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Abstract

The paper presents the 2.0 release of MRMSolve,
a Markov reward model (MRM) analysis tool. This
new release integrates recent research results, such as
MRMs with partial reward loss, second order MRMs
and their combination, with old and widely known re-
ward analysis methods, such as the ones by DeSouza-
Gail, Nabli-Sericola and Donatiello-Grassi.

The paper compares the mentioned direct distribu-
tion analysis methods with each other and with the
moments based reward estimation methods.
Keywords: Markov reward models, Randomization,
Numerical analysis.

1. Introduction

The introduction of SRMs initiated a fertile re-
search especially in performance analysis of computer
and communication systems through the 80’s and the
90’s. A number of numerical methods were developed
and various modeling formalisms were introduced to
make an effective use of SRMs. See [8] for a recent
survey of these results.

For an effective use of reward modeling and anal-
ysis a series of software tools were developed. The
diverse set of reward analysis tools indicates that the
concept of reward function can be associated with
a wide range of modeling formalisms describing the
system behavious, e.g., Tangram-II uses the queue-
ing system formalism [6], SHARPE supports fault
tree, reliability block diagram, queueing network [19],
Möbius allows high level modeling formalisms in-
cluding stochastic process algebras [4] and there are
other stochastic Petri net based tools, such as SPNP
[9] and UltraSAN [20].

The majority of these tools focus on the analysis of
the given modeling formalism and the reward analy-
sis part is treated as an additive modeling and analy-
sis feature. By this reason the reward analysis func-
tions of these tools are restricted to simple reward
measures, like mean transient and stationary reward,
which are related to the transient and stationary distri-
bution of the structure state process in a straight for-

ward way. More complex reward functions (e.g., sec-
ond order) and reward measures (e.g., higher moment)
are not calculated by these tools. In contrast, MRM-
Solve focuses on more sophisticated reward analysis.
Its modeling formalism is designed for easy definition
of potentially large reward models and it integrates (to
the best of our knowledge) the largest set of possible
reward functions and reward analysis methods. The
availability of this wide set of reward analysis meth-
ods allows us to compare the experimental properties
of these methods.

The rest of this paper is organized as follows. Af-
ter the introduction of stochastic reward models sec-
tion 3 summarizes the analysis methods of Markov
reward models. Section 4 presents the new architec-
ture of MRMSolve. The Markov reward model of a
storage system with probabilistic error checking is in-
troduced in section 5 and analyzed with the built in
solvers of MRMSolve in section 6. The paper is con-
cluded in section 7.

2. Classification of stochastic reward
models

SRMs can be classified based on the following ba-
sic properties.

Stochastic process:The stochastic behaviour of
the structure-state process,Z(t), has a significant im-
portance in SRM analysis.Z(t) (t � 0) is a stochastic
process defined over a discrete and finite state space

 of cardinalityM . Due to their analytical tractabil-
ity, SRMs with underlying (time homogeneous) con-
tinuous time Markov chains (CTMC) gain the most
attention [5, 7, 13, 23]. SRM with underlying semi-
Markov provess (SMP) [12] or Markov regenerative
process (MRP) [22] still allows a compact analytical
description, but in Laplace transform domain. SRMs
with underlying CTMCs are referred to Markov re-
ward models. MRMSolve 2.0 and this paper is re-
stricted to various classes of MRM only. The analy-
sis of MRMs with underlying (time) inhomogeneous
continuous time Markov chains (IH-CTMC) requires
the application of a different analytical treatment, the
use of forward differential equations [21].
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Figure 1. Change of accumulated reward at state transitions

Reward accumulation: The two considered ways
of reward accumulation are the time proportional and
the immediate reward accumulation. The time pro-
portional reward is accumulated during a sojourn in
a given state. It is deterministic in first order models
(fig. 1.a) and normal distributed in second order (SO)
models (fig. 2). Traditionally the first one is referred
to as rate reward (RR) accumulation. Additional to the
time proportional reward accumulation immediate, so
called, impulse (I) reward accumulation is possible at
state transition instances (fig. 1.b).

