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Abstrat. In order to support the e�etive use of teleommuniation

infrastruture, the \random" behavior of traÆ soures has been stud-

ied sine the early days of telephony. Strange new features, like fratal

like behavior and heavy tailed distributions were observed in high speed

paket swithed data networks in the early '90s. Sine that time a fertile

researh aims to �nd proper models to desribe these strange traÆ fea-

tures and to establish a robust method to design, dimension and operate

suh networks.

In this paper we give an overview of methods that, on the one hand, allow

us to apture important traÆ properties like slow deay rate, Hurst

parameter, saling fator, et., and, on the other hand, makes possible the

quantitative analysis of the studied systems using the e�etive analysis

approah alled matrix geometri method.

The presentation of this analysis approah is assoiated with a disussion

on the properties and limits of Markovian �tting of the typial non-

Markovian behavior present in teleommuniation networks.

1 Introdution

In the late 80's, traÆ measurement of high speed ommuniation networks

indiated unexpetedly high variability and burstiness over several time sales,

whih indiated the need of new modeling approahes apable to apture the

observed traÆ features. The �rst promising approah, the fratal modeling of

high speed data traÆ [28℄, resulted in a big bum in traÆ theory. Sine that time

a series of traÆ models were proposed to desribe real traÆ behavior: frational

Gaussian noises [30, 37℄, traditional [7℄ and frational ARIMA proesses [18℄,

fratals and multifratals [49, 13℄, et.

A signi�ant positive onsequene of the new traÆ engineering wave is that

the importane of traÆ measurement and the proper statistial analysis of

measured datasets beame widely aepted and measured datasets of a wide

range of real network on�gurations beame publily available [52℄.

In spite of the intensive researh ativity, there are still open problems asso-

iated with these new traÆ models:

?

This work is supported by the OTKA-T34972 grant of the Hungarian Researh

Found.



{ None of the traÆ models is evidently veri�ed by the physial behavior of the

networks. The proposed models allow us to represent some of the features

of data traÆ, but some other features are not aptured. Whih are the

important traÆ features?

{ The traÆ features of measured data are heked via statistial tests and

the traÆ features of the models are heked using analysis and simulation

methods. Are these tests orret enough? Is there enough data available for

reliable tests?

{ The majority the proposed traÆ models has important asymptoti proper-

ties, but all tests are based on �nite datasets. Shall we draw onsequene on

the asymptoti properties based on �nite datasets? And vie-versa, shall we

draw onsequene from the asymptoti model behavior on the performane

of �nite systems.

{ Having �nite datasets the asymptoti properties extrated from tests per-

formed on di�erent time sales often di�er. Whih is the dominant time sale

to onsider?

The above listed questions refer to the orretness of traÆ models. There

is an even more important issue whih determines the utility of a traÆ model,

whih is omputability. The majority of the mentioned traÆ models are not

aompanied with e�etive analysis tools whih would allow us to use them in

pratial traÆ engineering.

In this paper we disuss the appliation of Markovian models for traÆ engi-

neering. The most evident advantage of this modeling approah with respet to

the above mentioned ones is that it is supported with a set of e�etive analysis

tehniques alled matrix geometri methods [34, 35, 27, 29℄. The other features

of Markovian models with respet to the answers of the above listed questions

are subjets to disussion. By the nature of Markovian models, non-exponential

asymptoti behavior annot be aptured, and hene, they are not suitable for

that purpose. Instead, reent researh results show that Markovian models are

able to approximate arbitrary non-Markovian behavior for an arbitrary wide

range of sales.

The paper summarizes a traÆ engineering proedure omposed by the fol-

lowing steps:

{ statistial analysis of measured traÆ data,

{ Markovian approximation of traÆ proesses,

{ analysis of performane parameters based on the Markovian model.

All steps of this proedure are supported with a number of numerial example

and the results are veri�ed against simulation and alternative analysis methods.

The paper is organized as follows. Setion 2 disusses some relevant har-

ateristis of traÆ proesses and desribe models that exhibit these features.

Statistial tests for identifying these harateristis in datasets are desribed in

Setion 3. A short introdution to Markovian models is given in 4. An overview

of the existing �tting methods with onneted appliation examples is given in

5. The survey is onluded in 6.



2 TraÆ models and their properties

The traÆ proess at a given point of a teleommuniation network is hara-

terized by the data paket arrival instanes (or equivalently by the interarrival

times) and the assoiated data paket sizes. Any of these two proesses an

be omposed by dependent or independent samples. In ase of identially dis-

tributed independent samples the proess modeling simpli�es to apturing a

distribution, while in ase of dependent samples the whole stohasti proess

(with its intrinsi dependeny struture) has to be aptured as well.

2.1 Heavy tailed distributions

One of the important new observations of the intensive traÆ measurement of

high speed teleommuniation networks is the presene of heavy tailed distribu-

tions. Marginal distributions of spei� traÆ proesses, �le size distribution on

HTTP servers, et, were found to be \heavy tailed". The random variable Y ,

with umulative distribution funtion (df) F

Y

(x), is said to be heavy tailed if

1� F

Y

(x) = x

��

L(x);

where L(x) is slowly varying as x ! 1, i.e., lim

x!1

L(ax)=L(x) = 1 for a >

0. (There are several di�erent naming onventions applied in this �eld. Heavy

tailed distributions are alled regularly varying or power tail distributions also.)

Typial member of this distribution lass is the Pareto family.

There is an important qualitative property of the moments of heavy tailed

distributions. If Y is heavy tailed with parameter � then its �rst n < � moments

E(Y

n

) are �nite and its all higher moments are in�nite.

There are other lasses of distributions whose tail deay slower than the

exponential. The random variable Y , with distribution F

Y

(x), is said to be long

tailed if

lim

x!1

e

x

(1� F

Y

(x)) =1; 8 > 0

The Weibull family (F (x) = 1 � e

�(t=a)



) with  < 1 is long tailed, even if

all moments of the Weibull distributed random variables are �nite. The heavy

tailed distributions form a sublass of the long tailed lass.

A harateristi property of the heavy tailed lass is the asymptoti relation

of the distribution of the sum of n samples, S

n

= Y

1

+: : :+Y

n

, and the maximum

of n samples, M

n

= max

1�i�n

Y

i

:

Pr(S

n

> x) � Pr(M

n

> x) (1)

where the notation g(x) � f(x) denotes lim

x!1

f(x)

g(x)

= 1. In words, the sum

of heavy tailed random variables is dominated by a single large sample and the

rest of the samples are negligible small ompare to the dominant one for large

values of x. The probability that S

n

is dominated by more than one \large"

samples or it is obtained as the sum of number of small samples is negligible for



\large" values of S

n

. This interpretation gives an intuitive explanation for a set

of omplex results about the waiting time of queuing models with heavy tailed

servie time distribution [6℄.

2.2 Proesses with long range dependene

The de�nition of long range dependene of traÆ arrival proesses is as follows.

