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Abstract. In order to support the effective use of telecommunication
infrastructure, the “random” behavior of traffic sources has been stud-
ied since the early days of telephony. Strange new features, like fractal
like behavior and heavy tailed distributions were observed in high speed
packet switched data networks in the early ’90s. Since that time a fertile
research aims to find proper models to describe these strange traffic fea-
tures and to establish a robust method to design, dimension and operate
such networks.

In this paper we give an overview of methods that, on the one hand, allow
us to capture important traffic properties like slow decay rate, Hurst
parameter, scaling factor, etc., and, on the other hand, makes possible the
quantitative analysis of the studied systems using the effective analysis
approach called matrix geometric method.

The presentation of this analysis approach is associated with a discussion
on the properties and limits of Markovian fitting of the typical non-
Markovian behavior present in telecommunication networks.

1 Introduction

In the late 80’s, traffic measurement of high speed communication networks
indicated unexpectedly high variability and burstiness over several time scales,
which indicated the need of new modeling approaches capable to capture the
observed traffic features. The first promising approach, the fractal modeling of
high speed data traffic [28], resulted in a big bum in traffic theory. Since that time
a series of traffic models were proposed to describe real traffic behavior: fractional
Gaussian noises [30,37], traditional [7] and fractional ARIMA processes [18],
fractals and multifractals [49,13], etc.

A significant positive consequence of the new traffic engineering wave is that
the importance of traffic measurement and the proper statistical analysis of
measured datasets became widely accepted and measured datasets of a wide
range of real network configurations became publicly available [52].

In spite of the intensive research activity, there are still open problems asso-
ciated with these new traffic models:
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— None of the traffic models is evidently verified by the physical behavior of the
networks. The proposed models allow us to represent some of the features
of data traffic, but some other features are not captured. Which are the
important traffic features?

— The traffic features of measured data are checked via statistical tests and
the traffic features of the models are checked using analysis and simulation
methods. Are these tests correct enough? Is there enough data available for
reliable tests?

— The majority the proposed traffic models has important asymptotic proper-
ties, but all tests are based on finite datasets. Shall we draw consequence on
the asymptotic properties based on finite datasets? And vice-versa, shall we
draw consequence from the asymptotic model behavior on the performance
of finite systems.

— Having finite datasets the asymptotic properties extracted from tests per-
formed on different time scales often differ. Which is the dominant time scale
to consider?

The above listed questions refer to the correctness of traffic models. There
is an even more important issue which determines the utility of a traffic model,
which is computability. The majority of the mentioned traffic models are not
accompanied with effective analysis tools which would allow us to use them in
practical traffic engineering.

In this paper we discuss the application of Markovian models for traffic engi-
neering. The most evident advantage of this modeling approach with respect to
the above mentioned ones is that it is supported with a set of effective analysis
techniques called matrix geometric methods [34,35,27,29]. The other features
of Markovian models with respect to the answers of the above listed questions
are subjects to discussion. By the nature of Markovian models, non-exponential
asymptotic behavior cannot be captured, and hence, they are not suitable for
that purpose. Instead, recent research results show that Markovian models are
able to approximate arbitrary non-Markovian behavior for an arbitrary wide
range of scales.

The paper summarizes a traffic engineering procedure composed by the fol-
lowing steps:

— statistical analysis of measured traffic data,
— Markovian approximation of traffic processes,
— analysis of performance parameters based on the Markovian model.

All steps of this procedure are supported with a number of numerical example
and the results are verified against simulation and alternative analysis methods.

The paper is organized as follows. Section 2 discusses some relevant char-
acteristics of traffic processes and describe models that exhibit these features.
Statistical tests for identifying these characteristics in datasets are described in
Section 3. A short introduction to Markovian models is given in 4. An overview
of the existing fitting methods with connected application examples is given in
5. The survey is concluded in 6.



2 Traffic models and their properties

The traffic process at a given point of a telecommunication network is charac-
terized by the data packet arrival instances (or equivalently by the interarrival
times) and the associated data packet sizes. Any of these two processes can
be composed by dependent or independent samples. In case of identically dis-
tributed independent samples the process modeling simplifies to capturing a
distribution, while in case of dependent samples the whole stochastic process
(with its intrinsic dependency structure) has to be captured as well.

2.1 Heavy tailed distributions

One of the important new observations of the intensive traffic measurement of
high speed telecommunication networks is the presence of heavy tailed distribu-
tions. Marginal distributions of specific traffic processes, file size distribution on
HTTP servers, etc, were found to be “heavy tailed”. The random variable Y,
with cumulative distribution function (cdf) Fy (), is said to be heavy tailed if

1—Fy(z) =z “L(z),

where L(x) is slowly varying as ¢ — oo, i.e., limy_ooL(az)/L(z) = 1 for a >
0. (There are several different naming conventions applied in this field. Heavy
tailed distributions are called regularly varying or power tail distributions also.)
Typical member of this distribution class is the Pareto family.

There is an important qualitative property of the moments of heavy tailed
distributions. If Y is heavy tailed with parameter a then its first n < a moments
E(Y™) are finite and its all higher moments are infinite.

There are other classes of distributions whose tail decay slower than the
exponential. The random variable YV, with distribution Fy (), is said to be long
tailed if

lim e’ (1 — Fy(z)) = oo, Yy >0
Tr—r00

The Weibull family (F(z) = 1 — e~(#/9)°) with ¢ < 1 is long tailed, even if
all moments of the Weibull distributed random variables are finite. The heavy
tailed distributions form a subclass of the long tailed class.

A characteristic property of the heavy tailed class is the asymptotic relation
of the distribution of the sum of n samples, S,, = Y7 +...4Y,,, and the maximum
of n samples, M,, = max;<i<n Y;:

Pr(S, > x) ~ Pr(M, > x) (1)

where the notation g(z) ~ f(z) denotes limw%m% = 1. In words, the sum
of heavy tailed random variables is dominated by a single large sample and the
rest of the samples are negligible small compare to the dominant one for large
values of xz. The probability that S,, is dominated by more than one “large”
samples or it is obtained as the sum of number of small samples is negligible for



“large” values of S),. This interpretation gives an intuitive explanation for a set
of complex results about the waiting time of queuing models with heavy tailed
service time distribution [6].