Reward loss: Reward functions might allow in-
stantaneous reward loss as well. Traditionally reward
functions with no loss (preemptive resume - PRS, fig.
1.a) and with total reward loss (preemptive repeat -
PRT, (fig. 1.c)) were applied [2]. Partial loss reward
models were introduced in [1, 14] (fig. 1.d). In par-
tial increment loss (PIL) models the amount of lost re-
ward is proportional to the reward accumulated during
the sojourn in the last state (fig. 1.e), and in partial to-
tal loss (PTL) models the amount of lost reward is pro-
portional to the overall reward (fig. 1.f), The existence
of different reward loss policies in a single model
increases the modeling power, but it also increases
the complexity of the model description and analysis.
MRMSolve is restricted to SRMs with unique reward
loss policy, but a wide set of possible policies are con-
sidered.

Evaluated measure:The analysis of SRMs means
indeed two analysis problems: the evaluation of the

distribution of the accumulated reward (AR) and of
the completion time (CT). Theaccumulated reward,
B(t), is a random variable which represents the ac-
cumulation of reward in time. The distribution of the
accumulated reward isPr(B(t) < w). Thecomple-
tion time C(w) is a random variable representing the
time to accumulatew amount of reward.C(w) =

min [t � 0 : B(t) � w℄ Both problems are con-
sidered in MRMSolve 2.0. Monotone increasingB(t)

functions provides a nice relation of these measures.

Pr fB(t) � wg = Pr fC(w) � tg (1)

In case of non-monotone reward accumulation there
are qualitative differences in the analysis of accumu-
lated reward and completion time measures (e.g., the
distribution of accumulated reward exhibit a closed
form transform domain expression while the distribu-
tion of the completion time does not).

In applied performance analysis the required ran-
dom performance parameter (AR or CT) can be char-
acterized by its distribution function (d) or by its mo-
ments (m) depending on the particular application.
The availability of moments based distribution esti-
mation methods allow to bound the distribution when
only the moments are known.

A different set of methods are available for the di-
rect analysis of the distribution and of the moments of
reward measures. An essential goal of this paper is to
compare the properties of these approaches. Note that
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Figure 3. Resampling the reward bound
at state transitions

(1) does not relate the moments of the accumulated re-
ward with moments of the completion time.

Resampling of work requirement: In case of
completion time analysis of a reward model with to-
tal reward loss and random work requirement we have
two cases. If the same task has to be completed after a
state transition with reward loss the work requirement
remains the same (preemptive repeat identical - PRI,
second state transition in fig. 3), and if a new task is
considered after the state transition the work require-
ment is resampled (preemptive repeat different - PRD,
third state transition in fig. 3).

Table 1 summarizes the possible combination of
the mentioned cases, the availability of analysis re-
sults in the literature and the methods implemented
in MRMSolve 2.0. The model classes are identified
with the abbreviation introduced in this section. Let-
ter d and m refers to the distribution and moments
of performance measure, respectively. A capital let-
ter (D,M) means that the procedure is implemented in
MRMSolve 2.0 based on the given reference(s). If the
solution of the class is not available in MRMSolve 2.0

we distinguish the following cases.; denotes that the
class is meaningless (apart from very special appli-
cation). Empty blocks indicate that we are not aware
of any result for the given classes. Letter d[�] (m[�])
means that there is known solution method for the dis-
tribution (moments) of the given class in the asso-
ciated reference. The superscript� indicate that this
solution is not efficient, i.e., it cannot be applied for
models with more than 100 states.

