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Abstract continuous time Markov chainseferred to as Markov re-
ward models (MRMSs), are very popular. There are solutions

This paper considers the analysis of second-order for reward models havingemi MarkoV1] or Markov re-
Markov reward models. In these systems the reward accu-generativestructure state process [2], however their numer-
mulation during state sojourns is not deterministic, biit fo ~ical solution is far less tractable.

lows a Brownian motion with a state dependent drift ~ An other direction in generalization is the introduction
and variance parameter_ We give the differential equa- of different reward accumulation pOIiCieRate rewards|is-

tions that describe the density function and the momentssigned to the states determine the reward accumulation rate

of the accumulated reward, and show the similarities com- during the sojourn in the statémpulse rewardsnight be
pared to the first-order (ordinary) case. A randomization @ssigned with the state transitions of the structure state p
based numerical method is also presented which is numer-cess. Impulse reward increases the amount of accumulated
ically stable, has an error bound to control the precision, reward instantaneously at state transitions [3].

and allows the efficient analysis of large models. The com-  The case when the accumulated reward is monotone in-
putational cost of the proposed procedure is practically th ~ creasing, i.e., there is no reward loss, is referregré@mp-
same as the one of the analysis of first-order reward mod-tive resumeln contrast, there are cases when state transi-

els, while the modeling power of second-order models istions can result in loss of accumulated reward. The case
clearly larger. when the accumulated reward is reset to zero (complete re-

ward loss) is referred tpreemptive repeatBetween the
preemptive resume and the preemptive repeat cases various
cases of partial reward loss models were defined [4, 5].

1. Introduction An other interesting generalization is to relax the ho-
mogenity assumption of MRMs. In [6] inhomogeneous

Reward models (i.e., discrete state stochastic processeRMs were considered, where both the generator of the

extended with a continuous variable) are useful and efficien Structure state process and the reward rates might be func-
modeling tools for computing performability measures in a tions of the time and the reward level. It has been shown that

great many of practical systems. In typical applications a I several cases the inhomogeneous behaviour does not in-

discrete state stochastic processes, referred to aswsguct Crease the computational complexity of the analysis, while

state process, describes the behaviour of the considesed sy the modeling power is increased. _
tem and a continuous variable, referred to as reward vari- N this paper we increase the modeling power of MRMs

able, represents the performance of the system. The extenin @ different manner. The randomness of traditional MRMs

sion of the structure state process with a reward variable al 1S du€ to the stochastic nature of the structure state pspces
lows a flexible definition and analysis of a large number of @nd given the trajectory of the structure state processzthe a
performance measures, which would be far more Comp|excumulated reward is a deterministic function. With second-
or impossible based on the structure state process itself, Order reward accumulation process it is possible to model
In the past decades considerable effort has been made;motherkind of randomness as well. In second-order reward
to analytically describe and numerically evaluate more and quels the acpumulatgd rev_vard is a random funqtlon of the
more general reward models. Some of these efforts aimeqtrajectory. Durlng a sojourn in a state the re.W""rd Increment
the generalization of the structure state process. Thanks t Is a random variable whose mean and variance depend on

their numerical tractability, reward models associatethwi the visited state a_nd the time sp_ent n that state. We con-
sider the preemptive resume policy (i.e., no reward loss at

state transitions) only, and do not consider impulse reward
accumulation. However, the introduced solution method al-

+  This work is partially supported by OTKA grant n. T-34972.