2.2 Processes with long range dependence

The definition of long range dependence of traffic arrival processes is as follows.
Let us divide the time access into equidistant intervals of length A. The number
of arrivals in the ith interval is denoted by X;. X = {X;,i = 0,1,...} is a
stochastic process whose aggregated process is defined as follows:

X(m):{X(m)}: Xi+...+ X ka+1+'-'+X(m+1)k
i m ) ’ m s

The autocorrelation function of X(™) is:

gy = BAE = BOX™)) - (X1 — B ™)}

E{(X™ — B(X(m))2}

The process X’ exhibits long-range dependence (LRD) of index 3 if its auto-
correlation function can be realized as

r(k) ~ A(K)k™?, k— o

where A(k) is a slowly varying function.

Self-similar processes Using the above definition of the aggregated process,

X is

a) exactly self-similar if X 4 m!'=Hx(m) je if X and X("™) areidentical within
a scale factor in finite dimensional distribution sense.

b) exactly second-order self-similar if (™) (k) = r(k), VYm , k>0

¢) asymptotically second-order self-similar if (™ (k) — r(k), (k,m — o)

where H is the Hurst parameter, also referred to as the self-similarity parameter.

For exactly self-similar processes the scaling behavior, which is character-
ized by the Hurst parameter (H), can be checked based on any of the absolute
moments of the aggregated process:

log(E(|X"™)|1)) = log(E(jm™~* X|%)) = ¢(H — 1)log(m) + log(E(|X|")). (2)

According to (2), in case of a self-similar process, plotting log(FE(|X("™)]4))
against log(m) for fixed ¢ results in a straight line. The slope of the line is
q(H — 1). Based on the above observations the test is performed as follows.
Having a series of length NV, the moments may be estimated as

|Xim |q7
[N/m] &

B(x ™)) =



where || denotes the largest integer number smaller or equal to z. To test
for self-similarity log(F(]X (™ |7)) is plotted against log(m) and a straight line is
fitted to the curve. If the straight line shows good correspondence with the curve,
then the process is self-similar and its Hurst-parameter may be calculated by the
slope of the straight line. This approach assumes that the scaling behavior of all
absolute moments, g, are the same and it is captured by the Hurst-parameter.
If it is the case we talk about mono-fractal behavior. The variance-time plot,
which is used widespread to gain evidence of self-similarity, is the special case
with ¢ = 2. It depicts the behavior of the 2nd moments for the centered data.

It is worth to point out that self-similarity and stationarity imply that either
E(X)=0,o0r E(X) = £oo, or H = 1. But H = 1 implies as well that X; =
X, Vi,j almost surely. As a consequence, to test for statistical self-similarity
makes sense only having zero-mean data, i.e., the data has to be centered before
the analysis.

Multi-fractal processes Statistical tests of self-similarity try to gain evidence
through examining the behavior of the absolute moments E(|X (™) |9). In case of
monofractal processes the scaling behavior of all absolute moments is character-
ized by a single number, the Hurst parameter. Multifractal processes might ex-
hibit different scaling for different absolute moments. Multifractal analysis looks
at the behavior of E(]X("™)|4) for different values ¢ and results in a spectrum
that illustrates the behavior of the absolute moments. This analysis procedure
is detailed in Section 3.3.

Fractional Gaussian noise By now we provided the definition of the large
class of self-similar stochastic processes, but we did not provide any specific
member of this class. The two simplest self-similar processes that are often used
in validation of self-similar modeling assumptions are the fractional Gaussian
noise and the ARIMA process.

Fractional Gaussian noise, X;,¢7 > 1, is the increment process of fractional
Brownian motion, B(t),t € R*:

X; = B(i + 1) - B(i),

Fractional Brownian motion with Hurst parameter H (0.5 < H < 1) is
characterized by the following properties: i) B(t) has stationary increment,
i) E(B(t)) = 0, iii) E(B%(t)) = t*7 (assuming the time unit is such that
E(B%*(1)) = 1), iv) B(t) has continuous path, v) B(t) is a Gaussian process, i.e.,
all of its finite dimensional distributions are Gaussian. The covariance of frac-
tional Brownian motion is E(B(t)-B(s)) = 1/2(s*7 +t*" —|s—t|>#), and hence,
the auto-covariance function of fractional Gaussian noise y(h) = E(X;X;15) ~
H(2H — 1)h*H~2 is positive and exhibits long-range dependence.



ARIMA process An other simple self-similar process is the fractional
ARIMA(0,d,0) process. It is defined as:

0
Xi: E Cj€i—j
j=0

where ¢; are ii.d. standard normal random variables and the c; coefficients

implement moving average with parameter d according to c; = %. For
cd—1

large values of j the coefficients ¢; ~ iﬂ( i The asymptotic behavior of the

auto-covariance function is
v(h) = B(X;Xi4n) ~ Cqgh*~"

with coefficient Cy = 71 I'(1 — 2d) sin(wd). For 0 < d < 1/2 the auto-covariance
function has the same polynomial decay as the auto-covariance function of frac-
tional Gaussian noise with H =d + 1/2.

The better choice among these two processes depends on the applied anal-
ysis method. The fractional Gaussian noise is better in exhibiting asymptotic
properties based on finite number of samples, while the generation of fractional
ARIMA process samples is easier since it is based on an explicit expression.

3 Statistical analysis of measured traffic datasets

3.1 Estimation of the heavy tail index

In this section we discuss methods for identifying the heavy tail index of datasets.
Application of the methods is illustrated on the dataset EPA_HTTP which can be
downloaded from [52] and contains a day of HT'TP logs with about 40000 entries.
The experimental complementary cumulative distribution function (ccdf) of the
length of the requests is depicted in Figure 1.
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Hill estimator A possible approach to estimate the index of the tail behavior
« is the Hill estimator [20]. This estimator provides the index as a function of
the k largest elements of the dataset and is defined as

-1

1 k—1
Qn .k = <E Z (log X(nfz) - IOg X(nk))> (3)

=0

where X(;) < ... < X{,) denotes the order statistics of the dataset. In practice,
the estimator given in (3) is plotted against & and if the plot stabilizes to a
constant value this provides an estimate of the index. The Hill-plot (together
with the dynamic qqg-plot that will be described later) for the EPA trace is
depicted in Figure 2.

