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Abstract

This paper considers the analysis of second-order
Markov reward models. In these systems the reward accu-
mulation during state sojourns is not deterministic, but fol-
lows a Brownian motion with a state dependent drift
and variance parameter. We give the differential equa-
tions that describe the density function and the moments
of the accumulated reward, and show the similarities com-
pared to the first-order (ordinary) case. A randomization
based numerical method is also presented which is numer-
ically stable, has an error bound to control the precision,
and allows the efficient analysis of large models. The com-
putational cost of the proposed procedure is practically the
same as the one of the analysis of first-order reward mod-
els, while the modeling power of second-order models is
clearly larger.

1. Introduction

Reward models (i.e., discrete state stochastic processes
extended with a continuous variable) are useful and efficient
modeling tools for computing performability measures in a
great many of practical systems. In typical applications a
discrete state stochastic processes, referred to as structure
state process, describes the behaviour of the considered sys-
tem and a continuous variable, referred to as reward vari-
able, represents the performance of the system. The exten-
sion of the structure state process with a reward variable al-
lows a flexible definition and analysis of a large number of
performance measures, which would be far more complex
or impossible based on the structure state process itself.

In the past decades considerable effort has been made
to analytically describe and numerically evaluate more and
more general reward models. Some of these efforts aimed
the generalization of the structure state process. Thanks to
their numerical tractability, reward models associated with
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continuous time Markov chains, referred to as Markov re-
ward models (MRMs), are very popular. There are solutions
for reward models havingsemi Markov[1] or Markov re-
generativestructure state process [2], however their numer-
ical solution is far less tractable.

An other direction in generalization is the introduction
of different reward accumulation policies.Rate rewardsas-
signed to the states determine the reward accumulation rate
during the sojourn in the state.Impulse rewardsmight be
assigned with the state transitions of the structure state pro-
cess. Impulse reward increases the amount of accumulated
reward instantaneously at state transitions [3].

The case when the accumulated reward is monotone in-
creasing, i.e., there is no reward loss, is referred topreemp-
tive resume. In contrast, there are cases when state transi-
tions can result in loss of accumulated reward. The case
when the accumulated reward is reset to zero (complete re-
ward loss) is referred topreemptive repeat. Between the
preemptive resume and the preemptive repeat cases various
cases of partial reward loss models were defined [4, 5].

An other interesting generalization is to relax the ho-
mogenity assumption of MRMs. In [6] inhomogeneous
MRMs were considered, where both the generator of the
structure state process and the reward rates might be func-
tions of the time and the reward level. It has been shown that
in several cases the inhomogeneous behaviour does not in-
crease the computational complexity of the analysis, while
the modeling power is increased.

In this paper we increase the modeling power of MRMs
in a different manner. The randomness of traditional MRMs
is due to the stochastic nature of the structure state process,
and given the trajectory of the structure state process the ac-
cumulated reward is a deterministic function. With second-
order reward accumulation process it is possible to model
another kind of randomness as well. In second-order reward
models the accumulated reward is a random function of the
trajectory. During a sojourn in a state the reward increment
is a random variable whose mean and variance depend on
the visited state and the time spent in that state. We con-
sider the preemptive resume policy (i.e., no reward loss at
state transitions) only, and do not consider impulse reward
accumulation. However, the introduced solution method al-



lows to relax these restrictions.
The idea to investigate second-order discrete-continuous

combined processes is not new. Second-order fluid models
are considered for example in [7, 8], with absorbing or re-
flecting behaviour at the lower bound.

The behaviour of second-order reward models is very
similar to the behaviour of second-order fluid models with
one essential difference. In second-order reward models the
reward accumulation process is not bounded. In practical
applications it is common to assume that the accumulation
process has a positive drift (i.e., the mean accumulated re-
ward is increasing), but we do not apply any restriction in
the mathematical description of these models. The lack of
bounds of the accumulation process makes the analysis of
second-order reward models simpler than the one of second-
order fluid models. One of the main contributions of this pa-
per is the effective numerical procedure which is based on
this relative simplicity of second-order reward models and
allows the analysis of fairly large models. The resulting for-
mulas are comparable with the ones of ordinary MRMs and
the ones of second-order fluid models. During the discus-
sion below we indicate these relations.