lows to relax these restrictions. The density function oft () at timet is:
The idea to investigate second-order discrete-continuous 1
combined processes is not new. Second-order fluid models flt,y) = lim — Pr(y < X(t) <y+A)
are considered for example in [7, 8], with absorbing or re- A=0A
flecting behaviour at the lower bound. _ and its double-sided Laplace transférmith respect toy
The behaviour of second-order reward models is very jg-
similar to the behaviour of second-order fluid models with . © _
i i f (ta ’U) = f(ta y) € i dy
one essential difference. In second-order reward models th e

reward accumulation process is not bounded. In practical . ) .
AssumingX'(0) = 0 and using the second part of Defini-

applications it is common to assume that the accumulation’, qi I » b d
process has a positive drift (i.e., the mean accumulated refi0n 1 /(£,y) and its Laplace transform can be expresse

ward is increasing), but we do not apply any restriction in as:
the mathematical description of these models. The lack of 1 _w-rp)?
: - fty) = e et
bounds of the accumulation process makes the analysis of ’ omto?
second-order reward models simpler than the one of second- . _ 22,2
f (t,’U) = e vrt+ 5o t.

order fluid models. One of the main contributions of this pa-

per is the effective numerical procedure which is based onp ¢ to the quick decay of the normal distribution both, at

this relative simplicity of second-order reward models and large negative and at large positive values the doubledside
allows the analysis of fairly large models. The resulting fo Laplace transform exists for any finite

mulas are comparable with the ones of ordinary MRMs and 1. first terms of the Taylor series ¢f (¢, v)
the ones of second-order fluid models. During the discus- ’
sion below we indicate these relations.
. . . . . 2

The paper is organized as follows. First, in section 2, we FAY) =1 - [or— v oA + o(A) 1)
briefly introduce Brownian motions focusing on the proper- ’ '
ties that are used in the rest of the paper. We define second
ord(te_r Mjrko(\j/ ;ewaréj mOdfr:S g.r]lfth's l;)_a?es mt_sectli)r:l f'dln Brownian motion is the only higher order continuous time
section = and > we derive the dinerential equations that e- g . 5 tic process with (almost surely) continuous trajec
scribe the density function and the moments of the accumu-

o ory [10].

lated reward. We present these measures both, in time ané
in Laplace domain. Section 6 describes a numerical method
to compute the moments of the accumulated reward, and3- Second-order Markov reward models
gives an error bound to control the precision. Section 7 pro-
vides a numerical example to demonstrate the application
of second-order Markov reward models and section 8 con-
cludes the paper.

around0
are:

From the results of Wiener and Lévy we know that

Definition 2 A second-order Markov reward model is com-
posed by a continuous time Markov chain and a Brownian
motion with drift, where the drift and the variance parame-
ter of the brownian motion is determined by the state of the

Markov chain.

2. Some properties of Brownian motion _
Let the structure state proce§g(t), ¢t > 0} be a fi-

The definition of Brownian motiosused in this paper nite state, continuous time Markov chain on state space
is based on the definition provided in [9] page 490 and itis © = {1..-- IV} with generato) = {g;; } and initial prob-

extended with non-zero drift: ability vectorz. Its transient probability vectgs(t) satis-
fies: B
Definition 1 A (real-valued) stochastic proces¥(t), is a d
Brownian motion with drift- and variancer? if: E]_9(t) = p(t) Q withinitial condition: p(0) = .
* X(t) has independent increments, While the structure state process stays in stétec 5),
e the incrementY'(s + ¢) - X(s) for all s,z > 0 is nor- reward is accumulated according to a Brownian motion with
mal distributed with meant and variancer*t, where
r is a real valued and is a positive constant. 2 Due to the nature of the considered problem we apply dasitied
) Laplace transform throughout this paper without mentigninany
¢ the sample paths ¢€(t) are almost surely continuous. more. The only difference of the single-sided and the dosled

Laplace transform, which is used in the paper, is the lacknitial
value in the transform of a derivatives{ f'(t)} = sf*(s) — f(0)
1 This process is also referred to as Wiener process (e[§])in while Lp{f'(t)} = sf*(s)




drift —oo < r; < oo and varianc@ < o? < o, i.e., the ac- For later use we define the diagonal matri¢esnd S,
cumulated reward process(t), is a Brownian motion with  constructed fromr; ando?:
drift r; and variance?.