The idea behind the procedure and theoretical properties of the estimator
are discussed in [39]. Applicability of the Hill estimator is reduced by the fact
that

— its properties (e.g. confidence intervals) are known to hold only under con-
ditions that often cannot be validated in practice [39],

— the point at which the power-law tail begins must be determined and this
can be difficult because often the datasets do not show clear border between
the power-law tail and the non-power-low body of the distributions.

By slight modifications in the way the Hill plot is displayed, the uncertainty
of the estimation procedure can be somewhat reduced, see [39, 40].

Quantile-quantile regression plot The above described Hill estimator per-
forms well if the underlying distribution is close to Pareto. With the quantile-
quantile plot (qg-plot), which is a visual tool for assessing the presence of heavy
tails in distributions, one can check this. The qqg-plot is commonly used in various
forms, see for example [8,41]. Hereinafter, among the various forms, we follow
the one presented in [25].

Having the order statistics X(;) < ... < X(,) plot

J )
{(—log<1—m>,logX(j)>,n—k+1§j§n} (4)

for a fixed value of k. (As one can see only the k& upper order statistics is con-
sidered in the plot, the other part of the sample is neglected.) The plot, if the
data is close to Pareto, should be a straight line with slope 1/a. By determining
the slope of the straight line fitted to the points by least squares, we obtain the
so-called qg-estimator [25].

The qg-estimator can be visualized in two different ways. The dynamic qq-
plot, depicted in Figure 2, plots the estimate of « as the function of k£ (this plot
is similar to the Hill-plot). The static qg-plot, given in Figure 3, depicts (4) for a
fixed value of k and shows its least square fit. As for the Hill-plot, when applying
the qg-estimator, the point at which the tail begins has to be determined.
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Estimation based on the scaling properties Another method is proposed in
[9] which, in contrast to the Hill- and qq-estimator, does not require to determine
where the tail begins. The procedure is based on the scaling properties of sums of
heavy tailed distribution. The estimator, which is implemented in the tool aest,
determines the heavy tail index by exploring the complementary distribution
function of the dataset at different aggregation levels. For the EPA trace, the
index estimated by aest is 0.97. In order to aid further investigation, the tool
produces a plot of the complementary distribution function of the dataset at
different aggregation levels indicating the segments where heavy tailed behavior
is present. This plot for the considered dataset is depicted in Figure 4.

3.2 Tests for long range dependency

Recently, it has been agreed [28,36,37] that when one studies the long-range
dependence of a traffic trace the most significant parameter to be estimated is
the degree of self-similarity, usually given by the so-called Hurst-parameter. The
aim of the statistical approach, based on the theory of self-similarity, is to find
the Hurst-parameter.

In this section methods for estimating the long-range dependence of datasets
are recalled. Beside the procedures described here, several other can be found in
the literature. See [3] for an exhaustive discussion on this subject.

It is important to note that the introduced statistical tests of self-similarity,
based on a finite number of samples, provides an approximate value of H only
for the considered range of scales. Nothing can be said about the higher scales
and the asymptotic behavior based on these tests.

Throughout the section, we illustrate the application of the estimators on
the first trace of the well-known Bellcore dataset set that contains local-area
network (LAN) traffic collected in 1989 on an Ethernet at the Bellcore Morris-
town Research and Engineering facility. It may be downloaded from the WEB
site collecting traffic traces [52]. The trace was first analyzed in [16].



Variance-time plot One of the tests for pseudo self-similarity is the variance-
time plot. It is based on the fact that for self-similar time series {X1, X5,...}

Var(X(m))Nm_B , a8 m—oo, 0<pB<I.

The variance-time plot depicts Log(Var(X (™)) versus Log(m). For pseudo self-
similar time series, the slope of the variance-time plot —f is greater than —1.
The Hurst parameter can be calculated as H = 1 — (5/2). A traffic process is
said to be pseudo self-similar when the empirical Hurst parameter is between 0.5
and 1.

The variance-time plot for the analyzed Bellcore trace is depicted in Figure
5. The Hurst-parameter given by the variance-time plot is 0.83.
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R/S plot The R/S method is one of the oldest tests for self-similarity, it is
discussed in detail in [31]. For interarrival time series, Z = {Z;,i > 1}, with
partial sum Y,, = Z?:l Z;, and sample variance

n

1 1
52 [ ZiQ . YQ,
() = 5322 o i
the R/S statistic, or the rescaled adjusted range, is given by:

1
RIS(n) = 5o Lrggé(n <Y(I~c) - %Y@)) ~ min <Y(k) - ZY@))] .
R/S(n) is the scaled difference between the fastest and the slowest arrival period
considering n arrivals. For stationary LRD processes R/S(n) ~ (n/2)H. To
determine the Hurst parameter based on the R/S statistic the dataset is divided
into blocks, log[R/S(n)] is plotted versus logn and a straight line is fitted on
the points. The slope of the fitted line is the estimated Hurst parameter.

The R/S plot for the analyzed Bellcore trace is depicted in Figure 6. The
Hurst-parameter determined based on the R/S plot is 0.78.



Whittle estimator The Whittle estimator is based on the maximum likelihood
principle assuming that the process under analysis is Gaussian. The estimator,
unlike the previous ones, provides the estimate through a non-graphical method.
This estimation takes more time to perform but it has the advantage of providing
confidence intervals as well. For details see [17,3]. For the Bellcore trace, the
estimated value of the Hurst parameter is 0.82 and its 95% confidence interval
is [0.79,0.84].

3.3 Multifractal framework

In this section we introduce two techniques to analyze multifractal processes.

Legendre spectrum Considering a continuous-time process Y = {Y'(t),¢ > 0}
the scaling of the absolute moments of the increments is observed through the
partition function

2m—1
1
. H _ —ny _ —nyl|q
T(0)= lin g, B | X V(- + 12 - YEN| )
Then, a multifractal spectrum, the so-called Legendre spectrum is given as the
Legendre transform of (5)

frla) =T"(a) = inf(qa — T(q))
Since T'(q) is always concave, the Legendre spectrum f7,(a) may be found by
simple calculations using that

T*(a) = ga — T(q), and (T*)'(@) = q at a = T'(q). (6)

Let us mention here that there are also other kinds of fractal spectrum defined
in the fractal world (see for example [42]). The Legendre spectrum is the most
attractive one from numerical point of view, and even though in some cases it
is less informative than, for example, the large deviation spectrum, it provides
enough information in the cases considered herein.

