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Abstract

This paper proposes a two-step Markov arrival process
(MAP) fitting approach, where the first step is the phase type
fitting of the inter-arrival time and the second step is the ap-
proximation of the firstn lag correlation values. Depending
on the description of the arrival process to approximate var-
ious phase type fitting methods can be applied for the first
step. In the second step the approximation of the lag cor-
relation values is computed through a non-linear optimiza-
tion problem.

Numerical examples demonstrate the abilities and the
limits of the fitting method.

Key words:Markov arrival process fitting, inter-arrival
time distribution, lag correlation.

1. Introduction

Stochastic modeling of communication and computer
systems is usually based on computationally tractable flex-
ible analytical models. With these respects, Markov arrival
processes (MAPs) are one of the most attractive candidates
to describe traffic processes. They are known to approxi-
mate a wide range of processes from renewal ones to long
range dependent ones [1, 9], and they allow the use of the
computationally effective matrix analytic methods [11]. Un-
fortunately, the use of MAPs in practical system modeling
is still limited by the available MAP fitting methods. There
are several effective MAP fitting approaches developed so
far.

• Special MAP structures and/or heuristic fitting meth-
ods are available for fitting special stochastic processes
such as self similar [1], short and long range depen-
dent, multi-fractal [9].

• Explicit expressions are known to fit a second order
MAP based on the first 3 moments of the inter-arrival

time and the correlation of the consecutive arrival in-
tervals [8].

• Sample-based Markov modulated Poisson process
(MMPP) and MAP fitting methods are proposed
based on the expectation maximization (EM) algo-
rithm [15, 4, 14].

But, in spite of these results further research is needed to
evaluate the properties of these approaches and to compile
a general and robust fitting procedure. The special features
of the first and second group of methods compose their lim-
itation as well. The third group is general enough, but the
computational complexity and the numerical stability of the
sample based MAP fitting methods limit their practical use.

Huge traces are required to describe traffic processes ad-
equately, especially if the processes contain correlation, as it
is also demonstrated in an example of this paper. Due to this
reason the huge raw traffic traces cannot be directly used for
MAP fitting because of the enormous computational com-
plexity. A potential solution is to use a more compact de-
scription of the traffic process and to fit a MAP to only this
compact description. In this paper we fit a MAP to a traf-
fic process given by the empirical density (or distribution
function) of the inter-arrival time distribution and the lag-k
(k = 1, . . . , K) correlation.

A promising fitting approach was proposed for a wider
class of stochastic processes, the matrix exponential arrival
process, in [13]. The fitting procedure is composed by two
steps. The first step fits an ordern matrix exponential dis-
tribution to the first2n − 1 moments of the inter-arrival
time distribution and the second step set the first2n − 3
lag correlation values (independent of the first step). This
approach is very elegant and effective to fit a matrix expo-
nential arrival process, but the result usually does not have
a Markovian representation which seems to reduce its ap-
plication in practice. To reduce the computational complex-
ity of the sample-based MAP fitting method ([4]) a simi-
lar idea is applied in [5], where a two-step EM method is



proposed, such that, an EM method approximates the inter-
arrival time distribution with some constraints in the first
step and another EM method approximates the lag correla-
tion in the second step. In this paper we present a general
framework of two-step (marginal distribution and lag corre-
lation) MAP fitting by relaxing the constraints and the iter-
ative approximation of [5], discuss the problem of different
phase type representations of the same distribution, and pro-
pose a non-linear optimization based solution method for
the second step.

The rest of the paper is organized as follows. Section
2 presents some basic properties of MAPs. The analytical
background and the implementation details of the proposed
fitting procedure are provided in Section 3 and 4, respec-
tively. A number of numerical examples demonstrate the
fitting properties of the proposed approach in Section 5. Fi-
nally, Section 6 concludes the paper.

