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Abstract

The completion time analysis of Markov reward models with partial incremental
loss is provided in this paper. The complexity of the model behaviour requires the
use of an extra (supplementary) variable.

1 Introduction

The analytical description of Markov reward models (MRMs) without reward loss
at state transitions is provided in [4, 3]. Based on this analytical description effec-
tive numerical methods were developed for the performance analysis of computer
and communication systems [2, 5]. In this paper we consider the case when a por-
tion of the reward accumulated during the sojourn in a state is lost at the departure
of that state [1, 6].

2 Model Definition

Let the (right continuous) “structure state process”, {Z(t), t ≥ 0}, be an ir-
reducible homogeneous continuous time Markov chain (CTMC) on state space
S = {1, 2, ..., N} with generator Q = {qij} and initial probability vector γ. The
amount of accumulated reward at time t is denoted by B(t). During the sojourn

in state i, the process accumulates reward with rate ri (ri ≥ 0), i.e.,
dB(t)

dt
= ri.

The subset of states with positive (zero) reward rate is denoted by S+ (S0).
MRMs are classified based on their behaviour at state transitions (θk denotes

the kth state transition). The case when the accumulated reward is maintained,
B(θ+

k ) = B(θ−k ), is called preemptive resume. In partial loss reward models a
portion of the accumulated reward is lost, B(θ+

k ) < B(θ−k ). In partial total loss
models the 1 − αi (αi) portion of the total reward is lost at the departure from
state i: B(θ+

k ) = αiB(θ−k ). In partial incremental loss models the reward loss affects
only the amount of reward accumulated during the sojourn in the last visited state:
B(θi) = B(θi−1) + αZ(θ−

i
)[B(θ−i )−B(θi−1)]. This paper considers completion time

of MRMs with partial incremental loss.
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3 Accumulated Reward

Differential equations has been used for the analytical description of reward models
for a long time [7]. We apply the same approach for the analysis of Markov reward
models with partial incremental loss, but in this case the model behavior in the
(t, t + ∆) interval depends on both, B(t) and the amount of reward accumulated
during the sojourn in the actual state. Due to this model feature we introduce a
supplementary variable that corresponds to the amount of reward lost at a possible
state transition at time t (A(t)):

A(t) = The amount of reward that is lost if a state change happens at time t

Let denote the distribution function of the accumulated reward by Yi(t, w, a):

Yi(t, w, a) = Pr(Z(t) = i, B(t) < w, A(t) < a),

and let introduce its density function yi(t, w, v):

yi(t, w, a) = lim
∆→0

Pr(Z(t) = i, w ≤ B(t) < w + ∆, a ≤ A(t) < a + ∆)

∆2

Theorem 1 yi(t, w, a) is the solution of the following partial differential equation:

∂

∂t
yi(t, w, a) + ri

∂

∂w
yi(t, w, a) + ri(1 − αi)

∂

∂a
yi(t, w, a) = qiiyi(t, w, a) (1)

with initial conditions:

1a) yi(0, w, a) = δ(w, a) γi

1b) yi(t, w, 0) =
∑

k∈S,k 6=i

qk,j

w(1−αi)/αi
∫

a=0

yk(t, w + a, a)da, w > 0

1c) yi(t, 0, 0) = 0 if i ∈ S+

1d) yi(t, 0, 0) = δ(w, a)
∑

k∈S0

γk

[

eQ0t
]

ki
if i ∈ S0

Proof 1 Note that the probability of a state transition in (t, t + ∆) vanishes as
∆ → 0 if A(t + ∆) > 0. The forward argument

yi(t + ∆, w, a) = (1 + qii∆)yi(t, w − ri∆, y − ri(1 − αi)∆)

results (1).
The first initial condition comes from the assumption that the background pro-

cess starts in state i with probability γi. The second initial condition (a = 0) covers
the case when state change happened in (t, t + ∆):

Pr(Z(t + ∆) = i, w ≤ B(t + ∆) < w + ∆, 0 ≤ A(t + ∆) < ∆) =

(1−qii∆)Pr(Z(t) = i, w−ri∆ ≤ B(t) < w−ri∆ + ∆, 0 ≤ A(t) < ∆−ri(1−αi)∆)

+
∑

k∈S,k 6=i

qkj∆

w(1−αi)

αi∆
∑

n=1

Pr(Z(t) = k,w + n∆ ≤ B(t) < w + (n + 1)∆, n∆ ≤ A(t) < (n + 1)∆)
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Dividing both sides by ∆2, taking the limit ∆ → 0 and observing that the first term
tends to 0, we obtain initial condition 1b). The upper limit of the integral comes
from relation yi(t, w, a) = 0 ∀a > w(1−αi) which follows from the model definition.
Initial condition 1c) indicated that B(t) is positive in state i with positive reward
rate. Initial condition 1d) reflects that B(t) = 0 is only possible if the background
process did not leave the subset of states with zero reward rate till t.

4 Completion Time

The completion time of a job with size B is defined as the time point when the
reward accumulation process reaches level B first:

C(B) = min(t : B(t) ≥ B).

The distribution and the density function of the completion time are denoted by:

Fi(t, B) = P (C(B) < t, Z(C(B)) = i),

fi(t, B) = lim
∆→0

Pr(t ≤ C(B) < t + ∆, Z(C(B)) = i)

∆
.