In case of a discrete-time process X' we assume that we are given the incre-
ments of a continuous-time process. This way, assuming that the sequence we
examine consists of N = 2F numbers, the sum in (5) becomes

N/2™ -1
Su@)= > 1XZV1 0<n<L, (7)
k=0

where the expectation is ignored. Ignoring the expectation is accurate for small n,
i.e., for the finer resolution levels. In order to estimate T'(q), we plot log,(Sn(q))
against (L —n), n = 0,1,...,L, then T(q) is found by the slope of the linear
line fitted to the curve. If the linear line shows good correspondence with the
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curve, i.e., if log, (S (q)) scales linearly with log(n), then the sequence X can be
considered a multifractal process.

Figure 7, 9, 8 and 10 illustrate the above described procedure to obtain the
Legendre spectrum of the famous Bellcore pAug traffic trace (the trace may be
found at [52]). Figure 7 depicts the scaling behavior of the log moments calcu-
lated through (7). With ¢ in the range [—3,4], excluding the finest resolution
levels n = 0,1 the moments show good linear scaling. For values of g outside the
range [—3,4] the curves deviate more and more from linearity. As, for example,
in [43] one may look at non-integer values of ¢ as well, but, in general, it does not
provide notably more information on the process. To better visualize the devia-
tion from linearity Figure 8 depicts the increments of the log-moment curves of
Figure 7. Completely horizontal lines would represent linear log-moment curves.

The partition function T'(q) is depicted in Figure 9. The three slightly differ-
ent curves differ only in the considered range of the log-moments curves, since
different ranges result in different linear fitting. The lower bound of the linear
fitting is set to 3, 5 and 7, while the upper bound is 18 in each cases. (In the
rest of this paper the fitting range is 5 - 18 and there are 100 moments evaluated
in the range ¢ € [—5,+5].) Since the partition function varies only a little (its
derivative is in the range [0.8,1.15]), it is not as informative as its Legendre
transform is (Figure 10). According to (6) the Legendre spectrum is as wide
as wide the range of derivatives of the partition function is, i.e., the more the
partition function deviates from linearity the wider the Legendre spectrum is.
The Legendre transform significantly amplifies the scaling information, but it is
also sensitive to the considered range of the log-moments curves.

See [43] for basic principles of interpreting the spectrum. We mention here
only that a curve like the one depicted in Figure 10 reveals a rich multifractal
spectrum. On the contrary, as it was shown in [51], the fractional Brownian
motion (fBm) has a trivial spectrum. The partition function of the fBm is a
straight line which indicates that its spectrum consists of one point, i.e., the
behavior of its log-moments is identical for any gq.
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Haar wavelet Another way to carry out multiscale analysis is the Haar wavelet
transform. The choice of using the unnormalized version of the Haar wavelet
transform is motivated by the fact that it suits more the analysis of the Marko-
vian point process introduced further on.

The multiscale behavior of the finite sequence X;,1 < i < 2% will be repre-
sented by the quantities cjx,d;jx,7 =0,...,Land k=1,..., 21 /27, The finest
resolution is described by ¢g x,1 < k < 2L which gives the finite sequence itself,
i.e., co,y = Xy. Then the multiscale analysis based on the unnormalized Haar
wavelet transform is carried out by iterating

Cjk = Cj—1,2k—1 + Cj—1,2k, (8)

djk = Cj—1,2k—1 — Cj—1,2k, 9)
for j =1,...,L and k = 1,...,2%/27. The quantities ¢jk, dj k. are the so-called
scaling and wavelet coefficients of the sequence, respectively, at scale j and po-
sition k. At each scale the coefficients are represented by the vectors ¢; = [¢; 1]
and d; = [dj ;] with k = 1,...,20/2/. For what concerns c;, the higher j the
lower the resolution level at which we have information on the sequence. The
information that we lost as a result of the step from c¢;_; to ¢;, is conveyed by
the sequence of wavelet coeflicients d;. It is easy to see that c;_; can be perfectly
reconstructed from ¢; and d;. As a consequence the whole X;,1 < i < 2L se-
quence can be constructed (in a top to bottom manner) based on a normalizing

constant, ¢, =cr1 = Z?; X;, and the d;,j = 1,..., L vectors.
By taking the expectation of the square of (8) and (9)
E[Cik] = E[C?—1,2k—1] + 2E[cj1,2k-1Cj-1,2k] + E[C?—mk]a (10)
E[d?k] = E[C?—1,2k—1] —2E[cj—1,2k-1Cj—1,2k] + E[C?—mk]a (11)

Let us assume that the series we analyze are stationary; then, by summing (10)
and (11) and rearranging the equation, we have
1

Bl ] = 1 (E[d7] + E[c}]) - (12)
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Similarly, by consecutive application of (12) from one scale to another, the
E[d?],j = 1,...,L series completely characterize the variance decay of the

X;,1 <i < 2% sequence apart of a normalizing constant (¢, = cp,1 = ZZQ; X;).
This fact allows us to realize a series with a given variance decay if it is possible
to control the 2nd moment of the scaling coefficient with the chosen synthesis
procedure. In Section 5 we will briefly discuss a method that attempts to capture
the multifractal scaling behavior via the series E[d3],j =1,..., L.

4 Markovian modeling tools

Markovian modeling tools are stochastic processes whose stochastic behavior
depends only on the state of a “background” Markov chain. The research and
application of these modeling tools through the last 20 years resulted in a widely
accepted standard notation. The two classes of Markovian processes considered
in this paper are Phase type distributions and Markovian arrival processes. Here,
we concentrate our attention mainly on continuous time Markovian models, but
it is also possible to apply Markovian models in discrete time [33, 5, 27].

