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Abstra
t. In order to support the e�e
tive use of tele
ommuni
ation

infrastru
ture, the \random" behavior of traÆ
 sour
es has been stud-

ied sin
e the early days of telephony. Strange new features, like fra
tal

like behavior and heavy tailed distributions were observed in high speed

pa
ket swit
hed data networks in the early '90s. Sin
e that time a fertile

resear
h aims to �nd proper models to des
ribe these strange traÆ
 fea-

tures and to establish a robust method to design, dimension and operate

su
h networks.

In this paper we give an overview of methods that, on the one hand, allow

us to 
apture important traÆ
 properties like slow de
ay rate, Hurst

parameter, s
aling fa
tor, et
., and, on the other hand, makes possible the

quantitative analysis of the studied systems using the e�e
tive analysis

approa
h 
alled matrix geometri
 method.

The presentation of this analysis approa
h is asso
iated with a dis
ussion

on the properties and limits of Markovian �tting of the typi
al non-

Markovian behavior present in tele
ommuni
ation networks.

1 Introdu
tion

In the late 80's, traÆ
 measurement of high speed 
ommuni
ation networks

indi
ated unexpe
tedly high variability and burstiness over several time s
ales,

whi
h indi
ated the need of new modeling approa
hes 
apable to 
apture the

observed traÆ
 features. The �rst promising approa
h, the fra
tal modeling of

high speed data traÆ
 [28℄, resulted in a big bum in traÆ
 theory. Sin
e that time

a series of traÆ
 models were proposed to des
ribe real traÆ
 behavior: fra
tional

Gaussian noises [30, 37℄, traditional [7℄ and fra
tional ARIMA pro
esses [18℄,

fra
tals and multifra
tals [49, 13℄, et
.

A signi�
ant positive 
onsequen
e of the new traÆ
 engineering wave is that

the importan
e of traÆ
 measurement and the proper statisti
al analysis of

measured datasets be
ame widely a

epted and measured datasets of a wide

range of real network 
on�gurations be
ame publi
ly available [52℄.

In spite of the intensive resear
h a
tivity, there are still open problems asso-


iated with these new traÆ
 models:

?
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{ None of the traÆ
 models is evidently veri�ed by the physi
al behavior of the

networks. The proposed models allow us to represent some of the features

of data traÆ
, but some other features are not 
aptured. Whi
h are the

important traÆ
 features?

{ The traÆ
 features of measured data are 
he
ked via statisti
al tests and

the traÆ
 features of the models are 
he
ked using analysis and simulation

methods. Are these tests 
orre
t enough? Is there enough data available for

reliable tests?

{ The majority the proposed traÆ
 models has important asymptoti
 proper-

ties, but all tests are based on �nite datasets. Shall we draw 
onsequen
e on

the asymptoti
 properties based on �nite datasets? And vi
e-versa, shall we

draw 
onsequen
e from the asymptoti
 model behavior on the performan
e

of �nite systems.

{ Having �nite datasets the asymptoti
 properties extra
ted from tests per-

formed on di�erent time s
ales often di�er. Whi
h is the dominant time s
ale

to 
onsider?

The above listed questions refer to the 
orre
tness of traÆ
 models. There

is an even more important issue whi
h determines the utility of a traÆ
 model,

whi
h is 
omputability. The majority of the mentioned traÆ
 models are not

a

ompanied with e�e
tive analysis tools whi
h would allow us to use them in

pra
ti
al traÆ
 engineering.

In this paper we dis
uss the appli
ation of Markovian models for traÆ
 engi-

neering. The most evident advantage of this modeling approa
h with respe
t to

the above mentioned ones is that it is supported with a set of e�e
tive analysis

te
hniques 
alled matrix geometri
 methods [34, 35, 27, 29℄. The other features

of Markovian models with respe
t to the answers of the above listed questions

are subje
ts to dis
ussion. By the nature of Markovian models, non-exponential

asymptoti
 behavior 
annot be 
aptured, and hen
e, they are not suitable for

that purpose. Instead, re
ent resear
h results show that Markovian models are

able to approximate arbitrary non-Markovian behavior for an arbitrary wide

range of s
ales.

The paper summarizes a traÆ
 engineering pro
edure 
omposed by the fol-

lowing steps:

{ statisti
al analysis of measured traÆ
 data,

{ Markovian approximation of traÆ
 pro
esses,

{ analysis of performan
e parameters based on the Markovian model.

All steps of this pro
edure are supported with a number of numeri
al example

and the results are veri�ed against simulation and alternative analysis methods.

The paper is organized as follows. Se
tion 2 dis
usses some relevant 
har-

a
teristi
s of traÆ
 pro
esses and des
ribe models that exhibit these features.

Statisti
al tests for identifying these 
hara
teristi
s in datasets are des
ribed in

Se
tion 3. A short introdu
tion to Markovian models is given in 4. An overview

of the existing �tting methods with 
onne
ted appli
ation examples is given in

5. The survey is 
on
luded in 6.



2 TraÆ
 models and their properties

The traÆ
 pro
ess at a given point of a tele
ommuni
ation network is 
hara
-

terized by the data pa
ket arrival instan
es (or equivalently by the interarrival

times) and the asso
iated data pa
ket sizes. Any of these two pro
esses 
an

be 
omposed by dependent or independent samples. In 
ase of identi
ally dis-

tributed independent samples the pro
ess modeling simpli�es to 
apturing a

distribution, while in 
ase of dependent samples the whole sto
hasti
 pro
ess

(with its intrinsi
 dependen
y stru
ture) has to be 
aptured as well.

2.1 Heavy tailed distributions

One of the important new observations of the intensive traÆ
 measurement of

high speed tele
ommuni
ation networks is the presen
e of heavy tailed distribu-

tions. Marginal distributions of spe
i�
 traÆ
 pro
esses, �le size distribution on

HTTP servers, et
, were found to be \heavy tailed". The random variable Y ,

with 
umulative distribution fun
tion (
df) F

Y

(x), is said to be heavy tailed if

1� F

Y

(x) = x

��

L(x);

where L(x) is slowly varying as x ! 1, i.e., lim

x!1

L(ax)=L(x) = 1 for a >

0. (There are several di�erent naming 
onventions applied in this �eld. Heavy

tailed distributions are 
alled regularly varying or power tail distributions also.)

Typi
al member of this distribution 
lass is the Pareto family.

There is an important qualitative property of the moments of heavy tailed

distributions. If Y is heavy tailed with parameter � then its �rst n < � moments

E(Y

n

) are �nite and its all higher moments are in�nite.

There are other 
lasses of distributions whose tail de
ay slower than the

exponential. The random variable Y , with distribution F

Y

(x), is said to be long

tailed if

lim

x!1

e


x

(1� F

Y

(x)) =1; 8
 > 0

The Weibull family (F (x) = 1 � e

�(t=a)




) with 
 < 1 is long tailed, even if

all moments of the Weibull distributed random variables are �nite. The heavy

tailed distributions form a sub
lass of the long tailed 
lass.

A 
hara
teristi
 property of the heavy tailed 
lass is the asymptoti
 relation

of the distribution of the sum of n samples, S

n

= Y

1

+: : :+Y

n

, and the maximum

of n samples, M

n

= max

1�i�n

Y

i

:

Pr(S

n

> x) � Pr(M

n

> x) (1)

where the notation g(x) � f(x) denotes lim

x!1

f(x)

g(x)

= 1. In words, the sum

of heavy tailed random variables is dominated by a single large sample and the

rest of the samples are negligible small 
ompare to the dominant one for large

values of x. The probability that S

n

is dominated by more than one \large"

samples or it is obtained as the sum of number of small samples is negligible for



\large" values of S

n

. This interpretation gives an intuitive explanation for a set

of 
omplex results about the waiting time of queuing models with heavy tailed

servi
e time distribution [6℄.