Let us divide the time aess into equidistant intervals of length �. The number

of arrivals in the ith interval is denoted by X

i

. X = fX

i

; i = 0; 1; : : :g is a

stohasti proess whose aggregated proess is de�ned as follows:

X

(m)

= fX

(m)

i

g =

�

X

1

+ : : :+X

m

m

; : : : ;

X

mk+1

+ : : :+X

(m+1)k

m

; : : :

�

The autoorrelation funtion of X

(m)

is:

r

(m)

(k) =

Ef(X

(m)

n

�E(X

(m)

)) � (X

(m)

n+k

�E(X

(m)

))g

Ef(X

(m)

n

�E(X

(m)

))

2

g

The proess X exhibits long-range dependene (LRD) of index � if its auto-

orrelation funtion an be realized as

r(k) � A(k)k

��

; k !1

where A(k) is a slowly varying funtion.

Self-similar proesses Using the above de�nition of the aggregated proess,

X is

a) exatly self-similar if X

d

= m

1�H

X

(m)

, i.e., if X and X

(m)

are idential within

a sale fator in �nite dimensional distribution sense.

b) exatly seond-order self-similar if r

(m)

(k) = r(k); 8m ; k � 0

) asymptotially seond-order self-similar if r

(m)

(k)! r(k); (k;m!1)

where H is the Hurst parameter, also referred to as the self-similarity parameter.

For exatly self-similar proesses the saling behavior, whih is harater-

ized by the Hurst parameter (H), an be heked based on any of the absolute

moments of the aggregated proess:

log(E(jX

(m)

j

q

)) = log(E(jm

H�1

X j

q

)) = q(H � 1)log(m) + log(E(jX j

q

)): (2)

Aording to (2), in ase of a self-similar proess, plotting log(E(jX

(m)

j

q

))

against log(m) for �xed q results in a straight line. The slope of the line is

q(H � 1). Based on the above observations the test is performed as follows.

Having a series of length N , the moments may be estimated as

E(jX

(m)

j

q

) =

1

bN=m

bN=m

X

i=1

jX

(m)

i

j

q

;



where bx denotes the largest integer number smaller or equal to x. To test

for self-similarity log(E(jX

(m)

j

q

)) is plotted against log(m) and a straight line is

�tted to the urve. If the straight line shows good orrespondene with the urve,

then the proess is self-similar and its Hurst-parameter may be alulated by the

slope of the straight line. This approah assumes that the saling behavior of all

absolute moments, q, are the same and it is aptured by the Hurst-parameter.

If it is the ase we talk about mono-fratal behavior. The variane-time plot,

whih is used widespread to gain evidene of self-similarity, is the speial ase

with q = 2. It depits the behavior of the 2nd moments for the entered data.

It is worth to point out that self-similarity and stationarity imply that either

E(X) = 0, or E(X) = �1, or H = 1. But H = 1 implies as well that X

i

=

X

j

; 8i; j almost surely. As a onsequene, to test for statistial self-similarity

makes sense only having zero-mean data, i.e., the data has to be entered before

the analysis.

Multi-fratal proesses Statistial tests of self-similarity try to gain evidene

through examining the behavior of the absolute moments E(jX

(m)

j

q

). In ase of

monofratal proesses the saling behavior of all absolute moments is harater-

ized by a single number, the Hurst parameter. Multifratal proesses might ex-

hibit di�erent saling for di�erent absolute moments. Multifratal analysis looks

at the behavior of E(jX

(m)

j

q

) for di�erent values q and results in a spetrum

that illustrates the behavior of the absolute moments. This analysis proedure

is detailed in Setion 3.3.

Frational Gaussian noise By now we provided the de�nition of the large

lass of self-similar stohasti proesses, but we did not provide any spei�

member of this lass. The two simplest self-similar proesses that are often used

in validation of self-similar modeling assumptions are the frational Gaussian

noise and the ARIMA proess.

Frational Gaussian noise, X

i

; i � 1, is the inrement proess of frational

Brownian motion, B(t); t 2 R

+

:

X

i

= B(i+ 1)�B(i);

Frational Brownian motion with Hurst parameter H (0:5 < H < 1) is

haraterized by the following properties: i) B(t) has stationary inrement,

ii) E(B(t)) = 0, iii) E(B

2

(t)) = t

2H

(assuming the time unit is suh that

E(B

2

(1)) = 1), iv) B(t) has ontinuous path, v) B(t) is a Gaussian proess, i.e.,

all of its �nite dimensional distributions are Gaussian. The ovariane of fra-

tional Brownian motion is E(B(t) �B(s)) = 1=2(s

2H

+t

2H

�js�tj

2H

), and hene,

the auto-ovariane funtion of frational Gaussian noise (h) = E(X

i

X

i+h

) �

H(2H � 1)h

2H�2

is positive and exhibits long-range dependene.



ARIMA proess An other simple self-similar proess is the frational

ARIMA(0,d,0) proess. It is de�ned as:

X

i

=

1

X

j=0



j

�

i�j

where �

i

are i.i.d. standard normal random variables and the 

j

oeÆients

implement moving average with parameter d aording to 

j

=

� (j+d)

� (d)� (j+1)

. For

large values of j the oeÆients 

j

�

j

d�1

� (d)

. The asymptoti behavior of the

auto-ovariane funtion is

(h) = E(X

i

X

i+h

) � C

d

h

2d�1

with oeÆient C

d

= �

�1

� (1�2d) sin(�d). For 0 < d < 1=2 the auto-ovariane

funtion has the same polynomial deay as the auto-ovariane funtion of fra-

tional Gaussian noise with H = d+ 1=2.

The better hoie among these two proesses depends on the applied anal-

ysis method. The frational Gaussian noise is better in exhibiting asymptoti

properties based on �nite number of samples, while the generation of frational

ARIMA proess samples is easier sine it is based on an expliit expression.

3 Statistial analysis of measured traÆ datasets

3.1 Estimation of the heavy tail index

In this setion we disuss methods for identifying the heavy tail index of datasets.

Appliation of the methods is illustrated on the dataset EPA HTTP whih an be

downloaded from [52℄ and ontains a day of HTTP logs with about 40000 entries.

The experimental omplementary umulative distribution funtion (df) of the

length of the requests is depited in Figure 1.
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Hill estimator A possible approah to estimate the index of the tail behavior

� is the Hill estimator [20℄. This estimator provides the index as a funtion of

the k largest elements of the dataset and is de�ned as

�

n;k

=

 

1

k

k�1

X

i=0

�

logX

(n�i)

� logX

(n�k)

�

!

�1

(3)

where X

(1)

� ::: � X

(n)

denotes the order statistis of the dataset. In pratie,

the estimator given in (3) is plotted against k and if the plot stabilizes to a

onstant value this provides an estimate of the index. The Hill-plot (together

with the dynami qq-plot that will be desribed later) for the EPA trae is

depited in Figure 2.