Figure 1 shows a sample realization of a second-order T2 03
Markov reward model. On this figure state 2 has the largest R= , §=
assigned drift and variancey( = 3,05 = 2). By such a
large variation it happens with a not negligible probabil-
ity (for example between ~ 1.7 andt ~ 1.85) that the MatricesQ, R and S together with vectorr define a
amount of reward is less when the state is left than the onegecond-order Markov reward model.
when the state is entered, even if the drift is large.

rN 012\[

According to the mentioned continuity property of
Brownian motion second-order Markov reward mod-
els are the most general Markov modulated reward
models with (almost surely) continuous reward accumu-
lation. Higher order models represent non-continuous

state | rate(r;) _variancdo?) reward accumulation and there is no other second or-
0 0.1 0 der model.
1 2 0.1 As it is known for normal distributions the accumulated
2 3 2 reward might become negative with commonly negligible,
but positive probability and as it is emphasized in the above
9 ‘ ‘ ‘ ‘ ‘ example the accumulated reward function is not monotone

accumulated reward

(as long asr > 0). This model property has to be consid-
ered in practical application of second-order Markov revar
models.

4. Analysis of accumulated reward

In this section we provide the differential equations that
describe the density function and the moments of the accu-
| mulated reward. The applied analysis approach is the same
P I 1 as the one used for first order reward models, e.g. in [6].
0 : L : .y L First we introduce some definitions and notations.

The density function of the accumulated reward is

Figure 1. A sample realization of a second or- bi(t,x) =
der reward model

.1 .
ilino KPT(,T < B(t) <z + A|B(0) =0, Z(0) = 1),

and its Laplace transform with respectitds:

In the sequel we use the following properties of second- bi(t,v) = / bi(t, x) ™™ da.

— 00
order Markov reward models. £(¢) = ¢ and there is no _ _
state transition in thét,t + A) interval the reward incre-  Furthermore, we introduce the following column vectors:

ment over this interval3(t + A) — B(t), is normal dis-

tributed with mean; A and variance?A. If Z(t) = i and b(t,z) = {bs(t,x)} and b (t,v) = {bj (¢ v)}.
there is a state transition in tifg ¢t + A) interval to state: ) _ S
attimet +~ (y < A) the distribution of the reward incre- The following theorem provides the distribution of

ment over thet, ¢ + A) interval is normal distributed with ~ theé accumulated reward of a second-order Markov re-
meanr;y +r,(A —~) and variance2y + o2(A —~), since ~ Ward model.
the sum of two normal distributed random variable is nor-

mal distributed as well and their first two cumulants (mean 3 We use generalized density function when the distributibf(¢) is
and variance) sum up not continuous and the analysis remains the same.




Theorem 1 b*(t,v) satisfies the following differen- dividing by A results:

tial equation: bE(t+ A, v) = bE(hv)
d . . v, A 02
&Q (t,v) +v Rb (t,v)—?Sb (t,v) = ) ZQika(t,v)—bf(t,v)(v Ti—?crf)
QU (t.v), kes ,
* v 2
— qii; (¢, v) (U T — ?Uz‘)A
with initial condition _
from f*(A,v)
2
Z_)* (07 U) = Qa - Z Qika(tv U) (1} T;k - %Ulfk)A
kEeS ki
whereh is the column vector of ones. from 15, . (42
L od)

Proof of Theorem The density of the reward at timte- A A
can be expressed by conditioning on the possible state tranwherer!, < max(r;, ), anda’fk < max(0?,03).

sition in (0, A), the following way: Taking the limitA — 0, and using matrix notation yields
(2).
bi(t+ A, z) = Based on the definition df;(¢, ) at time zero5(0) = 0.
o The density function of the accumulated reward is the Dirac
(1+ Qiz‘A)/ bi(t,x —y) fi(A,y) dy delta function:b;(0,z) = §(x), Vi € S and its Laplace
T roo 3) transform is constarit, which is the initial condition of the
+ Z QikA/ br(t,z —y) fo, (A y) dy differential equation (2). O
N ke(zl;# o With appropriate Inverse Laplace and Laplace transfor-
o

mation Equation (2) can be expressed in original and in dou-
ble Laplace transform domain:

The first term represents the case when there is no stateorollary 1 b(t, z) is the solution of the following differ-
transition in(0, A), so the reward is accumulated accord- ential equation:

ing to a Brownian motion with drift; and variancer?.