The paper is organized as follows. First, in section 2, we
briefly introduce Brownian motions focusing on the proper-
ties that are used in the rest of the paper. We define second
order Markov reward models on this bases in section 3. In
section 4 and 5 we derive the differential equations that de-
scribe the density function and the moments of the accumu-
lated reward. We present these measures both, in time and
in Laplace domain. Section 6 describes a numerical method
to compute the moments of the accumulated reward, and
gives an error bound to control the precision. Section 7 pro-
vides a numerical example to demonstrate the application
of second-order Markov reward models and section 8 con-
cludes the paper.

2. Some properties of Brownian motion

The definition of Brownian motions1 used in this paper
is based on the definition provided in [9] page 490 and it is
extended with non-zero drift:

Definition 1 A (real-valued) stochastic process,X (t), is a
Brownian motion with driftr and varianceσ2 if:

• X (t) has independent increments,

• the incrementX (s + t) - X (s) for all s, t ≥ 0 is nor-
mal distributed with meanrt and varianceσ2t, where
r is a real valued andσ is a positive constant.

• the sample paths ofX (t) are almost surely continuous.

1 This process is also referred to as Wiener process (e.g., in[9])

The density function ofX (t) at timet is:

f(t, y) = lim
∆→0

1

∆
Pr(y < X (t) < y + ∆)

and its double-sided Laplace transform2 with respect toy
is:

f∗(t, v) =

∫ ∞

−∞

f(t, y) e−vy dy.

AssumingX (0) = 0 and using the second part of Defini-
tion 1 f(t, y) and its Laplace transform can be expressed
as:

f(t, y) =
1√

2πtσ2
e−

(y−rt)2

2tσ2

f∗(t, v) = e−vrt+ v2

2 σ2t.

Due to the quick decay of the normal distribution both, at
large negative and at large positive values the double-sided
Laplace transform exists for any finitev.

The first terms of the Taylor series off∗(t, v) around0
are:

f∗(∆, v) = 1 − [v r − v2

2
σ2]∆ + o(∆). (1)

From the results of Wiener and Lévy we know that
Brownian motion is the only higher order continuous time
stochastic process with (almost surely) continuous trajec-
tory [10].

3. Second-order Markov reward models

Definition 2 A second-order Markov reward model is com-
posed by a continuous time Markov chain and a Brownian
motion with drift, where the drift and the variance parame-
ter of the brownian motion is determined by the state of the
Markov chain.

Let the structure state process{Z(t), t ≥ 0} be a fi-
nite state, continuous time Markov chain on state space
S = {1, . . .N} with generatorQ = {qij} and initial prob-
ability vectorπ. Its transient probability vectorp(t) satis-
fies:

d

dt
p(t) = p(t) Q with initial condition: p(0) = π.

While the structure state process stays in statei (i ∈ S),
reward is accumulated according to a Brownian motion with

2 Due to the nature of the considered problem we apply double-sided
Laplace transform throughout this paper without mentioning it any
more. The only difference of the single-sided and the double-sided
Laplace transform, which is used in the paper, is the lack of initial
value in the transform of a derivative:LS{f

′(t)} = sf∗(s) − f(0)
while LD{f ′(t)} = sf∗(s)



drift −∞ < ri < ∞ and variance0 ≤ σ2
i < ∞, i.e., the ac-

cumulated reward process,B(t), is a Brownian motion with
drift ri and varianceσ2

i .

Figure 1 shows a sample realization of a second-order
Markov reward model. On this figure state 2 has the largest
assigned drift and variance (r2 = 3, σ2

2 = 2). By such a
large variation it happens with a not negligible probabil-
ity (for example betweent ≈ 1.7 andt ≈ 1.85) that the
amount of reward is less when the state is left than the one
when the state is entered, even if the drift is large.
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Figure 1. A sample realization of a second or-
der reward model

In the sequel we use the following properties of second-
order Markov reward models. IfZ(t) = i and there is no
state transition in the(t, t + ∆) interval the reward incre-
ment over this interval,B(t + ∆) − B(t), is normal dis-
tributed with meanri∆ and varianceσ2

i ∆. If Z(t) = i and
there is a state transition in the(t, t + ∆) interval to statek
at timet + γ (γ < ∆) the distribution of the reward incre-
ment over the(t, t + ∆) interval is normal distributed with
meanriγ +rk(∆−γ) and varianceσ2

i γ +σ2
k(∆−γ), since

the sum of two normal distributed random variable is nor-
mal distributed as well and their first two cumulants (mean
and variance) sum up.

