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Abstract

This paper provides a heuristic fitting method to capture some important features of
real traffic sources by a MAP. The novelty of the proposed approach lies in the separate
treating of short and long range behavior of the considered traffic sources. The proposed
MAP is the superposition of two elementary processes. A Phase type renewal process,
whose interarrival time exhibits heavy-tail behavior over some time scales, is used to
capture the long range dependent behavior, i.e., the empirical Hurst parameter. While an
IPP is applied to approximate the short range behavior. Different analysis techniques are
used to evaluate the goodness of the proposed fitting method.

Keywords: Traffic source models, Self-similarity, Markovian Arrival processes (MAP),
short and long range behavior.

1 Introduction

Traffic measurement on real high speed networks carrying the data packets of various appli-
cations shows high variability and burstiness of the traffic process over several time scales
(references to many measurment studies may be found in [14]). It is commonly assumed
that Markovian models are not appropriate to capture this “burst in burst” behavior and
other models are proposed in the literature, e.g., fractals, multifractals [2]. These models are
analytically hardly tractable and often computationally expensive. The analytical tractabil-
ity of Markovian models initiated a research effort to approximate real traffic behavior with
Markovian models.

A first step in this direction was the approximation of heavy-tail distributions by Phase
type ones. It was shown that general PH fitting methods performs poorly in tail fitting [5],
while specific heuristic methods can provide a tight tail fitting over several orders of magnitude
even for heavy-tail distributions [3]. It was also recognized [9, 12] that Phase type renewal
processes (i.e., renewal processes with PH distributed interarrival time) with heavy-tail behav-
ior over some orders of magnitude exhibits some features shown by real traffic measurements.
The commonly applied tests used for evaluating the Hurst parameter (variance-time plot,
R/S plot) show long range dependence of these PH renewal processes. In this paper a fit-
ting method is proposed to approximate any traffic process with a Markovian arrival process
(MAP) that intends to consider not only the long range traffic behavior but also some of the
short range ones.

A general approach of MAP fitting consists of defining an appropriate distance measure
over the set of arrival processes, and minimizing the defined measure with respect to the
finite number of MAP parameters. Unfortunately, it is still an unsolved problem what could
be an appropriate distance measure that reflexes those features of a traffic process that play
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important role in telecommunication engineering. Due to the lack of commonly accepted
appropriate distance measure and also to contribute to the research of characterizing the
practically important features of traffic processes we followed a different approach. We choose
a given set of traffic parameters and compose a MAP that exhibits the same (or close) traffic
parameters. The set of traffic parameters is such that both long and short range behavior is
considered. The long range behavior is fitted through the Hurst parameter, while the short
range behavior is approximated by fitting the index of dispersion (IDC) parameter at some
time points.

The rest of the paper is organized as follows. Section 2 provides a short summary on the
background of traffic processes. Section 3 introduces the MAP fitting method, while Section
4 investigates the goodness of fitting. The paper is concluded in Section 5.

2 Definitions

The analysis of traffic processes are based on one of the following two approaches. When
detailed information is available on the exact arrival instances (Y;) with inter-arrival series
Z; =Y;—Y; 1, then Z ={Z;,i > 1} is used to characterize the arrival process. It is assumed
that Yo =0and Y,, = Y-, Z;. It is also possible to consider the number of arrivals in the (0, ¢)
interval, N; = max;(Y; < t) and to use the continuous time counting process N’ = { Ny, t > 0}.