2. Basic properties of Markov arrival
processes

A Markov arrival process (MAP) is usually defined by
two matrices,D0 andD1, such thatD = D0 + D1 is
the generator of the background continuous time Markov
chain (CTMC),D0 contains the transitions of the back-
ground CTMC without arrival andD1 describes the ar-
rival and the associated state transitions. The number of
states of the background CTMC,m, determines the order
of the MAP. The row sum of matricesD0 andD1 satis-
fiesD01 = −D11, since

D01 + D11 = D1 = 0,

where1 is the column vector of ones, and we utilized the
fact that the row sum of a CTMC generator matrix is0.

The steady state probability vector of the back-
ground CTMC, α, is the solution of the linear system
α D = 0, α1 = 1.

In case of MAPs, the discrete time process embedded
at arrival instants plays an important role. The state transi-
tion probability matrix of the embedded process isP =
(−D0)−1D1. The steady state probability vector of the
embedded process,π, is the solution of the linear system
π P = π, π1 = 1. The steady state distributions of the
original and the embedded processes are related as

α =
π(−D0)−1

π(−D0)−11
= λπ(−D0)−1 .

In steady state, the inter-arrival time is phase type dis-
tributed with initial probability vectorπ, and generatorD0.
Thus, the distribution of the inter-arrival time is

P (X < t) = 1− π eD0t 1,

and itskth moment is

E(Xk) = k! π (−D0)−k 1.

The arrival intensity is

λ =
1

E(X)
=

1
π (−D0)−1 1

= αD11.

and the lag-k correlation is computed by

ρk =
λ2π(−D0)−1P k(−D0)−1 1− 1
2λ2π(−D0)−1(−D0)−1 1− 1

.

3. The Fitting Procedure

In this section we summarize the theoretical issues of the
fitting procedure. Generally speaking, the main idea of the
applied approach is that theD0 and theD1 matrices are
constructed separately.

• In the first step, the inter-arrival time distribution is fit-
ted by a phase type distribution, which determines the
D0 matrix (the generator of the PH distribution) and
the π vector (the initial probability vector of the PH
distribution)1.

• Then, theD1 matrix is constructed, such that the inter-
arrival time distribution of the resulting MAP remains
the same, and its lag correlation function approximates
the one of the trace.

3.1. Constructing theD0 matrix and the π vector
The first step of the procedure is a phase type fitting

problem for which we refer to [2, 3, 10, 7, 16]. Here we only
recall that the various PH fitting methods can handle differ-
ent input data. The inter-arrival time distribution of the orig-
inal process can be given with its pdf or cdf, samples or by
a given number of moments. The methods in [2, 7, 16] fit a
phase type distribution to a set of samples. The methods in
[3, 10] allows to fit to both, pdf/cdf and set of samples. Mo-
ments based phase type fitting is available up to 3 moments
(which is used in [8]).

All fitting methods in [3, 10, 7, 16] provide acyclic phase
type distributions, which, in general, have infinitely many
identical representations [6]. For a unique representation
of acyclic phase type distributions Cumani introduced 3
canonical forms. Appendix A presents an equivalent trans-
formation of theD0 matrix and theπ vector from canonical
form 1 to a modified representation which allows a higher
flexibility in lag-k correlation fitting.

1 This approach is different from the one in [8], where the first 3 mo-
ments of the inter-arrival time determine theD0 matrix, but theπ vec-
tor is a function of the lag-1 correlation.



3.2. Constraints of theD1 matrix
The D1 matrix has to satisfy the following two con-

straints to maintain the inter-arrival time distribution deter-
mined in the first step:

C1: D11 = −D01,

C2: π(−D0)−1D1 = π.

We can formulate these constrains as a linear system
of equations. We introduce column vectorx (of sizem2),
which is composed by the columns of matrixD1:

D1 =



{D1}1{D1}2 . . . {D1}m



→ x =




{D1}1
{D1}2

...
{D1}m




All possiblex vectors (thus,D1 matrices) satisfying con-
straintsC1 andC2 are the solutions of the following sys-
tem of linear equations with coefficient matrixA:





 Im×m





 Im×m


. . .


