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Abstract

The paper investigates the problem of minimal representation of Markov arrival
processes of order n (MAP(n)). The minimal representation of MAPs is crucial for
developing effective fitting methods. It seems that all existing MAP fitting methods
are based on the D0, D1 representation which is known to be redundant. We present
the minimal number of parameters to define a MAP(n) and provide a numerical
moments matching method based on a minimal representation.

The discussion starts with a characterization of phase type (PH) distributions and
then the analysis of MAPs follows a similar pattern. This characterization contains
essential results on the identity of stationary behaviour of MAPs and on the number
of parameters required to describe the stationary behaviour.

The proposed moments matching method is also applicable for PH distributions.
In this case it is a unique method that fits a general PH distribution of order n
based on 2n− 1 parameters.

Key words: Markov arrival process, parameter fitting, minimal representation,
moments of inter-arrival time distribution.

1 Introduction

A set of computationally efficient numerical methods, referred to as matrix
geometric methods, were developed during the last 3 decades for the analysis
of stochastic systems with some regular Markovian structure [2]. The applica-
bility of these analysis methods depends on the availability of effective match-
ing or fitting methods which are able to describe the empirical behaviour of
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systems with Markovian stochastic models like phase type (PH) distributions
or Markov arrival processes (MAPs).

The research on PH fitting methods has a very long history. The method
of phases proposed by A. K. Erlang at the beginning of the 20th century
can be considered as the starting point. Since then, several approaches were
proposed, but very few of them search over the whole set of PH distributions
of order n (PH(n)). The majority of the methods is restricted to some special
subsets like the set of acyclic phase type (APH) distributions, or hyper-Erlang
distributions, etc.

One of the few exceptions is the EMPHT method proposed by S. Asmussen
and O. Nerman [1]. This method optimizes the elements of the initial prob-
ability vector and the transition matrix. This method allows to apply the
same optimization procedure (expectation-maximization (EM) method) for
optimization over the whole PH(n) set and also over some of its particular
subsets. The surprising conclusion drawn from EMPHT fitting over the whole
PH(n) set and over the APH(n) set using its canonical representation [4] is
that the results of APH(n) fitting are commonly better.

Our explanation for this counterintuitive conclusion is that the EMPHT
method fails to find a “good” optimum over the PH(n) set because it is
based on a redundant representation (the number of parameters to optimize
is n2 +n−1), and, even if it is not obvious for the first sight, the same method
is based on a minimal representation when it searches over the APH(n) set
using its canonical representation (the number of parameters to optimize is
2n− 1, since the EMPHT method leaves the 0 elements of the transition ma-
trix unchanged). We believe that this is the main reason behind the relative
success of APH(n) fitting methods [7,10,13].

The research on MAP fitting methods has a much shorter history. The meth-
ods proposed so far are all based on redundant representations, e.g., [17,3].
According to our best knowledge the question of MAP fitting with minimal
number of parameters was not considered because the minimal number of
parameters to describe order n MAPs (MAP(n)) was not known.

In this paper we discuss the minimal number of parameters and the minimal
representations of PH(n) distributions and MAP(n) processes and propose a
moment matching method that is based on a minimal representation, and
performs moments matching over the whole PH(n) or MAP(n) set up to the
accuracy of a numerical transformation procedure.

The research papers about MAP fitting methods (including the ones of the au-
thors) seem to suggest a misleading idea. In several cases the authors evaluated
the goodness of the fitting methods by comparing the long range behaviour
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of the original model (data set) with the one of the fitting MAP, e.g. in [12].
The most common parameter of long range behaviour of MAPs is the lag-k
correlation for large k values. This evaluation suggests that the parameters of
high lag values contain some information that is not present in the parame-
ters of the low lag values, which is not the case. The minimal representation
provided in this paper also demonstrates this fact.

The rest of the paper is organized as follows. Section 2 and 3 investigate
the properties of PH distributions and MAPs. We refer to [14] for a detailed
introduction of PH distributions and MAPs. Here we summarize only those
properties which play role in the subsequent discussion. Section 4 and 5 present
various representations of PH distributions and MAPs and discuss the trans-
formation between these representations. Section 6 presents a procedure to
obtain a Markovian representation based on non-Markovian ones. Finally,
Section 7 demonstrates the properties of the procedure through numerical
examples.

