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Abstra
t

This paper provides a heuristi
 �tting method to 
apture some important features of

real traÆ
 sour
es by a MAP. The novelty of the proposed approa
h lies in the separate

treating of short and long range behavior of the 
onsidered traÆ
 sour
es. The proposed

MAP is the superposition of two elementary pro
esses. A Phase type renewal pro
ess,

whose interarrival time exhibits heavy-tail behavior over some time s
ales, is used to


apture the long range dependent behavior, i.e., the empiri
al Hurst parameter. While an

IPP is applied to approximate the short range behavior. Di�erent analysis te
hniques are

used to evaluate the goodness of the proposed �tting method.

Keywords: TraÆ
 sour
e models, Self-similarity, Markovian Arrival pro
esses (MAP),

short and long range behavior.

1 Introdu
tion

TraÆ
 measurement on real high speed networks 
arrying the data pa
kets of various appli-


ations shows high variability and burstiness of the traÆ
 pro
ess over several time s
ales

(referen
es to many measurment studies may be found in [14℄). It is 
ommonly assumed

that Markovian models are not appropriate to 
apture this \burst in burst" behavior and

other models are proposed in the literature, e.g., fra
tals, multifra
tals [2℄. These models are

analyti
ally hardly tra
table and often 
omputationally expensive. The analyti
al tra
tabil-

ity of Markovian models initiated a resear
h e�ort to approximate real traÆ
 behavior with

Markovian models.

A �rst step in this dire
tion was the approximation of heavy-tail distributions by Phase

type ones. It was shown that general PH �tting methods performs poorly in tail �tting [5℄,

while spe
i�
 heuristi
 methods 
an provide a tight tail �tting over several orders of magnitude

even for heavy-tail distributions [3℄. It was also re
ognized [9, 12℄ that Phase type renewal

pro
esses (i.e., renewal pro
esses with PH distributed interarrival time) with heavy-tail behav-

ior over some orders of magnitude exhibits some features shown by real traÆ
 measurements.

The 
ommonly applied tests used for evaluating the Hurst parameter (varian
e-time plot,

R/S plot) show long range dependen
e of these PH renewal pro
esses. In this paper a �t-

ting method is proposed to approximate any traÆ
 pro
ess with a Markovian arrival pro
ess

(MAP) that intends to 
onsider not only the long range traÆ
 behavior but also some of the

short range ones.

A general approa
h of MAP �tting 
onsists of de�ning an appropriate distan
e measure

over the set of arrival pro
esses, and minimizing the de�ned measure with respe
t to the

�nite number of MAP parameters. Unfortunately, it is still an unsolved problem what 
ould

be an appropriate distan
e measure that re
exes those features of a traÆ
 pro
ess that play

�
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important role in tele
ommuni
ation engineering. Due to the la
k of 
ommonly a

epted

appropriate distan
e measure and also to 
ontribute to the resear
h of 
hara
terizing the

pra
ti
ally important features of traÆ
 pro
esses we followed a di�erent approa
h. We 
hoose

a given set of traÆ
 parameters and 
ompose a MAP that exhibits the same (or 
lose) traÆ


parameters. The set of traÆ
 parameters is su
h that both long and short range behavior is


onsidered. The long range behavior is �tted through the Hurst parameter, while the short

range behavior is approximated by �tting the index of dispersion (IDC) parameter at some

time points.

The rest of the paper is organized as follows. Se
tion 2 provides a short summary on the

ba
kground of traÆ
 pro
esses. Se
tion 3 introdu
es the MAP �tting method, while Se
tion

4 investigates the goodness of �tting. The paper is 
on
luded in Se
tion 5.

2 De�nitions

The analysis of traÆ
 pro
esses are based on one of the following two approa
hes. When

detailed information is available on the exa
t arrival instan
es (Y

i

) with inter-arrival series

Z

i

= Y

i

� Y

i�1

; then Z = fZ

i

; i � 1g is used to 
hara
terize the arrival pro
ess. It is assumed

that Y

0

= 0 and Y

n

=

P

n

i=1

Z

i

. It is also possible to 
onsider the number of arrivals in the (0; t)

interval, N

t

= max

i

(Y

i

< t) and to use the 
ontinuous time 
ounting pro
ess N = fN

t

; t � 0g.