The idea behind the proedure and theoretial properties of the estimator

are disussed in [39℄. Appliability of the Hill estimator is redued by the fat

that

{ its properties (e.g. on�dene intervals) are known to hold only under on-

ditions that often annot be validated in pratie [39℄,

{ the point at whih the power-law tail begins must be determined and this

an be diÆult beause often the datasets do not show lear border between

the power-law tail and the non-power-low body of the distributions.

By slight modi�ations in the way the Hill plot is displayed, the unertainty

of the estimation proedure an be somewhat redued, see [39, 40℄.

Quantile-quantile regression plot The above desribed Hill estimator per-

forms well if the underlying distribution is lose to Pareto. With the quantile-

quantile plot (qq-plot), whih is a visual tool for assessing the presene of heavy

tails in distributions, one an hek this. The qq-plot is ommonly used in various

forms, see for example [8, 41℄. Hereinafter, among the various forms, we follow

the one presented in [25℄.

Having the order statistis X

(1)

� ::: � X

(n)

plot

��

� log

�

1�

j

k + 1

�

; logX

(j)

�

; n� k + 1 � j � n

�

(4)

for a �xed value of k. (As one an see only the k upper order statistis is on-

sidered in the plot, the other part of the sample is negleted.) The plot, if the

data is lose to Pareto, should be a straight line with slope 1=�. By determining

the slope of the straight line �tted to the points by least squares, we obtain the

so-alled qq-estimator [25℄.

The qq-estimator an be visualized in two di�erent ways. The dynami qq-

plot, depited in Figure 2, plots the estimate of � as the funtion of k (this plot

is similar to the Hill-plot). The stati qq-plot, given in Figure 3, depits (4) for a

�xed value of k and shows its least square �t. As for the Hill-plot, when applying

the qq-estimator, the point at whih the tail begins has to be determined.
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Estimation based on the saling properties Another method is proposed in

[9℄ whih, in ontrast to the Hill- and qq-estimator, does not require to determine

where the tail begins. The proedure is based on the saling properties of sums of

heavy tailed distribution. The estimator, whih is implemented in the tool aest,

determines the heavy tail index by exploring the omplementary distribution

funtion of the dataset at di�erent aggregation levels. For the EPA trae, the

index estimated by aest is 0.97. In order to aid further investigation, the tool

produes a plot of the omplementary distribution funtion of the dataset at

di�erent aggregation levels indiating the segments where heavy tailed behavior

is present. This plot for the onsidered dataset is depited in Figure 4.

3.2 Tests for long range dependeny

Reently, it has been agreed [28, 36, 37℄ that when one studies the long-range

dependene of a traÆ trae the most signi�ant parameter to be estimated is

the degree of self-similarity, usually given by the so-alled Hurst-parameter. The

aim of the statistial approah, based on the theory of self-similarity, is to �nd

the Hurst-parameter.

In this setion methods for estimating the long-range dependene of datasets

are realled. Beside the proedures desribed here, several other an be found in

the literature. See [3℄ for an exhaustive disussion on this subjet.

It is important to note that the introdued statistial tests of self-similarity,

based on a �nite number of samples, provides an approximate value of H only

for the onsidered range of sales. Nothing an be said about the higher sales

and the asymptoti behavior based on these tests.

Throughout the setion, we illustrate the appliation of the estimators on

the �rst trae of the well-known Bellore dataset set that ontains loal-area

network (LAN) traÆ olleted in 1989 on an Ethernet at the Bellore Morris-

town Researh and Engineering faility. It may be downloaded from the WEB

site olleting traÆ traes [52℄. The trae was �rst analyzed in [16℄.



Variane-time plot One of the tests for pseudo self-similarity is the variane-

time plot. It is based on the fat that for self-similar time series fX

1

; X

2

; : : :g

Var(X

(m)

) � m

��

; as m!1; 0 < � < 1:

The variane-time plot depits Log(Var(X

(m)

)) versus Log(m). For pseudo self-

similar time series, the slope of the variane-time plot �� is greater than �1.

The Hurst parameter an be alulated as H = 1 � (�=2). A traÆ proess is

said to be pseudo self-similar when the empirial Hurst parameter is between 0:5

and 1.

The variane-time plot for the analyzed Bellore trae is depited in Figure

5. The Hurst-parameter given by the variane-time plot is 0.83.
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Fig. 5. Variane-time plot and its least
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R/S plot The R/S method is one of the oldest tests for self-similarity, it is

disussed in detail in [31℄. For interarrival time series, Z = fZ

i

; i � 1g, with

partial sum Y

n

=

P

n

i=1

Z

i

, and sample variane

S

2

(n) =

1

n

n

X

i=1

Z

i

2

�

1

n

2

� Y

2

n

;

the R/S statisti, or the resaled adjusted range, is given by:

R=S(n) =

1

S(n)

�

max

0�k�n

�

Y (k)�

k

n

Y (n)

�

� min

0�k�n

�

Y (k)�

k

n

Y (n)

��

:

R=S(n) is the saled di�erene between the fastest and the slowest arrival period

onsidering n arrivals. For stationary LRD proesses R=S(n) � (n=2)

H

. To

determine the Hurst parameter based on the R/S statisti the dataset is divided

into bloks, log[R=S(n)℄ is plotted versus logn and a straight line is �tted on

the points. The slope of the �tted line is the estimated Hurst parameter.

The R/S plot for the analyzed Bellore trae is depited in Figure 6. The

Hurst-parameter determined based on the R/S plot is 0.78.



Whittle estimator The Whittle estimator is based on the maximum likelihood

priniple assuming that the proess under analysis is Gaussian. The estimator,

unlike the previous ones, provides the estimate through a non-graphial method.

This estimation takes more time to perform but it has the advantage of providing

on�dene intervals as well. For details see [17, 3℄. For the Bellore trae, the

estimated value of the Hurst parameter is 0.82 and its 95% on�dene interval

is [0:79; 0:84℄.

3.3 Multifratal framework

In this setion we introdue two tehniques to analyze multifratal proesses.

Legendre spetrum Considering a ontinuous-time proess Y = fY (t); t > 0g

the saling of the absolute moments of the inrements is observed through the

partition funtion

T (q) = lim

n!1

1

�n

log

2

E

"

2

n

�1

X

k=0

jY ((k + 1)2

�n

)� Y (k2

�n

)j

q

#

: (5)

Then, a multifratal spetrum, the so-alled Legendre spetrum is given as the

Legendre transform of (5)

f

L

(�) = T

�

(�) = inf

q

(q� � T (q))

Sine T (q) is always onave, the Legendre spetrum f

L

(�) may be found by

simple alulations using that

T

�

(�) = q�� T (q); and (T

�

)

0

(�) = q at � = T

0

(q): (6)

Let us mention here that there are also other kinds of fratal spetrum de�ned

in the fratal world (see for example [42℄). The Legendre spetrum is the most

attrative one from numerial point of view, and even though in some ases it

is less informative than, for example, the large deviation spetrum, it provides

enough information in the ases onsidered herein.