2 Phase type distributions

Let X be a phase type (PH) distributed random variable with cumulated
distribution function

F (t) = Pr(X < t) = 1− πeAt1I,

where π is the initial probability vector, A is the generator of the PH dis-
tribution and 1I is the column vector of ones. We say that X is PH(π,A)
distributed.

π and A have the following properties:

• πi ≥ 0, π1I = 1 (there is no probability mass at t = 0),
• Aii < 0, Aij ≥ 0 for i 6= j, A1I ≤ 0,
• A is non-singular.

The density, the Laplace transform and the moments of X are

f(t) = πeAt(−A)1I, (1)

f ∗(s) = E(e−sX) = π(sI−A)−1(−A)1I =
∞∑

i=0

si(−1)iπ(−A)−i1I, (2)

µn = E(Xn) = n!π(−A)−n1I. (3)
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Definition 1 PH(π,A) is non-redundant if its rank equals to its order 3 ,
where the rank of PH(π,A) is the size of vector π and square matrix A and
the order of PH(π,A) is the degree of the denominator of f ∗(s) (which is a
rational function of s).

Let X ′ be PH(π′,A′) distributed with cdf F ′(t) = Pr(X ′ < t) = 1− π′eA′t1I.

Theorem 1 Let PH(π,A) and PH(π′,A′) be two non-redundant PH distribu-
tions with cdf F (t) and F ′(t), respectively. F (t) ≡ F ′(t) if and only if there ex-
ist a non-singular matrix B such that π′ = πB, A′ = B−1AB and B−11I = 1I.

Proof: If π′ = πB, A′ = B−1AB and B−11I = 1I then

F ′(t) = 1− π′eA′t1I = 1− πBeB−1ABtB−11I =

1− πBB−1eAtBB−11I = 1− πeAt1I = F (t).

If F (t) ≡ F ′(t) then from (3) we have

π(−A)−i1I = π′(−A′)−i1I for i ≥ 0, (4)

since the moments of PH(π,A) and PH(π′,A′) are identical.

Let (−A)−1 = Γ−1EΓ and (−A′)−1 = Γ′−1E′Γ′ be the ordered (according to
the real and than the imaginary parts of the eigenvalues) Jordan decompo-
sition 4 of (−A)−1 and (−A′)−1, respectively, normalized such that Γ1I = 1I
and Γ′1I = 1I. This normalization is always possible according to Theorem 5
in Appendix A. Matrix E has the Jordan-block structure E = diag{Ej} with

Ej =




λj 1 0 . . . 0

0 λj
. . . . . .

...
...

. . . . . . . . . 0

0 0
. . . λj 1

0 0 . . . 0 λj




, (5)

3 This definition of non-redundant PH distributions has crucial consequences. It
excludes PH distributions which have a lower order matrix exponential represen-
tation and ensures that the Jordan decomposition of A is such that all identical
eigenvalues belong to the same Jordan block.
4 The Jordan normal form is an efficient tool to describe simple (PH distribution
with distinct eigenvalues) and complicated (PH distribution with degenerate eigen-
vectors) cases in the same framework. The scalar expansion of the Jordan normal
form is discussed in Appendix A and the Jordan decomposition is commonly avail-
able in mathematical program packages.
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where λj is an eigenvalue of (−A)−1.

Based on the Jordan decomposition of matrix (−A)−1 the π(−A)−i1I term
has the following form

π(−A)−i1I = πΓ−1EiΓ1I = πΓ−1Ei1I (6)

where the columns of Γ−1 are the normalized generalized right eigenvectors of
matrix (−A)−1. Γ−1 is normalized such that Γ−11I = 1I.

From (4) and (6), we have

πΓ−1Ei1I = π′Γ′−1E′i1I, (7)

for i ≥ 0, which implies E = E′ and πΓ−1 = π′Γ′−1, since PH(π,A) and
PH(π′,A′) are non-redundant and E and E′ are ordered Jordan matrices.

Introducing B = Γ−1Γ′ we have

B−1AB = Γ′−1
ΓAΓ−1Γ′ = Γ′−1

ΓΓ−1EΓΓ−1Γ′ = Γ′−1
EΓ′ = A′,

B1I = Γ−1Γ′1I = Γ−11I = 1I,

where in the last step we used that Γ−11I = 1I since Γ is non-singular and
Γ1I = 1I. Finally multiplying πΓ−1 = π′Γ′−1 with Γ′ from the right we obtain
πB = π′.