For later use we define the diagonal matricesR andS,
constructed fromri andσ2

i :

R =








r1

r2

. . .
rN








, S =








σ2
1

σ2
2

. . .
σ2

N








.

MatricesQ, R andS together with vectorπ define a
second-order Markov reward model.

According to the mentioned continuity property of
Brownian motion second-order Markov reward mod-
els are the most general Markov modulated reward
models with (almost surely) continuous reward accumu-
lation. Higher order models represent non-continuous
reward accumulation and there is no other second or-
der model.

As it is known for normal distributions the accumulated
reward might become negative with commonly negligible,
but positive probability and as it is emphasized in the above
example the accumulated reward function is not monotone
(as long asσ > 0). This model property has to be consid-
ered in practical application of second-order Markov reward
models.

4. Analysis of accumulated reward

In this section we provide the differential equations that
describe the density function and the moments of the accu-
mulated reward. The applied analysis approach is the same
as the one used for first order reward models, e.g. in [6].
First we introduce some definitions and notations.

The density function of the accumulated reward is3:

bi(t, x) =

lim
∆→0

1

∆
Pr(x < B(t) < x + ∆|B(0) = 0,Z(0) = i),

and its Laplace transform with respect tox is:

b∗i (t, v) =

∫ ∞

−∞

bi(t, x) e−vx dx.

Furthermore, we introduce the following column vectors:

b(t, x) = {bi(t, x)} and b∗(t, v) = {b∗i (t, v)}.

The following theorem provides the distribution of
the accumulated reward of a second-order Markov re-
ward model.

3 We use generalized density function when the distributionof B(t) is
not continuous and the analysis remains the same.



Theorem 1 b∗(t, v) satisfies the following differen-
tial equation:

∂

∂t
b∗(t, v) + v R b∗(t, v) − v2

2
S b∗(t, v) =

Q b∗(t, v),
(2)

with initial condition

b∗(0, v) = h,

whereh is the column vector of ones.

Proof of Theorem 1The density of the reward at timet + ∆
can be expressed by conditioning on the possible state tran-
sition in (0, ∆), the following way:

bi(t + ∆, x) =

(1 + qii∆)

∫ ∞

−∞

bi(t, x − y) fi(∆, y) dy

+
∑

k∈S,k 6=i

qik∆

∫ ∞

−∞

bk(t, x − y) fCi,k
(∆, y) dy

+ o(∆).

(3)

The first term represents the case when there is no state
transition in(0, ∆), so the reward is accumulated accord-
ing to a Brownian motion with driftri and varianceσ2

i .
The density function of the accumulated reward at time∆ is
fi(∆, y). To accumulatex amount of reward at timet + ∆,
x − y amount of reward has to be accumulated in the re-
mainingt long interval. The probability of no state transi-
tion in (0, ∆) is 1 + qii∆ + o(∆).
The second term corresponds to the case when a state tran-
sition takes place from statei to statek during(0, ∆). The
probability of this case isqik∆+o(∆). The accumulated re-
ward at time∆ is normal distributed (see the end of section
3), but the parameters depends on the time of the state tran-
sition. We denoted the density function of the accumulated
reward at time∆ by fCi,k

(∆, y), whose mean and variance

arer′ik andσ′2
ik.

The probability of having more than one state transition in
(0, ∆) is o(∆).

The Laplace transformation of (3) with respect tox is:

b∗i (t + ∆, v) = (1 + qii∆)b∗i (t, v)f∗
i (∆, v)

+
∑

k∈S,k 6=i

qik∆b∗k(t, v)f∗
Ci,k

(∆, v) + o(∆).

Subtractingb∗i (t, v) from both sides, applying eq. (1), and

dividing by∆ results:

b∗i (t + ∆, v) − b∗i (t, v)

∆
=

∑

k∈S

qikb∗k(t, v) − b∗i (t, v)
(

v ri −
v2

2
σ2

i

)

− qiib
∗
i (t, v)

(

v ri −
v2

2
σ2

i

)

∆
︸ ︷︷ ︸

from f∗

i
(∆,v)

−
∑

k∈S,k 6=i

qikb∗k(t, v)
(

v r′ik − v2

2
σ′2

ik

)

∆
︸ ︷︷ ︸

from f∗

Ci,k
(∆,v)

+
o(∆)

∆

Wherer′ik ≤ max(ri, rk), andσ′2
ik ≤ max(σ2

i , σ2
k).

