
A MAP Fitting Method to Approximate Real TraÆ Behavior

�

Andr�as Horv�ath

[1℄

, Gerg}o Istv�an R�ozsa

[2℄

, Mikl�os Telek

[2℄

[1℄

Department of Informatis, University of Turin, e-mail: horvath�di.unito,it

[2℄

Department of Teleommuniations, Budapest University of Tehnology and Eonomis

e-mail: fgergo,telekg�pyxis.hit.bme.hu

Abstrat

This paper provides a heuristi �tting method to apture some important features of

real traÆ soures by a MAP. The novelty of the proposed approah lies in the separate

treating of short and long range behavior of the onsidered traÆ soures. The proposed

MAP is the superposition of two elementary proesses. A Phase type renewal proess,

whose interarrival time exhibits heavy-tail behavior over some time sales, is used to

apture the long range dependent behavior, i.e., the empirial Hurst parameter. While an

IPP is applied to approximate the short range behavior. Di�erent analysis tehniques are

used to evaluate the goodness of the proposed �tting method.

Keywords: TraÆ soure models, Self-similarity, Markovian Arrival proesses (MAP),

short and long range behavior.

1 Introdution

TraÆ measurement on real high speed networks arrying the data pakets of various appli-

ations shows high variability and burstiness of the traÆ proess over several time sales

(referenes to many measurment studies may be found in [14℄). It is ommonly assumed

that Markovian models are not appropriate to apture this \burst in burst" behavior and

other models are proposed in the literature, e.g., fratals, multifratals [2℄. These models are

analytially hardly tratable and often omputationally expensive. The analytial tratabil-

ity of Markovian models initiated a researh e�ort to approximate real traÆ behavior with

Markovian models.

A �rst step in this diretion was the approximation of heavy-tail distributions by Phase

type ones. It was shown that general PH �tting methods performs poorly in tail �tting [5℄,

while spei� heuristi methods an provide a tight tail �tting over several orders of magnitude

even for heavy-tail distributions [3℄. It was also reognized [9, 12℄ that Phase type renewal

proesses (i.e., renewal proesses with PH distributed interarrival time) with heavy-tail behav-

ior over some orders of magnitude exhibits some features shown by real traÆ measurements.

The ommonly applied tests used for evaluating the Hurst parameter (variane-time plot,

R/S plot) show long range dependene of these PH renewal proesses. In this paper a �t-

ting method is proposed to approximate any traÆ proess with a Markovian arrival proess

(MAP) that intends to onsider not only the long range traÆ behavior but also some of the

short range ones.

A general approah of MAP �tting onsists of de�ning an appropriate distane measure

over the set of arrival proesses, and minimizing the de�ned measure with respet to the

�nite number of MAP parameters. Unfortunately, it is still an unsolved problem what ould

be an appropriate distane measure that reexes those features of a traÆ proess that play

�
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important role in teleommuniation engineering. Due to the lak of ommonly aepted

appropriate distane measure and also to ontribute to the researh of haraterizing the

pratially important features of traÆ proesses we followed a di�erent approah. We hoose

a given set of traÆ parameters and ompose a MAP that exhibits the same (or lose) traÆ

parameters. The set of traÆ parameters is suh that both long and short range behavior is

onsidered. The long range behavior is �tted through the Hurst parameter, while the short

range behavior is approximated by �tting the index of dispersion (IDC) parameter at some

time points.

The rest of the paper is organized as follows. Setion 2 provides a short summary on the

bakground of traÆ proesses. Setion 3 introdues the MAP �tting method, while Setion

4 investigates the goodness of �tting. The paper is onluded in Setion 5.

2 De�nitions

The analysis of traÆ proesses are based on one of the following two approahes. When

detailed information is available on the exat arrival instanes (Y

i

) with inter-arrival series

Z

i

= Y

i

� Y

i�1

; then Z = fZ

i

; i � 1g is used to haraterize the arrival proess. It is assumed

that Y

0

= 0 and Y

n

=

P

n

i=1

Z

i

. It is also possible to onsider the number of arrivals in the (0; t)

interval, N

t

= max

i

(Y

i

< t) and to use the ontinuous time ounting proess N = fN

t

; t � 0g.