3. Reward analysis methods

3.1. Steady-state analysis of Markov reward
models

First of all we restrict our attention to time homo-
geneous MRMs. With this restriction we need to dis-
tinguish two main cases:B(t) tends to infinity with a
positive probability, or not. In the first caseE(B(t)=t)

tends to a constant

lim

t!1

E(B(t)=t) = P

SS

(R+Q�E(D)) 1I ;

whereP
SS

is the limiting distribution of the underly-
ing CTMCwith generatorQ (which can be reducible
or irreducible),R is the diagonal matrix of the re-
ward rates, theE(D) matrix contains the mean of
the impulse reward associated with the state transi-
tions,� denotes the elementwise matrix multiplica-
tion ( [A�B℄

ij

= a

ij

� b

ij

) and1I is the column vec-
tor of ones.

If B(t) is finite with probability 1 we have the fol-
lowing main cases:

� There is PRS or PIL reward accumulation, the
underlying CTMC is reducible and the reward
rate, the variance and the impulse reward associ-
ated with the absorbing sets are zero. In this case
the transient analysis for sufficiently larget re-
sults the limiting reward distribution.

� There is PRT or PTL reward accumulation and
the underlying CTMC is reducible. In this case
the stationary behaviour can be obtained using
the method presented in [1].

The solution of the combination of these cases re-
quires a combination of the mentioned solution meth-
ods.

3.2. Transient analysis of Markov reward
models

The transient distribution of reward measures with-
out reward loss can be described with a set of partial
differential equations, e.g., the transient behavior of



CTMC IH-CTMC
RR RR&I SO SO&I RR RR&I SO SO&I

PRS D[5, 7, 13]M[23] d[5]M[15] M[10] m[21] m[21]
AR PRT M[11] ; ; ; ;

PTL d

�[1] ; ; ; ;

PIL d

�[1]M[11] ; ; ; ;

CT PRS D[5, 7, 13]M[23] d[5] m[16] d

�[21] m[21] d�[21] m[21]

Table 1. Classification of Markov reward models

the accumulated reward fulfills the following partial
differential equation

�B(t; w)

�t

+R

�B(t; w)

�w
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1
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S

�

2

B(t; w)

�w

2

= Q�D(w) � B(t; w);

(2)

where theB(t; w) is composed by the elements
B

i

(t; w) = Pr(B(t) < w j B(0) = 0; Z(0) = i),
the i; j element of matrixD(w) is the distribution of
the impulse reward earned at a state transition from
statei to statej andB

i

(0; w) = U(w), whereU(�) is
the unit step function.

The double Laplace-Stieltjes transform of this par-
tial differential equation has the following form.

B
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�h :

The lack of the explicit solution of (2) initiated a
research activity for efficient numerical analysis of
B(t; w) and the moments of the reward measures
R

w

w

n

dB(t; w). It seems that the most efficient meth-
ods are based on randomization. Table 2 compares
some randomization based MRM analysis algorithms
with respect to their computational complexity and
memory requirements. The complexity of theCTMC
transient analysis is used as a reference point. In the
table t refers to the time point of the analysis,M is
the cardinality of the state space,T is the number of
state transitions,K is the number of different reward
rates andn is the number of computed moments. The
O(�) expressions have to be handled with care. These
expressions do not say anything about the real com-
plexity of the methods, since theO(�) expressions ex-
plain only the tendencies, but not the particular values.
The experimental analysis in section 6 indicates how
complex behaviour might occur behind anO(�) ex-
pression. The following subsections summarizes the
methods of Table 2.

Randomization based reward analysisThe com-
mon root of randomization based reward analysis is
to decompose the behaviour of the underlying CTMC
into a discrete time Markov chain (DTMC) with tran-
sition matrixP = Q=q+I and a Poisson process with

parameterq. Based on this decomposition

Pr(reward measure< x) =

1

X

k=0

Pr(reward measure< x j k steps of the DTMC)

� Pr(k steps of the DTMC);

wherePr(k steps of the DTMC) =

(qt)

k

k!

e

�qt. The
various analysis methods differ in the evaluation of
the conditional probabilityPr(reward measure<
x j k steps of the DTMC) or the conditional moments
E(reward measuren j k steps of the DTMC), in case
of moments analysis.