4.1 Phase type distribution

Z(t) is a continuous time Markov chain with n transient state and one absorbing
state. Its initial probability distribution is & and generator matrix is B. The time
to reach the absorbing state, T', phase type distributed with representation a;, B,
where a is the sub-vector of & and B is the sub-matrix of B associated with
the transient states. The cumulative distribution function (cdf), the probability
density function (pdf), and the moments of this distribution are:

Fr(t) =1—-aeBh, fr(t) =aBeB'h, FE[X']=ila(-B) 'h,

where h is the column vector of ones. The number of unknown in the o, B
representation of a PH distribution is O(n?).
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Fig. 12. Canonical form for Acyclic continuous-time PH distributions

When Z(t) is an acyclic Markov chain the associated PH distribution is
referred to as Acyclic PH (APH) distribution. The popularity of APH distri-
butions (specially in PH fitting) lies in the fact that all APH distributions can
be uniquely transformed into a canonical from (Figure 12) which has only O(n)
parameters [10] and the flexibility of the PH and the APH class of the same
order is very close. E.g., the 2nd order PH and APH classes exhibit the same
moments bounds [50].

4.2 Markovian arrival process

Let Z(t) be an irreducible Markov chain with finite state space of size m and
generator Q. An arrival process is associated with this Markov chain in the
following way:

— while the Markov chain stays in state ¢ arrival occurs at rate A;,
— when the Markov chain undergoes a state transition from i to j arrival occurs
with probability p;;.

The standard description of MAPs is given with matrices Dg and D4 of size
(m x m), where Dg contains the transition rates of the Markov chain which are
not accompanied with arrivals and D; contains the transition rates which are
accompanied with arrivals, i.e.:

— Do;; = (1 = pij)Quj, for i # j and Do;; = Qi — As;
- Dlij = pijQij fOI', ) 75] and Dlii = )\z

Many familiar arrival processes represent special cases of MAPs:

— the Poisson process (MAP with a single state),

— interrupted Poisson process: a two-state MAP in which arrivals occur only
in one of the states and state jumps do not cause arrival,

— Markov modulated Poisson process: state jumps do not give rise to arrivals.

The class of MAPs is closed for superposition and Markovian splitting.

5 Fitting Markovian models to datasets

Fitting a Markovian model to a measured dataset is to find a Markovian model
which exhibits a stochastic behavior as close to the one of the measured dataset
as possible. In practice, the order of approximate Markov models should kept



low, both, for having few model parameters to evaluate and for obtaining com-
putable models. The presence of slow decay behavior (heavy tail or long range
correlation) in measured datasets makes the fitting more difficult. Typically a
huge number of samples needed to obtain a fairly reliable view on the stochastic
behavior over a range of several orders of magnitude, and, of course, the asymp-
totic behavior can not be checked based on finite datasets. A class of fitting
methods approximates the asymptotic behavior based on the reliably known
ranges (e.g., based on 10° i.i.d. samples the cdf. can be approximated up to the
1 — F(z) ~10~* — 107° limit). The asymptotic methods are based on the as-
sumption that the dominant parameters (e.g., tail decay, correlation decay) of
the known ranges remain unchanged in the unknown region up to the asymptotic
limit.

Unfortunately, Markovian models can not exhibit any complex asymptotic
behavior. In the asymptotic region Markovian models have exponential tail de-
cay or autocorrelation. Due to this dominant property Markovian models were
not considered for fitting datasets with slow decaying features for a long time.
Recently, in spite of the exponential asymptotic decay behavior, Markovian mod-
els with slow decay behavior for several orders of magnitude were introduced.
These results broaden the attention from asymptotically slow decay models to
models with slow decay in given predefined range. The main focus of this paper
is on the use of Markovian models with slow decay behavior in applied traffic
engineering.

A finite dataset provides only a limited information about the stochastic
properties of traffic processes. Especially, the long range and the asymptotic
behavior cannot be extracted from finite dataset. To overcome the lack of these
important model properties the set of information provided by the dataset is
often accompanied by engineering assumptions in practice. One of the most
commonly applied traffic engineering assumptions is that the decay trends of a
known region continuous to infinity.

The use of engineering assumptions has a significant role in model fitting as
well. With this respect there are two major classes of fitting methods:

— fitting based on al the samples,
— fitting based on information extracted from the samples,

Naturally, there are methods which combines these two approaches.

The fitting methods based on extracted information find their roots in traffic
engineering assumptions. It is a common goal in traffic engineering to find a
simple (characterized by few parameters), but robust (widely applicable) traffic
model which is based on few representative traffic parameters of network traffic.
The traffic models discussed in Section 2 are completely characterized by very few
parameters. E.g., the tail behavior of a power tail distribution is characterized by
the heavy tail index «, fractional Gaussian noise is characterized by parameter H
and the variance over a natural time unit. Assuming that there is representative
information of the dataset, it is worth to complete the model fitting based on
this compact description of the traffic properties instead of using all the very
large dataset. Unfortunately, a commonly accepted, accurate and compact traffic



characterization is not available up to now. This way, when the fitting is based on
extracted information, the goodness of fitting strongly depend on the descriptive
power of the selected characteristics to be fitted.

In this section we introduce a selected set of fitting methods from both classes.
The fitting methods that are based on extracted information are composed by
two mains steps: the statistical analysis of the dataset to extract representative
properties and the fitting itself based on these properties. The first step of this
procedure is based on the methods presented in the previous section, and only
the second step is considered here.

5.1 PH fitting

General PH fitting methods minimizes a distance measure between the experi-
mental distribution and the approximate PH one. The most commonly applied

distance measure is the relative entropy: / f(t) log (;Eg) dt where f(t)
0

and f(t) denote the pdf of the distribution to be fitted and that of the fitting
distribution, respectively. The number of parameters to minimize in this proce-
dure depends on the order of the approximate PH model. The required order of
PH models can be approximated based on the dataset [48], but usually small
models are preferred in practice for computational convenience. It is a common
feature of the relative entropy and other distance measures that the distance is
a non-linear function of the PH parameters.

General PH fitting methods might perform poorly in fitting slow decaying tail
behavior [22]. As an alternative, heuristic fitting procedures can be applied that
focus on capturing the tail decay behavior. In case of heuristic fitting methods,
the goal is not to minimize a properly defined distance measure, but to construct
a PH distribution which fulfills a set of heuristic requirements.

According to the above classification of fitting procedures general fitting
methods commonly belong to the fitting based on samples class and heuristic
fitting methods to the fitting to extracted model properties class.

The literature of general PH fitting methods is quite large. A set of methods
with a comparison of their fitting properties are presented in [26]. Here we con-
sider only those methods which were applied for fitting slowly decaying behavior
in [11] and [22]. Among the heuristic methods we discuss the one proposed in
[14] and its extension in [22].