There are ases when the exat arrival instanes are not known, only the number of arrivals

in onseutive time intervals. Considering intervals of length �, the number of arrivals in the

ith interval, X

i

, is X

i

= #fY

k

2 (i�; (i + 1)�)g. X = fX

i

; i = 0; 1; : : :g is a disrete-time

stohasti proess. Its aggregated proess is de�ned as follows:

X

(m)

= fX

(m)

i

g = f

X

1

+ : : :+X

m

m

; : : : ;

X

mk+1

+ : : :+X

(m+1)k

m

; : : :g

The autoorrelation funtion of X

(m)

is:

r

(m)

(k) =

Ef(X

(m)

n

�E(X

(m)

)) � (X

(m)

n+k

�E(X

(m)

))g

Ef(X

(m)

n

�E(X

(m)

))

2

g

Then X is

a) exatly self-similar if X

d

= m

1�H

X

(m)

, i.e., if X and X

(m)

are idential within a sale fator

in �nite dimensional distribution sense.

b) exatly seond-order self-similar if r

(m)

(k) = r(k); 8m ; k � 0

) asymptotially seond-order self-similar if r

(m)

(k)! r(k); (k;m!1)

where H is the Hurst parameter, also referred to as the self-similarity parameter.

The proess X exhibits long-range dependene (LRD) of index � if its autoorrelation

funtion an be realized as:

r(k) � A(k)k

��

; k !1

where A(k) is a slowly varying funtion at in�nity, i.e., A(tk)=A(k) ! 1; t > 0; k !1.

Having only a �nite number of samples from real traÆ it is impossible to hek the pres-

ene of self similarity or LRD. In pratie pseudo self-similarity may be heked by statistial

tests. An overview of tests may be found in [1℄.
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2.1 Variane-time plot

One of the tests for pseudo self-similarity is the variane-time plot. It is based on the fat

that for self-similar time series fX

1

;X

2

; : : :g

Var(X

(m)

) � m

��

; as m!1; 0 < � < 1

The variane-time plot depits Log(Var(X

(m)

)) versus Log(m). For pseudo self-similar time

series, the slope of the variane-time plot �� is greater than �1. The Hurst parameter an

be alulated as H = 1 � (�=2). A traÆ proess is said to be pseudo self similar when the

empirial Hurst parameter is between 0:5 and 1.

2.2 R/S plot

The R/S method is one of the oldest tests for self-similarity, it is disussed in detail in [6℄. For

interarrival time series, Z = fZ

i

; i � 1g, with partial sum Y

n

=

P

n

i=1

Z

i

, and sample variane

S

2

(n) =

1

n

n

X

i=1

Z

i

2

�

1

n

2

� Y

2

n

;

the R/S statisti, or the resaled adjusted range, is given by:

R=S(n) =

1

S(n)

�

max

0�k�n

�

Y (k)�

k

n

Y (n)

�

� min

0�k�n

�

Y (k)�

k

n

Y (n)

��

:

R=S(n) is the saled (by

1

S(n)

) di�erene between the fastest and the slowest arrival period

onsidering n arrivals. For stationary LRD proesses R=S(n) � (n=2)

H

. To determine the

Hurst parameter based on the R/S statisti the data set is divided into bloks, log[R=S(n)℄

is plotted versus log n and a straight line is �tted on the points. The slope of the �tted line

is the estimated Hurst parameter.

It is important to note that the introdued statistial tests of self- similarity, based on a

�nite number of samples, provides an approximate value of H only for the onsidered range of

sales (log n). Nothing an be said about the higher sale and the asymptoti behavior based

on these tests.

3 A MAP �tting method

In this setion a proedure is given to onstrut a MAP suh a way that some parameters of

the traÆ generated by the model math prede�ned values. The following parameters are set:

� The fundamental arrival rate E(N

1

) desribes the expeted number of arrivals in a time

unit.

� In order to desribe the burstiness of the arrival stream the index of dispersion for ounts

I(t) = Var(N

t

)=E(N

t

) is set for two di�erent values of time: I(t

1

) and I(t

2

). The hoie

of these two time points signi�antly a�ets the goodness of �tting. This issue will be

disussed in Setion 4.

� The degree of pseudo self-similarity is de�ned by the Hurst parameter H. The Hurst

parameter is realized in terms of the variane-time behavior of the resulting traÆ, i.e.,

the straight line �tted by regression to the variane-time urve in a prede�ned interval

(L

1

; L

2

) has slope 2(H � 1).