Method of Donatiello and Grassi The algorithm
presented in [7] proposes to calculate the conditional
probabilityB

i

(t; w j k) in the following form:

B

i

(t; w j k) = �

(k)

i

u[w � r

i

t℄ +

k

X

h=1

M
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(k)
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(j; h)

�

w � r

j

t

t

�

k�h+1

u[w � r

j

t℄

where coefficients�(k)

i

2 R and �(k)
i

(j; h) 2 R

are independent oft and w. [7] presents recursive
expressions for the calculation of those coefficients.
These recursive expressions contain numerically sen-
sitive subtractions.

Method of Nabli and Sericola The main theorem of
[13] has the following form

B

i

(t; w) = 1�

"

1

X

n=0

(qt)

n

n!

e

�qt
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X
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K
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�
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�

s

k

j

(1� s

j

)

n�k

b

(j)

(n; k)I
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j�1

t�w<r

j
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#

;

whereI
f�g

is the indicator,s
j

=

w � r

j�1

t

(r

j

� r

j�1

)t

and

the coefficientb(j)(n; k) is given by an explicit re-
cursive expression.b(j)(n; k) is independent oft and
w. The states with the same reward rate are collected
into reward classes. The reward rates associated with
the classes arer

0

< r

1

< : : : < r

K

. Due to the



Method CPU time memory output class

Donatiello and Grassi [7] O(T �K � t

2

) O(K �M � t) distr. RR, PRS
Nabli and Sericola [13] O(T �K � t

2

) O(K �M � t) distr. RR, PRS
DeSouza and Gail [5] O(T � t

2

) O(M � t

2

) distr. RR, PRS

Rácz and Telek [15, 23] O(T � n � t) O(M � n) moments RR&I, PRS
Horváth, Rácz, Telek [10] O(T � n � t) O(M � n) moments SO, PRS
Horváth and Telek [11] O(T � n � t) O(M � n) moments RR, PIL

CTMC transient analysis O(T � t) O(M)

Table 2. Complexity of randomization based numerical analysis methods of MRMs

r

j�1

t � w < r

j

t condition the considereds
j

coef-
ficient is0 � s

j

� 1 and0 � b

(j)

(n; k) � 1 as well.
The convex combination of0 � b

(j)

(n; k) � 1 terms
insures the numerical stability of the method.

Method of De Souza e Silva and GailThe algo-
rithm proposed in [5] computes the distribution of the
accumulated reward ofMRMs with rate and impulse
reward. The procedure calculates the distribution of
the normalized rewardACIR(t) = B(t)=t using the
same reward classes.

The final form of the algorithm is

Pr(ACIR(t)>w)=

1

X

n=0

(qt)

n

n!

e

�qt

X

i:r

i

>r

k�[i; n; n℄k;

where�[i; n; n℄ 2 R is calculated from an explicit re-
cursion.�[i; n; n℄ 2 R is a function ofw, hence it has
to be recalculated as many times as manyw points are
required. The�[i; n; n℄ terms are unbounded, and the
recursive formula contains numerically sensitive sub-
tractions.

Moments analysis methodsThe moments analysis
methods in [23, 15, 10] has the form

m

(n)

(t) =

1

X

k=0

(qt)

k

k!

e

�qt

U

(n)

(k) ;

whereU (n)

(k) � 0 is given by explicit recursive for-
mula. The complexity of this formula depends on the
particular MRM. It isn times more expensive in case
of second order and/or impulse reward MRMs. The re-
cursive formula contains only multiplication and sum-
mation of positive numbers.

4. Basic features of the MRMSolve 2.0
software tool

MRMSolve 2.0 behaves like a framework; it has
tools to edit, check and visualize models, to investi-
gate the effect of model parameters on the distribu-
tion and on the moments of the accumulated reward

or completion time. Behind the user interface different
solver algorithms for different types of reward mod-
els are integrated and further solution methods can be
added easily.