In ase of a disrete-time proess X we assume that we are given the inre-

ments of a ontinuous-time proess. This way, assuming that the sequene we

examine onsists of N = 2

L

numbers, the sum in (5) beomes

S

n

(q) =

N=2

n

�1

X

k=0

jX

(2

n

)

k

j

q

; 0 � n � L; (7)

where the expetation is ignored. Ignoring the expetation is aurate for small n,

i.e., for the �ner resolution levels. In order to estimate T (q), we plot log

2

(S

n

(q))

against (L � n); n = 0; 1; :::; L, then T (q) is found by the slope of the linear

line �tted to the urve. If the linear line shows good orrespondene with the
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urve, i.e., if log

2

(S

n

(q)) sales linearly with log(n), then the sequene X an be

onsidered a multifratal proess.

Figure 7, 9, 8 and 10 illustrate the above desribed proedure to obtain the

Legendre spetrum of the famous Bellore pAug traÆ trae (the trae may be

found at [52℄). Figure 7 depits the saling behavior of the log moments alu-

lated through (7). With q in the range [�3; 4℄, exluding the �nest resolution

levels n = 0; 1 the moments show good linear saling. For values of q outside the

range [�3; 4℄ the urves deviate more and more from linearity. As, for example,

in [43℄ one may look at non-integer values of q as well, but, in general, it does not

provide notably more information on the proess. To better visualize the devia-

tion from linearity Figure 8 depits the inrements of the log-moment urves of

Figure 7. Completely horizontal lines would represent linear log-moment urves.

The partition funtion T (q) is depited in Figure 9. The three slightly di�er-

ent urves di�er only in the onsidered range of the log-moments urves, sine

di�erent ranges result in di�erent linear �tting. The lower bound of the linear

�tting is set to 3, 5 and 7, while the upper bound is 18 in eah ases. (In the

rest of this paper the �tting range is 5 - 18 and there are 100 moments evaluated

in the range q 2 [�5;+5℄.) Sine the partition funtion varies only a little (its

derivative is in the range [0:8; 1:15℄), it is not as informative as its Legendre

transform is (Figure 10). Aording to (6) the Legendre spetrum is as wide

as wide the range of derivatives of the partition funtion is, i.e., the more the

partition funtion deviates from linearity the wider the Legendre spetrum is.

The Legendre transform signi�antly ampli�es the saling information, but it is

also sensitive to the onsidered range of the log-moments urves.

See [43℄ for basi priniples of interpreting the spetrum. We mention here

only that a urve like the one depited in Figure 10 reveals a rih multifratal

spetrum. On the ontrary, as it was shown in [51℄, the frational Brownian

motion (fBm) has a trivial spetrum. The partition funtion of the fBm is a

straight line whih indiates that its spetrum onsists of one point, i.e., the

behavior of its log-moments is idential for any q.
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Haar wavelet Another way to arry out multisale analysis is the Haar wavelet

transform. The hoie of using the unnormalized version of the Haar wavelet

transform is motivated by the fat that it suits more the analysis of the Marko-

vian point proess introdued further on.

The multisale behavior of the �nite sequene X

i

; 1 � i � 2

L

will be repre-

sented by the quantities 

j;k

; d

j;k

; j = 0; : : : ; L and k = 1; : : : ; 2

L

=2

j

. The �nest

resolution is desribed by 

0;k

; 1 � k � 2

L

whih gives the �nite sequene itself,

i.e., 

0;k

= X

k

. Then the multisale analysis based on the unnormalized Haar

wavelet transform is arried out by iterating



j;k

= 

j�1;2k�1

+ 

j�1;2k

; (8)

d

j;k

= 

j�1;2k�1

� 

j�1;2k

; (9)

for j = 1; : : : ; L and k = 1; : : : ; 2

L

=2

j

. The quantities 

j;k

; d

j;k

are the so-alled

saling and wavelet oeÆients of the sequene, respetively, at sale j and po-

sition k. At eah sale the oeÆients are represented by the vetors 

j

= [

j;k

℄

and d

j

= [d

j;k

℄ with k = 1; : : : ; 2

L

=2

j

. For what onerns 

j

, the higher j the

lower the resolution level at whih we have information on the sequene. The

information that we lost as a result of the step from 

j�1

to 

j

, is onveyed by

the sequene of wavelet oeÆients d

j

. It is easy to see that 

j�1

an be perfetly

reonstruted from 

j

and d

j

. As a onsequene the whole X

i

; 1 � i � 2

L

se-

quene an be onstruted (in a top to bottom manner) based on a normalizing

onstant, 

L

= 

L;1

=

P

2

L

i=1

X

i

, and the d

j

; j = 1; : : : ; L vetors.

By taking the expetation of the square of (8) and (9)

E[

2

j;k

℄ = E[

2

j�1;2k�1

℄ + 2E[

j�1;2k�1



j�1;2k

℄ +E[

2

j�1;2k

℄; (10)

E[d

2

j;k

℄ = E[

2

j�1;2k�1

℄� 2E[

j�1;2k�1



j�1;2k

℄ +E[

2

j�1;2k

℄; (11)

Let us assume that the series we analyze are stationary; then, by summing (10)

and (11) and rearranging the equation, we have

E[

2

j�1

℄ =

1

4

�

E[d

2

j

℄ +E[

2

j

℄

�

: (12)
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Similarly, by onseutive appliation of (12) from one sale to another, the

E[d

2

j

℄; j = 1; : : : ; L series ompletely haraterize the variane deay of the

X

i

; 1 � i � 2

L

sequene apart of a normalizing onstant (

L

= 

L;1

=

P

2

L

i=1

X

i

).

This fat allows us to realize a series with a given variane deay if it is possible

to ontrol the 2nd moment of the saling oeÆient with the hosen synthesis

proedure. In Setion 5 we will briey disuss a method that attempts to apture

the multifratal saling behavior via the series E[d

2

j

℄; j = 1; : : : ; L.

4 Markovian modeling tools

Markovian modeling tools are stohasti proesses whose stohasti behavior

depends only on the state of a \bakground" Markov hain. The researh and

appliation of these modeling tools through the last 20 years resulted in a widely

aepted standard notation. The two lasses of Markovian proesses onsidered

in this paper are Phase type distributions and Markovian arrival proesses. Here,

we onentrate our attention mainly on ontinuous time Markovian models, but

it is also possible to apply Markovian models in disrete time [33, 5, 27℄.