Taking the limit∆ → 0, and using matrix notation yields
(2).
Based on the definition ofbi(t, x) at time zeroB(0) = 0.
The density function of the accumulated reward is the Dirac
delta function:bi(0, x) = δ(x), ∀i ∈ S and its Laplace
transform is constant1, which is the initial condition of the
differential equation (2). �

With appropriate Inverse Laplace and Laplace transfor-
mation Equation (2) can be expressed in original and in dou-
ble Laplace transform domain:

Corollary 1 b(t, x) is the solution of the following differ-
ential equation:

∂

∂t
b(t, x) + R

∂

∂x
b(t, x) − 1

2
S

∂2

∂x2
b(t, x) =

Q b(t, x),
(4)

with initial condition:

b(0, x) = δ(x).

Corollary 2 The Laplace transformb∗∗(s, v) of the accu-
mulated reward with respect tot andx is:

b∗∗(s, v) =
[

sI − Q + vR − v2

2
S
]−1

h (5)

The obtained results indicate the formal relation of first
and second order Markov reward models in time domain:

∂
∂t b(t, x) + R ∂

∂xb(t, x) − 1
2S ∂2

∂x2 b(t, x) = Qb(t, x)
m

∂
∂tb(t, x) + R ∂

∂xb(t, x) = Q b(t, x)

and in double transform domain:

b∗∗(s, v) =
[

sI − Q + vR − v2

2 S
]−1

h

m
b∗∗(s, v) =

[

sI − Q + vR
]−1

h



The distribution of the accumulated reward can be com-
puted using a partial differential equation solver based on
eq. (4) or an ordinary differential equation solver and a
numerical inverse transformation based on eq. (3) or in-
verse Laplace transformation from double transform do-
main based on eq. (5) (e.g., [11]). Unfortunately non of
these procedures is applicable for second-order Markov re-
ward models with more than 100 states. Nevertheless, sim-
ilar to first-order Markov reward models, the moments of
the accumulated reward can be analyzed with a more effec-
tive numerical method.

In the light of Eq. (4), we also can interpret the relation
of second-order fluid models and second-order Markov re-
ward models. The same partial differential equation char-
acterize the system distribution of both models inside the
valid region, but due to the fact that the reward accumu-
lation is unbounded in second-order Markov reward mod-
els, but the fluid level is bounded (from one side (level0) or
from two sides (level0 and the buffer size)) in second-order
fluid models different boundary conditions apply to the dif-
ferent models. The solutions of a partial differential equa-
tion with different boundary conditions might differ signif-
icantly, hence unfortunately, the relatively simple solution
of second-order Markov reward models is not applicable for
the solution of second-order fluid models.

5. Moments of the accumulated reward

Thenth moment of the accumulated reward at timet is
denoted byV (n)

i (t):

V
(n)
i (t) = E(Bn(t) | B(0) = 0, Z(0) = i),

and the column vector of thenth moments isV (n)(t) =

{V (n)
i (t)}.
The analytical description of the moments of accumu-

lated reward is provided by the following theorem.

Theorem 2 V (n)(t) is the solution of the following ordi-
nary differential equation:

∂

∂t
V (n)(t) − n R V (n−1)(t) −
1

2
n (n − 1) S V (n−2)(t) = Q V (n)(t),

(6)

with initial condition:

V (0)(0) = h, and V (n)(0) = 0, ∀n ≥ 1.

Proof of Theorem 2We start from eq. (2) and apply the fol-
lowing relation of the Laplace transform and the moments
of the accumulated reward:

V (n)(t) = (−1)n ∂n

∂vn
b∗(t, v) |v=0.

First we show by induction that:

∂n

∂vn
v b∗(t, v) = v

∂n

∂vn
b∗(t, v) + n

∂n−1

∂vn−1
b∗(t, v). (7)

This statement clearly holds forn = 1. Assuming that it is
true forn − 1, thenth is expressed as:

∂n

∂vn
v b∗(t, v) =

∂

∂v

(

v
∂n−1

∂vn−1
b∗(t, v) + (n−1)

∂n−2

∂vn−2
b∗(t, v)

)

=

v
∂n

∂vn
b∗(t, v) + n

∂n−1

∂vn−1
b∗(t, v).