 Im×m




γ

γ

.. .
γ




︸ ︷︷ ︸
A2m×m2

·




x




=




d

π




︸︷︷︸
b2m

,

(1)
whered = −D01 andγ = π(−D0)−1. The firstm lines
of A correspond to constraintC1, and the secondm lines
are related toC2.

A properD1 matrix (i.e., xvector) satisfies the follow-
ing set of linear equations and inequalities:

A x = b ,

x ≥ 0 . (2)

In general, theA x = b equation is determined for
m = 2 and under-determined form ≥ 3, since we have
2m equations andm2 unknowns. Consequently theD0 ma-
trix and theπ vector completely determines theD1 matrix
whenm = 2. Form ≥ 3, one can use, for example, the sim-
plex algorithm to find a solution of (2).

3.3. Exact Lag-1 Correlation Fitting
The lag-1 correlation can also be expressed as a linear

constraint (while the higher lag correlations results in non-
linear constraints).

C3: ρ1 =
λ2π(−D0)−2D1(−D0)−1 1− 1

2λ2π(−D0)−2 1− 1
,

with f = (−D0)−1 1 that is

λ2π(−D0)−2D1f = ρ1(2λ2π(−D0)−2 1− 1) + 1,

which can be concatenated to matrixA and vectorb as
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 Im×m


. . .


 Im×m




γ

γ

.. .
γ

f1δ f2δ · · · fmδ




︸ ︷︷ ︸
A(2m+1)×m2

·




x




=




d

π

ϑ




︸︷︷︸
b2m+1

,

(3)
whereδ = λ2π(−D0)−2, fi is theith element of vectorf
andϑ = ρ1(2λ2π(−D0)−2 1− 1) + 1.

3.4. Fitting More Lag Correlations
To fit more lag-k correlation values, we can define an op-

timization problem with the linear constraints (2) such that a
properly chosen goal function ensures the approximation of
higher lag correlation values. This way the fitting of a given
number of lag-k correlations is a linearly constrained non-
linear optimization problem.

We applied the objective functionc(x), which is the
squared difference between the lag-k correlations of the
original process (̂ρk) and the fitted MAP (ρk) weighted with
wk:

c(x) =
K∑

k=2

wk(ρk − ρ̂k)2. (4)

The largest lag correlation coefficient considered in this ob-
jective function is the lag-K correlation coefficient. The
weights can be used, e.g., to increase the importance of the
accuracy of lower lag-k correlation with respect to higher
ones or vice-versa.

3.5. Illustration
We illustrate the constraints imposed byD0 andπ and

the flexibility of D1 in lag-1 correlation fitting via small ex-
amples.

Illustration 1: Some of the phase type fitting tools [3, 10]
provide the results in canonical form 1 [6], which has the
following structure:

π = [0.3, 0.2, 0.5], D0 =



−3 3 0

0 −5 5
0 0 −7


 ⇒ d =




0
0
7


 .

In this case, the first two rows of theD1 matrix should
be zero, according to constraintC1. Consequently theC1



andC2constraints completely determine theD1 matrix and
there is zero degree of freedom to fit the lag-k correlation.
Using the equivalent transformation of Appendix A (with
a3 = 0.5 anda2 = 0.6) we represent the same phase type
distribution as

π′=[.618, .026, .356],D′
0 =



−3 1.5 0

0 −5 2
0 0 −7


 ⇒ d′=




1.5
3
7


 .

With this representation, all elements of thed′ vector differ
from zero and theA x = b equation is under-determined,
which provides some degrees of freedom to fit the lag-k cor-
relation.