There are 
ases when the exa
t arrival instan
es are not known, only the number of arrivals

in 
onse
utive time intervals. Considering intervals of length �, the number of arrivals in the

ith interval, X

i

, is X

i

= #fY

k

2 (i�; (i + 1)�)g. X = fX

i

; i = 0; 1; : : :g is a dis
rete-time

sto
hasti
 pro
ess. Its aggregated pro
ess is de�ned as follows:

X

(m)

= fX

(m)

i

g = f

X

1

+ : : :+X

m

m

; : : : ;

X

mk+1

+ : : :+X

(m+1)k

m

; : : :g

The auto
orrelation fun
tion of X

(m)

is:

r

(m)

(k) =

Ef(X

(m)

n

�E(X

(m)

)) � (X

(m)

n+k

�E(X

(m)

))g

Ef(X

(m)

n

�E(X

(m)

))

2

g

Then X is

a) exa
tly self-similar if X

d

= m

1�H

X

(m)

, i.e., if X and X

(m)

are identi
al within a s
ale fa
tor

in �nite dimensional distribution sense.

b) exa
tly se
ond-order self-similar if r

(m)

(k) = r(k); 8m ; k � 0


) asymptoti
ally se
ond-order self-similar if r

(m)

(k)! r(k); (k;m!1)

where H is the Hurst parameter, also referred to as the self-similarity parameter.

The pro
ess X exhibits long-range dependen
e (LRD) of index � if its auto
orrelation

fun
tion 
an be realized as:

r(k) � A(k)k

��

; k !1

where A(k) is a slowly varying fun
tion at in�nity, i.e., A(tk)=A(k) ! 1; t > 0; k !1.

Having only a �nite number of samples from real traÆ
 it is impossible to 
he
k the pres-

en
e of self similarity or LRD. In pra
ti
e pseudo self-similarity may be 
he
ked by statisti
al

tests. An overview of tests may be found in [1℄.
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2.1 Varian
e-time plot

One of the tests for pseudo self-similarity is the varian
e-time plot. It is based on the fa
t

that for self-similar time series fX

1

;X

2

; : : :g

Var(X

(m)

) � m

��

; as m!1; 0 < � < 1

The varian
e-time plot depi
ts Log(Var(X

(m)

)) versus Log(m). For pseudo self-similar time

series, the slope of the varian
e-time plot �� is greater than �1. The Hurst parameter 
an

be 
al
ulated as H = 1 � (�=2). A traÆ
 pro
ess is said to be pseudo self similar when the

empiri
al Hurst parameter is between 0:5 and 1.

2.2 R/S plot

The R/S method is one of the oldest tests for self-similarity, it is dis
ussed in detail in [6℄. For

interarrival time series, Z = fZ

i

; i � 1g, with partial sum Y

n

=

P

n

i=1

Z

i

, and sample varian
e

S

2

(n) =

1

n

n

X

i=1

Z

i

2

�

1

n

2

� Y

2

n

;

the R/S statisti
, or the res
aled adjusted range, is given by:

R=S(n) =

1

S(n)

�

max

0�k�n

�

Y (k)�

k

n

Y (n)

�

� min

0�k�n

�

Y (k)�

k

n

Y (n)

��

:

R=S(n) is the s
aled (by

1

S(n)

) di�eren
e between the fastest and the slowest arrival period


onsidering n arrivals. For stationary LRD pro
esses R=S(n) � (n=2)

H

. To determine the

Hurst parameter based on the R/S statisti
 the data set is divided into blo
ks, log[R=S(n)℄

is plotted versus log n and a straight line is �tted on the points. The slope of the �tted line

is the estimated Hurst parameter.

It is important to note that the introdu
ed statisti
al tests of self- similarity, based on a

�nite number of samples, provides an approximate value of H only for the 
onsidered range of

s
ales (log n). Nothing 
an be said about the higher s
ale and the asymptoti
 behavior based

on these tests.