EM method The expectation mazimization (EM) method was proposed to
apply for PH fitting in [2]. It is a statistical method which performs an iter-
ative optimization over the space of the PH parameters to minimize the rela-
tive entropy. It differs from other relative entropy minimizing methods in the
way it searches for the minimum of the non-linear distance measure. Based on
the fact that hyper-exponential distributions can capture slow decay behavior
([14]), a specialized version of the EM algorithm, which fits the dataset with



hyper-exponential distributions, is applied for fitting measured traffic datasets
in [11].

Starting from an initial guess a(®, \(?) and denoting the pdf of the hyper-
exponential distribution with initial probability vector a and intensity vector
A by f (t|a, A), the iterative procedure calculates consecutive hyper-exponential
distributions based on the samples tq,...,tn as:

0

) _ l i Oégk)f(tn|eia/\(k)) QD) —_ ft,|a®k) X(KR))
' N n=1 f(tn|a(k)7/\(k)) ' l iv: " Oéz(»k)f(tn|€i, )\(k))
N n=1 ! f(tn|a(k)7)‘(k))

where e; is the vector of zeros with a one at the ith position.

The computational complexity of this simplified method using hyper-
exponential distributions is much less than the one for the whole PH class.
Nevertheless, a reliable view on the (slow decaying) tail behavior requires very
large number of samples. The complexity of the simplified fitting method is still
proportional to the size of the dataset, hence the applicability of this approach
is limited by computational complexity (~ 107 samples were reported in [11]).
On the other hand, due to the strict structure of hyper-exponential distributions
(e.g., there is no fork in the structure), less iterations are required to reach a
reasonable accuracy (5 — 10 iterations were found to be sufficient in [11]).

This simplified EM fitting method is a potential choice for model fitting
when we have a large dataset, but we do not have or do not want to apply any
engineering assumption on the properties of the dataset.

Tail fitting based on the cedf The method proposed by Feldmann and Whitt
[14] is a recursive fitting procedure that results in a hyper-exponential distribu-
tion whose cumulative distribution function (ccdf) at a given set of points is
“very close” to the ccdf of the original distribution. This method was success-
fully applied to fit Pareto and Weibull distributions.

Combined fitting method In [22] a PH fitting method is proposed that han-
dles the fitting of the body and the fitting of the tail in a separate manner. This
is done by combining the method proposed by Feldmann and Whitt [14] and a
general method to.

The limitation of this combined method comes from the limitation of the
method of Feldmann and Whitt. Their method is applicable only for fitting
distributions with monotone decreasing density function. Hence the proposed
combined method is applicable when the tail of the distribution is with monotone
decreasing density. In the case of the combined method, this restriction is quite
loose since the border of the main part and the tail of the distribution is arbitrary,
hence the restriction of applicability is to have a positive number C' such that
the density of the distribution is monotone decreasing above C.
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The result of this fitting algorithm is a Phase type distribution of order n+m,
where n is the number of phases used for fitting the body and m is the number
of phases used for fitting the tail. The structure of this Phase type distribution
is depicted in Figure 13 where we have marked the phases used to fit the body
and those to fit the tail. The parameters 1, ..., Bm, t1, - - - , lbm are computed by
considering the tail while the parameters ag,...,am, A1,..., Ay are determined
considering the main part of the distribution.

To illustrate the combined fitting method, we consider the following Pareto-
like distributions [45]:

aB-le—%t fort< B
Pareto I:  f(t) = {aBae—at—(OH‘l) for t ; B

baefb/t
I(a)

—(a+1)

Pareto II: flit)= x

For both ditributions « is the heavy tail index.

Figure 14 pictures how different parts of the PH structure (Figure 13)
contributes to the pdf when fitting distribution Pareto I with parameters
a = 1.5,B = 4. In this case 8 phases are used to fit the body and 10 to fit
the tail.
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Fig. 16. Queue length distribution of an M/G/1 queue and its approximate M/PH/1
queue

Figure 15 illustrates the fitting of distribution Pareto II with parameters
a = 1.5,b = 2. In the legend of the figure ML indicates that the relative en-
tropy measure was applied to fit the main part (corresponding to the maximum
likelihood principle), while AD stands for area difference of the pdf. Still in the
legend, X+Y means that X phases was used to fit the body, while Y to fit the
tail. Figures 16 shows the effect of Phase type fitting on the M/G/1 queue be-
haviour with Pareto II service (utilization is 0.8). Exact result of the M/G/1
queue was computed with the method of [45].

At this point we take detour to discrete-time models. Discrete-time counter-
part of the fitting method, i.e. when discrete-time PH distributions are applied,
is given in [24]. We apply discrete PH distributions to fit the EPA trace. The
ccdf of the body and the tail of the resulting discrete PH distribution are shown
in Figure 17 and 18. In Figure 18 we depicted the polynomial fit of the tail
behaviour as well.

5.2 MAP fitting based on samples

Similarly to the case of PH fitting, MAP fitting methods can be classified as gen-
eral and heuristic ones. General methods utilize directly the data samples, and
hence they do not require any additional engineering knowledge. Our numerical
experiences show that MAP fitting is a far more difficult task than PH fitting.
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A simple explanation is that fitting a process is more difficult than fittign a dis-
tribution. Capturing slow decaying behaviour with general MAP fitting seems
impossible.

Anyhow, there are numerical methods available for fitting low order MAPs
directly to datasets. In [32,15,46] a fitting method based on maximum likelihood
estimate is presented, and in [47] the EM method is used for maximizing the
likelihood estimate.

Simple numerical tests (like taking a MAP, drawing samples from it, and
fitting a MAP of the same order to these samples) often fail for MAPs of higher
order (> 3) and the accuracy of the method does not necessarily improve with
increasing number of samples.

5.3 Heuristic MAP fitting

An alternative to general MAP fitting is to extract a set of (hopefully) domi-
nant properties of the traffic process from the dataset and to create a MAP (of
particular structure) that exhibits the same properties. This kind of heuristic
methods fail to satisfy the above mentioned “self test” by their nature, but if
the selected set of parameters are really dominant with respect to the goal of
the analysis we can achieve “sufficient” fitting. [19] proposed to fit the following
parameters: mean arrival rate, variance to mean ratio of arrivals in (0,¢), and its
asymptotic limit. After the notion of long range dependence in traffic processes
the Hurst parameter was added to this list. The following subsections introduces
heuristic fitting methods with various properties to capture and various fitting
MAP structures.