2.2 Pro
esses with long range dependen
e

The de�nition of long range dependen
e of traÆ
 arrival pro
esses is as follows.

Let us divide the time a

ess into equidistant intervals of length �. The number

of arrivals in the ith interval is denoted by X

i

. X = fX

i

; i = 0; 1; : : :g is a

sto
hasti
 pro
ess whose aggregated pro
ess is de�ned as follows:

X

(m)

= fX

(m)

i

g =

�

X

1

+ : : :+X

m

m

; : : : ;

X

mk+1

+ : : :+X

(m+1)k

m

; : : :

�

The auto
orrelation fun
tion of X

(m)

is:

r

(m)

(k) =

Ef(X

(m)

n

�E(X

(m)

)) � (X

(m)

n+k

�E(X

(m)

))g

Ef(X

(m)

n

�E(X

(m)

))

2

g

The pro
ess X exhibits long-range dependen
e (LRD) of index � if its auto-


orrelation fun
tion 
an be realized as

r(k) � A(k)k

��

; k !1

where A(k) is a slowly varying fun
tion.

Self-similar pro
esses Using the above de�nition of the aggregated pro
ess,

X is

a) exa
tly self-similar if X

d

= m

1�H

X

(m)

, i.e., if X and X

(m)

are identi
al within

a s
ale fa
tor in �nite dimensional distribution sense.

b) exa
tly se
ond-order self-similar if r

(m)

(k) = r(k); 8m ; k � 0


) asymptoti
ally se
ond-order self-similar if r

(m)

(k)! r(k); (k;m!1)

where H is the Hurst parameter, also referred to as the self-similarity parameter.

For exa
tly self-similar pro
esses the s
aling behavior, whi
h is 
hara
ter-

ized by the Hurst parameter (H), 
an be 
he
ked based on any of the absolute

moments of the aggregated pro
ess:

log(E(jX

(m)

j

q

)) = log(E(jm

H�1

X j

q

)) = q(H � 1)log(m) + log(E(jX j

q

)): (2)

A

ording to (2), in 
ase of a self-similar pro
ess, plotting log(E(jX

(m)

j

q

))

against log(m) for �xed q results in a straight line. The slope of the line is

q(H � 1). Based on the above observations the test is performed as follows.

Having a series of length N , the moments may be estimated as

E(jX

(m)

j

q

) =

1

bN=m


bN=m


X

i=1

jX

(m)

i

j

q

;



where bx
 denotes the largest integer number smaller or equal to x. To test

for self-similarity log(E(jX

(m)

j

q

)) is plotted against log(m) and a straight line is

�tted to the 
urve. If the straight line shows good 
orresponden
e with the 
urve,

then the pro
ess is self-similar and its Hurst-parameter may be 
al
ulated by the

slope of the straight line. This approa
h assumes that the s
aling behavior of all

absolute moments, q, are the same and it is 
aptured by the Hurst-parameter.

If it is the 
ase we talk about mono-fra
tal behavior. The varian
e-time plot,

whi
h is used widespread to gain eviden
e of self-similarity, is the spe
ial 
ase

with q = 2. It depi
ts the behavior of the 2nd moments for the 
entered data.

It is worth to point out that self-similarity and stationarity imply that either

E(X) = 0, or E(X) = �1, or H = 1. But H = 1 implies as well that X

i

=

X

j

; 8i; j almost surely. As a 
onsequen
e, to test for statisti
al self-similarity

makes sense only having zero-mean data, i.e., the data has to be 
entered before

the analysis.

Multi-fra
tal pro
esses Statisti
al tests of self-similarity try to gain eviden
e

through examining the behavior of the absolute moments E(jX

(m)

j

q

). In 
ase of

monofra
tal pro
esses the s
aling behavior of all absolute moments is 
hara
ter-

ized by a single number, the Hurst parameter. Multifra
tal pro
esses might ex-

hibit di�erent s
aling for di�erent absolute moments. Multifra
tal analysis looks

at the behavior of E(jX

(m)

j

q

) for di�erent values q and results in a spe
trum

that illustrates the behavior of the absolute moments. This analysis pro
edure

is detailed in Se
tion 3.3.

Fra
tional Gaussian noise By now we provided the de�nition of the large


lass of self-similar sto
hasti
 pro
esses, but we did not provide any spe
i�


member of this 
lass. The two simplest self-similar pro
esses that are often used

in validation of self-similar modeling assumptions are the fra
tional Gaussian

noise and the ARIMA pro
ess.

Fra
tional Gaussian noise, X

i

; i � 1, is the in
rement pro
ess of fra
tional

Brownian motion, B(t); t 2 R

+

:

X

i

= B(i+ 1)�B(i);

Fra
tional Brownian motion with Hurst parameter H (0:5 < H < 1) is


hara
terized by the following properties: i) B(t) has stationary in
rement,

ii) E(B(t)) = 0, iii) E(B

2

(t)) = t

2H

(assuming the time unit is su
h that

E(B

2

(1)) = 1), iv) B(t) has 
ontinuous path, v) B(t) is a Gaussian pro
ess, i.e.,

all of its �nite dimensional distributions are Gaussian. The 
ovarian
e of fra
-

tional Brownian motion is E(B(t) �B(s)) = 1=2(s

2H

+t

2H

�js�tj

2H

), and hen
e,

the auto-
ovarian
e fun
tion of fra
tional Gaussian noise 
(h) = E(X

i

X

i+h

) �

H(2H � 1)h

2H�2

is positive and exhibits long-range dependen
e.



ARIMA pro
ess An other simple self-similar pro
ess is the fra
tional

ARIMA(0,d,0) pro
ess. It is de�ned as:

X

i

=

1

X

j=0




j

�

i�j

where �

i

are i.i.d. standard normal random variables and the 


j


oeÆ
ients

implement moving average with parameter d a

ording to 


j

=

� (j+d)

� (d)� (j+1)

. For

large values of j the 
oeÆ
ients 


j

�

j

d�1

� (d)

. The asymptoti
 behavior of the

auto-
ovarian
e fun
tion is


(h) = E(X

i

X

i+h

) � C

d

h

2d�1

with 
oeÆ
ient C

d

= �

�1

� (1�2d) sin(�d). For 0 < d < 1=2 the auto-
ovarian
e

fun
tion has the same polynomial de
ay as the auto-
ovarian
e fun
tion of fra
-

tional Gaussian noise with H = d+ 1=2.

The better 
hoi
e among these two pro
esses depends on the applied anal-

ysis method. The fra
tional Gaussian noise is better in exhibiting asymptoti


properties based on �nite number of samples, while the generation of fra
tional

ARIMA pro
ess samples is easier sin
e it is based on an expli
it expression.

3 Statisti
al analysis of measured traÆ
 datasets

3.1 Estimation of the heavy tail index

In this se
tion we dis
uss methods for identifying the heavy tail index of datasets.

Appli
ation of the methods is illustrated on the dataset EPA HTTP whi
h 
an be

downloaded from [52℄ and 
ontains a day of HTTP logs with about 40000 entries.

The experimental 
omplementary 
umulative distribution fun
tion (

df) of the

length of the requests is depi
ted in Figure 1.
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Hill estimator A possible approa
h to estimate the index of the tail behavior

� is the Hill estimator [20℄. This estimator provides the index as a fun
tion of

the k largest elements of the dataset and is de�ned as

�

n;k

=

 

1

k

k�1

X

i=0

�

logX

(n�i)

� logX

(n�k)

�

!

�1

(3)

where X

(1)

� ::: � X

(n)

denotes the order statisti
s of the dataset. In pra
ti
e,

the estimator given in (3) is plotted against k and if the plot stabilizes to a


onstant value this provides an estimate of the index. The Hill-plot (together

with the dynami
 qq-plot that will be des
ribed later) for the EPA tra
e is

depi
ted in Figure 2.