4.1 Phase type distribution

Z(t) is a ontinuous time Markov hain with n transient state and one absorbing

state. Its initial probability distribution is �̂ and generator matrix is

^

B. The time

to reah the absorbing state, T , phase type distributed with representation �;B,

where � is the sub-vetor of �̂ and B is the sub-matrix of

^

B assoiated with

the transient states. The umulative distribution funtion (df), the probability

density funtion (pdf), and the moments of this distribution are:

F

T

(t) = 1� �e

Bt

h; f

T

(t) = �Be

Bt

h; E[X

i

℄ = i!� (�B)

�i

h;

where h is the olumn vetor of ones. The number of unknown in the �;B

representation of a PH distribution is O(n

2

).



a

1

a

2

q

2

q

1

n

X

i=1

a

i

= 1

0 < q

i

� q

i+1

; 1 � i � n� 1

a

n

q

n

Constraints

Fig. 12. Canonial form for Ayli ontinuous-time PH distributions

When Z(t) is an ayli Markov hain the assoiated PH distribution is

referred to as Ayli PH (APH) distribution. The popularity of APH distri-

butions (speially in PH �tting) lies in the fat that all APH distributions an

be uniquely transformed into a anonial from (Figure 12) whih has only O(n)

parameters [10℄ and the exibility of the PH and the APH lass of the same

order is very lose. E.g., the 2nd order PH and APH lasses exhibit the same

moments bounds [50℄.

4.2 Markovian arrival proess

Let Z(t) be an irreduible Markov hain with �nite state spae of size m and

generator Q. An arrival proess is assoiated with this Markov hain in the

following way:

{ while the Markov hain stays in state i arrival ours at rate �

i

,

{ when the Markov hain undergoes a state transition from i to j arrival ours

with probability p

ij

.

The standard desription of MAPs is given with matries D

0

and D

1

of size

(m�m), where D

0

ontains the transition rates of the Markov hain whih are

not aompanied with arrivals and D

1

ontains the transition rates whih are

aompanied with arrivals, i.e.:

{ D

0

ij

= (1� p

ij

)Q

ij

, for i 6= j and D

0

ii

= Q

ii

� �

i

;

{ D

1

ij

= p

ij

Q

ij

for, i 6= j and D

1

ii

= �

i

.

Many familiar arrival proesses represent speial ases of MAPs:

{ the Poisson proess (MAP with a single state),

{ interrupted Poisson proess: a two-state MAP in whih arrivals our only

in one of the states and state jumps do not ause arrival,

{ Markov modulated Poisson proess: state jumps do not give rise to arrivals.

The lass of MAPs is losed for superposition and Markovian splitting.

5 Fitting Markovian models to datasets

Fitting a Markovian model to a measured dataset is to �nd a Markovian model

whih exhibits a stohasti behavior as lose to the one of the measured dataset

as possible. In pratie, the order of approximate Markov models should kept



low, both, for having few model parameters to evaluate and for obtaining om-

putable models. The presene of slow deay behavior (heavy tail or long range

orrelation) in measured datasets makes the �tting more diÆult. Typially a

huge number of samples needed to obtain a fairly reliable view on the stohasti

behavior over a range of several orders of magnitude, and, of ourse, the asymp-

toti behavior an not be heked based on �nite datasets. A lass of �tting

methods approximates the asymptoti behavior based on the reliably known

ranges (e.g., based on 10

6

i.i.d. samples the df. an be approximated up to the

1 � F (x) � 10

�4

� 10

�5

limit). The asymptoti methods are based on the as-

sumption that the dominant parameters (e.g., tail deay, orrelation deay) of

the known ranges remain unhanged in the unknown region up to the asymptoti

limit.

Unfortunately, Markovian models an not exhibit any omplex asymptoti

behavior. In the asymptoti region Markovian models have exponential tail de-

ay or autoorrelation. Due to this dominant property Markovian models were

not onsidered for �tting datasets with slow deaying features for a long time.

Reently, in spite of the exponential asymptoti deay behavior, Markovian mod-

els with slow deay behavior for several orders of magnitude were introdued.

These results broaden the attention from asymptotially slow deay models to

models with slow deay in given prede�ned range. The main fous of this paper

is on the use of Markovian models with slow deay behavior in applied traÆ

engineering.

A �nite dataset provides only a limited information about the stohasti

properties of traÆ proesses. Espeially, the long range and the asymptoti

behavior annot be extrated from �nite dataset. To overome the lak of these

important model properties the set of information provided by the dataset is

often aompanied by engineering assumptions in pratie. One of the most

ommonly applied traÆ engineering assumptions is that the deay trends of a

known region ontinuous to in�nity.

The use of engineering assumptions has a signi�ant role in model �tting as

well. With this respet there are two major lasses of �tting methods:

{ �tting based on al the samples,

{ �tting based on information extrated from the samples,

Naturally, there are methods whih ombines these two approahes.

The �tting methods based on extrated information �nd their roots in traÆ

engineering assumptions. It is a ommon goal in traÆ engineering to �nd a

simple (haraterized by few parameters), but robust (widely appliable) traÆ

model whih is based on few representative traÆ parameters of network traÆ.

The traÆ models disussed in Setion 2 are ompletely haraterized by very few

parameters. E.g., the tail behavior of a power tail distribution is haraterized by

the heavy tail index �, frational Gaussian noise is haraterized by parameterH

and the variane over a natural time unit. Assuming that there is representative

information of the dataset, it is worth to omplete the model �tting based on

this ompat desription of the traÆ properties instead of using all the very

large dataset. Unfortunately, a ommonly aepted, aurate and ompat traÆ



haraterization is not available up to now. This way, when the �tting is based on

extrated information, the goodness of �tting strongly depend on the desriptive

power of the seleted harateristis to be �tted.

In this setion we introdue a seleted set of �tting methods from both lasses.

The �tting methods that are based on extrated information are omposed by

two mains steps: the statistial analysis of the dataset to extrat representative

properties and the �tting itself based on these properties. The �rst step of this

proedure is based on the methods presented in the previous setion, and only

the seond step is onsidered here.

5.1 PH �tting

General PH �tting methods minimizes a distane measure between the experi-

mental distribution and the approximate PH one. The most ommonly applied

distane measure is the relative entropy:

Z

1

0

f(t) log

 

f(t)

^

f(t)

!

dt where f(t)

and

^

f(t) denote the pdf of the distribution to be �tted and that of the �tting

distribution, respetively. The number of parameters to minimize in this proe-

dure depends on the order of the approximate PH model. The required order of

PH models an be approximated based on the dataset [48℄, but usually small

models are preferred in pratie for omputational onveniene. It is a ommon

feature of the relative entropy and other distane measures that the distane is

a non-linear funtion of the PH parameters.

General PH �tting methods might perform poorly in �tting slow deaying tail

behavior [22℄. As an alternative, heuristi �tting proedures an be applied that

fous on apturing the tail deay behavior. In ase of heuristi �tting methods,

the goal is not to minimize a properly de�ned distane measure, but to onstrut

a PH distribution whih ful�lls a set of heuristi requirements.

Aording to the above lassi�ation of �tting proedures general �tting

methods ommonly belong to the �tting based on samples lass and heuristi

�tting methods to the �tting to extrated model properties lass.

The literature of general PH �tting methods is quite large. A set of methods

with a omparison of their �tting properties are presented in [26℄. Here we on-

sider only those methods whih were applied for �tting slowly deaying behavior

in [11℄ and [22℄. Among the heuristi methods we disuss the one proposed in

[14℄ and its extension in [22℄.