The MAP resulting from our proedure is the superposition of a PH arrival proess and an

Interrupted Poisson Proess (IPP). In the following we shows how to onstrut a PH arrival

proess with pseudo self-similar behavior, desribe the superposition of the PH arrival proess

with an IPP, and �nally provide the proposed �tting algorithm itself.
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Figure 1: Variane-time plot of pseudo self similar arrival proesses with i.i.d. PH interarrival

3.1 Pseudo self-similar PH arrival proess

Let us onsider an arrival proess whose interarrival times are independent random variables

with heavy-tail probability density funtion (pdf) of Pareto type

f(x) =

 � a



(x+ a)

+1

; x � 0: (1)

The proess X

n

(n > 0) representing the number of arrivals in the nth timeslot is asymptoti-

ally seond-order self-similar with Hurst parameter ([13℄):

H =

3� 

2

: (2)

Feldmann and Whitt propose a heuristi �tting algorithm in [3℄ to approximate heavy-tail

distributions by Phase Type (PH) distributions. Using their method one may build an arrival

proess whose interarrival times are independent, identially distributed PH random variables

with pdf approximating (1). In order to show that this arrival proess exhibits pseudo seond-

order self-similarity, let us reall some properties of MAPs from [7℄. Having a PH distribution

with initial probability vetor b and generator T, the orresponding PH arrival proess may

be desribed with MAP notation as C

PH

= T and D

PH

= T

0

b with T

0

= �Te, where e

denotes the olumn vetor of 1s. The variane of the number of arrivals in the interval (0; t)

is given by

V ar(N

t

) =

�

2

� �

2

1

�

3

1

t+ 2b

h

I� e

(C

PH

+D

PH

)t

i

�

�

�2

1

C

�2

PH

e+

1

2

�

�3

1

�

2

C

�1

PH

e

�

; (3)

where �

i

denotes the ith moment of the PH interarrival time distribution and is given by

�

i

= (�1)

i

i! b T

�i

e: (4)

The variane of the aggregated arrival proess X

(m)

may be expressed as

V ar(X

(m)

) =

V ar(N

m�

)

(m�)

2

; (5)

where � is the length of a timeslot.

To hek pseudo self-similarity of PH renewal proesses Figure 1 plots V ar(X

(m)

) of PH

arrival proesses whose interarrival time is a 6 phase PH approximation of the pdf given in
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(1) for di�erent values of . As it an be observed V ar(X

(m)

) is lose through several orders

of magnitude to the straight line orresponding to the self-similar ase with slope 2(H � 1).

The aggregation level where V ar(X

(m)

) drops ompared to the straight line may be inreased

by hanging the parameters of the PH �tting algorithm.

3.2 Superposition of the PH arrival proess with an IPP

The superposition of a PH arrival proess with an Interrupted Poisson Proess (IPP) results in

a MAP. In order to have the desired parameters for the MAP resulting from the superposition

the following equations have to hold for the IPP:

E

IPP

(N

1

) = E(N

1

)�E

PH

(N

1

); (6)

V ar

IPP

(N

t

1

) = I(t

1

)E(N

t

1

)� V ar

PH

(N

t

1

); (7)

V ar

IPP

(N

t

2

) = I(t

2

)E(N

t

2

)� V ar

PH

(N

t

2

): (8)

The latter two equations are the onsequene of the fat that the index of dispersion I(t) for

the superposed model may be written as

I(t) =

V ar

PH

(N

t

) + V ar

IPP

(N

t

)

(E

PH

(N

1

) +E

IPP

(N

1

))t

: (9)

The IPP may be desribed by MAP notation as

C

IPP

=

"

�r

1

� � r

1

r

2

�r

2

#

; D

IPP

=

"

� 0

0 0

#

: (10)

The mean number of arrivals of the IPP is given as

E(N

t

) =

�r

2

r

1

+ r

2

t; (11)

while its variane may be expressed as

V ar(N

t

) =

 

�r

2

r

1

+ r

2

+

2�

2

r

1

r

2

(r

1

+ r

2

)

3

!

t�

2�

2

r

1

r

2

(r

1

+ r

2

)

4

�

1� e

�(r

1

+r

2

)t

�

: (12)

Let us denote r

1

+ r

2

by S and r

1

=r

2

by Q. Substituting (11) and (12) into the equations

desribing the requirements on the IPP ((6), (7) and (8)) and manipulating the resulting set

of equations one may arrive to the following impliit expression for S and Q

S =

K(1� e

�St

2

)� (1� e

�St

1

)

Kt

2

� t

1

; (13)

Q =

S

2

(V ar(N

t

1

)� t

1

E(N

1

))

2E(N

1

)

2

(e

�St

1

+ St

2

� 1)