Similar problems arise when theπ vector contains zero
elements. E.g., ifπi = 0 then theith column of theD1

matrix should be zero, according to constraintC2. This ex-
ample also indicates that there is a trade off between the
(π, D0) and the(π′, D′

0) representations. With the(π, D0)
representation thed vector contains only one non-zero ele-
ment, but theπ vector contains 3 significant elements, in-
stead with the(π′, D′

0) representation thed′ vector con-
tains 3 significant non-zero elements, but theπ′ vector con-
tains only 2 significant elements andπ′2 is negligible.

Illustration 2: Considering the phase type distribution
defined by

π = [0.4995, 0.48918, 0.011324],

D0 =



−3.721 0.5 0.02

0.1 −1.206 0.005
0.001 0.002 −0.031


 , ⇒ d =




3.201
1.101
0.028




the minimal and the maximal lag-1 correlations are calcu-
lated by the simplex method since the goal function,ρ1,
is linear. They are obtained by the followingD1min and
D1max matrices



1.562 1.562 0.077
0.55 0.551 0

0.0243 0.0037 0


 ,




3.143 0.058 0
0.0805 1.0205 0

0 0.0069 0.0211


 ,

respectively, and the associated lag-k correlations are:

min max
1 -0.0101451904742418 0.326452359342335
2 0.00315598349944327 0.221637940730464
3 -9.52303122836937e-005 0.150462438659736
4 2.0994680540877e-005 0.102133708727262
5 -8.09899222249666e-007 0.0693209104222013

4. Implementation of the fitting algorithm
4.1. ConstructingD0

The inter-arrival distribution of the trace is approximated
by a phase type distribution, whose transient generator gives

D0. However, it does matter what the structure of the ap-
plied phase type is. According to our experiments, the struc-
ture of the phase type distribution determines the feasible
region of lag-k correlation, because constraintsC1 andC2
provide different ”degrees of freedom” for the lag-k correla-
tion fitting with different phase type structures. The ”degree
of freedom” depends on the number of significant non-zero
elements inπ andd.

Unfortunately, most of the general phase type and
acyclic phase type structures used in phase type fitting pro-
cedures have only few non-zero elements inπ and d.
E.g., VERPH [3] and PhFit [10] use the canonical repre-
sentation of acyclic phase type distributions in whichd
has exactly1 non-zero element. An exception is theEM-
PHT tool [2], which allows the user to define the structure
(to set the non-zero elements). According to our experi-
ence it does not help much to use a phase type structure
with a lot of non-zero elements, because the fitting pro-
cedure sets most of the non-zero elements very close to
0 and this way we get only a small number of signifi-
cant non-zero elements inπ andd.

A possible solution is to apply special phase type struc-
tures, e.g., hyper-exponential [7] or mixture of Erlang dis-
tributions [16]. For example, in case of a hyper-exponential
structure the elements of theπ andd vectors are all non-
zero. A limitation of using hyper-exponential distribution is
that the pdf is monotone decreasing and the squared coef-
ficient of variation is greater than one. For those cases in
which the marginal distribution has these properties the fit-
ting of a hyper-exponential distribution (e.g., with [2] or [7])
is usually the best solution.

For general marginal distributions we recommend to fit a
generalized Erlang distribution or an acyclic phase type dis-
tribution (e.g., with [16] and [10]). In case of acyclic phase
type distribution fitting the resulted canonical form 1 can be
transformed into a more appropriate equivalent representa-
tion according to Appendix A. Usually the best representa-
tion is the one which results in the highest number of sig-
nificant non-zero elements inπ andd.

4.2. ConstructingD1

The construction ofD1 requires the solution of a lin-
ear constrained nonlinear optimization problem. There are
lots of general software tools to solve such nonlinear prob-
lems, but those, we tried, failed to fit the lag-k correlation
reasonable well. It seems the surface is hilly and the meth-
ods sticks in local optimum close to the initial point. Based
on this assumption we implemented a simple optimization
method. The optimization part simple linearizes the objec-
tive function and runs the simplex algorithm within a given
small radius of the parameters in each step. This method
also stops at the closest local optimum, but the crucial fea-
ture of our procedure is that we generate a relative large
number of initial guesses and start from the best of them. It
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Figure 1. Results of Example 1

seems the optimization phase does not improve the solution
significantly, but the starting point determines the goodness
of fitting.