Next, we show that:

∂n

∂vn

v2

2
b∗(t, v) =

v2

2

∂n

∂vn
b∗(t, v) +

nv
∂n−1

∂vn−1
b∗(t, v) +

1

2
n(n − 1)

∂n−2

∂vn−2
b∗(t, v).

(8)
The proof is induction based again. Forn = 1 andn = 2
eq. (8) holds. Assuming that it holds for1 . . . n − 1, for the
nth derivative we have:

∂n

∂vn

v2

2
b∗(t, v) =

∂

∂v

(

v2

2

∂n−1

∂vn−1
b∗(t, v) + v(n−1)

∂n−2

∂vn−2
b∗(t, v) +

1

2
(n−1)(n−2)

∂n−3

∂vn−3
b∗(t, v)

)

=

v2

2

∂n

∂vn
b∗(t, v) + nv

∂n−1

∂vn−1
b∗(t, v) +

1

2
n(n − 1)

∂n−2

∂vn−2
b∗(t, v).

Thenth derivative of ∂
∂tb

∗(t, v) andb∗(t, v)Q with respect
to v is straightforward and using eq. (7) and (8) the theorem
is given. �

6. Numerical Method

In this section we provide a randomization based numer-
ical method that efficiently computes the moments of the
accumulated reward at timet. Instead of using matricesQ,
R andS we introduce the following non-negative and sub-
stochastic matrices (i.e., their row-sum≤ 1):

Q′ =
1

q
Q + I, R′ =

1

qd
R, S′ =

1

qd2
S,

whereq = maxi∈S |qii|, d = maxi∈S{ri, σi}/q. If there
are negative reward rates the following model transforma-
tion provides non-negative, substochastic matrices:ř =



mini∈S ri, Ř = R − řI andPr(B(t) < c) = Pr(B̌(t) <
c − řt). There are several advantages of using substochas-
tic matrices in numerical methods. Multiplying only sub-
stochastic matrices and non-negative vectors avoids sub-
traction, which is usual source of numerical errors using
floating point number representation. Furthermore, the re-
sult of the multiplication of substochastic matrices and a
bounded non-negative vector is bounded as well. Exploit-
ing this bound one can set the numerical precision of com-
plex procedures.

The following theorem provides the moments of the ac-
cumulated reward using the introduced substochastic matri-
ces.

Theorem 3 The nth moment of the accumulated reward,
V (n)(t) can be expressed as follows:

V (n)(t) = n! dn
∞∑

k=0

e−qt (qt)
k

k!
U (n)(k), (9)

where the following recursive relation holds for theU (n)(k)
coefficients:

U (n)(k + 1) = R′ U (n−1)(k) +

1

2
S′ U (n−2)(k) + Q′ U (n)(k),

(10)

with initial values:

U (0)(0) = h, and U (n)(0) = 0, ∀n > 0.

Proof of Theorem 3Substituting (9) into eq. (6) gives:

n! dn
∞∑

k=0

e−qt (qt)
k

k!
[qU (n)(k + 1) − qU (n)(k)] =

n (n − 1)! dn−1 qdR′

∞∑

k=0

e−qt (qt)k

k!
U (n−1)(k)+

1

2
n(n−1)(n−2)! dnqS′

∞∑

k=0

e−qt (qt)
k

k!
U (n−2)(k)+

n! dn q(Q′ − I)
∞∑

k=0

e−qt (qt)
k

k!
U (n)(k)

With the given recursive formula forU (n)(k), the above
equality holds for each term having the same Poisson co-
efficient. �

The following theorem provides an error bound to con-
trol the precision of the procedure given in Theorem 3

Theorem 4 The nth moment of the accumulated reward
can be calculated as a finite sum up toG and an error vec-
tor ξ(G), whose elements are less thanǫ:

V (n)(t) = n! dn
G∑

k=0

e−qt (qt)
k

k!
U (n)(k) + ξ(G),

where the limit,G, is calculated as:

G = min
g

(

2 dn n! (qt)n
∞∑

k=g+n+1

e−qt (qt)
k

k!
< ǫ

)

.

(11)

The proof of the theorem is in Appendix A.
Theorem 3 and 4 present a description of the moments of

accumulated reward which allows an effective computation
of these measures. Appendix B introduces a pseudo code of
the procedure based on these theorems.