3 A MAP �tting method

In this se
tion a pro
edure is given to 
onstru
t a MAP su
h a way that some parameters of

the traÆ
 generated by the model mat
h prede�ned values. The following parameters are set:

� The fundamental arrival rate E(N

1

) des
ribes the expe
ted number of arrivals in a time

unit.

� In order to des
ribe the burstiness of the arrival stream the index of dispersion for 
ounts

I(t) = Var(N

t

)=E(N

t

) is set for two di�erent values of time: I(t

1

) and I(t

2

). The 
hoi
e

of these two time points signi�
antly a�e
ts the goodness of �tting. This issue will be

dis
ussed in Se
tion 4.

� The degree of pseudo self-similarity is de�ned by the Hurst parameter H. The Hurst

parameter is realized in terms of the varian
e-time behavior of the resulting traÆ
, i.e.,

the straight line �tted by regression to the varian
e-time 
urve in a prede�ned interval

(L

1

; L

2

) has slope 2(H � 1).

The MAP resulting from our pro
edure is the superposition of a PH arrival pro
ess and an

Interrupted Poisson Pro
ess (IPP). In the following we shows how to 
onstru
t a PH arrival

pro
ess with pseudo self-similar behavior, des
ribe the superposition of the PH arrival pro
ess

with an IPP, and �nally provide the proposed �tting algorithm itself.

32/3



1e-05

0.0001

0.001

0.01

0.1

1

10

1 10 100 1000 10000 100000 1e+06 1e+07
V

ar
ia

nc
e

Aggregation level

PH renewal, H=0.8
PH renewal, H=0.7
PH renewal, H=0.6

Figure 1: Varian
e-time plot of pseudo self similar arrival pro
esses with i.i.d. PH interarrival

3.1 Pseudo self-similar PH arrival pro
ess

Let us 
onsider an arrival pro
ess whose interarrival times are independent random variables

with heavy-tail probability density fun
tion (pdf) of Pareto type

f(x) =


 � a




(x+ a)


+1

; x � 0: (1)

The pro
ess X

n

(n > 0) representing the number of arrivals in the nth timeslot is asymptoti-


ally se
ond-order self-similar with Hurst parameter ([13℄):

H =

3� 


2

: (2)

Feldmann and Whitt propose a heuristi
 �tting algorithm in [3℄ to approximate heavy-tail

distributions by Phase Type (PH) distributions. Using their method one may build an arrival

pro
ess whose interarrival times are independent, identi
ally distributed PH random variables

with pdf approximating (1). In order to show that this arrival pro
ess exhibits pseudo se
ond-

order self-similarity, let us re
all some properties of MAPs from [7℄. Having a PH distribution

with initial probability ve
tor b and generator T, the 
orresponding PH arrival pro
ess may

be des
ribed with MAP notation as C

PH

= T and D

PH

= T

0

b with T

0

= �Te, where e

denotes the 
olumn ve
tor of 1s. The varian
e of the number of arrivals in the interval (0; t)

is given by

V ar(N

t

) =

�

2

� �

2

1

�

3

1

t+ 2b

h

I� e

(C

PH

+D

PH

)t

i

�

�

�2

1

C

�2

PH

e+

1

2

�

�3

1

�

2

C

�1

PH

e

�

; (3)

where �

i

denotes the ith moment of the PH interarrival time distribution and is given by

�

i

= (�1)

i

i! b T

�i

e: (4)

The varian
e of the aggregated arrival pro
ess X

(m)

may be expressed as

V ar(X

(m)

) =

V ar(N

m�

)

(m�)

2

; (5)

where � is the length of a timeslot.

To 
he
k pseudo self-similarity of PH renewal pro
esses Figure 1 plots V ar(X

(m)

) of PH

arrival pro
esses whose interarrival time is a 6 phase PH approximation of the pdf given in
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(1) for di�erent values of 
. As it 
an be observed V ar(X

(m)

) is 
lose through several orders

of magnitude to the straight line 
orresponding to the self-similar 
ase with slope 2(H � 1).

The aggregation level where V ar(X

(m)

) drops 
ompared to the straight line may be in
reased

by 
hanging the parameters of the PH �tting algorithm.