Due to the monotonicity of B(t) in preemptive resume reward models, fi(t, B)
can be derived from the density of the accumulated reward yi(t, w):

fi(t, B) = riyi(t, B). (2)

In partial loss models, B(t) is not monotone and it can cross level B many times
(due to losses). The completion time corresponds to the first of these events by
definition. Therefore we consider the process which stops the reward accumulation
once it reached level B. The distribution and density functions of this modified
process are denoted by:

Vi(t, w, a) = Pr(Z(t) = i, B(t) < w, A(t) < a, C(B) > t),

vi(t, w, a) = lim
∆→0

Pr(Z(t) = i, w ≤ B(t) < w + ∆, a ≤ A(t) < a + ∆, C(B) > t)

∆2
.

The following theorem provides the evolution of vi(t, w, a), which is very similar
to yi(t, w, a):

Theorem 2 vi(t, w, a) is the solution of the following partial differential equation:

∂

∂t
vi(t, w, a) + ri

∂

∂w
vi(t, w, a) + ri(1 − αi)

∂

∂a
vi(t, w, a) = qiivi(t, w, a) (3)

for 0 < w < B, with boundary conditions:

2a) vi(0, w, a) = δ(w, a) γi

2b) vi(t, w, 0) =
∑

k∈S,k 6=i

qk,j

min{B−w,w(1−αi)/αi}
∫

a=0

vk(t, w + a, a)da
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2c) vi(t, 0, 0) = 0 if i ∈ S+

2d) vi(t, 0, 0) = δ(w, a)
∑

k∈S0

γk

[

eQ0t
]

ki
if i ∈ S0

Proof 2 The proof is similar to the one of Theorem 1. The only difference between
the two is that vi(t, w, a) is defined in a finite interval 0 < w < B, and initial
condition 2b) is modified accordingly.

The completion time is obtained like in the preemptive resume case (eq. (2)),
by integrating over feasible range of the supplementary variable.

Theorem 3 The density function of the completion time in MRMs with partial
incremental loss is:

fi(t, B) = ri

∫ B(1−αi)

0
vi(t, B, a)da

Proof 3

fi(t, B) = lim
∆→0

Pr(t ≤ C(B) < t + ∆, Z(C(B)) = i)

∆

= lim
∆→0

1

∆

(

(1 + qii∆)Pr(B − rj∆ ≤ B(t) < B, Z(t) = i)

+
∑

k,k 6=i

qki∆Pr(B − ckj∆ ≤ B(t) < B,Z(t) = i)

)

= lim
∆→0

1

∆
(1+qii∆)

B(1−αi)

∆
∑

n=0

Pr(B−rj∆ ≤ B(t) < B, Z(t) = i, n∆ ≤ A(t) < (n+1)∆)

= lim
∆→0

qii

B(1−αi)

∆
∑

n=0

Pr(B − rj∆ ≤ B(t) < B, Z(t) = i, n∆ ≤ A(t) < (n+1)∆)

+ lim
∆→0

ri

B(1−αi)

∆
∑

n=0

∆
Pr(B−rj∆ ≤ B(t) < B, Z(t) = i, n∆ ≤ A(t) < (n+1)∆)

ri∆2

= ri

∫ ∞

0
vi(t, B, a)da

5 Numerical Example

There are N identical servers working on one task in a distributed manner. They
write the result of their work onto a storage continuously. But this storage is slower
than the sever, thus a portion of the results is kept into the memory until it can
be written to the storage. The servers can break down with rate λ. At break down
all the servers are switched off (to redistribute the job) and the content of their
memory is lost. Thus, the 1 − α portion of the work done is lost; i.e., the ratio
between the server speed and the speed of the storage device is α. With rate σ

the servers are stopped, all failed servers are repaired. With rate ρ the system is
switched on again. This system can be modeled by a Markov reward model with
partial incremental loss.

The Markov chain describing this system is show on Figure 1. The state num-
bering reflects the number of working servers. State M is the maintenance state.
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Number of servers: N = 5

Server break down rate: λ = 4

System inter-maintenance rate: σ = 1

Inverse of system maintenance time: ρ = 10

Result generation speed: r = 2

Ratio between server speed and storage: α = 0.5

Job size: B = 1

Table 1: System parameters used in the example

The reward rates ri and αi corresponding to the states are indicated on the dashed
line. If there are k working servers, the reward rate is rk = k · r.

rN=Nr rN−2=(N−2)rrN−1=(N−1)r r0 =0

rM =0

α N=0.5 α N−1=0.5 α N−2=0.5

α M

α 0

ρ
σ σ σ

σ

λλλ (N−1)N

 0N−2N N−1

M

=1

=1

Figure 1: Structure of the Markov chain

The differential equation that provides the completion time has been imple-
mented in Matlab. Figure 2 shows how the completion time distribution depends
on α (i.e., the storage speed and the server speed) and on λ (i.e. server avail-
ablility). On the first figure we can see that the completion probability where the
distribution jumps above zeros is the same, this is because changing α does not
change the generator of the Markov chain, neither the reward rates, and the closest
time to complete the job depends only on these. On the second figure the size of the
probability jump differs, since the generator is changing with λ, which affects the
sojourn time in state 0 (which has actually the largest reward rate in the model).
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Figure 2: Completion time distribution
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