Our initial points are the randomly chosen corners of the
A x = b, x ≥ 0 surface. We use the simplex method to
calculated these corner points with randomly chosen linear
goal functions (i.e., with random weights of the parame-
ters).

For the results of this paper we calculated 2500 corner
points. On a P4 (2.8GHz, 512MB RAM) machine, the com-
putation time of 2500 corner points were 16 s (PH(3)), 28 s
(PH(4)), 56 s (PH(5)), 101 s (PH(6)) and 515 s (PH(8)). We
found that the set of solutions reachable from the 2500 cor-
ner points can be divided into clearly distinct “good” and
“bad” subsets. The majority of the solutions are bad, but
some of them (∼ 10) are significantly better. These better
solutions results in differentD1 matrices with very close
optimum and very similar lag-k correlation.

Throughout the numerical examples we used our MAT-
LAB implementation of the proposed method. The default
weights of the goal function (4) werewk = (K − k + 1)
with K = 20.

5. Numerical Experiments

To demonstrate the fitting properties of the proposed ap-
proach, we evaluated four numerical examples. The first
two ones approximate given MAPs. We check how close
the result of the fitting is in terms of inter-arrival time distri-
bution and lag-k correlation. In the third and forth example
real traffic traces are fitted. These traces are the lbl-3 and the
bcpAug-89 traces [17], which are commonly used for test-
ing phase type distribution and MAP fitting.

5.1. Example 1
In this example we consider a 3-state MAP with the fol-

lowing matrices:

D0 = D1 =

−3.721 0.5 0.02

0.1 −1.206 0.005
0.001 0.002 −0.031


 ,




0.2 3 0.001
1 0.1 0.001

0.005 0.003 0.02


 .

First we took the originalD0 matrix andπ vector, and exe-
cuted theD1 fitting method (with exact lag-1 fitting), which
gave the followingD1 matrix:

D1 =




0 3.1967 0.0043246
1.0686 0.032399 0

0 0.0080394 0.019961


 .

As Figure 1c) shows, that the lag-k correlation of the orig-
inal and the fitting MAPs are the same up to lag-15. After
that the lag correlation of the fitting MAP fluctuates. It turns
out that the eigenvalues of theP matrix of the original MAP
are1,−0.675519, 0.641501 and the ones of the fitting MAP
are1,−0.774415, 0.640013. The fluctuation starts when the
effect of the 3rd (positive) eigenvalue vanishes with respect
to the effect of the 2nd (negative) one [11]. Since the differ-
ence of the 2nd and the 3rd eigenvalues of the fitting MAP
is larger it starts fluctuating earlier. The original MAP start
fluctuating at lag-77.

Next, we generate a trace of 500000 arrivals by the origi-
nal MAP and fit [7] a hyper-exponential distribution (HED)
to the experimental inter-arrival time distribution to obtain
D0 andπ. Using these theD1 fitting method with exact
lag-1 fitting provided the following MAP:

D0 =



−1.1728 0 0

0 −3.6435 0
0 0 −0.03132


 ,

D1 =




1.1311 0.041664 0
0.14273 3.4511 0.049643

0.010006 0 0.021314


 .
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Figure 2. Results of Example 2

Figure 1a) and 1b) depicts the fitting results. The inter-
arrival time approximation is very accurate. The difference
of the pdf-s is not visible in the figure. The lag-k correla-
tion fitting is reasonably accurate as well.

5.2. Example 2
In this example we approximate the following MMPP:

D0 =




−0.1 0.1 0 0 0 0
0.2 −1.3 0.1 0 0 0
0 0.2 −2.3 0.1 0 0
0 0 0.2 −3.3 0.1 0
0 0 0 0.2 −4.3 0.1
0 0 0 0 0.2 −5.2




,

D1 =




0 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 4 0
0 0 0 0 0 5




.