There are cases when the exact arrival instances are not known, only the number of arrivals
in consecutive time intervals. Considering intervals of length A, the number of arrivals in the
ith interval, X;, is X; = #{Yr € (iA,(i + 1)A)}. X = {X,,i =0,1,...} is a discrete-time
stochastic process. Its aggregated process is defined as follows:

y(m) :{XZ.(’")}:{X1+"'+Xm,...,Xm’““+"'+X(m+1)’“,...}

m m

The autocorrelation function of X(™) is:

E{(x{" — B(X(m))2}
Then X is

a) exactly self-similar if X L=y (m) je., if X and X("™) are identical within a scale factor
in finite dimensional distribution sense.

b) exactly second-order self-similar if 7™ (k) = r(k), Vm , k>0
¢) asymptotically second-order self-similar if r(™) (k) — r(k), (k,m — c0)

where H is the Hurst parameter, also referred to as the self-similarity parameter.
The process X exhibits long-range dependence (LRD) of index f if its autocorrelation
function can be realized as:

rk) ~ AR)E™?, k- o0

where A (k) is a slowly varying function at infinity, i.e., A(tk)/A(k) — 1, t > 0,k — oo.

Having only a finite number of samples from real traffic it is impossible to check the pres-
ence of self similarity or LRD. In practice pseudo self-similarity may be checked by statistical
tests. An overview of tests may be found in [1].
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2.1 Variance-time plot

One of the tests for pseudo self-similarity is the variance-time plot. It is based on the fact
that for self-similar time series { X1, Xs,...}

Var(X(m))Nm_ﬁ , a3a m—oo, 0<pB<1

The variance-time plot depicts Log(Var(X (™)) versus Log(m). For pseudo self-similar time
series, the slope of the variance-time plot —f is greater than —1. The Hurst parameter can
be calculated as H = 1 — (3/2). A traffic process is said to be pseudo self similar when the
empirical Hurst parameter is between 0.5 and 1.

2.2 R/S plot

The R/S method is one of the oldest tests for self-similarity, it is discussed in detail in [6]. For
interarrival time series, Z = {Z;,7 > 1}, with partial sum Y,, = >_i*; Z;, and sample variance

S2( )—liZ-Q—i-YQ

WE Lt T
=1

the R/S statistic, or the rescaled adjusted range, is given by:

MﬂmZE%ﬂ£%XY®—SYW>—mm(HM—%HM”.

0<k<n

R/S(n) is the scaled (by %) difference between the fastest and the slowest arrival period

considering n arrivals. For stationary LRD processes R/S(n) ~ (n/2)". To determine the
Hurst parameter based on the R/S statistic the data set is divided into blocks, log[R/S(n)]
is plotted versus logn and a straight line is fitted on the points. The slope of the fitted line
is the estimated Hurst parameter.

It is important to note that the introduced statistical tests of self- similarity, based on a
finite number of samples, provides an approximate value of H only for the considered range of
scales (logn). Nothing can be said about the higher scale and the asymptotic behavior based
on these tests.

3 A MAP fitting method

In this section a procedure is given to construct a MAP such a way that some parameters of
the traffic generated by the model match predefined values. The following parameters are set:

e The fundamental arrival rate E(N7) describes the expected number of arrivals in a time
unit.

e In order to describe the burstiness of the arrival stream the index of dispersion for counts
I(t) = Var(N;)/E(Ny) is set for two different values of time: I(¢1) and I(¢2). The choice
of these two time points significantly affects the goodness of fitting. This issue will be
discussed in Section 4.

e The degree of pseudo self-similarity is defined by the Hurst parameter H. The Hurst
parameter is realized in terms of the variance-time behavior of the resulting traffic, i.e.,
the straight line fitted by regression to the variance-time curve in a predefined interval
(L1, Lo) has slope 2(H —1).