The graphical interface is written in Java (see a
screenshot on Figure 4), thus it is platform indepen-
dent by its nature. The implemented solver algorithms
are written in c++ for efficiency reasons. We used
the GNU g++ compiler, which exists under a large
number of platforms, therefore also the solver algo-
rithms can be compiled on many platforms without
any changes.

Figure 4. MRMSolve 2.0 screenshot

MRMSolve 2.0 contains the following solvers:

� Preemptive resume MRM. This solver supports
the computation of the moments of the accumu-
lated reward and completion time [23], and it can
compute the distribution of the accumulated re-
ward using the mentioned 3 methods.

� Second Order MRM with partial increment loss
(combination of [10] and [11]). Only the compu-
tation of moments of the accumulated reward is
supported.



Describing Models There are two ways to describe
a model in MRMSolve 2.0. The simple – less flexi-
ble – way is calledraw description. In this case the
user has to fill in all the (non zero) elements of the
vectors and matrices describing the model. If the sys-
tem consists of few states only, this is a fast way to
describe the model.

The second method for model description uses a
compact and flexibleformalism for easy description
of very large (but well structured) systems. For the de-
tails of this model description laguage we refer the
reader to [17], and we only provide a short summary
on the most important features here. Figure 5 shows
the model description of the example presented in sec-
tion 5. This description consists of sections. A conve-
nient property of this syntax is that the model con-
stants are enumerated in section ’Const’, so a pa-
rameter can be easily changed without redefining all
the matrices and vectors. State space variables can be
found in section ’States’. With more than one state
space variables the user can construct models with
multi dimensional structure. The generator matrix and
the vectors corresponding to the model are described
by rules in sections ’Vector’ and ’Matrix’, reflecting
the structure of the system. A rule basically assigns
an expression to a state identifier (or to a transition
identifier, in case of a matrix). Before each rule, there
is an optional condition that defines the scope of the
rule. During the model construction phase the soft-
ware generates all the possible states, and fills in the
vectors and matrices according to the rules with en-
abled condition.

The tool supports the user in checking the con-
structed model. Selecting the ’Show State Space’
menu item in the ’Analysis’ menu the tool shows the
number of states, the number of transitions, and enu-
merates the labels of the states. A new feature of
the tool visualizes the state space of the generated
model. The ’Draw State Space’ menu item displays
the state space graph graphically (using the tools of
the Graph Visualization Project (of the ATT Reaseach
Lab) [18]).

Model Analysis Selecting the ’Analyse’ menu (or
the corresponding button on the toolbar) opens the
analysis window for the model. In this window the
user can call the solvers to get different performance
measures of the system. The overall set of perfor-
mance measures are the distribution of the accumu-
lated reward, the moments of the accumulated reward,
the distribution of the completion time and the mo-
ments of the completion time. Depending on the type
of the considered MRM some of these performance
measures are not available. For example, in case of

# Model proposed in [3]
type prs;

Const
lambda = 3.0; # rate at which access operations arrive
mu= 5.0; # access operation service rate %the system
sigma= 5.0; # execution rate of errorchecking/recovery

gamma= 5.0e-7; # error rate, either software or hardware-induced
q= 0.2; # probability of error checking per access, q in [0,1]
Q=15; # queue length

State
i : 0 To Q; # queue length
j : 0 To 2; # j=0 or j=1 no error j=2 one error

@F; # more then one error occurred
Matrix Q

[i,j]->[i+1,j] = lambda;
j==0 : [i,j]->[i-1,j] = (1-q)*mu;
j==0 : [i,j]->[i,j+1] = q*mu;
j==0 : [i,j]->[i,j+2] = gamma;
j==1 : [i,j]->[i-1,j-1] = sigma;
j==2 : [i,j]->[i,j-1] = q*mu;
j==2 : [i,j]->[@F] = gamma+(1-q)*mu;

Vector R
i>0 & j==0 : [i,j] = (1-q)*mu;
i>0 & j==1 : [i,j] = sigma;

Vector P0
i==0 & j==0 : [i,j] = 1; # starting state

Figure 5. Source code of example 1

second order MRMs only the ’AR moments’ is sup-
ported.