MAP structures approximating long range dependent behaviour An
intuitive way to provide long range dependent behaviour for several time scales
with Markovian models is to compose a combined model from small pieces each
of which represents the model behaviour at a selected range of the time scales.
One of the first models of this kind was proposed in [44]. The same approach
was applied for traffic fitting in [38], but recently this approach is criticized



n [12]. Renewal processes with heavy tailed interarrival times also exhibit self-
similar properties. Using this fact the approximate heavy tailed PH distributions
can be used to create a MAP with PH renewal process. In [1] superposition of 2
state MMPPs are used for approximating 2nd order self-similarity. The proposed
procedure fits the mean arrival rate, the 1-lag correlation, the Hurst parameter
and the required range of fitting.

Fitting based on separate handling of long- and short-range dependent
behavior In [21] a procedure is given to construct a MAP such a way that some
parameters of the traffic generated by the model match predefined values. The
following parameters are set:

— The fundamental arrival rate describes the expected number of arrivals in a
time unit.

— In order to describe the burstiness of the arrival stream, the index of disper-
sion for counts I(t) = Var(N;)/E(N;) is set for two different values of time:
I(t1) and I(t2). The choice of these two time points significantly affects the
goodness of fitting.

— A higher order descriptor, the third centralized moment of the number of
arrivals in the interval (0,t3), M(t3) = E[(Nt, — E(Nt,))?] is set.

— The degree of pseudo self-similarity is defined by the Hurst parameter H.
The Hurst parameter is realized in terms of the variance-time behavior of the
resulting traffic, i.e., the straight line fitted by regression to the variance-time
curve in a predefined interval has slope 2(H — 1).

The MAP resulting from the procedure is the superposition of a PH arrival
process and a two-state MMPP. In the following we sketch how to construct a PH
arrival process with pseudo self-similar behavior and describe the superposition
of this PH arrival process with a two-state MMPP. Detailed description of the
procedure is given in [21].

Let us consider an arrival process whose interarrival times are independent
random variables with heavy tail probability density function (pdf) of Pareto
type .

c-a
f@) = G = 20, (13)
The process X, (n > 0) representing the number of arrivals in the nth time-slot
is asymptotically second-order self-similar with Hurst parameter H = (3 —¢)/2
(149)).

Using the method of Feldman and Whitt [14] one may build an arrival process
whose interarrival times are independent, identically distributed PH random
variables with pdf approximating (13). To check pseudo self-similarity of this
PH renewal processes Figure 19 plots Var(X (™) of PH arrival processes whose
interarrival time is a 6 phase PH approximation of the pdf given in (13) for
different values of c. As it can be observed Var(X (™) is close through several
orders of magnitude to the straight line corresponding to the self-similar case
with slope 2(H — 1). The aggregation level where Var(X (™) drops compared to



the straight line may be increased by changing the parameters of the PH fitting
algorithm.
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The parameters of the two-state MMPP with which the PH arrival process
is superposed are calculated in two steps:

1. At first we calculate the parameters of an Interrupted Poisson Process (IPP).
The IPP is a two-state MMPP that has one of its two arrival rates equal
to 0. The calculated parameters of the IPP are such that the superposition
of the PH arrival process and the IPP results in a traffic source with the
desired first and second order parameters E(Ny), I(t1) and I(t2).

2. In the second step, based on the IPP we find a two-state MMPP that has the
same first and second order properties as the IPP has (recalling results from
[4]), and with which the superposition results in the desired third centralized
moment.

If the MMPP is “less long-range dependent” than the PH arrival process,
the pseudo self-similarity of the superposed traffic model will be dominated by
the PH arrival process. This fact is depicted in Figure 20. It can be observed
that if the Hurst parameter is estimated based on the variance-time plot the
Hurst parameter of the superposed model is only slightly smaller than the Hurst
parameter of the PH arrival process. In numbers, the Hurst parameter of the
PH arrival process is 0.8 while it is 0.78 for the superposed model (based on the
slope in the interval (10, 10°%)). This behavior is utilized in the fitting method to
approximate the short and long range behavior in a separate manner.

We illustrate the procedure by fitting the Bellcore trace. Variance-time plots
of the traffic generated by the MAPs resulted from the fitting are depicted in
Figure 21. The curve signed by (z1,z2) belongs to the fitting when the first
(second) time point of fitting the IDC value, t; (t2), is 21 (22) times the expected
interarrival time. R/S plots for both the real traffic trace and the traffic generated
by the approximating MAPs are given in Figure 22. The fitting of the traces
were tested by a ¢/D/1 queue, as well. The results are depicted in Figure 23.
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The ¢/D/1 queue was analyzed by simulation with different levels of utilization
of the server. As one may observe the lower ¢; and 5 the longer the queue length
distribution follows the original one.

The fitting method provides a MAP whose some parameters are the same
as those of the original traffic process (or very close). Still, the queue length
distribution does not show a good match. This means that the chosen parameters
do not capture all the important characteristics of the traffic trace.
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MMPP Exhibiting Multifractal Behavior In [23] a special MMPP struc-
ture is proposed to exhibit multifractal behavior. The background CTMC of the
MMPP has a symmetric n-dimensional cube structure and the arrival intensities
are set according to the variation of the arrival process at the different time
scales. The special choice of the structure is motivated by the generation of the
Haar wavelet transform. Basically the Haar wavelet transform evaluates the vari-
ation of the dataset at different aggregation levels (time scales), and similarly,
the proposed MMPP structure provide different variation of the arrival rate at
different time scales.

The composition of the proposed MMPP structure is similar to the generation
of the Haar wavelet transform (a procedure for traffic trace generation based on
this transform is introduced in [43]). Without loss of generality, we assume that
the time unit is such that the long term arrival intensity is one. A MMPP of one
state with arrival rate 1 represents the arrival process at the largest (considered)
time scale.

At the next time scale, 1/\, an MMPP of two states with generator

-2 A
A=A

and with arrival rates 1 — a; and 1+ a; (—1 < ay < 1) represents the variation
of the arrival process. This composition leaves the long term average arrival rate
unchanged.