The idea behind the pro
edure and theoreti
al properties of the estimator

are dis
ussed in [39℄. Appli
ability of the Hill estimator is redu
ed by the fa
t

that

{ its properties (e.g. 
on�den
e intervals) are known to hold only under 
on-

ditions that often 
annot be validated in pra
ti
e [39℄,

{ the point at whi
h the power-law tail begins must be determined and this


an be diÆ
ult be
ause often the datasets do not show 
lear border between

the power-law tail and the non-power-low body of the distributions.

By slight modi�
ations in the way the Hill plot is displayed, the un
ertainty

of the estimation pro
edure 
an be somewhat redu
ed, see [39, 40℄.

Quantile-quantile regression plot The above des
ribed Hill estimator per-

forms well if the underlying distribution is 
lose to Pareto. With the quantile-

quantile plot (qq-plot), whi
h is a visual tool for assessing the presen
e of heavy

tails in distributions, one 
an 
he
k this. The qq-plot is 
ommonly used in various

forms, see for example [8, 41℄. Hereinafter, among the various forms, we follow

the one presented in [25℄.

Having the order statisti
s X

(1)

� ::: � X

(n)

plot

��

� log

�

1�

j

k + 1

�

; logX

(j)

�

; n� k + 1 � j � n

�

(4)

for a �xed value of k. (As one 
an see only the k upper order statisti
s is 
on-

sidered in the plot, the other part of the sample is negle
ted.) The plot, if the

data is 
lose to Pareto, should be a straight line with slope 1=�. By determining

the slope of the straight line �tted to the points by least squares, we obtain the

so-
alled qq-estimator [25℄.

The qq-estimator 
an be visualized in two di�erent ways. The dynami
 qq-

plot, depi
ted in Figure 2, plots the estimate of � as the fun
tion of k (this plot

is similar to the Hill-plot). The stati
 qq-plot, given in Figure 3, depi
ts (4) for a

�xed value of k and shows its least square �t. As for the Hill-plot, when applying

the qq-estimator, the point at whi
h the tail begins has to be determined.
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Estimation based on the s
aling properties Another method is proposed in

[9℄ whi
h, in 
ontrast to the Hill- and qq-estimator, does not require to determine

where the tail begins. The pro
edure is based on the s
aling properties of sums of

heavy tailed distribution. The estimator, whi
h is implemented in the tool aest,

determines the heavy tail index by exploring the 
omplementary distribution

fun
tion of the dataset at di�erent aggregation levels. For the EPA tra
e, the

index estimated by aest is 0.97. In order to aid further investigation, the tool

produ
es a plot of the 
omplementary distribution fun
tion of the dataset at

di�erent aggregation levels indi
ating the segments where heavy tailed behavior

is present. This plot for the 
onsidered dataset is depi
ted in Figure 4.

3.2 Tests for long range dependen
y

Re
ently, it has been agreed [28, 36, 37℄ that when one studies the long-range

dependen
e of a traÆ
 tra
e the most signi�
ant parameter to be estimated is

the degree of self-similarity, usually given by the so-
alled Hurst-parameter. The

aim of the statisti
al approa
h, based on the theory of self-similarity, is to �nd

the Hurst-parameter.

In this se
tion methods for estimating the long-range dependen
e of datasets

are re
alled. Beside the pro
edures des
ribed here, several other 
an be found in

the literature. See [3℄ for an exhaustive dis
ussion on this subje
t.

It is important to note that the introdu
ed statisti
al tests of self-similarity,

based on a �nite number of samples, provides an approximate value of H only

for the 
onsidered range of s
ales. Nothing 
an be said about the higher s
ales

and the asymptoti
 behavior based on these tests.

Throughout the se
tion, we illustrate the appli
ation of the estimators on

the �rst tra
e of the well-known Bell
ore dataset set that 
ontains lo
al-area

network (LAN) traÆ
 
olle
ted in 1989 on an Ethernet at the Bell
ore Morris-

town Resear
h and Engineering fa
ility. It may be downloaded from the WEB

site 
olle
ting traÆ
 tra
es [52℄. The tra
e was �rst analyzed in [16℄.



Varian
e-time plot One of the tests for pseudo self-similarity is the varian
e-

time plot. It is based on the fa
t that for self-similar time series fX

1

; X

2

; : : :g

Var(X

(m)

) � m

��

; as m!1; 0 < � < 1:

The varian
e-time plot depi
ts Log(Var(X

(m)

)) versus Log(m). For pseudo self-

similar time series, the slope of the varian
e-time plot �� is greater than �1.

The Hurst parameter 
an be 
al
ulated as H = 1 � (�=2). A traÆ
 pro
ess is

said to be pseudo self-similar when the empiri
al Hurst parameter is between 0:5

and 1.

The varian
e-time plot for the analyzed Bell
ore tra
e is depi
ted in Figure

5. The Hurst-parameter given by the varian
e-time plot is 0.83.
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Fig. 5. Varian
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R/S plot The R/S method is one of the oldest tests for self-similarity, it is

dis
ussed in detail in [31℄. For interarrival time series, Z = fZ

i

; i � 1g, with

partial sum Y

n

=

P

n

i=1

Z

i

, and sample varian
e

S

2

(n) =

1

n

n

X

i=1

Z

i

2

�

1

n

2

� Y

2

n

;

the R/S statisti
, or the res
aled adjusted range, is given by:

R=S(n) =

1

S(n)

�

max

0�k�n

�

Y (k)�

k

n

Y (n)

�

� min

0�k�n

�

Y (k)�

k

n

Y (n)

��

:

R=S(n) is the s
aled di�eren
e between the fastest and the slowest arrival period


onsidering n arrivals. For stationary LRD pro
esses R=S(n) � (n=2)

H

. To

determine the Hurst parameter based on the R/S statisti
 the dataset is divided

into blo
ks, log[R=S(n)℄ is plotted versus logn and a straight line is �tted on

the points. The slope of the �tted line is the estimated Hurst parameter.

The R/S plot for the analyzed Bell
ore tra
e is depi
ted in Figure 6. The

Hurst-parameter determined based on the R/S plot is 0.78.



Whittle estimator The Whittle estimator is based on the maximum likelihood

prin
iple assuming that the pro
ess under analysis is Gaussian. The estimator,

unlike the previous ones, provides the estimate through a non-graphi
al method.

This estimation takes more time to perform but it has the advantage of providing


on�den
e intervals as well. For details see [17, 3℄. For the Bell
ore tra
e, the

estimated value of the Hurst parameter is 0.82 and its 95% 
on�den
e interval

is [0:79; 0:84℄.

3.3 Multifra
tal framework

In this se
tion we introdu
e two te
hniques to analyze multifra
tal pro
esses.

Legendre spe
trum Considering a 
ontinuous-time pro
ess Y = fY (t); t > 0g

the s
aling of the absolute moments of the in
rements is observed through the

partition fun
tion

T (q) = lim

n!1

1

�n

log

2

E

"

2

n

�1

X

k=0

jY ((k + 1)2

�n

)� Y (k2

�n

)j

q

#

: (5)

Then, a multifra
tal spe
trum, the so-
alled Legendre spe
trum is given as the

Legendre transform of (5)

f

L

(�) = T

�

(�) = inf

q

(q� � T (q))

Sin
e T (q) is always 
on
ave, the Legendre spe
trum f

L

(�) may be found by

simple 
al
ulations using that

T

�

(�) = q�� T (q); and (T

�

)

0

(�) = q at � = T

0

(q): (6)

Let us mention here that there are also other kinds of fra
tal spe
trum de�ned

in the fra
tal world (see for example [42℄). The Legendre spe
trum is the most

attra
tive one from numeri
al point of view, and even though in some 
ases it

is less informative than, for example, the large deviation spe
trum, it provides

enough information in the 
ases 
onsidered herein.