If the moment type measures have been selected
(AR or CT moments), series of runs can be gener-
ated automatically, where the moments are computed
as a function of a model parameter appearing in the
’Const’ section of the model description. With the
’Approx Distribution’ button the distribution estima-
tor starts and it calculates the lower and upper bounds
of the distribution of the reward measure based on the
evaluated moments.

Visualizing the Results The ’Diagram Editor’ menu
starts the diagram editor tool. With this tool it is pos-
sible to draw and compare all the available results (al-
ready computed in the ’Analyse’ window) of all the
open models. The tool calls ’gnuplot’ to create the re-
quired plots. The user can set and change the most im-
portant plot options, like the range of the x and y axis,
the style of lines, the linear and logarithmic scaling of
the axes, or the position of the legends. The graphi-
cal results can be exported to encapsulated postscript
files.

5. Example of a storage system

In [3] the authors analyze a storage system with
probabilistic error checking procedures. They con-
sider the most commonly used error correction type:
the1-correctable.

The storage system can process only one request at
a time. The storage system behaves as an atomic en-



tity so that a request is either fully serviced or not ser-
viced at all. Each access operation may be followed by
an error checking operation which occurs with proba-
bility q. If the data accessed by this operation contains
an error, it will be detected and corrected by the1-
correctable error checking/recovery code and the op-
eration is still supplied with correct information.

The behavior of the storage system depends on two
quantities, the queue length and the current error level.
The queue length describes the queueing behavior of
the system while the error level determines whether
the system is functionally correct or not. In a func-
tionally correct state the system serves one of the ar-
rived access requests with rate(1�q)� and in an error
checking state with rate�. This reward model allows
to calculate the service throughput, i.e., the number of
operations that can be served within a time limit. Fig-
ure 5 presents the description of the model in MRM-
Solve input language and Figure 6 presents its state
space.

γ γ γγ
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qµqµqµqµqµqµ
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Figure 6. State graph of the storage sys-
tem with Q = 5

6. Numerical experiences

The results presented in this section are collected
from our implementation of the given methods. We
made a direct implementation of the algorithms of
[5, 13, 7] based on the papers presenting them. We in-
tended to create efficient implementations using the
available hints of the original papers, even though
the efficiency of our implementations might be dif-
ferent from the implementation of the authors. We
did not implement steady state check in MRMSolve
(yet), but this way the implementation of the algo-
rithms are comparable with respect to the complex-
ity of a given number of iteration steps. The execution

time results presented below are measured on a regu-
lar PC (Celeron 766 MHz, 256 MB RAM, Linux). We
measured the computation time from the start of inter-
pretation of the MRMSolve model description file to
the end of calculation of the distribution, or distribu-
tion bounds. We evaluated each point of interest sepa-
rately, even if some of the methods can calculate more
points with negligible additional complexity.

In some cases we experienced numerical errors
i.e., probability values which are either less than0

or greater than1. We indicate these points with “nu-
merical instability”. We believe that the numerical er-
rors are due to the numerically sensitive subtractions
mentioned at the introduction of the methods. Accord-
ing to our experiences the limit of numerical stabil-
ity is rather sharp. The results either behave well or
extremely badly (extremely large positive or negative
numbers, e.g.,10100 ). Typically, we did not experi-
ence slightly bad results (e.g., between 1 and 2). We
found that the numerically stable results of the 3 dis-
tribution analysis methods match up to the first 6 dig-
its and they are in between the bounds calculated from
the moments analysis in each cases.

We used the MRM presented in the previous sec-
tion for a detailed comparative analysis of the men-
tioned reward analysis methods. In this model the
queue length parameter,Q, determines the size of the
state spaceM = 3Q + 4. To study the effect of
the model parameters on the properties of the anal-
ysis procedures we tune some of the model parame-
ters according to our purposes. Particularly, we ana-
lyze the effect of chaining the point of interest (w in
Pr(B(t) < w)), the size of the state space (M ), the
number of reward classes and the system time (t).