In the rest of the composition we perform the same step. We introduce a new
dimension and generate the n-dimensional cube such that the behavior at the
already set time scales remains unchanged. E.g., considering also the 1/ time
scale an MMPP of four states with generator

o AyA
Ao YA
YA e )\
YA|A o

and with arrival rates (1 —a;)(1 —a2), (1+a1)(1 —a2), (1—a1)(1+az2) and (14
a1)(1+az) (=1 < ay,a2 < 1) represents the variation of the arrival process. With
this MMPP, parameter a; (a2) determines the variance of the arrival process at
the 1/X (1/~A) time scale. If v is large enough (>~ 30) the process behavior at
the 1/X time scale is independent of as. The proposed model is also applicable
with a small . In this case, the only difference is that the model parameters
and the process behavior of different time scales are dependent.

A level n MMPP of the proposed structure is composed by 2™ states and it
has n + 2 parameters. Parameters v and A defines the considered time scales,
and parameters ai,as, ..., a, determines the variance of the arrival process at
the n considered time scales. It can be seen that the ratio of the largest and the
smallest considered time scales is v". Having a fixed n (i.e., a fixed cardinality
of the MMPP), any large ratio of the largest and the smallest considered time
scales can be captured by using a sufficiently large .



A simple numerical procedure can be applied to fit a MMPP of the given
structure to a measured dataset. This heuristic approach is composed by “engi-
neering considerations” based on the properties of the measured dataset and a
parameter fitting method.

First, we fix the value of n. According to our experience a “visible” multiscal-
ing behavior can be obtained from n = 3 ~ 4. The computational complexity
of the fitting procedure grows exponentially with the dimension of the MMPP.
The response time with n = 6 (MMPP of 64 states) is still acceptable (in the
order of minutes).

Similarly to [43], we set v and the A based on the inspection of the dataset.
Practically, we define the largest, Ths, and the smallest, T,,, considered time
scales and calculate v and A from

The extreme values of Th; and T, can be set based on simple practical
considerations. For example when the measured dataset is composed by N arrival
instances, T can be chosen to be less than the mean time of N/4 arrivals, and
T, can be chosen to be greater than the mean time of 4 arrivals. A similar
approach was applied in [43]. These boundary values can be refined based on a
detailed statistical test of the dataset. E.g., if the scaling behavior disappears
beyond a given time scale, T can be set to that value.

Having v and A, we apply a downhill simplex method to find the optimal
values of the variability parameters ai,as,-..,a,. The goal function that our
parameter fitting method minimizes is the sum of the relative errors of the
second moment of Haar wavelet coefficients up to a predefined time scale S:

min E
a1y00n =

The goal function can be calculated analytically as it is described in [23].

Application of the fitting procedure is illustrated on the Bellcore trace. We
applied the fitting method with n = 5 and several different predefined setting
of v,A. We found that the goodness of the fitting is not very sensitive to the
predefined parameters around a reasonable region. The best “looking” fit is
obtained when T3, is the mean time of 16 arrivals and v = 8. In this case T, is the
mean time of 16x8% = 29 arrivals which corresponds to the coarsest time scale we
can analyze in the case of the Bellcore trace. The simplex method minimizing the
sum of the relative error of the second moments of the Haar wavelet coefficients
over S = 12 time scales resulted in: a; = 0.144,a> = 0.184,a3 = 0.184,a4 =
0.306, a5 = 0.687. The result of fitting the second moment of the Haar wavelet
transform at different aggregation levels is plotted in Figure 24. At small time
scales the fitting seems to be perfect, while at larger time scales the error enlarges.
The slope of the curves are almost equal in the depicted range.

The multiscaling behavior of the obtained MAP and of the original dataset
are illustrated via the log-moment curves in Figure 25. In the figure, the symbols

| E( d2 (d2)|
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Fig. 24. The second moment of the Haar = Fig. 25. Scaling of log-moments of the
wavelet transform at different aggregation  original trace and the fitting MMPP
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represent the log-moment curves of the fitting MAP and the solid lines indicate
the corresponding log-moment curves of the Bellcore trace. In the range of n €
(3,19) the log-moment curves of the fitting MAP are very close to the ones of
the original trace. The log-moment curves of the approximate MAP are also very
close to linear in the considered range.
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Fig.26. Partition function estimated Fig.27. The Legendre transform of the
through the linear fits shown in Figure 25  original dataset and the one of the ap-
proximate MMPP

The partition functions of the fitting MAP and of the original trace are
depicted in Figure 26. As it was mentioned earlier, the visual appearance of
the partition function is not very informative about the multifractal scaling
behavior. Figure 27 depicts the Legendre transform of the partition functions
of the original dataset and the approximating MAP. The visual appearance of
the Legendre transform significantly amplifies the differences of the partition
functions. In Figure 27, it can be seen that both processes exhibit multifractal
behavior but the original dataset has a bit richer multifractal spectrum.

We also compared the queuing behavior of the original dataset with that of
the approximate MAP assuming deterministic service time and different levels of
utilization, p. Figure 28 depicts the queue length distribution resulting from the
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Fig. 28. Queue-length distribution

original and the approximate arrival processes. The queue length distribution
curves show a quite close fit. The probability of an empty queue, which is not
displayed in the figures, is the same for the MAP as for the original trace since
the MAP has the same average arrival intensity as the original trace. The fit is
better with a higher queue utilization, which might mean that different scaling
behaviors play a dominant rule at different utilizations, and the ones that are
dominant at high utilization are better approximated by the proposed MAP.

6 Conclusions

This paper collects a set of methods which can be used in practice for mea-
surement, based traffic engineering. The history of traffic theory of high speed
communication networks is summarized together with a short introduction to
the mathematical foundation of the applied concepts. The common statistical
methods for the analysis of data traces and the practical problems of their ap-
plication is discussed.

The use of Markovian methods is motivated by the fact that an effective
analysis technique, the matrix geometric method, is available for the evalua-
tion of Markovian queuing systems. To obtain the Markovian approximation
of measured traffic data a variety of heuristic fitting methods are applied. The
properties and abilities of these methods are also discussed.



The presented numerical examples provide insight to the qualitative under-

standing of the strange traffic properties of high speed networks.
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