In 
ase of a dis
rete-time pro
ess X we assume that we are given the in
re-

ments of a 
ontinuous-time pro
ess. This way, assuming that the sequen
e we

examine 
onsists of N = 2

L

numbers, the sum in (5) be
omes

S

n

(q) =

N=2

n

�1

X

k=0

jX

(2

n

)

k

j

q

; 0 � n � L; (7)

where the expe
tation is ignored. Ignoring the expe
tation is a

urate for small n,

i.e., for the �ner resolution levels. In order to estimate T (q), we plot log

2

(S

n

(q))

against (L � n); n = 0; 1; :::; L, then T (q) is found by the slope of the linear

line �tted to the 
urve. If the linear line shows good 
orresponden
e with the



-60

-40

-20

0

20

40

60

80

0 2 4 6 8 10 12 14 16 18 20

q=-3
q=-2
q=-1
q=0
q=1
q=2
q=3
q=4

n

l

o

g

2

(

S

n

(

q

)

)

Fig. 7. S
aling of log-moments with lin-

ear �ts for the interarrival times of the

Bell
ore pAug tra
e

l

o

g

2

(

S

n

+

1

(

q

)

)

�

l

o

g

2

(

S

n

(

q

)

)

-10

-8

-6

-4

-2

0

2

4

0 2 4 6 8 10 12 14 16 18
n

Fig. 8. In
rements of log-moments for the

interarrival times of the Bell
ore pAug

tra
e


urve, i.e., if log

2

(S

n

(q)) s
ales linearly with log(n), then the sequen
e X 
an be


onsidered a multifra
tal pro
ess.

Figure 7, 9, 8 and 10 illustrate the above des
ribed pro
edure to obtain the

Legendre spe
trum of the famous Bell
ore pAug traÆ
 tra
e (the tra
e may be

found at [52℄). Figure 7 depi
ts the s
aling behavior of the log moments 
al
u-

lated through (7). With q in the range [�3; 4℄, ex
luding the �nest resolution

levels n = 0; 1 the moments show good linear s
aling. For values of q outside the

range [�3; 4℄ the 
urves deviate more and more from linearity. As, for example,

in [43℄ one may look at non-integer values of q as well, but, in general, it does not

provide notably more information on the pro
ess. To better visualize the devia-

tion from linearity Figure 8 depi
ts the in
rements of the log-moment 
urves of

Figure 7. Completely horizontal lines would represent linear log-moment 
urves.

The partition fun
tion T (q) is depi
ted in Figure 9. The three slightly di�er-

ent 
urves di�er only in the 
onsidered range of the log-moments 
urves, sin
e

di�erent ranges result in di�erent linear �tting. The lower bound of the linear

�tting is set to 3, 5 and 7, while the upper bound is 18 in ea
h 
ases. (In the

rest of this paper the �tting range is 5 - 18 and there are 100 moments evaluated

in the range q 2 [�5;+5℄.) Sin
e the partition fun
tion varies only a little (its

derivative is in the range [0:8; 1:15℄), it is not as informative as its Legendre

transform is (Figure 10). A

ording to (6) the Legendre spe
trum is as wide

as wide the range of derivatives of the partition fun
tion is, i.e., the more the

partition fun
tion deviates from linearity the wider the Legendre spe
trum is.

The Legendre transform signi�
antly ampli�es the s
aling information, but it is

also sensitive to the 
onsidered range of the log-moments 
urves.

See [43℄ for basi
 prin
iples of interpreting the spe
trum. We mention here

only that a 
urve like the one depi
ted in Figure 10 reveals a ri
h multifra
tal

spe
trum. On the 
ontrary, as it was shown in [51℄, the fra
tional Brownian

motion (fBm) has a trivial spe
trum. The partition fun
tion of the fBm is a

straight line whi
h indi
ates that its spe
trum 
onsists of one point, i.e., the

behavior of its log-moments is identi
al for any q.
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Haar wavelet Another way to 
arry out multis
ale analysis is the Haar wavelet

transform. The 
hoi
e of using the unnormalized version of the Haar wavelet

transform is motivated by the fa
t that it suits more the analysis of the Marko-

vian point pro
ess introdu
ed further on.

The multis
ale behavior of the �nite sequen
e X

i

; 1 � i � 2

L

will be repre-

sented by the quantities 


j;k

; d

j;k

; j = 0; : : : ; L and k = 1; : : : ; 2

L

=2

j

. The �nest

resolution is des
ribed by 


0;k

; 1 � k � 2

L

whi
h gives the �nite sequen
e itself,

i.e., 


0;k

= X

k

. Then the multis
ale analysis based on the unnormalized Haar

wavelet transform is 
arried out by iterating




j;k

= 


j�1;2k�1

+ 


j�1;2k

; (8)

d

j;k

= 


j�1;2k�1

� 


j�1;2k

; (9)

for j = 1; : : : ; L and k = 1; : : : ; 2

L

=2

j

. The quantities 


j;k

; d

j;k

are the so-
alled

s
aling and wavelet 
oeÆ
ients of the sequen
e, respe
tively, at s
ale j and po-

sition k. At ea
h s
ale the 
oeÆ
ients are represented by the ve
tors 


j

= [


j;k

℄

and d

j

= [d

j;k

℄ with k = 1; : : : ; 2

L

=2

j

. For what 
on
erns 


j

, the higher j the

lower the resolution level at whi
h we have information on the sequen
e. The

information that we lost as a result of the step from 


j�1

to 


j

, is 
onveyed by

the sequen
e of wavelet 
oeÆ
ients d

j

. It is easy to see that 


j�1


an be perfe
tly

re
onstru
ted from 


j

and d

j

. As a 
onsequen
e the whole X

i

; 1 � i � 2

L

se-

quen
e 
an be 
onstru
ted (in a top to bottom manner) based on a normalizing


onstant, 


L

= 


L;1

=

P

2

L

i=1

X

i

, and the d

j

; j = 1; : : : ; L ve
tors.

By taking the expe
tation of the square of (8) and (9)

E[


2

j;k

℄ = E[


2

j�1;2k�1

℄ + 2E[


j�1;2k�1




j�1;2k

℄ +E[


2

j�1;2k

℄; (10)

E[d

2

j;k

℄ = E[


2

j�1;2k�1

℄� 2E[


j�1;2k�1




j�1;2k

℄ +E[


2

j�1;2k

℄; (11)

Let us assume that the series we analyze are stationary; then, by summing (10)

and (11) and rearranging the equation, we have

E[


2

j�1

℄ =

1

4

�

E[d

2

j

℄ +E[


2

j

℄

�

: (12)
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Similarly, by 
onse
utive appli
ation of (12) from one s
ale to another, the

E[d

2

j

℄; j = 1; : : : ; L series 
ompletely 
hara
terize the varian
e de
ay of the

X

i

; 1 � i � 2

L

sequen
e apart of a normalizing 
onstant (


L

= 


L;1

=

P

2

L

i=1

X

i

).

This fa
t allows us to realize a series with a given varian
e de
ay if it is possible

to 
ontrol the 2nd moment of the s
aling 
oeÆ
ient with the 
hosen synthesis

pro
edure. In Se
tion 5 we will brie
y dis
uss a method that attempts to 
apture

the multifra
tal s
aling behavior via the series E[d

2

j

℄; j = 1; : : : ; L.

4 Markovian modeling tools

Markovian modeling tools are sto
hasti
 pro
esses whose sto
hasti
 behavior

depends only on the state of a \ba
kground" Markov 
hain. The resear
h and

appli
ation of these modeling tools through the last 20 years resulted in a widely

a

epted standard notation. The two 
lasses of Markovian pro
esses 
onsidered

in this paper are Phase type distributions and Markovian arrival pro
esses. Here,

we 
on
entrate our attention mainly on 
ontinuous time Markovian models, but

it is also possible to apply Markovian models in dis
rete time [33, 5, 27℄.