3.2 Superposition of the PH arrival pro
ess with an IPP

The superposition of a PH arrival pro
ess with an Interrupted Poisson Pro
ess (IPP) results in

a MAP. In order to have the desired parameters for the MAP resulting from the superposition

the following equations have to hold for the IPP:

E

IPP

(N

1

) = E(N

1

)�E

PH

(N

1

); (6)

V ar

IPP

(N

t

1

) = I(t

1

)E(N

t

1

)� V ar

PH

(N

t

1

); (7)

V ar

IPP

(N

t

2

) = I(t

2

)E(N

t

2

)� V ar

PH

(N

t

2

): (8)

The latter two equations are the 
onsequen
e of the fa
t that the index of dispersion I(t) for

the superposed model may be written as

I(t) =

V ar

PH

(N

t

) + V ar

IPP

(N

t

)

(E

PH

(N

1

) +E

IPP

(N

1

))t

: (9)

The IPP may be des
ribed by MAP notation as

C

IPP

=

"

�r

1

� � r

1

r

2

�r

2

#

; D

IPP

=

"

� 0

0 0

#

: (10)

The mean number of arrivals of the IPP is given as

E(N

t

) =

�r

2

r

1

+ r

2

t; (11)

while its varian
e may be expressed as

V ar(N

t

) =

 

�r

2

r

1

+ r

2

+

2�

2

r

1

r

2

(r

1

+ r

2

)

3

!

t�

2�

2

r

1

r

2

(r

1

+ r

2

)

4

�

1� e

�(r

1

+r

2

)t

�

: (12)

Let us denote r

1

+ r

2

by S and r

1

=r

2

by Q. Substituting (11) and (12) into the equations

des
ribing the requirements on the IPP ((6), (7) and (8)) and manipulating the resulting set

of equations one may arrive to the following impli
it expression for S and Q

S =

K(1� e

�St

2

)� (1� e

�St

1

)

Kt

2

� t

1

; (13)

Q =

S

2

(V ar(N

t

1

)� t

1

E(N

1

))

2E(N

1

)

2

(e

�St

1

+ St

2

� 1)

; (14)

where

K =

V ar(N

t

1

)� V ar

PH

(N

t

1

)� t

1

(E(N

1

)�E

PH

(N

1

))

V ar(N

t

2

)� V ar

PH

(N

t

2

)� t

2

(E(N

1

)�E

PH

(N

1

))

: (15)

Applying �x point iteration S may be found by (13) and than Q is given by (14). Having S

and Q the transition intensities are simple given by

r

1

= S �

S

Q+ 1

; r

2

=

S

Q+ 1

; (16)
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while the arrival intensity 
an be found as

� = (1 +Q)E(N

1

): (17)

The MAP resulted as the superposition of a PH arrival pro
ess (with des
riptors C

PH

,

D

PH

) and an IPP (C

IPP

, D

IPP

) has des
riptors

C = C

PH

�C

IPP

; D = D

PH

�D

IPP

; (18)

where � stands for the Krone
ker sum.

3.3 The applied �tting algorithm

Before putting down the �tting algorithm we introdu
e how the alteration in the parameters

of the PH arrival pro
ess a�e
ts the resulting MAP:

� The Pareto type pdf (1) that is approximated by a PH distribution has mean a=(
� 1).

Even if the �tting method of Feldmann and Whitt [3℄ does not preserve the mean,

in
reasing a in
reases the mean of the approximating PH distribution, and so that

de
reases E

PH

(N

1

). A

ording to our experien
es in
reasing a de
reases V ar

PH

(N

t

) as

well. The PH �tting may result in su
h E

PH

(N

1

), V ar

PH

(N

t

1

) and V ar

PH

(N

t

2

) that

the requirements in (6), (7) and (8) are not feasible, this situation may be resolved by


hanging a. Experiments suggest E(N

1

)(
� 1) � 2 as an initial value for a, whi
h means

that approximately every 2nd arrival arises from the PH arrival pro
ess.