The density function of the accumulated rewarq at titnis 9 b(t,z) + R 9 b(t, ) — 1 S 5_22 b(t, ) =
fi(A,y). To accumulate: amount of reward at time+ A, ot x 27 ox (4)
z — y amount of reward has to be accumulated in the re- Qb(t, x),

mainingt long interval. The probability of no state transi-

tionin (0, A)is 1+ ¢ A + o(A).

The second term corresponds to the case when a state tran- b(0,z) = &(z).

sition takes place from staieto statek during(0, A). The

probability of this case ig;, A+o(A). The accumulated re-  Corollary 2 The Laplace transform™ (s, v) of the accu-

ward at timeA is normal distributed (see the end of section Mulated reward with respect toand. is:

3), but the parameters depends on the time of the state tran- 02 -1

sition. We denoted the density function of the accumulated b (s,v) = |sI — Q + vR — 75} h (5

reward at timeA by fc, , (A, y), whose mean and variance

arer/, ando’>;.

The probability of having more than one state transition in

(0,A)iso(A). 2 b(t,2) + RE2b(t,x) — 18L,b(t,2) = Qb(t, )
The Laplace transformation of (3) with respectitis: X

with initial condition:

The obtained results indicate the formal relation of first
and second order Markov reward models in time domain:

2b(t,z) + R 2b(t,z) = Qb(t,x)

bi(t+ A, v) = (14 quA)b; (t,0) (A, v) and in double transform domain:
+ ) awAb(t,0) £, (A v) + o(A). b (5, 0) = [SI_QHR_ ﬁsrh
keSS, ki =\ ' 2 =

-1
Subtractingy; (t,v) from both sides, applying eg. (1), and b (s,v) = [SI -Q+ UR} h



The distribution of the accumulated reward can be com- First we show by induction that:
puted using a partial differential equation solver based on . N I
eg. (4) or an ordinary differential equation solver and a 6_U b (t,v) = v a—b*(t v) +n b (t,v). (7)
numerical inverse transformation based on eq. (3) or in- 9v" = oun= 7 Qun=1= 27
verse Laplace transformation from double transform do- Thjs statement clearly holds far = 1. Assuming that it is
main based on eq. (5) (e.g., [11]). Unfortunately non of e for,, — 1, thenth is expressed as:
these procedures is applicable for second-order Markov re-
ward models with more than 100 states. Nevertheless, sim- 9"

ilar to first-order Markov reward models, the moments of aon "’ b(t,v) =

the accumulated reward can be analyzed with a more effec- 0 ot o, B

tive numerical method. v\’ Bv"—lb (t,v) + (n_l)aw—Ql‘) (tv) ) =
In the light of Eq. (4), we also can interpret the relation on on—1

of second-order fluid models and second-order Markov re- %b*(t,v) +n Jon—1 b* (¢, v).
ward models. The same patrtial differential equation char-
acterize the system distribution of both models inside the Next, we show that:

valid region, but due to the fact that the reward accumu- " 2 02 o

lation is unbounded in second-order Markov reward mod- sy b (t,v) = 5 Wl_v*(t,v) +

els, but the fluid level is bounded (from one side (led)edr ot 1 n=2

from two sides (leved and the buffer size)) in second-order nv Wé (t,v) + 5"(” -1) le (t,v).
fluid models different boundary conditions apply to the dif- (8)

ferent models. The solutions of a partial differential equa The proof is induction based again. For= 1 andn = 2
tion with different boundary conditions might differ sidmi eqg. (8) holds. Assuming that it holds for..n — 1, for the
icantly, hence unfortunately, the relatively simple simimt ~ nth derivative we have:

of second-order Markov reward models is not applicable for

the solution of second-order fluid models. EY b (t,v) =
[ -
5. Moments of the accumulated reward 9 (v ot "2
— | = t —-1) =—=Dd*(¢t
| 5 gt (40) + vn—1) b (k) +
Thenth m(or)nent of the accumulated reward at titrie 1 o3
denoted by’ (¢): —(n— —2) ——b* =
W (t) 2(n 1)(n—2) 8v"*3b (t,v))
V" (t) = BB"(t)| B0) =0, 2(0) =), v oo g1
38—"9 (t,U)+TLU8n 1b (t,’l))+
and the column vector of theth moments sV’ (t) = v 1 371721)
{Vz(n) ®)}. §n(n -1) Wb*(t’ v).
The analytical description of the moments of accumu-
lated reward is provided by the following theorem. Thenth derivative of 2b* (¢, v) andb*(t,v)Q with respect
to v is straightf d and usi .(7)and (8) the th
Theorem 2 V(™ (¢) is the solution of the following ordi- i;)Sii/Se?l raightforward and using eq. (7) and (8) the eDorem

nary differential equation:

%z(")(t) W RV - 6. Numerical Method
(6) : . . —
1 In this section we provide a randomization based numer-
- _ (n=2)(p) — (n) P
2 " (n-1)SY¥ (t) = QY™(), ical method that efficiently computes the moments of the
accumulated reward at timelnstead of using matriceQ,

with initial condition: R andS we introduce the following non-negative and sub-

V(O)(O) - and V(n)(o) — 0. Vn> 1 stochastic matrices (i.e., their row-sumnl):
1 1 1
Proof of Theorem Ve start from eq. (2) and apply the fol- Q=-Q + 1, R’ = pw R, S’ = poes S,
lowing relation of the Laplace transform and the moments 4 4 4
of the accumulated reward: whereq = max;es |gii|, d = max;es{r;,o;}/q. If there
on are negative reward rates the following model transforma-
VW) = (=1)" 5= b"(t,v) o= tion provides non-negative, substochastic matrices:=

o™ ~



min;es i, R = R —#I andPr(B(t) <

c) = Pr(B(t) <

¢ — 7t). There are several advantages of using substochas-

tic matrices in numerical methods. Multiplying only sub-
stochastic matrices and non-negative vectors avoids sub
traction, which is usual source of numerical errors using
floating point number representation. Furthermore, the re-
sult of the multiplication of substochastic matrices and a
bounded non-negative vector is bounded as well. Exploit-
ing this bound one can set the numerical precision of com-
plex procedures.

The following theorem provides the moments of the ac-
cumulated reward using the introduced substochastic- matri
ces.

Theorem 3 The nth moment of the accumulated reward,
V™(t) can be expressed as follows:

e S

k=0

Ut

v (t) k), (9

where the following recursive relation holds for tté™ (k)
coefficients:

UM k+1) = RU™ V%) +

1
5 S U R) + QU™ k),
with initial values:

u®(0) =

(10)

h, and U™(0) = 0, Vn > 0.

Proof of Theorem Bubstituting (9) into eq. (6) gives:

oo £k
mtan Y0 e I [0 k4 1) — U (k)] =
k=0 '
- N n—
n(n—1)d 1qdR’Ze qt% u™b(k)+

k:O

—n(n—1)(n—2)! d”qS'Z —at (q]? U 2)(/€)

k=0
oo

n! d” q(Q/ =) Z e~ 4t (ql:) U(n)(k)

k=0

With the given recursive formula fot/ ™ (k), the above
equality holds for each term having the same Poisson co-
efficient. O

The following theorem provides an error bound to con-
trol the precision of the procedure given in Theorem 3

Theorem 4 The nth moment of the accumulated reward
can be calculated as a finite sum updcand an error vec-
tor £(G), whose elements are less than

>

k=0

—qt (qt)k
k!