4.1 Phase type distribution

Z(t) is a 
ontinuous time Markov 
hain with n transient state and one absorbing

state. Its initial probability distribution is �̂ and generator matrix is

^

B. The time

to rea
h the absorbing state, T , phase type distributed with representation �;B,

where � is the sub-ve
tor of �̂ and B is the sub-matrix of

^

B asso
iated with

the transient states. The 
umulative distribution fun
tion (
df), the probability

density fun
tion (pdf), and the moments of this distribution are:

F

T

(t) = 1� �e

Bt

h; f

T

(t) = �Be

Bt

h; E[X

i

℄ = i!� (�B)

�i

h;

where h is the 
olumn ve
tor of ones. The number of unknown in the �;B

representation of a PH distribution is O(n

2

).
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ontinuous-time PH distributions

When Z(t) is an a
y
li
 Markov 
hain the asso
iated PH distribution is

referred to as A
y
li
 PH (APH) distribution. The popularity of APH distri-

butions (spe
ially in PH �tting) lies in the fa
t that all APH distributions 
an

be uniquely transformed into a 
anoni
al from (Figure 12) whi
h has only O(n)

parameters [10℄ and the 
exibility of the PH and the APH 
lass of the same

order is very 
lose. E.g., the 2nd order PH and APH 
lasses exhibit the same

moments bounds [50℄.

4.2 Markovian arrival pro
ess

Let Z(t) be an irredu
ible Markov 
hain with �nite state spa
e of size m and

generator Q. An arrival pro
ess is asso
iated with this Markov 
hain in the

following way:

{ while the Markov 
hain stays in state i arrival o

urs at rate �

i

,

{ when the Markov 
hain undergoes a state transition from i to j arrival o

urs

with probability p

ij

.

The standard des
ription of MAPs is given with matri
es D

0

and D

1

of size

(m�m), where D

0


ontains the transition rates of the Markov 
hain whi
h are

not a

ompanied with arrivals and D

1


ontains the transition rates whi
h are

a

ompanied with arrivals, i.e.:

{ D

0

ij

= (1� p

ij

)Q

ij

, for i 6= j and D

0

ii

= Q

ii

� �

i

;

{ D

1

ij

= p

ij

Q

ij

for, i 6= j and D

1

ii

= �

i

.

Many familiar arrival pro
esses represent spe
ial 
ases of MAPs:

{ the Poisson pro
ess (MAP with a single state),

{ interrupted Poisson pro
ess: a two-state MAP in whi
h arrivals o

ur only

in one of the states and state jumps do not 
ause arrival,

{ Markov modulated Poisson pro
ess: state jumps do not give rise to arrivals.

The 
lass of MAPs is 
losed for superposition and Markovian splitting.

5 Fitting Markovian models to datasets

Fitting a Markovian model to a measured dataset is to �nd a Markovian model

whi
h exhibits a sto
hasti
 behavior as 
lose to the one of the measured dataset

as possible. In pra
ti
e, the order of approximate Markov models should kept



low, both, for having few model parameters to evaluate and for obtaining 
om-

putable models. The presen
e of slow de
ay behavior (heavy tail or long range


orrelation) in measured datasets makes the �tting more diÆ
ult. Typi
ally a

huge number of samples needed to obtain a fairly reliable view on the sto
hasti


behavior over a range of several orders of magnitude, and, of 
ourse, the asymp-

toti
 behavior 
an not be 
he
ked based on �nite datasets. A 
lass of �tting

methods approximates the asymptoti
 behavior based on the reliably known

ranges (e.g., based on 10

6

i.i.d. samples the 
df. 
an be approximated up to the

1 � F (x) � 10

�4

� 10

�5

limit). The asymptoti
 methods are based on the as-

sumption that the dominant parameters (e.g., tail de
ay, 
orrelation de
ay) of

the known ranges remain un
hanged in the unknown region up to the asymptoti


limit.

Unfortunately, Markovian models 
an not exhibit any 
omplex asymptoti


behavior. In the asymptoti
 region Markovian models have exponential tail de-


ay or auto
orrelation. Due to this dominant property Markovian models were

not 
onsidered for �tting datasets with slow de
aying features for a long time.

Re
ently, in spite of the exponential asymptoti
 de
ay behavior, Markovian mod-

els with slow de
ay behavior for several orders of magnitude were introdu
ed.

These results broaden the attention from asymptoti
ally slow de
ay models to

models with slow de
ay in given prede�ned range. The main fo
us of this paper

is on the use of Markovian models with slow de
ay behavior in applied traÆ


engineering.

A �nite dataset provides only a limited information about the sto
hasti


properties of traÆ
 pro
esses. Espe
ially, the long range and the asymptoti


behavior 
annot be extra
ted from �nite dataset. To over
ome the la
k of these

important model properties the set of information provided by the dataset is

often a

ompanied by engineering assumptions in pra
ti
e. One of the most


ommonly applied traÆ
 engineering assumptions is that the de
ay trends of a

known region 
ontinuous to in�nity.

The use of engineering assumptions has a signi�
ant role in model �tting as

well. With this respe
t there are two major 
lasses of �tting methods:

{ �tting based on al the samples,

{ �tting based on information extra
ted from the samples,

Naturally, there are methods whi
h 
ombines these two approa
hes.

The �tting methods based on extra
ted information �nd their roots in traÆ


engineering assumptions. It is a 
ommon goal in traÆ
 engineering to �nd a

simple (
hara
terized by few parameters), but robust (widely appli
able) traÆ


model whi
h is based on few representative traÆ
 parameters of network traÆ
.

The traÆ
 models dis
ussed in Se
tion 2 are 
ompletely 
hara
terized by very few

parameters. E.g., the tail behavior of a power tail distribution is 
hara
terized by

the heavy tail index �, fra
tional Gaussian noise is 
hara
terized by parameterH

and the varian
e over a natural time unit. Assuming that there is representative

information of the dataset, it is worth to 
omplete the model �tting based on

this 
ompa
t des
ription of the traÆ
 properties instead of using all the very

large dataset. Unfortunately, a 
ommonly a

epted, a

urate and 
ompa
t traÆ





hara
terization is not available up to now. This way, when the �tting is based on

extra
ted information, the goodness of �tting strongly depend on the des
riptive

power of the sele
ted 
hara
teristi
s to be �tted.

In this se
tion we introdu
e a sele
ted set of �tting methods from both 
lasses.

The �tting methods that are based on extra
ted information are 
omposed by

two mains steps: the statisti
al analysis of the dataset to extra
t representative

properties and the �tting itself based on these properties. The �rst step of this

pro
edure is based on the methods presented in the previous se
tion, and only

the se
ond step is 
onsidered here.

5.1 PH �tting

General PH �tting methods minimizes a distan
e measure between the experi-

mental distribution and the approximate PH one. The most 
ommonly applied

distan
e measure is the relative entropy:

Z

1

0

f(t) log

 

f(t)

^

f(t)

!

dt where f(t)

and

^

f(t) denote the pdf of the distribution to be �tted and that of the �tting

distribution, respe
tively. The number of parameters to minimize in this pro
e-

dure depends on the order of the approximate PH model. The required order of

PH models 
an be approximated based on the dataset [48℄, but usually small

models are preferred in pra
ti
e for 
omputational 
onvenien
e. It is a 
ommon

feature of the relative entropy and other distan
e measures that the distan
e is

a non-linear fun
tion of the PH parameters.

General PH �tting methods might perform poorly in �tting slow de
aying tail

behavior [22℄. As an alternative, heuristi
 �tting pro
edures 
an be applied that

fo
us on 
apturing the tail de
ay behavior. In 
ase of heuristi
 �tting methods,

the goal is not to minimize a properly de�ned distan
e measure, but to 
onstru
t

a PH distribution whi
h ful�lls a set of heuristi
 requirements.