Point of interest To evaluate the effect of the point of
interest we increased the number of reward classes by
replacing theVector R section of the model definition
with [i,j] = i+j;. At time t = 1 we consider two cases:
Q = 15 andQ = 49 (which results49 and151 states,
18 and52 reward classes, respectively).

The results in figure 7a) and b) indicate that 2 of
the 4 methods are sensitive to the point of interest. The
DeSouza–Gail method is sensitive tow by its nature,
because its major loop takes into consideration only
those reward classes whose reward rate is beloww.
An increasingw increase the number of considered re-
ward classes and so the computational cost. This ten-
dency dominates the first half of the curve. From that
point on the procedure calculates the complementary
distribution which requires the consideration of the re-
ward classes with reward rate greater thanw. This ex-
plains the decreasing portion from the middle. (The
symmetric shape is a consequence of the equidistant
reward rates of the reward classes.) The computational
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Figure 7. Numerical results

cost of the Donatiello–Grassi method increases nearly
linearly withw.

The general behaviour of the curves is the same
in both cases, but the relations of them are different
apart from the moments based one which is the fastest
in both cases. The speed of the DeSouza–Gail method
depends onw. It is the fastest of the three distribu-
tion analysis algorithms for small and largew, but the
other might became faster in between. With smaller
state space the Donatiello–Grassi method requires the

most computational time (particularly at largew) but
with the bigger state space it becomes the fastest in
thew 2 (14; 32) range. The Donatiello–Grassi and
the DeSouza–Gail methods are numerically unstable
in a wide range ofw.

State space sizeTo evaluate the impact of the state
space size we use the reward structure defined in fig-
ure 5 witht = 1, w = 1 and varyQ from 0 to 340 (4
to 1024 states).



The complexity of the methods is quadratic with
the number of states, but the coefficient of the growth
is rather different (figure 7c), d)). The method of the
moments and the Nabli–Sericola method grows much
slower than the other two. In this particular case there
is more than an order of magnitude difference between
them. All of the methods are numerically stable in this
range.

Number of reward classesWe set various num-
ber of reward classes with equidistant reward rates
to study the impact of the number of different re-
ward rates by addingRc = 3; #number of reward
classes to the Const section and replacing with
[i,j] = (Q+1)*3*floor((i*3+j+1)*Rc/((Q+1)*3))/Rc;
the Vector R section of the model definition (figure
5). This way, withQ = 15 the reward rates are 0,
48; 0, 24, 48; 0, 16, 32, 48; etc. We evaluated the
distribution in the middle of the possible range, i.e.,
Pr(B(t) < max. reward=2). Similar to the point of
interest experiment, we consider two cases:Q = 15

andQ = 49 (which results49 and151 states;48 and
150 max. reward) witht = 1.

The Nabli–Sericola method slows down radically
(about quadratically) with the increasing number of
different rewards, while the computation time of the
other methods grows nearly linearly (figure 7e), f)).
With this example the Nabli–Sericola method is the
fastest (faster than the moments based method) for
small number of reward classes (and 49 states) but it
quickly becomes the slowest as the number of reward
classes grows.

With this example the Donatiello–Grassi method
is numerically incorrect in almost all points. Inter-
estingly, the numerical stability of the DeSouza–Gail
method is better with larger state space.

Mission time For the analysis of the impact of mis-
sion time we use the model of figure 5 withw = 1

andt varying from 1 to 200.
Although the computational time of all the algo-

rithms increases, the mission time has the most cru-
cial effect on the Donatiello–Grassi method (figure
7g), h)). It is hard to read the tendencies from the fig-
ure, but logarithmic curves might indicate theO(t)

behaviour of the moments based method against the
O(t

2

) behaviour of the distribution analysis methods
(see Table 2). In this case, all results are numerically
stable.