EM method The expetation maximization (EM) method was proposed to

apply for PH �tting in [2℄. It is a statistial method whih performs an iter-

ative optimization over the spae of the PH parameters to minimize the rela-

tive entropy. It di�ers from other relative entropy minimizing methods in the

way it searhes for the minimum of the non-linear distane measure. Based on

the fat that hyper-exponential distributions an apture slow deay behavior

([14℄), a speialized version of the EM algorithm, whih �ts the dataset with



hyper-exponential distributions, is applied for �tting measured traÆ datasets

in [11℄.

Starting from an initial guess �

(0)

, �

(0)

and denoting the pdf of the hyper-

exponential distribution with initial probability vetor � and intensity vetor

� by

^

f(tj�; �), the iterative proedure alulates onseutive hyper-exponential

distributions based on the samples t

1

; : : : ; t

N

as:

�

(k+1)

i

=

1

N

N

X

n=1

�

(k)

i

^

f(t

n

je

i

; �

(k)

)

^

f(t

n

j�

(k)

; �

(k)

)

; �

(k+1)

i

=

1

N

N

X

n=1

�

(k)

i

^

f(t

n

je

i

; �

(k)

)

^

f(t

n

j�

(k)

; �

(k)

)

1

N

N

X

n=1

t

n

�

(k)

i

^

f(t

n

je

i

; �

(k)

)

^

f(t

n

j�

(k)

; �

(k)

)

where e

i

is the vetor of zeros with a one at the ith position.

The omputational omplexity of this simpli�ed method using hyper-

exponential distributions is muh less than the one for the whole PH lass.

Nevertheless, a reliable view on the (slow deaying) tail behavior requires very

large number of samples. The omplexity of the simpli�ed �tting method is still

proportional to the size of the dataset, hene the appliability of this approah

is limited by omputational omplexity (� 10

7

samples were reported in [11℄).

On the other hand, due to the strit struture of hyper-exponential distributions

(e.g., there is no fork in the struture), less iterations are required to reah a

reasonable auray (5� 10 iterations were found to be suÆient in [11℄).

This simpli�ed EM �tting method is a potential hoie for model �tting

when we have a large dataset, but we do not have or do not want to apply any

engineering assumption on the properties of the dataset.

Tail �tting based on the df The method proposed by Feldmann and Whitt

[14℄ is a reursive �tting proedure that results in a hyper-exponential distribu-

tion whose umulative distribution funtion (df) at a given set of points is

\very lose" to the df of the original distribution. This method was suess-

fully applied to �t Pareto and Weibull distributions.

Combined �tting method In [22℄ a PH �tting method is proposed that han-

dles the �tting of the body and the �tting of the tail in a separate manner. This

is done by ombining the method proposed by Feldmann and Whitt [14℄ and a

general method to.

The limitation of this ombined method omes from the limitation of the

method of Feldmann and Whitt. Their method is appliable only for �tting

distributions with monotone dereasing density funtion. Hene the proposed

ombined method is appliable when the tail of the distribution is with monotone

dereasing density. In the ase of the ombined method, this restrition is quite

loose sine the border of the main part and the tail of the distribution is arbitrary,

hene the restrition of appliability is to have a positive number C suh that

the density of the distribution is monotone dereasing above C.
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Fig. 13. Struture of approximate Phase type distribution
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The result of this �tting algorithm is a Phase type distribution of order n+m,

where n is the number of phases used for �tting the body and m is the number

of phases used for �tting the tail. The struture of this Phase type distribution

is depited in Figure 13 where we have marked the phases used to �t the body

and those to �t the tail. The parameters �

1

; : : : ; �

m

; �

1

; : : : ; �

m

are omputed by

onsidering the tail while the parameters �

1

; : : : ; �

m

; �

1

; : : : ; �

2

are determined

onsidering the main part of the distribution.

To illustrate the ombined �tting method, we onsider the following Pareto-

like distributions [45℄:

Pareto I: f(t) =

�

�B

�1

e

�

�

B

t

for t � B

�B

�

e

��

t

�(�+1)

for t > B

Pareto II: f(t) =

b

�

e

�b=t

� (�)

x

�(�+1)

For both ditributions � is the heavy tail index.

Figure 14 pitures how di�erent parts of the PH struture (Figure 13)

ontributes to the pdf when �tting distribution Pareto I with parameters

� = 1:5; B = 4. In this ase 8 phases are used to �t the body and 10 to �t

the tail.
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Figure 15 illustrates the �tting of distribution Pareto II with parameters

� = 1:5; b = 2. In the legend of the �gure ML indiates that the relative en-

tropy measure was applied to �t the main part (orresponding to the maximum

likelihood priniple), while AD stands for area di�erene of the pdf. Still in the

legend, X+Y means that X phases was used to �t the body, while Y to �t the

tail. Figures 16 shows the e�et of Phase type �tting on the M/G/1 queue be-

haviour with Pareto II servie (utilization is 0.8). Exat result of the M/G/1

queue was omputed with the method of [45℄.

At this point we take detour to disrete-time models. Disrete-time ounter-

part of the �tting method, i.e. when disrete-time PH distributions are applied,

is given in [24℄. We apply disrete PH distributions to �t the EPA trae. The

df of the body and the tail of the resulting disrete PH distribution are shown

in Figure 17 and 18. In Figure 18 we depited the polynomial �t of the tail

behaviour as well.

5.2 MAP �tting based on samples

Similarly to the ase of PH �tting, MAP �tting methods an be lassi�ed as gen-

eral and heuristi ones. General methods utilize diretly the data samples, and

hene they do not require any additional engineering knowledge. Our numerial

experienes show that MAP �tting is a far more diÆult task than PH �tting.



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

cc
df

Length in 100 bytes

Data set
Fitting I
Fitting II

Fig. 17. Body of the approximating dis-

tributions

0.0001

0.001

0.01

0.1

100 1000 10000 100000

cc
df

Length in 100 bytes

Polynomial tail
Data set
Fitting I
Fitting II

Fig. 18. Tail of the approximating distri-

butions

A simple explanation is that �tting a proess is more diÆult than �ttign a dis-

tribution. Capturing slow deaying behaviour with general MAP �tting seems

impossible.

Anyhow, there are numerial methods available for �tting low order MAPs

diretly to datasets. In [32, 15, 46℄ a �tting method based on maximum likelihood

estimate is presented, and in [47℄ the EM method is used for maximizing the

likelihood estimate.

Simple numerial tests (like taking a MAP, drawing samples from it, and

�tting a MAP of the same order to these samples) often fail for MAPs of higher

order (� 3) and the auray of the method does not neessarily improve with

inreasing number of samples.