A

ording to the above 
lassi�
ation of �tting pro
edures general �tting

methods 
ommonly belong to the �tting based on samples 
lass and heuristi


�tting methods to the �tting to extra
ted model properties 
lass.

The literature of general PH �tting methods is quite large. A set of methods

with a 
omparison of their �tting properties are presented in [26℄. Here we 
on-

sider only those methods whi
h were applied for �tting slowly de
aying behavior

in [11℄ and [22℄. Among the heuristi
 methods we dis
uss the one proposed in

[14℄ and its extension in [22℄.

EM method The expe
tation maximization (EM) method was proposed to

apply for PH �tting in [2℄. It is a statisti
al method whi
h performs an iter-

ative optimization over the spa
e of the PH parameters to minimize the rela-

tive entropy. It di�ers from other relative entropy minimizing methods in the

way it sear
hes for the minimum of the non-linear distan
e measure. Based on

the fa
t that hyper-exponential distributions 
an 
apture slow de
ay behavior

([14℄), a spe
ialized version of the EM algorithm, whi
h �ts the dataset with



hyper-exponential distributions, is applied for �tting measured traÆ
 datasets

in [11℄.

Starting from an initial guess �

(0)

, �

(0)

and denoting the pdf of the hyper-

exponential distribution with initial probability ve
tor � and intensity ve
tor

� by

^

f(tj�; �), the iterative pro
edure 
al
ulates 
onse
utive hyper-exponential

distributions based on the samples t

1

; : : : ; t

N

as:

�

(k+1)

i

=

1

N

N

X

n=1

�

(k)

i

^

f(t

n

je

i

; �

(k)

)

^

f(t

n

j�

(k)

; �

(k)

)

; �

(k+1)

i

=

1

N

N

X

n=1

�

(k)

i

^

f(t

n

je

i

; �

(k)

)

^

f(t

n

j�

(k)

; �

(k)

)

1

N

N

X

n=1

t

n

�

(k)

i

^

f(t

n

je

i

; �

(k)

)

^

f(t

n

j�

(k)

; �

(k)

)

where e

i

is the ve
tor of zeros with a one at the ith position.

The 
omputational 
omplexity of this simpli�ed method using hyper-

exponential distributions is mu
h less than the one for the whole PH 
lass.

Nevertheless, a reliable view on the (slow de
aying) tail behavior requires very

large number of samples. The 
omplexity of the simpli�ed �tting method is still

proportional to the size of the dataset, hen
e the appli
ability of this approa
h

is limited by 
omputational 
omplexity (� 10

7

samples were reported in [11℄).

On the other hand, due to the stri
t stru
ture of hyper-exponential distributions

(e.g., there is no fork in the stru
ture), less iterations are required to rea
h a

reasonable a

ura
y (5� 10 iterations were found to be suÆ
ient in [11℄).

This simpli�ed EM �tting method is a potential 
hoi
e for model �tting

when we have a large dataset, but we do not have or do not want to apply any

engineering assumption on the properties of the dataset.

Tail �tting based on the 

df The method proposed by Feldmann and Whitt

[14℄ is a re
ursive �tting pro
edure that results in a hyper-exponential distribu-

tion whose 
umulative distribution fun
tion (

df) at a given set of points is

\very 
lose" to the 

df of the original distribution. This method was su

ess-

fully applied to �t Pareto and Weibull distributions.

Combined �tting method In [22℄ a PH �tting method is proposed that han-

dles the �tting of the body and the �tting of the tail in a separate manner. This

is done by 
ombining the method proposed by Feldmann and Whitt [14℄ and a

general method to.

The limitation of this 
ombined method 
omes from the limitation of the

method of Feldmann and Whitt. Their method is appli
able only for �tting

distributions with monotone de
reasing density fun
tion. Hen
e the proposed


ombined method is appli
able when the tail of the distribution is with monotone

de
reasing density. In the 
ase of the 
ombined method, this restri
tion is quite

loose sin
e the border of the main part and the tail of the distribution is arbitrary,

hen
e the restri
tion of appli
ability is to have a positive number C su
h that

the density of the distribution is monotone de
reasing above C.
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Fig. 13. Stru
ture of approximate Phase type distribution
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The result of this �tting algorithm is a Phase type distribution of order n+m,

where n is the number of phases used for �tting the body and m is the number

of phases used for �tting the tail. The stru
ture of this Phase type distribution

is depi
ted in Figure 13 where we have marked the phases used to �t the body

and those to �t the tail. The parameters �

1

; : : : ; �

m

; �

1

; : : : ; �

m

are 
omputed by


onsidering the tail while the parameters �

1

; : : : ; �

m

; �

1

; : : : ; �

2

are determined


onsidering the main part of the distribution.

To illustrate the 
ombined �tting method, we 
onsider the following Pareto-

like distributions [45℄:

Pareto I: f(t) =

�

�B

�1

e

�

�

B

t

for t � B

�B

�

e

��

t

�(�+1)

for t > B

Pareto II: f(t) =

b

�

e

�b=t

� (�)

x

�(�+1)

For both ditributions � is the heavy tail index.

Figure 14 pi
tures how di�erent parts of the PH stru
ture (Figure 13)


ontributes to the pdf when �tting distribution Pareto I with parameters

� = 1:5; B = 4. In this 
ase 8 phases are used to �t the body and 10 to �t

the tail.
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Figure 15 illustrates the �tting of distribution Pareto II with parameters

� = 1:5; b = 2. In the legend of the �gure ML indi
ates that the relative en-

tropy measure was applied to �t the main part (
orresponding to the maximum

likelihood prin
iple), while AD stands for area di�eren
e of the pdf. Still in the

legend, X+Y means that X phases was used to �t the body, while Y to �t the

tail. Figures 16 shows the e�e
t of Phase type �tting on the M/G/1 queue be-

haviour with Pareto II servi
e (utilization is 0.8). Exa
t result of the M/G/1

queue was 
omputed with the method of [45℄.

At this point we take detour to dis
rete-time models. Dis
rete-time 
ounter-

part of the �tting method, i.e. when dis
rete-time PH distributions are applied,

is given in [24℄. We apply dis
rete PH distributions to �t the EPA tra
e. The



df of the body and the tail of the resulting dis
rete PH distribution are shown

in Figure 17 and 18. In Figure 18 we depi
ted the polynomial �t of the tail

behaviour as well.

5.2 MAP �tting based on samples

Similarly to the 
ase of PH �tting, MAP �tting methods 
an be 
lassi�ed as gen-

eral and heuristi
 ones. General methods utilize dire
tly the data samples, and

hen
e they do not require any additional engineering knowledge. Our numeri
al

experien
es show that MAP �tting is a far more diÆ
ult task than PH �tting.
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A simple explanation is that �tting a pro
ess is more diÆ
ult than �ttign a dis-

tribution. Capturing slow de
aying behaviour with general MAP �tting seems

impossible.

Anyhow, there are numeri
al methods available for �tting low order MAPs

dire
tly to datasets. In [32, 15, 46℄ a �tting method based on maximum likelihood

estimate is presented, and in [47℄ the EM method is used for maximizing the

likelihood estimate.

Simple numeri
al tests (like taking a MAP, drawing samples from it, and

�tting a MAP of the same order to these samples) often fail for MAPs of higher

order (� 3) and the a

ura
y of the method does not ne
essarily improve with

in
reasing number of samples.