The MAP resulting from our procedure is the superposition of a PH arrival process and an
Interrupted Poisson Process (IPP). In the following we shows how to construct a PH arrival
process with pseudo self-similar behavior, describe the superposition of the PH arrival process
with an IPP, and finally provide the proposed fitting algorithm itself.
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Figure 1: Variance-time plot of pseudo self similar arrival processes with i.i.d. PH interarrival

3.1 Pseudo self-similar PH arrival process

Let us consider an arrival process whose interarrival times are independent random variables
with heavy-tail probability density function (pdf) of Pareto type

c-af

flx)= ———=, 2>0. (1)

(z + a)ctl’

The process X,, (n > 0) representing the number of arrivals in the nth timeslot is asymptoti-
cally second-order self-similar with Hurst parameter ([13]):

3—c
. &)

H=

Feldmann and Whitt propose a heuristic fitting algorithm in [3] to approximate heavy-tail
distributions by Phase Type (PH) distributions. Using their method one may build an arrival
process whose interarrival times are independent, identically distributed PH random variables
with pdf approximating (1). In order to show that this arrival process exhibits pseudo second-
order self-similarity, let us recall some properties of MAPs from [7]. Having a PH distribution
with initial probability vector b and generator T, the corresponding PH arrival process may
be described with MAP notation as Cpy = T and Dpy = T°b with T? = —Te, where e
denotes the column vector of 1s. The variance of the number of arrivals in the interval (0, %)
is given by

Vo —

3
g1

Var(Ny) =

2 1
“Lt+2b [I — e(CPH”’PH)t] [ufcpile + Eu;%C;}qe : (3)

where v; denotes the ith moment of the PH interarrival time distribution and is given by
v =(=1)"i b T . (4)
The variance of the aggregated arrival process X(™ may be expressed as

B Var(Npa)

Var(X(m)) (mB)? (5)

where A is the length of a timeslot.

To check pseudo self-similarity of PH renewal processes Figure 1 plots Var(X (™) of PH
arrival processes whose interarrival time is a 6 phase PH approximation of the pdf given in

32/4



(1) for different values of ¢. As it can be observed Var(X (™) is close through several orders
of magnitude to the straight line corresponding to the self-similar case with slope 2(H — 1).
The aggregation level where Var(X (™)) drops compared to the straight line may be increased
by changing the parameters of the PH fitting algorithm.

3.2 Superposition of the PH arrival process with an IPP

The superposition of a PH arrival process with an Interrupted Poisson Process (IPP) results in
a MAP. In order to have the desired parameters for the MAP resulting from the superposition
the following equations have to hold for the IPP:

Erpp(N1) = E(N1) — Epa(Ny), (6)
Varrpp(Ny, ) = I(t1)E(Ny,) — Varpg (Ny,), (7)
Va’r‘[pp(Nt2) = I(tg)E(Ntz) — VarpH(Ntz). (8)

The latter two equations are the consequence of the fact that the index of dispersion I(t) for
the superposed model may be written as

_ VanH(Nt) + VaT[pp(Nt)

I(t) = . 9
= B (W0) + Errr())t ¥
The IPP may be described by MAP notation as
. —ry — )\ ™ . )\ 0
Crpp = [ r —ry ] , Drpp = [ 0 0 ] : (10)
The mean number of arrivals of the IPP is given as
)\7’2
E(N;) = t 11
(V) = =, (1)

while its variance may be expressed as

)\7“2 2)\27“17“2 2)\27“1’]“2 _
N;) = t— 1 — e (mr2)t) 12
Va?“( t) (7“1 + 7o + (7“1 + 7“2)3 (7“1 + 7“2)4 ( ‘ ) ( )

Let us denote r1 + 72 by S and ry/rs by Q. Substituting (11) and (12) into the equations
describing the requirements on the IPP ((6), (7) and (8)) and manipulating the resulting set
of equations one may arrive to the following implicit expression for S and Q

K(1—e52)— (1—e )

S =
Kty —t ’

(13)

_ S*(Var(Ny,) — 1 E(INy))
@= 2E(N;)2(e=St +lSt2 —1 1)’ (14)

where

B Var(Ny ) —Varpg(Ny, ) —t1(E(N1) — Epg(Ny))
~ Var(N,) — Varpp(Ny,) — to(E(Ny) — Ep(Ny))'

Applying fix point iteration S may be found by (13) and than @ is given by (14). Having S
and @ the transition intensities are simple given by

S S
Tl—S—m, Tg—m, (16)

(15)
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while the arrival intensity can be found as

A= (1+Q)E(Ny). (17)

The MAP resulted as the superposition of a PH arrival process (with descriptors Cpyy,
Dpy) and an IPP (Crpp, Drpp) has descriptors

C=Cpg®Cipp, D=Dpyg ®Djspp, (18)

where @ stands for the Kronecker sum.