The computational complexity of the procedure is char-
acterized byG and the complexity of the matrix vector mul-
tiplications in theU (j) := 0.5 S′ ·U (j−2) + R′ ·U (j−1) +
Q′ · U (j) step. The execution of this stepG times domi-
nates the execution time. Commonly,G has the same or-
der of magnitude asqt, and sinceR′ andS′ are diagonal
matrices andQ′ is often sparse the complexity of the iter-
ative step is equivalent with some vector-vector multiplica-
tions. If the mean number of non-zero elements in a row
of Q′ is m the complexity of the iterative step is equiva-
lent with m + 2 vector-vector multiplications and 3 vec-
tor summations where the cardinality of the square matrices
and the vectors is|S|. The memory requirement of the pro-
cedure is determined by the size of the input data and the
result. The size of memory needed to store the input data
(matrix Q, diagonal matricesR′ andS′ and vectorπ) is
the size of(m + 3)× |S| floating point numbers and to cal-
culate and store result we need memory for furthern + 1
vectors of size|S|.

7. Example

We study the performance of a tentative telecommuni-
cation system. A communication channel with capacityC
serves traffic of two traffic classes. The service policy is
such that class 1 has higher priority than class 2. There are
N class 1 traffic sources which follow ON-OFF behaviour
with exponentially distributed on and off periods, whose pa-
rameters areα andβ, respectively. During its ON period a
class 1 traffic source transmits data with rater and variance
σ2, i.e., in at long ON period the amount of transmitted
data is normal distributed with meanrt and varianceσ2t.
In contrast with the behaviour of real communication sys-
tems this quantity can be negative with a given probability.
If r >> σ the probability that negative data is transmitted is
negligible. During its OFF period a class 1 traffic does not
transmit data. The class 2 traffic utilizes the remaining band-
width of the channel. The performance measure of interest
is the channel capacity available for class 2 traffic in the
(0, t) interval supposing that each class 1 sources are in the
OFF phase at time0. We define a second-order Markov re-
ward model which describes the capacity available for class
2 traffic.



2 3α N α
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Figure 2. The structure of the background
process

Figure 2 shows the behaviour of the “background”
CTMC which characterize the instantaneous band-
width available for class 2 traffic. The state numbers
indicate the number of active (ON phase) class 1 cus-
tomers. The figure also indicate the rate and variance
associated with the states of the background process. Dur-
ing a visit in statei ri = C − i · r andσ2

i = i · σ2.

Capacity of the channel: C = 32
Number of CBR sources: N = 32
Parameter of the ON period: α = 4
Parameter of the OFF period: β = 3
Transmission rate of a CBR source:r = 1
Variance of the transmission rate: σ2 = 0, 1, 10

Table 1. Parameters used in the example

Table 1 summarizes the considered values of model pa-
rameters. To demonstrate the difference between ordinary
(first-order) and second order Markov reward models we
evaluate the example with 3 different variance parameters.
σ2 = 0 corresponds to a first-order model, whileσ2 = 1
andσ2 = 10 corresponds to second-order models.

The mean value of the accumulated reward with the 3
considered variance values are plotted in Figure 3. The fig-
ure verifies the assumption that the mean accumulated re-
ward is independent of the variance parameter. To visual-
ize the non-linear behaviour of the mean curve (only on this
figure) we also plot the mean accumulated reward starting
from steady state, which is a linear function of time.

Figure 4 depicts the second and third moment of the ac-
cumulated reward as a function of time for the 3 variance
values. The figures demonstrate a (natural) general feature
of second-order Markov reward models. The higher are the
variance parameters of the states the bigger are the higher
moments of the accumulated reward.

The numerical procedure presented in section 6 calcu-
lates only the moments of the accumulated reward. To com-
pute the distribution of the accumulated reward one can
solve the partial differential equation (4) numerically, which
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Figure 3. The mean of the accumulated re-
ward
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Figure 4. The 2nd and 3rd moment of the ac-
cumulated reward

might be slow and inaccurate or can approximate the distri-
bution based on its moments. For example, one can apply
the method presented in [12] for calculating the bounds of
the accumulated reward distribution based on its moments.
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Figure 5. Bounds for the distribution of the
accumulated reward with σ2 = 0
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Figure 6. Bounds for the distribution of the
accumulated reward with σ2 = 1

Figures 5, 6 and 7 show the bounds of the accumulated
reward distribution obtained with the differentσ2 parame-
ters at timet = 0.5. Among other factors the tightness of the
bounds depends on the number evaluated moments, which
was23 in these cases.