Theorem 2 The distribution of the non-redundant PH(π,A) of order n is
determined by 2n independent parameters.

Proof: It is visible from (2) that the π(−A)−i1I series determines the distrib-
ution. The number of parameters of

π(−A)−i1I = πΓ−1EiΓ1I = vEi1I (8)

is 2n since vector v = πΓ−1 is composed by n potentially complex elements
and E is determined by the n potentially complex and potentially coincident
eigenvalues of (−A)−1.

Note that, Theorem 1 and 2 are known, see e.g., [15,16]. We present them,
together with the given proofs, which differ from the existing ones, for easier
understanding of the new results presented in the next section.

In case of phase type distributions without probability mass at zero these 2n
parameters are redundant since

π(−A)01I = πΓ−1E0Γ1I = πΓ−11I = v1I = 1.
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In this case the number of independent parameters are 2n− 1.

If E is a diagonal matrix, i.e., the eigenvalues of A are distinct, (8) simplifies
to

π(−A)−i1I =
n∑

j=1

vjλ
i
j, i ≥ 1, (9)

where vj is the jth element of vector v.

There are alternative proofs of Theorem 2 based on the number of non-trivial
coefficients of the order n rational Laplace transform of the distribution, f ∗(s),
and based on the number of independent moments for a long time. The impor-
tance of the parameters applied in this proof is motivated in the next section.

A redundant description of the distribution requires the definition of more than
2n parameters. E.g., the π,A representation is defined by n2 + n elements.

3 Markov arrival processes

Let X(t) be a stationary Markov arrival process [14]. The double transform
of the number of arrivals in the (0, t) interval starting from an arrival at 0 is

f(s, z) =
∫ ∞

t=0
e−stE(zX(t))dt = π(sI−D0 − zD1)

−11I,

where D0 describes the changes of the phase process without arrival and D1

describes the changes of the phase process with arrival. We say that X(t) is a
MAP(D0,D1) process.

D0 and D1 have the following properties:

• D0ii < 0, D0ij ≥ 0 for i 6= j, D01I ≤ 0,
• D1ij ≥ 0,
• D01I = −D11I,
• D0 is non-singular.

The MAP(D0,D1) process has the following properties:

• The phase process of MAP(D0,D1) is a CTMC with generator D0 + D1.
• The phase process embedded into the arrival instances form a DTMC with

transition probability matrix P = (−D0)
−1D1.

• π is the stationary distribution of the embedded DTMC, i.e., π = πP,
π1I = 1.

• The stationary inter-arrival time distribution is PH(π,D0).
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• The joint density of the X0, X1, . . . , Xk inter-arrival times is

f(x0, x1, . . . , xk) = πeD0x0D1e
D0x1D1 . . . eD0xkD11I.

• The joint moments of the a0 = 0 < a1 < a2 < . . . < ak-th inter-arrival times
are

E(X i0
0 X i1

a1
. . . X ik

ak
) =

π i0!(−D0)
−i0Pa1−a0i1!(−D0)

−i1 . . .Pak−ak−1ik!(−D0)
−ik1I.

(10)

Definition 2 MAP(D0,D1) is irreducible if its phase process (characterized
by D0 + D1) is irreducible.

If MAP(D0,D1) is irreducible then the embedded DTMC (characterized by
P) has got exactly one recurrent block and at most n− 1 transient states.

Definition 3 MAP(D0,D1) is non-redundant if its rank equals to its order,
where the rank of MAP(D0,D1) is the size the square matrices D0 and D1,
and the order of MAP(D0,D1) is the degree of the denominator of f(s, z) as
a polynomial of s.

Let X ′(t) be MAP(D′
0,D

′
1) with distribution f ′(s, z).

Corollary 1 If the joint moments of the a0 = 0 < a1 < a2 < . . . < ak-th
inter-arrival times of MAP(D0,D1) and MAP(D′

0,D
′
1) are identical for all

k ≥ 0; i0, . . . , ik and a1, . . . , ak then f(s, z) ≡ f ′(s, z).

Proof: In the convergence region of f(s, z) we have

f(s, z) = π(sI−D0 − zD1)
−11I = π

(
s(−D0)

−1 + I− zP

)−1

(−D0)
−11I =

∞∑

i=0

π

(
− s(−D0)

−1 + zP

)i

(−D0)
−11I .