� Parameter 
 of the Pareto type pdf (1) is used to set the Hurst parameter of the arrival

pro
ess. An appropriate initial value for 
 is given by (2) as 
 = 3 � 2H. Superpos-

ing the PH arrival pro
ess with the IPP may 
hange the degree of self-similarity of

the superposed model. The prede�ned Hurst parameter may be rea
hed by adjusting

appropriately 
.

� Using the �tting method of Feldmann and Whitt one has to de�ne the limit of tail �tting

L

fit

, i.e., the time point until whi
h the pdf of the PH distribution follows the Pareto

pdf. The higher the limit for the tail �tting the longer the PH arrival pro
ess exhibits

self-similar nature in terms of the varian
e-time plot. This fa
t is depi
ted in Figure 3

with Hurst parameter 0:9; all the three PH arrival pro
esses have 6 phases. As a rule

L

fit

= L

2

=10 seems to be a good 
hoi
e.

� The e�e
t of the 
hoi
e for the number of phases of the approximating PH distribution

(D) is illustrated in Figure 2. Having a large value for the limit of tail �tting, low

number of phases may lead to an irregular behavior in terms of the varian
e-time plot.

Based on the above 
onsiderations the applied MAP �tting algorithm is the following:

1. Set initial values as

a = E(N

1

)(
� 1) � 2, 
 = 3� 2H, L

fit

= L

2

=10,

if (L

2

� 10

4

) D = 4,

if (10

4

< L

2

� 10

6

) D = 6,

if (10

6

< L

2

) D = 8.

2. Perform PH �tting.

3. If (6), (7) and (8) are not feasible 
hange a a

ordingly and go ba
k to 2.

4. Compute the IPP parameters based on (13), (14), (16) and (17).
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5. Che
k the Hurst parameter by applying regression in the interval (L

1

; L

2

) to the varian
e-

time plot of the superposed MAP. De
rease (in
rease) 
 if the a
tual Hurst parameter

is lower (greater) than the desired value.

Sin
e not all 
ombinations of the input parameters may be realized the implementation of

the algorithm has to be 
omplemented by some 
he
ks to re
ognize these situations.

4 Appli
ation of the �tting pro
edure

The �tting method des
ribed in the previous se
tion was applied to approximate two real

measured traÆ
 tra
es. The tra
es are taken from the WEB site 
olle
ting traÆ
 tra
es [15℄

and they are 
alled BC and de
-pkt. We studied the �rst data set of these 
olle
tions. These

tra
es are analyzed in [4℄ and [11℄.

Varian
e-time plots of the traÆ
 generated by the MAPs resulted from �tting for the �rst

tra
e are depi
ted in Figure 4. The length of the interval � that is used to generate the series

X = fX

i

; i = 0; 1; :::g equals the expe
ted interarrival time. The 
urve signed by (x

1

; x

2

)

belongs to the �tting when the �rst (se
ond) time point of �tting the IDC value, t

1

(t

2

), is x

1

(x

2

) times the expe
ted interarrival time. The Hurst parameter of this tra
e (approximated

by the varian
e-time plot) 
onsisting of one million arrivals is 0.8367. The interval (L

1

; L

2

) is

(10; 5 � 10

5

) for the �rst three �tting, while it is (500; 5 � 10

5

) for the last one. For the last

�tting the interval had to be 
hanged be
ause the time point at whi
h the IDC is set is so

high that the IPP destroys the pseudo self-similar nature of the PH arrival pro
ess and the

algorithm 
an not provide the desired Hurst parameter.

Sin
e setting the IDC at a time point implies that the varian
e of the aggregated pro
ess

is set at that time point as well. It 
an be observed in Figure 4 that the method is not 
apable

of setting the IDC at t

2

. The variation of this traÆ
 tra
e for low values of t

2

is lower than

the limit of this stru
ture. The IDC at t

2

was set as 
lose as possible to the IDC of the real

sour
e.

R/S plots of the traÆ
 tra
es generated by the MAPs are plotted in Figure 6. Visual

inspe
tion suggests that for both the varian
e-time and R/S plot running the �tting algorithm

with low values of t

1

and t

2

results in a 
lose �tting of the real traÆ
 tra
e behavior.