V() = ntd U™ (k)

+£(6),

where the limitG, is calculated as:

G = min | 2d" n! (gt)" OOE eﬂﬁ@ <€
- g ' k! '
k=g+n+1

(11)

The proof of the theorem is in Appendix A.

Theorem 3 and 4 present a description of the moments of
accumulated reward which allows an effective computation
of these measures. Appendix B introduces a pseudo code of
the procedure based on these theorems.

The computational complexity of the procedure is char-
acterized by and the complexity of the matrix vector mul-
tiplications in theU") := 0.5 /- UV~? 4+ R/ . UV~ 4
Q' - UY step. The execution of this step times domi-
nates the execution time. Commonty, has the same or-
der of magnitude agt, and sinceR’ and S’ are diagonal
matrices andQ’ is often sparse the complexity of the iter-
ative step is equivalent with some vector-vector multgplic
tions. If the mean number of non-zero elements in a row
of Q' is m the complexity of the iterative step is equiva-
lent with m + 2 vector-vector multiplications and 3 vec-
tor summations where the cardinality of the square matrices
and the vectors isS|. The memory requirement of the pro-
cedure is determined by the size of the input data and the
result. The size of memory needed to store the input data
(matrix @Q, diagonal matriced®’ and S’ and vectorr) is
the size oflm + 3) x |S| floating point numbers and to cal-
culate and store result we need memory for further 1
vectors of sizéS]|.

7. Example

We study the performance of a tentative telecommuni-
cation system. A communication channel with capacity
serves traffic of two traffic classes. The service policy is
such that class 1 has higher priority than class 2. There are
N class 1 traffic sources which follow ON-OFF behaviour
with exponentially distributed on and off periods, whose pa
rameters arer and 3, respectively. During its ON period a
class 1 traffic source transmits data with ratnd variance
o2, i.e., in at long ON period the amount of transmitted
data is normal distributed with meam and variancer>t.

In contrast with the behaviour of real communication sys-
tems this quantity can be negative with a given probability.
If » >> o the probability that negative data is transmitted is
negligible. During its OFF period a class 1 traffic does not
transmit data. The class 2 traffic utilizes the remainingban
width of the channel. The performance measure of interest
is the channel capacity available for class 2 traffic in the
(0, ) interval supposing that each class 1 sources are in the
OFF phase at timé. We define a second-order Markov re-
ward model which describes the capacity available for class
2 traffic.
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Figure 2 shows the behaviour of the “background” 0 005 01 015 02 025 03 035 04 045 05

time

CTMC which characterize the instantaneous band-
width available for class 2 traffic. The state numbers _
indicate the number of active (ON phase) class 1 cus- Figure 3. The mean of the accumulated re-
tomers. The figure also indicate the rate and variance Ward

associated with the states of the background process. Dur-
ing avisitin state 7, = C — i -r ando? =i - 02,

180

Capacity of the channel: C =32 160 | sigma=0 —— ]
Number of CBR sources: N =32 Samacto e
Parameter of the ON period: a=4 wor P
Parameter of the OFF period: =3 = T
Transmission rate of a CBR sourcer = 1 E 100 R
Variance of the transmission rate: o2 = 0,1, 10 ; 80 x ’
6ol x*
Table 1. Parameters used in the example wl
20 - . e
Table 1 summarizes the considered values of model pa- °6 005 01 015 02 025 03 03 04 045 05

time

rameters. To demonstrate the difference between ordinary
(first-order) and second order Markov reward models we sigmaso
evaluate the example with 3 different variance parameters. 2500 | gpdmarl ,
o? = 0 corresponds to a first-order model, whité = 1
ands? = 10 corresponds to second-order models. 2000 &
The mean value of the accumulated reward with the 3
considered variance values are plotted in Figure 3. The fig-
ure verifies the assumption that the mean accumulated re-

ward is independent of the variance parameter. To visual-

3000

1500 | e A

3rd moment

1000

ize the non-linear behaviour of the mean curve (only on this 500 |- )
figure) we also plot the mean accumulated reward starting e

. . - . . 0 L e = T L L L L L L
from steady state, which is a linear function of time. o o0e 01 015 02 025 03 035 04 045 05

Figure 4 depicts the second and third moment of the ac- time
cumulated reward as a function of time for the 3 variance
values. The figures demonstrate a (natural) general feature Figure 4. The 2nd and 3rd moment of the ac-
of second-order Markov reward models. The higher are the cumulated reward
variance parameters of the states the bigger are the higher
moments of the accumulated reward.