(11)
The ith term of the above sum, π(−s(−D0)

−1 + zP)i(−D0)
−11I, is composed

by the permutations of the (−D0)
−1 and the P matrices. The permutations

that starts with πPj can be simplified to the

π(−D0)
−i0Pj0(−D0)

−i1 . . .Pjk−1(−D0)
−ik1I (12)

form, since π = πP. Indeed, (12) is E(X i0
0 X i1

a1
. . . X ik

ak
)/(i0!i1! . . . ik!), where

ak =
∑k−1

`=0 j`. Due to the equality of the joint moments of MAP(D0,D1) and
MAP(D′

0,D
′
1) all terms of the (11) composition of f(s, z) and f ′(s, z) are

identical, which implies the theorem.
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Theorem 3 MAP(D0,D1) and MAP(D′
0,D

′
1) are two non-redundant irre-

ducible MAPs with distributions f(s, z) and f ′(s, z), respectively. f(s, z) ≡
f ′(s, z) if and only if there exist a non-singular matrix B such that D′

0 =
B−1D0B, D′

1 = B−1D1B and B−11I = 1I.

Proof: If D′
0 = B−1D0B, D′

1 = B−1D1B and B−11I = 1I then

P′ = (−D′
0)
−1D′

1 = (−B−1D0B)−1B−1D1B =

B−1(−D0)
−1BB−1D1B = B−1PB.

Multiplying π = πP with B from the right gives

πB = πPB = πBB−1PB = πBP′,

which means that the stationary solution associated with P′ is π′ = πB. Using
these we have

f ′(s, z) = π′(sI−D′
0 − zD′

1)
−11I = πB(sI−B−1D0B− zB−1D1B)−1B−11I =

πBB−1(sI−D0 − zD1)
−1BB−11I = f(s, z).

If f(s, z) ≡ f ′(s, z) then the marginal moments E(X i
0) and the joint moments

E(X i
0X

j
1) are identical with E(X ′

0
i) and E(X ′

0
iX ′

1
j), respectively, for i, j =

0, 1, 2, . . ..

Composing matrix B based on the identity of the marginal moments,
π(−D0)

−i1I = π′(−D′
0)
−i1I, as in Theorem 1 results that D′

0 = B−1D0B,
π′ = πB and B−11I = 1I. Substituting these into the joint moment expression
we have

E(X ′
0
iX ′

1
j)/i!j! = π′(−D′

0)
−iP′(−D′

0)
−j1I

= πB(−B−1D0B)−iP′(−B−1D0B)−j1I

= π(−D0)
−iBP′B−1(−D0)

−j1I ,

(13)

and the identity of E(X i
0X

j
1) and E(X ′

0
iX ′

1
j) results

π(−D0)
−iP(−D0)

−j1I = π(−D0)
−iBP′B−1(−D0)

−j1I, ∀i, j ≥ 0. (14)

(14) implies P = BP′B−1 since D0 is non-singular, π and 1I are non-zero and
are not orthogonal with the relevant eigenvectors of D0.

Finally, using P′ = B−1PB we have

D′
1 = D′

0P
′ = B−1D0BB−1PB = B−1D0PB = B−1D1B.
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Theorem 4 The distribution of an order n non-redundant irreducible MAP
is determined by at most n2 independent parameters.

Proof: To prove the theorem we provide a description of all joint moments
based on n2 parameters and Corollary 1 ensures that this description also
defines the distribution.

Let −D0
−1 = Γ−1EΓ be the Jordan decomposition of −D0

−1 normalized such
that Γ1I = 1I and R = ΓPΓ−1. The E matrix has the Jordan-block structure
E = diag{Ej} and R satisfies R1I = 1I since ΓPΓ−11I = ΓP1I = Γ1I = 1I.

Using these notations the joint moments can be written as

E(X i0
a0

X i1
a1

. . . X ik
ak

)/(i0!i1! . . . ik!) =

π(−D0)
−i0Pa1−a0(−D0)

−i1 . . .Pak−ak−1(−D0)
−ik1I =

π Γ−1Ei0Γ Pa1−a0 Γ−1Ei1Γ . . .Pak−ak−1 Γ−1EikΓ 1I =

vEi0 Ra1−a0 Ei1 . . .Rak−ak−1 Eik1I .