; (14)

where

K =

V ar(N

t

1

)� V ar

PH

(N

t

1

)� t

1

(E(N

1

)�E

PH

(N

1

))

V ar(N

t

2

)� V ar

PH

(N

t

2

)� t

2

(E(N

1

)�E

PH

(N

1

))

: (15)

Applying �x point iteration S may be found by (13) and than Q is given by (14). Having S

and Q the transition intensities are simple given by

r

1

= S �

S

Q+ 1

; r

2

=

S

Q+ 1

; (16)
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while the arrival intensity an be found as

� = (1 +Q)E(N

1

): (17)

The MAP resulted as the superposition of a PH arrival proess (with desriptors C

PH

,

D

PH

) and an IPP (C

IPP

, D

IPP

) has desriptors

C = C

PH

�C

IPP

; D = D

PH

�D

IPP

; (18)

where � stands for the Kroneker sum.

3.3 The applied �tting algorithm

Before putting down the �tting algorithm we introdue how the alteration in the parameters

of the PH arrival proess a�ets the resulting MAP:

� The Pareto type pdf (1) that is approximated by a PH distribution has mean a=(� 1).

Even if the �tting method of Feldmann and Whitt [3℄ does not preserve the mean,

inreasing a inreases the mean of the approximating PH distribution, and so that

dereases E

PH

(N

1

). Aording to our experienes inreasing a dereases V ar

PH

(N

t

) as

well. The PH �tting may result in suh E

PH

(N

1

), V ar

PH

(N

t

1

) and V ar

PH

(N

t

2

) that

the requirements in (6), (7) and (8) are not feasible, this situation may be resolved by

hanging a. Experiments suggest E(N

1

)(� 1) � 2 as an initial value for a, whih means

that approximately every 2nd arrival arises from the PH arrival proess.

� Parameter  of the Pareto type pdf (1) is used to set the Hurst parameter of the arrival

proess. An appropriate initial value for  is given by (2) as  = 3 � 2H. Superpos-

ing the PH arrival proess with the IPP may hange the degree of self-similarity of

the superposed model. The prede�ned Hurst parameter may be reahed by adjusting

appropriately .

� Using the �tting method of Feldmann and Whitt one has to de�ne the limit of tail �tting

L

fit

, i.e., the time point until whih the pdf of the PH distribution follows the Pareto

pdf. The higher the limit for the tail �tting the longer the PH arrival proess exhibits

self-similar nature in terms of the variane-time plot. This fat is depited in Figure 3

with Hurst parameter 0:9; all the three PH arrival proesses have 6 phases. As a rule

L

fit

= L

2

=10 seems to be a good hoie.

� The e�et of the hoie for the number of phases of the approximating PH distribution

(D) is illustrated in Figure 2. Having a large value for the limit of tail �tting, low

number of phases may lead to an irregular behavior in terms of the variane-time plot.

Based on the above onsiderations the applied MAP �tting algorithm is the following:

1. Set initial values as

a = E(N

1

)(� 1) � 2,  = 3� 2H, L

fit

= L

2

=10,

if (L

2

� 10

4

) D = 4,

if (10

4

< L

2

� 10

6

) D = 6,

if (10

6

< L

2

) D = 8.

2. Perform PH �tting.

3. If (6), (7) and (8) are not feasible hange a aordingly and go bak to 2.

4. Compute the IPP parameters based on (13), (14), (16) and (17).
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5. Chek the Hurst parameter by applying regression in the interval (L

1

; L

2

) to the variane-

time plot of the superposed MAP. Derease (inrease)  if the atual Hurst parameter

is lower (greater) than the desired value.

Sine not all ombinations of the input parameters may be realized the implementation of

the algorithm has to be omplemented by some heks to reognize these situations.

4 Appliation of the �tting proedure

The �tting method desribed in the previous setion was applied to approximate two real

measured traÆ traes. The traes are taken from the WEB site olleting traÆ traes [15℄

and they are alled BC and de-pkt. We studied the �rst data set of these olletions. These

traes are analyzed in [4℄ and [11℄.