The numerical procedure presented in section 6 calcu-might be slow and inaccurate or can approximate the distri-
lates only the moments of the accumulated reward. To com-bution based on its moments. For example, one can apply
pute the distribution of the accumulated reward one canthe method presented in [12] for calculating the bounds of
solve the partial differential equation (4) numericallyyiah the accumulated reward distribution based on its moments.
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Figure 5. Bounds for the distribution of the Figure 7. Bounds for the distribution of the
accumulated reward with 02 =0 accumulated reward with o2 = 10

N Capacity of the channel: C = 200.000
Number of CBR sources: N = 200.000
os | Parameter of the ON period: a=4
' Parameter of the OFF period: 8=3

Transmission rate of a CBR sourcer =1

06 1 Variance of the transmission rate; ¢2 = 10

04 r Table 2. Parameters of the large model

0.2
To test the computational complexity of the numerical

‘ ‘ procedure we also evaluated the same example with a larger
20 25 30 background process. Table 2 presents the parameters of the
large model. Figure 8 depicts the first three moments of
the accumulated reward at tinfe01, 0.02,0.03,0.04 and

0.05. The overall computation time of the 5 evaluated time
points was 3 hours on the same computer. At the final time
point (¢ = 0.05) the number of required iterations was

_ G = 41,588 with precision requirement= 10~Y. In this
Figures 5, 6 and 7 show the bounds of the accumulatedcaseq = 800,000 andgt = 40,000. Due to the regular

reward distribution obtained with the differemt parame- structure of@’ with 3 non-zero elements in each row (ex-
tersattime = 0.5. Among other factors the tightness of the - et the first and last ones) the number of floating point mul-
bounds depends on the nhumber evaluated moments, Wh'dﬁplications was

was23 in these cases.

Figure 6. Bounds for the distribution of the
accumulated reward with 02 =1

The results presented in this section were calculated with (3 4+ 1 + 1) x 200,001 x 4
a C++ implementation of the randomization based numeri- \Q// \R'/ \S/ T 3 mnts
cal method presented in section 6. To be memory efficient
our implementation uses sparse matrix representation. in each of th&5 iteration steps, which took one hour.

The presented results have been compared to the results
of a numerical ODE solver (working based on eq. 6 using 8. Conclusion
trapezoid rule), and a second-order reward model simula-
tion tool. The three solutions gave exactly the same results  This paper presents the analytical description of second-
however the randomization was far the fastest (the calcula-order Markov reward models. This description is similar to
tion of any figure presented above took less than one secondhe one of second-order fluid models, but there are some
on a PC running at 2.4 GHz). dominant differences between them. The similarities and



can be checked looking at:
le+l4 T T

1st moment —— 1 k 1 1 k—1
le+1p | oG moment — ] (1+x+§;p2) — (1+x+5;1;2) (1+x+§g;2) —
i N 2k—2
1e+10 | 1 1
(1 + x4+ §$2) Z In,k—1 "
1e+08 — R f n=0
1e+06 f 1 The power series expansion(df+ = + $22)" is:
10000 b
- S Ay
4 —Jed —
L 200
£=0 7=0
. ‘ ‘ ‘ ‘ ‘ k 0 el _—
0 0.01 0.02 0.03 0.04 0.05 0.06 L A AR
fime ; jgo (k=01 — Hy!
Figure 8. The moments of the accumulated 2k N n/2] ; k!
T 2- ,
reward of the large example Z Z Nk —n+)(n—2))

n=0 j=max(0,n—k)

9n,k

differences of second-order reward and second-order fluid
models are emphasized as well.