5.3 Heuristi MAP �tting

An alternative to general MAP �tting is to extrat a set of (hopefully) domi-

nant properties of the traÆ proess from the dataset and to reate a MAP (of

partiular struture) that exhibits the same properties. This kind of heuristi

methods fail to satisfy the above mentioned \self test" by their nature, but if

the seleted set of parameters are really dominant with respet to the goal of

the analysis we an ahieve \suÆient" �tting. [19℄ proposed to �t the following

parameters: mean arrival rate, variane to mean ratio of arrivals in (0; t), and its

asymptoti limit. After the notion of long range dependene in traÆ proesses

the Hurst parameter was added to this list. The following subsetions introdues

heuristi �tting methods with various properties to apture and various �tting

MAP strutures.

MAP strutures approximating long range dependent behaviour An

intuitive way to provide long range dependent behaviour for several time sales

with Markovian models is to ompose a ombined model from small piees eah

of whih represents the model behaviour at a seleted range of the time sales.

One of the �rst models of this kind was proposed in [44℄. The same approah

was applied for traÆ �tting in [38℄, but reently this approah is ritiized



in [12℄. Renewal proesses with heavy tailed interarrival times also exhibit self-

similar properties. Using this fat the approximate heavy tailed PH distributions

an be used to reate a MAP with PH renewal proess. In [1℄ superposition of 2

state MMPPs are used for approximating 2nd order self-similarity. The proposed

proedure �ts the mean arrival rate, the 1-lag orrelation, the Hurst parameter

and the required range of �tting.

Fitting based on separate handling of long- and short-range dependent

behavior In [21℄ a proedure is given to onstrut a MAP suh a way that some

parameters of the traÆ generated by the model math prede�ned values. The

following parameters are set:

{ The fundamental arrival rate desribes the expeted number of arrivals in a

time unit.

{ In order to desribe the burstiness of the arrival stream, the index of disper-

sion for ounts I(t) = Var(N

t

)=E(N

t

) is set for two di�erent values of time:

I(t

1

) and I(t

2

). The hoie of these two time points signi�antly a�ets the

goodness of �tting.

{ A higher order desriptor, the third entralized moment of the number of

arrivals in the interval (0; t

3

), M(t

3

) = E[(N

t

3

�E(N

t

3

))

3

℄ is set.

{ The degree of pseudo self-similarity is de�ned by the Hurst parameter H .

The Hurst parameter is realized in terms of the variane-time behavior of the

resulting traÆ, i.e., the straight line �tted by regression to the variane-time

urve in a prede�ned interval has slope 2(H � 1).

The MAP resulting from the proedure is the superposition of a PH arrival

proess and a two-state MMPP. In the following we sketh how to onstrut a PH

arrival proess with pseudo self-similar behavior and desribe the superposition

of this PH arrival proess with a two-state MMPP. Detailed desription of the

proedure is given in [21℄.

Let us onsider an arrival proess whose interarrival times are independent

random variables with heavy tail probability density funtion (pdf) of Pareto

type

f(x) =

 � a



(x+ a)

+1

; x � 0: (13)

The proess X

n

(n > 0) representing the number of arrivals in the nth time-slot

is asymptotially seond-order self-similar with Hurst parameter H = (3� )=2

([49℄).

Using the method of Feldman andWhitt [14℄ one may build an arrival proess

whose interarrival times are independent, identially distributed PH random

variables with pdf approximating (13). To hek pseudo self-similarity of this

PH renewal proesses Figure 19 plots V ar(X

(m)

) of PH arrival proesses whose

interarrival time is a 6 phase PH approximation of the pdf given in (13) for

di�erent values of . As it an be observed V ar(X

(m)

) is lose through several

orders of magnitude to the straight line orresponding to the self-similar ase

with slope 2(H�1). The aggregation level where V ar(X

(m)

) drops ompared to



the straight line may be inreased by hanging the parameters of the PH �tting

algorithm.
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The parameters of the two-state MMPP with whih the PH arrival proess

is superposed are alulated in two steps:

1. At �rst we alulate the parameters of an Interrupted Poisson Proess (IPP).

The IPP is a two-state MMPP that has one of its two arrival rates equal

to 0. The alulated parameters of the IPP are suh that the superposition

of the PH arrival proess and the IPP results in a traÆ soure with the

desired �rst and seond order parameters E(N

1

), I(t

1

) and I(t

2

).

2. In the seond step, based on the IPP we �nd a two-state MMPP that has the

same �rst and seond order properties as the IPP has (realling results from

[4℄), and with whih the superposition results in the desired third entralized

moment.

If the MMPP is \less long-range dependent" than the PH arrival proess,

the pseudo self-similarity of the superposed traÆ model will be dominated by

the PH arrival proess. This fat is depited in Figure 20. It an be observed

that if the Hurst parameter is estimated based on the variane-time plot the

Hurst parameter of the superposed model is only slightly smaller than the Hurst

parameter of the PH arrival proess. In numbers, the Hurst parameter of the

PH arrival proess is 0.8 while it is 0.78 for the superposed model (based on the

slope in the interval (10; 10

6

)). This behavior is utilized in the �tting method to

approximate the short and long range behavior in a separate manner.

We illustrate the proedure by �tting the Bellore trae. Variane-time plots

of the traÆ generated by the MAPs resulted from the �tting are depited in

Figure 21. The urve signed by (x

1

; x

2

) belongs to the �tting when the �rst

(seond) time point of �tting the IDC value, t

1

(t

2

), is x

1

(x

2

) times the expeted

interarrival time. R/S plots for both the real traÆ trae and the traÆ generated

by the approximating MAPs are given in Figure 22. The �tting of the traes

were tested by a �/D/1 queue, as well. The results are depited in Figure 23.



0.001

0.01

0.1

1

1 10 100 1000 10000 100000 1e+06 1e+07

V
ar

ia
nc

e

Aggregation level

Original trace
(1,2)
(1,5)

(2,10)
(2,20)

Fig. 21. Variane-time plots of MAPs

with di�erent time points of IDC math-

ing

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 10 100 1000 10000 100000 1e+06

lo
g1

0(
R

/S
(n

))

n

Original trace
(1,2)
(1,5)

(2,10)
(2,20)

Fig. 22. R/S plots of MAPs with di�erent

time points of IDC mathing

The �/D/1 queue was analyzed by simulation with di�erent levels of utilization

of the server. As one may observe the lower t

1

and t

2

the longer the queue length

distribution follows the original one.

The �tting method provides a MAP whose some parameters are the same

as those of the original traÆ proess (or very lose). Still, the queue length

distribution does not show a good math. This means that the hosen parameters

do not apture all the important harateristis of the traÆ trae.
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MMPP Exhibiting Multifratal Behavior In [23℄ a speial MMPP stru-

ture is proposed to exhibit multifratal behavior. The bakground CTMC of the

MMPP has a symmetri n-dimensional ube struture and the arrival intensities

are set aording to the variation of the arrival proess at the di�erent time

sales. The speial hoie of the struture is motivated by the generation of the

Haar wavelet transform. Basially the Haar wavelet transform evaluates the vari-

ation of the dataset at di�erent aggregation levels (time sales), and similarly,

the proposed MMPP struture provide di�erent variation of the arrival rate at

di�erent time sales.