3.3

The applied fitting algorithm

Before putting down the fitting algorithm we introduce how the alteration in the parameters
of the PH arrival process affects the resulting MAP:

e The Pareto type pdf (1) that is approximated by a PH distribution has mean a/(c—1).

Even if the fitting method of Feldmann and Whitt [3] does not preserve the mean,
increasing a increases the mean of the approximating PH distribution, and so that
decreases Epp(N71). According to our experiences increasing a decreases Varpy(N;) as
well. The PH fitting may result in such Eppg(N1), Varpg(Ny, ) and Varpg(Ny,) that
the requirements in (6), (7) and (8) are not feasible, this situation may be resolved by
changing a. Experiments suggest E(Np)(c— 1) *2 as an initial value for a, which means
that approximately every 2nd arrival arises from the PH arrival process.

Parameter ¢ of the Pareto type pdf (1) is used to set the Hurst parameter of the arrival
process. An appropriate initial value for ¢ is given by (2) as ¢ = 3 — 2H. Superpos-
ing the PH arrival process with the IPP may change the degree of self-similarity of
the superposed model. The predefined Hurst parameter may be reached by adjusting
appropriately c.

Using the fitting method of Feldmann and Whitt one has to define the limit of tail fitting
Ly, i.e., the time point until which the pdf of the PH distribution follows the Pareto
pdf. The higher the limit for the tail fitting the longer the PH arrival process exhibits
self-similar nature in terms of the variance-time plot. This fact is depicted in Figure 3
with Hurst parameter 0.9; all the three PH arrival processes have 6 phases. As a rule
Ly = Ly /10 seems to be a good choice.

The effect of the choice for the number of phases of the approximating PH distribution
(D) is illustrated in Figure 2. Having a large value for the limit of tail fitting, low
number of phases may lead to an irregular behavior in terms of the variance-time plot.

Based on the above considerations the applied MAP fitting algorithm is the following:

1.

Set initial values as
a=FE(N)(c—1)*2,¢=3—2H, Ly = Ly/10,
if (Ly < 10%) D = 4,

if (10* < Ly < 105) D = 6,

if (10 < Ly) D = 8.

. Perform PH fitting.

If (6), (7) and (8) are not feasible change a accordingly and go back to 2.

Compute the IPP parameters based on (13), (14), (16) and (17).
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Figure 2: PH arrival processes of different or- Figure 3: PH arrival processes with different
der limits of tail fitting

5. Check the Hurst parameter by applying regression in the interval (L1, Lo) to the variance-
time plot of the superposed MAP. Decrease (increase) c if the actual Hurst parameter
is lower (greater) than the desired value.

Since not all combinations of the input parameters may be realized the implementation of
the algorithm has to be complemented by some checks to recognize these situations.

4 Application of the fitting procedure

The fitting method described in the previous section was applied to approximate two real
measured traffic traces. The traces are taken from the WEB site collecting traffic traces [15]
and they are called BC and dec-pkt. We studied the first data set of these collections. These
traces are analyzed in [4] and [11].