Utilizing the special features of second-order Markov re-
ward models an effective randomization based numerical_emma 2 Assumingy,, » = 0 for all n > 2k the elements
procedure is presented which calculates the moments of acyf the /(") (k) vectors are upper-bounded ly, ;. for all
cumulated reward. n,k>0,ie. '

_ The numerical analysis of a te_ntapve communica- Q(n)(k) < gorh (14)
tion system demonstrates the application and the anal-

ysis of second-order Markov reward models. Using the pProof of Lemma Due to the substochastic featul¥, S’
proposed analysis method the computational complex-and@’ the following inequalities hold

ity and the memory requirement of the reward analy-

sis of second-order models is practically identical wita th R h<h, SSh<handQ’h <h.

ones of first-order models.

where in the last step a new variable= ¢ + j has been
introduced. O

The proof is based on induction again. Based on the initial
conditions ofg, , = 0 andU™ (k) the lemma holds for
A. Proof of Theorem 4 k = 0. Assuming it also holds fakt from eq. (10) we have

Theorem 4 is based on the following lemmas. U™ (k+1)=
R U™k + 38U (k) + QU™(k) <
R, In—1,k Q + % S, In—2,k ﬁ + Ql 9In.k ﬁ S

Lemma 1 For n < 2k the explicit solution of the recursion

1 1
Ink = Gnh=1 F gn-1h-1 + 35 gn-2k-1  (12) gn-tkh + S gn2kh + gnkh =gnpsrh. O
with initial conditionsgg , = 1, g1 = k, Vk > 0; gn.o = Proof of Theorem 4tarting from Lemma 1 and Lemma 2
0, Vn > 0is: U™ (k) can be further upper bounded:
& : k! U™ (k) < h < Xk:Tj Mg <
ok = 277 i 13 Yy S gnkh S h =
Ink = 2 Gk —n+ )(n —2j)! (13) =  (k=n)!
j=max(0,n—k) Kl
2 h.
(k—n)! —

Proof of Lemma 1

Recursion (12) gives theth coefficient of the1 + = +
x2)k ponnom, i.e.,(l +a4+ %xz)k _ Zik:o Ik " It 4 We thank the correction of (13) to anonymous referee.

1
2



Then the error vectog(G)) is bounded by:

> k
€6) = aat > eyt <
k=G+1 ’
d mk%:eq R T
=G+1
o k
2d" n! (gt)" Z e_qt—(qkt') h,
k=G+n+1 ’

from which eq. (11) follows. O

B. Implementation of the Numerical Algo-

rithm

A pseudo code of an implementation of the numerical

method based on Theorem 4 is described here.
Input GENERATOR MATRIX OF THECTMC

DIAGONAL MATRIX OF REWARD RATES
DIAGONAL MATRIX OF VARIANCES
INITIAL PROBABILITY VECTOR
TIME OF ACCUMULATION
ORDER OF MOMENT
COMPUTATION ACCURACY
OUtpUt m THE n-TH MOMENT OF ACC. REWARD
1 computel’, R’ andS’

q = max;es |qiil;

d := max;es{ri,o:}/¢;

Q :=Q/q+1I;

R’ := R/qd,;

S’ = 8/qd?;
2 compute

G:=1;

psum = 0;

for i:=1 to G+n+1

psum := psum + Poisson(i; qt);
while 2-(gt)" -d" -n!- (1 —psum) > ¢

"3 Tlvaend

begin

G=G+1;

psum := psum + Poisson(G + n + 1; gt);
end

3 compute the:-th moment
U®=p UD=0,i:1..
for i:=1 to G do
begin
for j:=n downto 0 do
Q(j) =05 S'.Q(j*% +R’.Q(J'*1) —I-Q"Q(j);
m:=m+ U™ -Poisson(i; qt);
end;
m:=P-m-n!-d"

.
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