The omposition of the proposedMMPP struture is similar to the generation

of the Haar wavelet transform (a proedure for traÆ trae generation based on

this transform is introdued in [43℄). Without loss of generality, we assume that

the time unit is suh that the long term arrival intensity is one. A MMPP of one

state with arrival rate 1 represents the arrival proess at the largest (onsidered)

time sale.

At the next time sale, 1=�, an MMPP of two states with generator

�� �

� ��

and with arrival rates 1� a

1

and 1 + a

1

(�1 � a

1

� 1) represents the variation

of the arrival proess. This omposition leaves the long term average arrival rate

unhanged.

In the rest of the omposition we perform the same step. We introdue a new

dimension and generate the n-dimensional ube suh that the behavior at the

already set time sales remains unhanged. E.g., onsidering also the 1=� time

sale an MMPP of four states with generator

� � �

� � �

� � �

� � �

and with arrival rates (1�a

1

)(1�a

2

), (1+a

1

)(1�a

2

), (1�a

1

)(1+a

2

) and (1+

a

1

)(1+a

2

) (�1 � a

1

; a

2

� 1) represents the variation of the arrival proess. With

this MMPP, parameter a

1

(a

2

) determines the variane of the arrival proess at

the 1=� (1=�) time sale. If  is large enough (>� 30) the proess behavior at

the 1=� time sale is independent of a

2

. The proposed model is also appliable

with a small . In this ase, the only di�erene is that the model parameters

and the proess behavior of di�erent time sales are dependent.

A level n MMPP of the proposed struture is omposed by 2

n

states and it

has n + 2 parameters. Parameters  and � de�nes the onsidered time sales,

and parameters a

1

; a

2

; : : : ; a

n

determines the variane of the arrival proess at

the n onsidered time sales. It an be seen that the ratio of the largest and the

smallest onsidered time sales is 

n

. Having a �xed n (i.e., a �xed ardinality

of the MMPP), any large ratio of the largest and the smallest onsidered time

sales an be aptured by using a suÆiently large .



A simple numerial proedure an be applied to �t a MMPP of the given

struture to a measured dataset. This heuristi approah is omposed by \engi-

neering onsiderations" based on the properties of the measured dataset and a

parameter �tting method.

First, we �x the value of n. Aording to our experiene a \visible" multisal-

ing behavior an be obtained from n = 3 � 4. The omputational omplexity

of the �tting proedure grows exponentially with the dimension of the MMPP.

The response time with n = 6 (MMPP of 64 states) is still aeptable (in the

order of minutes).

Similarly to [43℄, we set  and the � based on the inspetion of the dataset.

Pratially, we de�ne the largest, T

M

, and the smallest, T

m

, onsidered time

sales and alulate  and � from

T

M

=

1

�

; T

m

=

1



n

�

:

The extreme values of T

M

and T

m

an be set based on simple pratial

onsiderations. For example when the measured dataset is omposed byN arrival

instanes, T

M

an be hosen to be less than the mean time of N=4 arrivals, and

T

m

an be hosen to be greater than the mean time of 4 arrivals. A similar

approah was applied in [43℄. These boundary values an be re�ned based on a

detailed statistial test of the dataset. E.g., if the saling behavior disappears

beyond a given time sale, T

M

an be set to that value.

Having  and �, we apply a downhill simplex method to �nd the optimal

values of the variability parameters a

1

; a

2

; : : : ; a

n

. The goal funtion that our

parameter �tting method minimizes is the sum of the relative errors of the

seond moment of Haar wavelet oeÆients up to a prede�ned time sale S:

min

a

1

;:::;a

n

S

X

j=1

jE(d

2

j

)�E(

^

d

2

j

)j

E(d

2

j

)

:

The goal funtion an be alulated analytially as it is desribed in [23℄.

Appliation of the �tting proedure is illustrated on the Bellore trae. We

applied the �tting method with n = 5 and several di�erent prede�ned setting

of ; �. We found that the goodness of the �tting is not very sensitive to the

prede�ned parameters around a reasonable region. The best \looking" �t is

obtained when T

m

is the mean time of 16 arrivals and  = 8. In this ase T

M

is the

mean time of 16�8

5

= 2

19

arrivals whih orresponds to the oarsest time sale we

an analyze in the ase of the Bellore trae. The simplex method minimizing the

sum of the relative error of the seond moments of the Haar wavelet oeÆients

over S = 12 time sales resulted in: a

1

= 0:144; a

2

= 0:184; a

3

= 0:184; a

4

=

0:306; a

5

= 0:687. The result of �tting the seond moment of the Haar wavelet

transform at di�erent aggregation levels is plotted in Figure 24. At small time

sales the �tting seems to be perfet, while at larger time sales the error enlarges.

The slope of the urves are almost equal in the depited range.

The multisaling behavior of the obtained MAP and of the original dataset

are illustrated via the log-moment urves in Figure 25. In the �gure, the symbols
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The partition funtions of the �tting MAP and of the original trae are

depited in Figure 26. As it was mentioned earlier, the visual appearane of

the partition funtion is not very informative about the multifratal saling

behavior. Figure 27 depits the Legendre transform of the partition funtions

of the original dataset and the approximating MAP. The visual appearane of

the Legendre transform signi�antly ampli�es the di�erenes of the partition

funtions. In Figure 27, it an be seen that both proesses exhibit multifratal

behavior but the original dataset has a bit riher multifratal spetrum.

We also ompared the queuing behavior of the original dataset with that of

the approximate MAP assuming deterministi servie time and di�erent levels of

utilization, �. Figure 28 depits the queue length distribution resulting from the
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Fig. 28. Queue-length distribution

original and the approximate arrival proesses. The queue length distribution

urves show a quite lose �t. The probability of an empty queue, whih is not

displayed in the �gures, is the same for the MAP as for the original trae sine

the MAP has the same average arrival intensity as the original trae. The �t is

better with a higher queue utilization, whih might mean that di�erent saling

behaviors play a dominant rule at di�erent utilizations, and the ones that are

dominant at high utilization are better approximated by the proposed MAP.

6 Conlusions

This paper ollets a set of methods whih an be used in pratie for mea-

surement based traÆ engineering. The history of traÆ theory of high speed

ommuniation networks is summarized together with a short introdution to

the mathematial foundation of the applied onepts. The ommon statistial

methods for the analysis of data traes and the pratial problems of their ap-

pliation is disussed.

The use of Markovian methods is motivated by the fat that an e�etive

analysis tehnique, the matrix geometri method, is available for the evalua-

tion of Markovian queuing systems. To obtain the Markovian approximation

of measured traÆ data a variety of heuristi �tting methods are applied. The

properties and abilities of these methods are also disussed.



The presented numerial examples provide insight to the qualitative under-

standing of the strange traÆ properties of high speed networks.
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