The se
ond tra
e 
onsisting of about 2 million arrivals has Hurst parameter 0.8012 given

by the varian
e-time test. The interval (L

1

; L

2

) is set as for the �rst tra
e. For this data set

the algorithm is able to set the IDC at both time points t

1

and t

2

exa
tly. Figure 5 shows the

varian
e-time plots for the MAPs resulted from the �tting. R/S plots of the tra
es generated

by the MAPs are depi
ted in Figure 7.
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e

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 10 100 1000 10000 100000 1e+06

lo
g1

0(
R

/S
(n

))

n

Original trace
(1,2)
(1,5)

(1,10)
(1,20)

Figure 7: R/S plots of MAPs with di�erent

time points of IDC mat
hing for the se
ond

tra
e

The �tting of the tra
es were tested by a �/D/1 queue, as well. The results are depi
ted

in Figure 8 and 9. The �/D/1 queue was analyzed by simulation with 80 % utilization of the

server. As one may observe the lower t

1

and t

2

the longer the queue length distribution follows

the original one. The experiments suggests that the pair E(Y

i

), 2E(Y

i

) is a good 
hoi
e for

t

1

and t

2

. The 
umulative distribution fun
tion (
df) whi
h is important when 
al
ulating

loss probabilities is depi
ted in Figure 10 for the �rst tra
e. The 
df resulted by the original

traÆ
 tra
e 
rosses the 
df resulted by the MAP at about 140. This means that below 140

the MAP gives pessimisti
 results while over 140 it gives optimisti
 ones.

In the following we 
ompare �tted MAP models to fra
tional Brownian motion (FBM)

sour
es. The FBM is a self-similar 
ontinuous time 
ontinuous valued sto
hasti
 pro
ess

whose in
rement is fra
tional Gaussian noise [8℄. As a traÆ
 sour
e model it is de�ned by

three parameters: the mean input rate (E(N

1

)), the varian
e parameter (V ar(N

1

)), and the

self-similarity parameter (H). One way to use FBM as a traÆ
 model is to 
onsider its

in
rements in subsequent intervals as the amount of data arrived to the network. To 
ompare

the FBM sour
e with a MAP the in
rements has to be rounded to an integer value and

negative values has to be substituted by 0. This way we are given the number of arrivals in

ea
h timeslot. For queuing analysis the arrival instan
es have to be given. Given the number

of arrivals in an interval, we assume that the arrival instan
e of ea
h arrival is distributed

uniformly in the interval. We used the method des
ribed by Paxson [10℄ to generate FBM

traÆ
. The parameters of the traÆ
 were E(N

1

) = 5, V ar(N

1

) = 50 and H = 0:8. Figure 11

gives varian
e-time plots for the �tted MAP models for di�erent timepoints of setting IDC,
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Figure 9: Queue length distribution for the

se
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Figure 10: 
df of the queue length for the �rst

tra
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Figure 11: MAPs with di�erent timepoints

of IDC mat
hing for the traÆ
 generated by

FBM

while Figure 12 depi
ts the queuing experiments with 80 % utilization. In Figure 13 one may

observe how the varian
e-time plot of the arrival tra
es generated using a MAP approa
hes the

analyti
ally 
omputed varian
e-time plot as the number of the generated arrivals in
reases.

5 Con
lusion

The paper presents a heuristi
 MAP �tting method that �ts some short and long range de-

pendent parameters of the 
onsidered traÆ
 pro
ess. The goodness of the �tting pro
edure is

evaluated by 
ommonly applied statisti
al tests and by the queue length distribution generated

by the traÆ
 pro
esses.

The proposed �tting method provides a MAP whose �tted parameters are the same as

the one of the original traÆ
 pro
ess (or very 
lose), but the applied statisti
al tests and

the queue length distribution does not show a perfe
t mat
h whi
h means that other traÆ


parameters play also role in the traÆ
 behavior. Further resear
h is planned to investigate

the e�e
t of di�erent parameters of traÆ
 pro
esses, and to �nd a dense but representative

des
ription of important traÆ
 features.
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