Variance-time plots of the traffic generated by the MAPs resulted from fitting for the first
trace are depicted in Figure 4. The length of the interval A that is used to generate the series
X = {X;,i = 0,1,...} equals the expected interarrival time. The curve signed by (z1,z2)
belongs to the fitting when the first (second) time point of fitting the IDC value, t1 (t2), is x;
(z2) times the expected interarrival time. The Hurst parameter of this trace (approximated
by the variance-time plot) consisting of one million arrivals is 0.8367. The interval (L, Lo) is
(10, 5-10%) for the first three fitting, while it is (500, 5 - 10°) for the last one. For the last
fitting the interval had to be changed because the time point at which the IDC is set is so
high that the IPP destroys the pseudo self-similar nature of the PH arrival process and the
algorithm can not provide the desired Hurst parameter.

Since setting the IDC at a time point implies that the variance of the aggregated process
is set at that time point as well. It can be observed in Figure 4 that the method is not capable
of setting the IDC at t5. The variation of this traffic trace for low values of ¢y is lower than
the limit of this structure. The IDC at t5 was set as close as possible to the IDC of the real
source.

R/S plots of the traffic traces generated by the MAPs are plotted in Figure 6. Visual
inspection suggests that for both the variance-time and R/S plot running the fitting algorithm
with low values of £; and ¢y results in a close fitting of the real traffic trace behavior.

The second trace consisting of about 2 million arrivals has Hurst parameter 0.8012 given
by the variance-time test. The interval (Li, Lo) is set as for the first trace. For this data set
the algorithm is able to set the IDC at both time points ¢ and ¢5 exactly. Figure 5 shows the
variance-time plots for the MAPs resulted from the fitting. R/S plots of the traces generated
by the MAPs are depicted in Figure 7.
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The fitting of the traces were tested by a ¢/D/1 queue, as well. The results are depicted
in Figure 8 and 9. The ¢/D/1 queue was analyzed by simulation with 80 % utilization of the
server. As one may observe the lower t; and t2 the longer the queue length distribution follows
the original one. The experiments suggests that the pair E(Y;), 2E(Y;) is a good choice for
t1 and t9. The cumulative distribution function (cdf) which is important when calculating
loss probabilities is depicted in Figure 10 for the first trace. The cdf resulted by the original
traffic trace crosses the cdf resulted by the MAP at about 140. This means that below 140
the MAP gives pessimistic results while over 140 it gives optimistic ones.

In the following we compare fitted MAP models to fractional Brownian motion (FBM)
sources. The FBM is a self-similar continuous time continuous valued stochastic process
whose increment is fractional Gaussian noise [8]. As a traffic source model it is defined by
three parameters: the mean input rate (E(Np)), the variance parameter (Var(Ny)), and the
self-similarity parameter (H). One way to use FBM as a traffic model is to consider its
increments in subsequent intervals as the amount of data arrived to the network. To compare
the FBM source with a MAP the increments has to be rounded to an integer value and
negative values has to be substituted by 0. This way we are given the number of arrivals in
each timeslot. For queuing analysis the arrival instances have to be given. Given the number
of arrivals in an interval, we assume that the arrival instance of each arrival is distributed
uniformly in the interval. We used the method described by Paxson [10] to generate FBM
traffic. The parameters of the traffic were E(N;) =5, Var(N;) = 50 and H = 0.8. Figure 11
gives variance-time plots for the fitted MAP models for different timepoints of setting IDC,
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while Figure 12 depicts the queuing experiments with 80 % utilization. In Figure 13 one may
observe how the variance-time plot of the arrival traces generated using a MAP approaches the
analytically computed variance-time plot as the number of the generated arrivals increases.

5 Conclusion

The paper presents a heuristic MAP fitting method that fits some short and long range de-
pendent parameters of the considered traffic process. The goodness of the fitting procedure is
evaluated by commonly applied statistical tests and by the queue length distribution generated
by the traffic processes.

The proposed fitting method provides a MAP whose fitted parameters are the same as
the one of the original traffic process (or very close), but the applied statistical tests and
the queue length distribution does not show a perfect match which means that other traffic
parameters play also role in the traffic behavior. Further research is planned to investigate
the effect of different parameters of traffic processes, and to find a dense but representative
description of important traffic features.
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