (the probability that the process is in state Mp). The continuous lines are
the results obtained with the discrete expansion approach. Also in this case the three
kind of policy are adopted for transition 2, and a § = 0.05 was used to discretize the



model. As it can be noted, the results of discretization are always inside the interval
of confidence computed by simulation, showing that the discrete expansion produces
a correct result.
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Fig. 9. State probabilities of the Petri net of Figure 7 when t» has a prd (a), prs (b) and pri
(¢) memory policy.

7 Conclusions

A numerical approach for the solution of NMSPNs has been proposed. It is based
on a discrete time approximation of the stochastic behaviour of the marking process,
which results in the possibility of analyzing a wider class of SPN models with prd,
prs and pri concurrently enabled generally distributed transitions. In case of prd, prs
policies distributions with infinite support are considered, for pri policy the firing
distribution is limited to finite support distributions. We obtained that a pri type
transition, which can be described, in transform domain, by the inclusion of a single
transform variable [4], requires the inclusion of 2 memory variables in time domain.
This explains why the representation of pri transitions is quite expensive.

We discussed the way the time-discretization algorithm works both in the case of
only one general transition in the model and also when an arbitrary number of GEN
transitions are simultaneously active.

The described algorithm has been implemented and embedded in the WebSPN
tool, for specification and automatic solution of non-Markovian SPN. Due to the use
of the Java programming language, WebSPN ([15]) is easily accessible from any node
connected with the Internet as long as it possesses a Java-enabled Web browser.
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