5.3 Heuristi
 MAP �tting

An alternative to general MAP �tting is to extra
t a set of (hopefully) domi-

nant properties of the traÆ
 pro
ess from the dataset and to 
reate a MAP (of

parti
ular stru
ture) that exhibits the same properties. This kind of heuristi


methods fail to satisfy the above mentioned \self test" by their nature, but if

the sele
ted set of parameters are really dominant with respe
t to the goal of

the analysis we 
an a
hieve \suÆ
ient" �tting. [19℄ proposed to �t the following

parameters: mean arrival rate, varian
e to mean ratio of arrivals in (0; t), and its

asymptoti
 limit. After the notion of long range dependen
e in traÆ
 pro
esses

the Hurst parameter was added to this list. The following subse
tions introdu
es

heuristi
 �tting methods with various properties to 
apture and various �tting

MAP stru
tures.

MAP stru
tures approximating long range dependent behaviour An

intuitive way to provide long range dependent behaviour for several time s
ales

with Markovian models is to 
ompose a 
ombined model from small pie
es ea
h

of whi
h represents the model behaviour at a sele
ted range of the time s
ales.

One of the �rst models of this kind was proposed in [44℄. The same approa
h

was applied for traÆ
 �tting in [38℄, but re
ently this approa
h is 
riti
ized



in [12℄. Renewal pro
esses with heavy tailed interarrival times also exhibit self-

similar properties. Using this fa
t the approximate heavy tailed PH distributions


an be used to 
reate a MAP with PH renewal pro
ess. In [1℄ superposition of 2

state MMPPs are used for approximating 2nd order self-similarity. The proposed

pro
edure �ts the mean arrival rate, the 1-lag 
orrelation, the Hurst parameter

and the required range of �tting.

Fitting based on separate handling of long- and short-range dependent

behavior In [21℄ a pro
edure is given to 
onstru
t a MAP su
h a way that some

parameters of the traÆ
 generated by the model mat
h prede�ned values. The

following parameters are set:

{ The fundamental arrival rate des
ribes the expe
ted number of arrivals in a

time unit.

{ In order to des
ribe the burstiness of the arrival stream, the index of disper-

sion for 
ounts I(t) = Var(N

t

)=E(N

t

) is set for two di�erent values of time:

I(t

1

) and I(t

2

). The 
hoi
e of these two time points signi�
antly a�e
ts the

goodness of �tting.

{ A higher order des
riptor, the third 
entralized moment of the number of

arrivals in the interval (0; t

3

), M(t

3

) = E[(N

t

3

�E(N

t

3

))

3

℄ is set.

{ The degree of pseudo self-similarity is de�ned by the Hurst parameter H .

The Hurst parameter is realized in terms of the varian
e-time behavior of the

resulting traÆ
, i.e., the straight line �tted by regression to the varian
e-time


urve in a prede�ned interval has slope 2(H � 1).

The MAP resulting from the pro
edure is the superposition of a PH arrival

pro
ess and a two-state MMPP. In the following we sket
h how to 
onstru
t a PH

arrival pro
ess with pseudo self-similar behavior and des
ribe the superposition

of this PH arrival pro
ess with a two-state MMPP. Detailed des
ription of the

pro
edure is given in [21℄.

Let us 
onsider an arrival pro
ess whose interarrival times are independent

random variables with heavy tail probability density fun
tion (pdf) of Pareto

type

f(x) =


 � a




(x+ a)


+1

; x � 0: (13)

The pro
ess X

n

(n > 0) representing the number of arrivals in the nth time-slot

is asymptoti
ally se
ond-order self-similar with Hurst parameter H = (3� 
)=2

([49℄).

Using the method of Feldman andWhitt [14℄ one may build an arrival pro
ess

whose interarrival times are independent, identi
ally distributed PH random

variables with pdf approximating (13). To 
he
k pseudo self-similarity of this

PH renewal pro
esses Figure 19 plots V ar(X

(m)

) of PH arrival pro
esses whose

interarrival time is a 6 phase PH approximation of the pdf given in (13) for

di�erent values of 
. As it 
an be observed V ar(X

(m)

) is 
lose through several

orders of magnitude to the straight line 
orresponding to the self-similar 
ase

with slope 2(H�1). The aggregation level where V ar(X

(m)

) drops 
ompared to



the straight line may be in
reased by 
hanging the parameters of the PH �tting

algorithm.
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The parameters of the two-state MMPP with whi
h the PH arrival pro
ess

is superposed are 
al
ulated in two steps:

1. At �rst we 
al
ulate the parameters of an Interrupted Poisson Pro
ess (IPP).

The IPP is a two-state MMPP that has one of its two arrival rates equal

to 0. The 
al
ulated parameters of the IPP are su
h that the superposition

of the PH arrival pro
ess and the IPP results in a traÆ
 sour
e with the

desired �rst and se
ond order parameters E(N

1

), I(t

1

) and I(t

2

).

2. In the se
ond step, based on the IPP we �nd a two-state MMPP that has the

same �rst and se
ond order properties as the IPP has (re
alling results from

[4℄), and with whi
h the superposition results in the desired third 
entralized

moment.

If the MMPP is \less long-range dependent" than the PH arrival pro
ess,

the pseudo self-similarity of the superposed traÆ
 model will be dominated by

the PH arrival pro
ess. This fa
t is depi
ted in Figure 20. It 
an be observed

that if the Hurst parameter is estimated based on the varian
e-time plot the

Hurst parameter of the superposed model is only slightly smaller than the Hurst

parameter of the PH arrival pro
ess. In numbers, the Hurst parameter of the

PH arrival pro
ess is 0.8 while it is 0.78 for the superposed model (based on the

slope in the interval (10; 10

6

)). This behavior is utilized in the �tting method to

approximate the short and long range behavior in a separate manner.

We illustrate the pro
edure by �tting the Bell
ore tra
e. Varian
e-time plots

of the traÆ
 generated by the MAPs resulted from the �tting are depi
ted in

Figure 21. The 
urve signed by (x

1

; x

2

) belongs to the �tting when the �rst

(se
ond) time point of �tting the IDC value, t

1

(t

2

), is x

1

(x

2

) times the expe
ted

interarrival time. R/S plots for both the real traÆ
 tra
e and the traÆ
 generated

by the approximating MAPs are given in Figure 22. The �tting of the tra
es

were tested by a �/D/1 queue, as well. The results are depi
ted in Figure 23.
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The �/D/1 queue was analyzed by simulation with di�erent levels of utilization

of the server. As one may observe the lower t

1

and t

2

the longer the queue length

distribution follows the original one.

The �tting method provides a MAP whose some parameters are the same

as those of the original traÆ
 pro
ess (or very 
lose). Still, the queue length

distribution does not show a good mat
h. This means that the 
hosen parameters

do not 
apture all the important 
hara
teristi
s of the traÆ
 tra
e.
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MMPP Exhibiting Multifra
tal Behavior In [23℄ a spe
ial MMPP stru
-

ture is proposed to exhibit multifra
tal behavior. The ba
kground CTMC of the

MMPP has a symmetri
 n-dimensional 
ube stru
ture and the arrival intensities

are set a

ording to the variation of the arrival pro
ess at the di�erent time

s
ales. The spe
ial 
hoi
e of the stru
ture is motivated by the generation of the

Haar wavelet transform. Basi
ally the Haar wavelet transform evaluates the vari-

ation of the dataset at di�erent aggregation levels (time s
ales), and similarly,

the proposed MMPP stru
ture provide di�erent variation of the arrival rate at

di�erent time s
ales.

The 
omposition of the proposedMMPP stru
ture is similar to the generation

of the Haar wavelet transform (a pro
edure for traÆ
 tra
e generation based on

this transform is introdu
ed in [43℄). Without loss of generality, we assume that

the time unit is su
h that the long term arrival intensity is one. A MMPP of one

state with arrival rate 1 represents the arrival pro
ess at the largest (
onsidered)

time s
ale.

At the next time s
ale, 1=�, an MMPP of two states with generator

�� �

� ��

and with arrival rates 1� a

1

and 1 + a

1

(�1 � a

1

� 1) represents the variation

of the arrival pro
ess. This 
omposition leaves the long term average arrival rate

un
hanged.