Comparison of moments based methodsDistribu-
tion analysis methods are available only for a limited
set of MRMs. However, the moments of the accumu-
lated reward can be computed efficiently for a wider
set of MRMs and some of these methods are imple-
mented in MRMSolve 2.0 (see Table 1).

Here we compare moments based methods for the
preemptive resume (PRS), second order (SO), partial
increment loss (PIL), and combined second order par-
tial increment loss (SOPIL) models. In favour of a
fair comparison, we used the same number of steps
in the randomization. The reward rates are set as
[i,j] = (i+j). For the SO models, the variance matrix
is defined in theVector S section of the model de-
scription as[i,j] = (i+j)/10 and for the PIL models, the
loss vector is defined in theVector Alpha section as
[i,j] = (i+j+1)/(Q+3).

Figure 7i) presents the execution time as the func-
tion of mission time whent goes from0 to 100,
Q = 150 (454 states) and9 moments are computed.
The first order PRS solver is the simplest and the
fastest. The SO solver is a bit slower, because there
is an extra vector multiplication in each iteration step.
The PIL solver contains a more complex matrix oper-
ation. The SOPIL solver is the slowest, since it solves
two sets of differential equations parallel.

Figure 7j) presents the dependence on the state
space size. In this case the mission time ist = 1,
the size of the state space vary from7 to 24007 (with
Q = 1 to 8001), and 9 moments are computed. The
order of the solvers is the same as before. We did not
find explanation for the change of the slope (att � 45)
in figure 7i) and the synchronized waves in Figure 7j)

The major weakness of moments based methods is
that they provide distribution bounds only. We inves-
tigate the tightness of these bounds in figure 7k) with
Q = 15 (49 states),t = 10. We consider the first or-
der PRS case, because there are distribution analysis
methods available for this case. The more moments
we use, the tighter the bounds are. The bounds can-
not be tightened arbitrarily close. More that 20 mo-
ments might cause numerical instability. The imple-
mented moments based distribution estimation proce-
dure does not become unstable because it drops the
high moments as long as the estimation is stable. This
way bounds can be improved till the limit of numeri-
cal stability, and beyond this point additional moments
do not improve the bounds.

The bounds in figure 7k) were generated in less
than a second, while the Nabli–Sericola method run
8 seconds, the Silva–Gail method run about 80 sec-
onds and the Donatiello–Grassi method run more than
2000 seconds, but the last two methods were unstable.

In case of SO models, the variance of the reward
accumulation increases (in general) the distance be-
tween the upper and lower bounds as it increases the
variance of the reward distribution, especially when
the corresponding first order case (with zero variance)
is nearly deterministic (see Figure 7l), wheret = 0:2,
Q = 20, 19 moments are used and the variance vec-



tor is defined as[i,j] = s * (i+j)/10; with s = 0; 0:5; 2).
Indeed the bounds of the SO models get tighter in
a small interval around0:2, because the higher vari-
ance of the SO model prevents a sharp increase (or
big jump) of the distribution.

7. Conclusions

A new version of MRMSolve is introduced and
used for comparing reward analysis methods. Among
the three considered distribution analysis methods
none of them is faster than the others in all cases. We
found the Nabli–Sericola method to be numerically
stable, while the DeSouza–Gail and the Donatiello–
Grassi methods contain numerically sensitive subtrac-
tions which makes them unstable occasionally.

The introduced experiences verified theO tenden-
cies reported in Table 2. The moments based analysis
of reward measures is usually much faster than any di-
rect distribution analysis method and numerically sta-
ble. We believe that moments based bounding of re-
ward measure distribution is not needed as long as a
direct distribution analysis is feasible, but in a range
of models moments based reward analysis is the only
feasible analysis method, even if it does not provide
the distribution, only its bounds, which might be loose
occasionally.

Finally, we hope that MRMSolve
2.0, whose source code is available at
http://webspn.hit.bme.hu/�mrmsolve, promotes
the application of MRMs and their solution us-
ing both distribution analysis and moments based
methods.
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