The results presented in this section were calculated with
a C++ implementation of the randomization based numeri-
cal method presented in section 6. To be memory efficient
our implementation uses sparse matrix representation.

The presented results have been compared to the results
of a numerical ODE solver (working based on eq. 6 using
trapezoid rule), and a second-order reward model simula-
tion tool. The three solutions gave exactly the same results,
however the randomization was far the fastest (the calcula-
tion of any figure presented above took less than one second
on a PC running at 2.4 GHz).
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Figure 7. Bounds for the distribution of the
accumulated reward with σ2 = 10

Capacity of the channel: C = 200.000
Number of CBR sources: N = 200.000
Parameter of the ON period: α = 4
Parameter of the OFF period: β = 3
Transmission rate of a CBR source:r = 1
Variance of the transmission rate: σ2 = 10

Table 2. Parameters of the large model

To test the computational complexity of the numerical
procedure we also evaluated the same example with a larger
background process. Table 2 presents the parameters of the
large model. Figure 8 depicts the first three moments of
the accumulated reward at time0.01, 0.02, 0.03, 0.04 and
0.05. The overall computation time of the 5 evaluated time
points was 3 hours on the same computer. At the final time
point (t = 0.05) the number of required iterations was
G = 41, 588 with precision requirementǫ = 10−9. In this
caseq = 800, 000 and qt = 40, 000. Due to the regular
structure ofQ′ with 3 non-zero elements in each row (ex-
cept the first and last ones) the number of floating point mul-
tiplications was

( 3
︸︷︷︸

Q′

+ 1
︸︷︷︸

R′

+ 1
︸︷︷︸

S′

) × 200, 001
︸ ︷︷ ︸

|S|

× 4
︸︷︷︸

3 moments

in each of theG iteration steps, which took one hour.

8. Conclusion

This paper presents the analytical description of second-
order Markov reward models. This description is similar to
the one of second-order fluid models, but there are some
dominant differences between them. The similarities and
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Figure 8. The moments of the accumulated
reward of the large example

differences of second-order reward and second-order fluid
models are emphasized as well.

Utilizing the special features of second-order Markov re-
ward models an effective randomization based numerical
procedure is presented which calculates the moments of ac-
cumulated reward.

The numerical analysis of a tentative communica-
tion system demonstrates the application and the anal-
ysis of second-order Markov reward models. Using the
proposed analysis method the computational complex-
ity and the memory requirement of the reward analy-
sis of second-order models is practically identical with the
ones of first-order models.

A. Proof of Theorem 4

Theorem 4 is based on the following lemmas.

Lemma 1 For n ≤ 2k the explicit solution of the recursion

gn,k = gn,k−1 + gn−1,k−1 +
1

2
gn−2,k−1 (12)

with initial conditionsg0,k = 1, g1,k = k, ∀k ≥ 0; gn,0 =
0, ∀n > 0 is:

gn,k =

⌊n/2⌋
∑

j=max(0,n−k)

2−j k!

j!(k − n + j)!(n − 2j)!
(13)

Proof of Lemma 1
Recursion (12) gives thenth coefficient of the(1 + x +

1
2x2)k polynom, i.e.,(1 + x + 1

2x2)k =
∑2k

n=0 gn,k xn. It

can be checked looking at:

(

1+x+
1

2
x2
)k

=
(

1+x+
1

2
x2
)(

1+x+
1

2
x2
)k−1

=

(

1 + x +
1

2
x2
) 2k−2∑

n=0

gn,k−1 xn.

The power series expansion of(1 + x + 1
2x2)k is:

k∑

ℓ=0

(
k

ℓ

)

xℓ
ℓ∑

j=0

(
ℓ

j

)

2−jxj =

k∑

ℓ=0

ℓ∑

j=0

k!

(k − ℓ)!(ℓ − j)!j!
2−j xj+ℓ =

2k∑

n=0

xn

⌊n/2⌋
∑

j=max(0,n−k)

2−j k!

j!(k − n + j)!(n − 2j)!