First we kept the originalD0 andπ again. Surprisingly the
D1 fitting procedure gave back theD1 matrix of the origi-
nal MMPP up to 10 tangible digits.

The considered MMPP has a very special struc-
ture which suggests that smaller MAPs can approximate
its behaviour. Similar to the previous example, we gener-
ated a trace of 500000 arrivals from the MMPP and stud-
ied how can we approximate the 6-state MMPP with
smaller MAPs.

We approximated the inter-arrival time distribution with
a HED [7] again. The resulted 3 and 4-state MAPs are

D0 =



−1.36856 0 0

0 −3.43205 0
0 0 −0.082935


 ,

D1 =




1.1778 0.033576 0.15722
0.06028 3.3718 0
0.069005 0 0.01393


 ,

D0 =




−1.24582 0 0 0
0 −1.3979 0 0
0 0 −0.0831938 0
0 0 0 −3.49944


 ,

D1 =




0 0.034812 0.019984 1.191
0.012632 1.2142 0.15471 0.016357

0 0.069023 0.014171 0
0 0.054796 0 3.4446


 .

The corresponding plots, together with the fitting 5 and 6-
state MAPs, are shown in Figure 2a) and 2b). The pdf is
closely approximated with 3 states already. The lag-k cor-
relation is less accurate, although the higher lags are quite
close to the original values. To improve the accuracy of low
lag correlation values we set the goal function to optimize
only the lag-2 correlation (c(x) = (ρ2 − ρ̂2)2). This set-
ting resulted in accurate lag-2 correlation on the price of
poorer higher lag correlation. We suspect that the poor ap-
proximation of the correlation is due to the bad representa-
tion of the marginal distribution, since the originalD0 ma-
trix andπ vector provided a close correlation fitting.

The difference of the “original” and the “trace” curves
indicates that the 500000 samples of the trace were not
enough for an accurate empirical lag-k correlation. The em-
pirical lag-k correlation is calculated as

ρ̂k =
1

(N − k − 1)σ̂2

N−k∑

i=1

(ti − µ̂)(ti+k − µ̂),

whereN is the number of samples,ti is theith sample and
µ̂ andσ̂2 are the sample mean and variance, respectively.

5.3. Example 3
A more challenging problem is to characterize real-life

traces with MAPs. In this example we approximate the
LBL-TCP-3 trace, which contains two hours’ worth of all
wide-area TCP traffic (1.8 106 TCP packets) between the
Lawrence Berkeley Laboratory and the rest of the world
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Figure 3. Density function and lag- k correlation of Example 3
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Figure 4. Queue length distributions of Example 3

[17]. We applied two PH fitting tools to fit the inter-arrival
time distribution: EM-HED with 4 states [7] and GFIT with
5 states [16] (because we got close marginal fitting with 4
and 5 states, respectively). The result of MAP fitting based
on EM-HED is:

D0 =




−508.11 0 0 0
0 −526.82 0 0
0 0 −112.88 0
0 0 0 −292.87


 ,

D1 =




281.9 226.06 0 0.15872
526.66 0.024505 0 0.13422

0 0 82.094 30.79
0.056728 0 38.799 254.01


 .

GFIT uses a mixture of Erlang distributions instead of
HEDs, but in this particular case GFIT found the hyper-
exponential structure to be the best. Using the result of

GFIT, the MAP fitting algorithm provided:

D0 =




−90.779 0 0 0 0
0 −137.54 0 0 0
0 0 −213.51 0 0
0 0 0 −338.05 0
0 0 0 0 −679.54




,

D1 =




0.47845 90.283 0.018233 0 0
90.045 0.082362 0.064649 47.035 0.31731

0.023153 0.27187 119.66 0 93.553
0 69.036 0 269.018 0
0 0.30414 173.73 0.030199 505.47




.