Variane-time plots of the traÆ generated by the MAPs resulted from �tting for the �rst

trae are depited in Figure 4. The length of the interval � that is used to generate the series

X = fX

i

; i = 0; 1; :::g equals the expeted interarrival time. The urve signed by (x

1

; x

2

)

belongs to the �tting when the �rst (seond) time point of �tting the IDC value, t

1

(t

2

), is x

1

(x

2

) times the expeted interarrival time. The Hurst parameter of this trae (approximated

by the variane-time plot) onsisting of one million arrivals is 0.8367. The interval (L

1

; L

2

) is

(10; 5 � 10

5

) for the �rst three �tting, while it is (500; 5 � 10

5

) for the last one. For the last

�tting the interval had to be hanged beause the time point at whih the IDC is set is so

high that the IPP destroys the pseudo self-similar nature of the PH arrival proess and the

algorithm an not provide the desired Hurst parameter.

Sine setting the IDC at a time point implies that the variane of the aggregated proess

is set at that time point as well. It an be observed in Figure 4 that the method is not apable

of setting the IDC at t

2

. The variation of this traÆ trae for low values of t

2

is lower than

the limit of this struture. The IDC at t

2

was set as lose as possible to the IDC of the real

soure.

R/S plots of the traÆ traes generated by the MAPs are plotted in Figure 6. Visual

inspetion suggests that for both the variane-time and R/S plot running the �tting algorithm

with low values of t

1

and t

2

results in a lose �tting of the real traÆ trae behavior.

The seond trae onsisting of about 2 million arrivals has Hurst parameter 0.8012 given

by the variane-time test. The interval (L

1

; L

2

) is set as for the �rst trae. For this data set

the algorithm is able to set the IDC at both time points t

1

and t

2

exatly. Figure 5 shows the

variane-time plots for the MAPs resulted from the �tting. R/S plots of the traes generated

by the MAPs are depited in Figure 7.
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The �tting of the traes were tested by a �/D/1 queue, as well. The results are depited

in Figure 8 and 9. The �/D/1 queue was analyzed by simulation with 80 % utilization of the

server. As one may observe the lower t

1

and t

2

the longer the queue length distribution follows

the original one. The experiments suggests that the pair E(Y

i

), 2E(Y

i

) is a good hoie for

t

1

and t

2

. The umulative distribution funtion (df) whih is important when alulating

loss probabilities is depited in Figure 10 for the �rst trae. The df resulted by the original

traÆ trae rosses the df resulted by the MAP at about 140. This means that below 140

the MAP gives pessimisti results while over 140 it gives optimisti ones.

In the following we ompare �tted MAP models to frational Brownian motion (FBM)

soures. The FBM is a self-similar ontinuous time ontinuous valued stohasti proess

whose inrement is frational Gaussian noise [8℄. As a traÆ soure model it is de�ned by

three parameters: the mean input rate (E(N

1

)), the variane parameter (V ar(N

1

)), and the

self-similarity parameter (H). One way to use FBM as a traÆ model is to onsider its

inrements in subsequent intervals as the amount of data arrived to the network. To ompare

the FBM soure with a MAP the inrements has to be rounded to an integer value and

negative values has to be substituted by 0. This way we are given the number of arrivals in

eah timeslot. For queuing analysis the arrival instanes have to be given. Given the number

of arrivals in an interval, we assume that the arrival instane of eah arrival is distributed

uniformly in the interval. We used the method desribed by Paxson [10℄ to generate FBM

traÆ. The parameters of the traÆ were E(N

1

) = 5, V ar(N

1

) = 50 and H = 0:8. Figure 11

gives variane-time plots for the �tted MAP models for di�erent timepoints of setting IDC,
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Figure 8: Queue length distribution for the

�rst trae
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Figure 9: Queue length distribution for the

seond trae
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Figure 10: df of the queue length for the �rst

trae
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Figure 11: MAPs with di�erent timepoints

of IDC mathing for the traÆ generated by

FBM

while Figure 12 depits the queuing experiments with 80 % utilization. In Figure 13 one may

observe how the variane-time plot of the arrival traes generated using a MAP approahes the

analytially omputed variane-time plot as the number of the generated arrivals inreases.

5 Conlusion

The paper presents a heuristi MAP �tting method that �ts some short and long range de-

pendent parameters of the onsidered traÆ proess. The goodness of the �tting proedure is

evaluated by ommonly applied statistial tests and by the queue length distribution generated

by the traÆ proesses.

The proposed �tting method provides a MAP whose �tted parameters are the same as

the one of the original traÆ proess (or very lose), but the applied statistial tests and

the queue length distribution does not show a perfet math whih means that other traÆ

parameters play also role in the traÆ behavior. Further researh is planned to investigate

the e�et of di�erent parameters of traÆ proesses, and to �nd a dense but representative

desription of important traÆ features.
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