︸ ︷︷ ︸

gn,k

,

where in the last step a new variablen = ℓ + j has been
introduced4. �

Lemma 2 Assuminggn,k = 0 for all n > 2k the elements
of theU (n)(k) vectors are upper-bounded bygn,k for all
n, k ≥ 0, i.e.

U (n)(k) ≤ gn,k h (14)

Proof of Lemma 2Due to the substochastic featureR′, S′

andQ′ the following inequalities hold

R′ h ≤ h, S′ h ≤ h and Q′ h ≤ h.

The proof is based on induction again. Based on the initial
conditions ofgn,k = 0 andU (n)(k) the lemma holds for
k = 0. Assuming it also holds fork from eq. (10) we have

U (n)(k + 1) =

R′ U (n−1)(k) + 1
2 S′ U (n−2)(k) + Q′ U (n)(k) ≤

R′ gn−1,k h + 1
2 S′ gn−2,k h + Q′ gn,k h ≤

gn−1,k h + 1
2 gn−2,k h + gn,k h = gn,k+1 h . �

Proof of Theorem 4Starting from Lemma 1 and Lemma 2
U (n)(k) can be further upper bounded:

U (n)(k) ≤ gn,k h ≤
k∑

j=0

2−j k!

(k − n)!
h ≤

2
k!

(k − n)!
h.

4 We thank the correction of (13) to anonymous referee.



Then the error vector (ξ(G)) is bounded by:

ξ(G) = dn n!
∞∑

k=G+1

e−qt (qt)k

k!
U (n)(k) ≤

dn n!

∞∑

k=G+1

e−qt (qt)
k

k!
· 2 k!

(k − n)!
h =

2 dn n! (qt)n
∞∑

k=G+n+1

e−qt (qt)
k

k!
h,

from which eq. (11) follows. �

B. Implementation of the Numerical Algo-
rithm

A pseudo code of an implementation of the numerical
method based on Theorem 4 is described here.

Input Q GENERATOR MATRIX OF THECTMC
R DIAGONAL MATRIX OF REWARD RATES

S DIAGONAL MATRIX OF VARIANCES

P INITIAL PROBABILITY VECTOR

t TIME OF ACCUMULATION

n ORDER OF MOMENT

ǫ COMPUTATION ACCURACY

Output m THE n-TH MOMENT OF ACC. REWARD

1 computeQ′ , R′ andS′

q := maxi∈S |qii|;
d := maxi∈S{ri, σi}/q;
Q′ := Q/q + I ;
R′ := R/qd;
S′ := S/qd2;

2 computeG
G:=1;
psum := 0;
for i := 1 to G + n + 1

psum := psum + Poisson(i; qt);
while 2 · (qt)n · dn · n! · (1 − psum) > ǫ
begin

G := G + 1;
psum := psum + Poisson(G + n + 1; qt);

end

3 compute then-th moment
U (0) = h; U (i) = 0 , i : 1 . . . n;
for i := 1 to G do

begin

for j := n downto 0 do

U (j) := 0.5 S′ ·U (j−2) + R′ ·U (j−1) + Q′ ·U (j);

m := m + U (n) ·Poisson(i; qt);
end;

m := P · m · n! · dn
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mogeneous markov reward models,” inInternational Con-
ference on Numerical Solution of Markov Chains – NSMC
2003, (Urbana, IL, USA), pp. 305–322, Sept 2003.

[7] S. Asmussen, “Stationary Distribution for Fluid Flow Mod-
els and Markov-Modulated Reflected Brownian Motion,”
Tech. Rep. TR R92-2015, Institute of Electronic Systems,
Department of Mathematics and Computer Science, Aalborg
University, Aalborg, Denmark, 1992.

[8] R. L. Karandikar and V. G. Kulkarni, “Second-order fluid
flow models: Reflected brownian motion in a random envi-
ronment,”Operations Research, vol. 43, pp. 77–88, 1995.

[9] G. R. Grimmett and D. R. Stirzaker,Probability and random
processes. Oxford University Press, 1992. second edition.

[10] W. Feller,An Introduction to Probability Theory and its Ap-
plications - Vol. I and II. New York: Wiley, 1968.

[11] G. L. Choudhury, D. M. Lucantoni, and W. Whitt, “Multi di-
mensional transform inversion with applications to the tran-
sient M/G/1 queue,”Annual Applied Probability, vol. 4,
pp. 719–740, 1994.
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