In the comparison of fitting MAPs, we also considered
the result of the explicit order 2 MAP fitting method of
Heindl [8]. The inter-arrival time distributions and the lag-k
correlations of the trace and the fitting MAPs are depicted
in Figure 3.

We also studied the queueing behaviour resulted by the
fitting MAPs, such that we compared the simulated queue
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Figure 5. Density function and lag- k correlation of Example 4
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Figure 6. Queue length distributions of Example 4

length distribution of the TRACE/D/1 queue (formed by
fixed size TCP packets) with the numerical analysis of the
fitting MAP/D/1 queues [12] at different utilization levels.
We set the utilization level with appropriate mean service
time (i.e. link capacity). The results are depicted in Figures
4. It seems that the close lag-k correlation fitting up to lag-
100 allows to capture the slowly decaying tendency of the
queue length distribution at high utilization.

5.4. Example 4
Another often used benchmark in traffic modeling is the

BC-pAug89 trace, which contains106 packet arrivals seen
on an Ethernet at the Bellcore Morristown Research and En-
gineering facility [17]. The density function of this trace has
a more complex shape compared to the one in the previ-
ous example. Due to this shape we failed to fit the inter-
arrival time distribution with HED and with a small num-
ber of phases. Finally, we fitted the inter-arrival time distri-
bution using the GFIT [16] and the PhFit [10] tools. GFIT
provided a reasonable good solution with 8 states (3 Erlang

alternatives). With PhFit, we could achieve reasonable good
fitting with 6 states (3 states to fit the body and 3 states to fit
the tail), but only after a longer search of optimal user de-
fined fitting parameters (like the limits of the body and tail
fitting). Figure 5 shows the result of the inter-arrival time
distribution fitting with linear and logarithmic scales.

Unfortunately the obtained PH distributions did not leave
too many degrees of freedom forD1 fitting. In case of GFIT
π andd contained only 3 non-zero elements, while in case
of PhFit all elements ofπ were positive, butd contained
only 4 non-zero elements. Interestingly, with the PH distri-
bution given by GFIT we could fit a MAP with slower de-
caying lag-k correlation compared to the one based on Ph-
Fit, which already missed to fit the first lag exactly. The re-
sults are depicted in Figure 5. Note that we only took the
first 20 lags into account during the optimization. The log-
log plot confirms that the lag-k correlation of MAPs always
has exponential tail decay, which makes hard to capture the
slowly decaying correlation behaviour of the BC-pAug89



trace.
The fitting procedure resulted the following MAPs:

D0
(PhFit) =




−2695.5 0 0 0 0 0
976.24 −976.24 0 0 0 0

0 935.22 −935.22 0 0 0
0 0 0 −19.319 0 0
0 0 0 0 −47.22 0
0 0 0 0 0 −124.723




,

D1
(PhFit) =




381.567 0.069808 2073.51 0 29.7398210.611
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 19.3188 0 0
0 0 17.402 0 29.8177 0
0 0 124.723 0 0 0




,

D0
(GFIT ) =




−410.07 0 0 0 0 0 0 0
0 −79.96 79.96 0 0 0 0 0
0 0 −79.96 0 0 0 0 0
0 0 0 −53.75 53.75 0 0 0
0 0 0 0 −53.75 53.75 0 0
0 0 0 0 0 −53.75 53.75 0
0 0 0 0 0 0 −53.75 53.75
0 0 0 0 0 0 0 −53.75




,

D1
(GFIT ) =




400.783 9.2868 0 0 0 0 0 0
0 0 0 0 0 0 0 0

59.444 20.5123 0 0.00040678 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0.019702 0 0 53.729 0 0 0 0




.