In the rest of the 
omposition we perform the same step. We introdu
e a new

dimension and generate the n-dimensional 
ube su
h that the behavior at the

already set time s
ales remains un
hanged. E.g., 
onsidering also the 1=
� time

s
ale an MMPP of four states with generator

� � 
�

� � 
�


� � �


� � �

and with arrival rates (1�a

1

)(1�a

2

), (1+a

1

)(1�a

2

), (1�a

1

)(1+a

2

) and (1+

a

1

)(1+a

2

) (�1 � a

1

; a

2

� 1) represents the variation of the arrival pro
ess. With

this MMPP, parameter a

1

(a

2

) determines the varian
e of the arrival pro
ess at

the 1=� (1=
�) time s
ale. If 
 is large enough (>� 30) the pro
ess behavior at

the 1=� time s
ale is independent of a

2

. The proposed model is also appli
able

with a small 
. In this 
ase, the only di�eren
e is that the model parameters

and the pro
ess behavior of di�erent time s
ales are dependent.

A level n MMPP of the proposed stru
ture is 
omposed by 2

n

states and it

has n + 2 parameters. Parameters 
 and � de�nes the 
onsidered time s
ales,

and parameters a

1

; a

2

; : : : ; a

n

determines the varian
e of the arrival pro
ess at

the n 
onsidered time s
ales. It 
an be seen that the ratio of the largest and the

smallest 
onsidered time s
ales is 


n

. Having a �xed n (i.e., a �xed 
ardinality

of the MMPP), any large ratio of the largest and the smallest 
onsidered time

s
ales 
an be 
aptured by using a suÆ
iently large 
.



A simple numeri
al pro
edure 
an be applied to �t a MMPP of the given

stru
ture to a measured dataset. This heuristi
 approa
h is 
omposed by \engi-

neering 
onsiderations" based on the properties of the measured dataset and a

parameter �tting method.

First, we �x the value of n. A

ording to our experien
e a \visible" multis
al-

ing behavior 
an be obtained from n = 3 � 4. The 
omputational 
omplexity

of the �tting pro
edure grows exponentially with the dimension of the MMPP.

The response time with n = 6 (MMPP of 64 states) is still a

eptable (in the

order of minutes).

Similarly to [43℄, we set 
 and the � based on the inspe
tion of the dataset.

Pra
ti
ally, we de�ne the largest, T

M

, and the smallest, T

m

, 
onsidered time

s
ales and 
al
ulate 
 and � from

T

M

=

1

�

; T

m

=

1




n

�

:

The extreme values of T

M

and T

m


an be set based on simple pra
ti
al


onsiderations. For example when the measured dataset is 
omposed byN arrival

instan
es, T

M


an be 
hosen to be less than the mean time of N=4 arrivals, and

T

m


an be 
hosen to be greater than the mean time of 4 arrivals. A similar

approa
h was applied in [43℄. These boundary values 
an be re�ned based on a

detailed statisti
al test of the dataset. E.g., if the s
aling behavior disappears

beyond a given time s
ale, T

M


an be set to that value.

Having 
 and �, we apply a downhill simplex method to �nd the optimal

values of the variability parameters a

1

; a

2

; : : : ; a

n

. The goal fun
tion that our

parameter �tting method minimizes is the sum of the relative errors of the

se
ond moment of Haar wavelet 
oeÆ
ients up to a prede�ned time s
ale S:

min

a

1

;:::;a

n

S

X

j=1

jE(d

2

j

)�E(

^

d

2

j

)j

E(d

2

j

)

:

The goal fun
tion 
an be 
al
ulated analyti
ally as it is des
ribed in [23℄.

Appli
ation of the �tting pro
edure is illustrated on the Bell
ore tra
e. We

applied the �tting method with n = 5 and several di�erent prede�ned setting

of 
; �. We found that the goodness of the �tting is not very sensitive to the

prede�ned parameters around a reasonable region. The best \looking" �t is

obtained when T

m

is the mean time of 16 arrivals and 
 = 8. In this 
ase T

M

is the

mean time of 16�8

5

= 2

19

arrivals whi
h 
orresponds to the 
oarsest time s
ale we


an analyze in the 
ase of the Bell
ore tra
e. The simplex method minimizing the

sum of the relative error of the se
ond moments of the Haar wavelet 
oeÆ
ients

over S = 12 time s
ales resulted in: a

1

= 0:144; a

2

= 0:184; a

3

= 0:184; a

4

=

0:306; a

5

= 0:687. The result of �tting the se
ond moment of the Haar wavelet

transform at di�erent aggregation levels is plotted in Figure 24. At small time

s
ales the �tting seems to be perfe
t, while at larger time s
ales the error enlarges.

The slope of the 
urves are almost equal in the depi
ted range.

The multis
aling behavior of the obtained MAP and of the original dataset

are illustrated via the log-moment 
urves in Figure 25. In the �gure, the symbols
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Fig. 25. S
aling of log-moments of the

original tra
e and the �tting MMPP

represent the log-moment 
urves of the �tting MAP and the solid lines indi
ate

the 
orresponding log-moment 
urves of the Bell
ore tra
e. In the range of n 2

(3; 19) the log-moment 
urves of the �tting MAP are very 
lose to the ones of

the original tra
e. The log-moment 
urves of the approximate MAP are also very


lose to linear in the 
onsidered range.
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Fig. 26. Partition fun
tion estimated

through the linear �ts shown in Figure 25
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Fig. 27. The Legendre transform of the

original dataset and the one of the ap-

proximate MMPP

The partition fun
tions of the �tting MAP and of the original tra
e are

depi
ted in Figure 26. As it was mentioned earlier, the visual appearan
e of

the partition fun
tion is not very informative about the multifra
tal s
aling

behavior. Figure 27 depi
ts the Legendre transform of the partition fun
tions

of the original dataset and the approximating MAP. The visual appearan
e of

the Legendre transform signi�
antly ampli�es the di�eren
es of the partition

fun
tions. In Figure 27, it 
an be seen that both pro
esses exhibit multifra
tal

behavior but the original dataset has a bit ri
her multifra
tal spe
trum.

We also 
ompared the queuing behavior of the original dataset with that of

the approximate MAP assuming deterministi
 servi
e time and di�erent levels of

utilization, �. Figure 28 depi
ts the queue length distribution resulting from the
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Fig. 28. Queue-length distribution

original and the approximate arrival pro
esses. The queue length distribution


urves show a quite 
lose �t. The probability of an empty queue, whi
h is not

displayed in the �gures, is the same for the MAP as for the original tra
e sin
e

the MAP has the same average arrival intensity as the original tra
e. The �t is

better with a higher queue utilization, whi
h might mean that di�erent s
aling

behaviors play a dominant rule at di�erent utilizations, and the ones that are

dominant at high utilization are better approximated by the proposed MAP.

6 Con
lusions

This paper 
olle
ts a set of methods whi
h 
an be used in pra
ti
e for mea-

surement based traÆ
 engineering. The history of traÆ
 theory of high speed


ommuni
ation networks is summarized together with a short introdu
tion to

the mathemati
al foundation of the applied 
on
epts. The 
ommon statisti
al

methods for the analysis of data tra
es and the pra
ti
al problems of their ap-

pli
ation is dis
ussed.

The use of Markovian methods is motivated by the fa
t that an e�e
tive

analysis te
hnique, the matrix geometri
 method, is available for the evalua-

tion of Markovian queuing systems. To obtain the Markovian approximation

of measured traÆ
 data a variety of heuristi
 �tting methods are applied. The

properties and abilities of these methods are also dis
ussed.



The presented numeri
al examples provide insight to the qualitative under-

standing of the strange traÆ
 properties of high speed networks.
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