The queue length distribution of the simulated
TRACE/D/1 queues and the numerically evaluated fit-
ting MAP/D/1 queues are depicted in Figures 6. The best
queue length distribution fit is obtained at the lowest uti-
lization level, ρ = 0.2. It suggests that, at low utiliza-
tion, the inter-arrival time distribution and the first few
lag-k correlations determine the queue length distribu-
tion fitting, which are closely fitted by the MAPs, and at
high utilization, the higher lag-k correlations play role. In-
terestingly, the high lag-k correlation of the GFIT based
MAP plays role only in the tail of the queue length distrib-
ution.
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6. Conclusions

This paper presents a two-step MAP fitting approach,
where the first step is the phase type fitting of the inter-
arrival time distribution and the second step is the lag-k cor-
relation fitting. Some important features of the procedure
are

• exact lag-1 fitting (if possible),

• the goodness of lag-k correlation fitting depends on the
degree of freedom provided by the phase type fitting
step,

• the computational complexity of the phase type fitting
step depends on the applied fitting method/tool, the or-
der of the MAP and the number of (distinct) samples
(in case of sample based fitting),

• the computational complexity of the lag-k correlation
fitting step depends on the order of the MAP, but it is
rather low in general.

Numerical examples demonstrate the fitting properties of
the proposed method. Example 1 and 2 show that the lag-k
correlation fitting step is fairly accurate if the exactD0 and
π are known. Measured traffic traces are approximated in
Example 3 and 4. The fitting is less accurate in these cases,
but it requires further investigation to understand if it is the
limitation of the fitting procedure or the class of MAPs.

A. Transforming APHs for Better ACF Fit-
ting

Theorem 1 Every APH distribution having the following
initial probability vector and transient generator (see Fig-
ure 7):

π = [pn pn−1 . . . p1],

D0 =




−λn λn

−λn−1 λn−1

. ..
.. .
−λ2 λ2

−λ1




can be transformed to the following structure (Figure 8):

π′ = [xn xn−1 . . . x1],

D′
0 =




−λn (1−an)λn

−λn−1 (1−an−1)λn−1

. ..
.. .
−λ2 (1−a2)λ2

−λ1




.



The new initial probabilities are the solutions of the follow-
ing set of linear equations:

pk =
m∑

n=k

xn

k−1∑

i=0

i−1∏

j=0

(1− an−j) an−i qn(i, 0, k), (5)

where theqn(i, `, k) coefficients are defined by the follow-
ing recursion:

qn(i, `, k) =
λn−i

λ`+1
qn(i− 1, ` + 1, k) +

(
1− λn−i

λ`+1

)
qn(i, ` + 1, k),

qn(i, n− i, k) =
{

1, k = n,
0, k 6= n,

qn(0, `, k) =





λn

λ`+1
, k = ` + 1,

(
1− λn

λ`+1

)
qn(0, ` + 1, k), k 6= ` + 1.

Proof π(sI −D0)−11 = π′(sI −D′
0)−11.
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p
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λ

p

Figure 7. Canonical form 1 of APH distribu-
tions
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[10] A. Horváth and M. Telek. PhFit: A general purpose phase
type fitting tool. InTools 2002, pages 82–91, London, Eng-
land, April 2002. Springer, LNCS 2324.

[11] G. Latouche and V. Ramaswami.Introduction to matrix an-
alytic methods in stochastic modeling. SIAM, 1999.

[12] D. M. Lucantonio. New results on the single server queue
with a batch markovian arrival process.Stochastic models,
7(1):1–46, 1991.

[13] K. Mitchell and Appie van de Liefvoort. Approximation
models of feed-forward G/G/1/N queueing networks with
correlated arrivals.Performance Evaluation, 52(2-4):137–
152, 2003.

[14] Alma Riska, Mark S. Squillante, Shun-Zheng Yu, Zhen Liu,
and Li Zhang. Matrix-analytic analysis of a MAP/PH/1
queue fitted to web server data. InMatrix-Analytic Meth-
ods, MAM4, pages 335–356. World Scientific, 2002.

[15] T. Ryden. An em algorithm for estimation in markov-
modulated poisson processes.Computational Statistics and
Data Analysis, 21:431–447, 1996.
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