(15)

where v = πΓ−1. v is determined by R because vR = v and v1I = 1, since

v = πΓ−1 = πPΓ−1 = πΓ−1ΓPΓ−1 = vR,

and

v1I = πΓ−11I = π1I = 1I.

Based on (15) any joint moment can be determined by E and R. Matrix E
is determined by the n (potentially partially coinciding, potentially complex)
eigenvalues of (−D0)

−1. Matrix R is determined by its n(n − 1) (potentially
complex) elements, since R1I = 1I. All together these give n2 parameters.

4 Transformation between PH representations

4.1 Representations of Phase type distributions

Markovian representation

One of the main problem of PH fitting methods is the redundancy of the rep-
resentation {π,A}. This vector-matrix representation is composed by n2 + n
elements and satisfies some simple constraints (πi ≥ 0, Aii < 0, Aij ≥ 0 for
i 6= j, A1I ≤ 0). We refer to this representation as Markovian representa-
tion. The Markovian representation is real valued, but not unique and not
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minimal. A representation is called minimal if it defines the distribution of a
non-redundant PH distribution of order n based on 2n parameters.

Jordan representation

In Section 2 we obtained a further vector-matrix representation, the represen-
tation {v,E}. This vector-matrix representation is composed by 2n non-trivial
elements. We refer to this representation as Jordan representation. Assuming
the eigenvalues are ordered (according to the real and than the imaginary
parts) the Jordan representation is unique and minimal, but it is complex
valued if the distribution has a complex eigenvalue.

Laplace representation

The Laplace transform of a non-redundant PH distribution of order n is an or-
der n rational function. The 2n coefficients of the properly normalized Laplace
transform is referred to as the Laplace representation. The Laplace represen-
tation is minimal, unique and real valued.

Moments representation

The first 2n moments (µ0, . . . , µ2n−1) define a non-redundant PH distribution
of order n [18]. We refer to vector µ = {µ0, . . . , µ2n−1} as the moments repre-
sentation a PH distribution. The moments representation is minimal, unique
and positive real valued.

MRP representation

In [18], Appie van de Liefvoort recognized the “minimal realization problem”
and the algorithm provided by Gragg and Lindquist [8] can be applied to
compose a real valued matrix K such that µi/i! = e1K

ieT
1 , where e1 is the row

vector whose only non-zero element is the first element which equals to one
(i.e., e1 = {1, 0, . . . , 0}). The {e1,K

′} vector-matrix representation, defined
below based on matrix K, is referred to as MRP representation. The MRP
representation is unique, real, but not minimal 5 .

4.2 Transformation methods

From Markovian representation to Jordan representation

The Jordan representation of the non-redundant phase type distribution with
Markovian representation {π,A} is obtained using the Jordan decomposition

5 The number of parameters of the MRP representation depends on the eigenvalue
structure of the transition matrix. If the eigenvalues are distinct matrix K is tri-
diagonal, otherwise it has non-zero elements elsewhere as well.
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(−A)−1 = Γ−1EΓ, where the similarity matrix Γ is normalized such that
Γ1I = 1I and E is the Jordan canonical form of (−A)−1 such that the diagonal
elements of E (eigenvalues of (−A)−1) are ordered. From this decomposition
v = πΓ−1 and E provides the Jordan representation.

From Markovian, Jordan and MRP representations to Laplace and moments
representations

The properties of the PH distribution can be evaluated from the Markovian,
the Jordan and the MRP representations in a similar way.

f(t) = π eAt(−A)1I = v e(−E)−1tE−11I = e1 e(−K′)−1tK′−1
1I, (16)

f ∗(s) = π
(
s(−A)−1 + I

)−1
1I = v(sE+I)−11I = e1(sK

′+I)−11I, (17)

µn = n! π(−A)−n1I = n! vEn1I = n! e1K
′n1I. (18)

From Laplace transform to moments representation

µi = (−1)i di

dsi
f ∗(s)

∣∣∣∣∣
s=0

.

From moments representation to MRP representation

The first step of this transformation is the application of the procedure pro-
vided in [18] and the second step is a simple transformation to obtain a
closing vector equals to 1I. The procedure in [18] generates the real valued
matrix K such that µi/i! = e1K

ieT
1 for i = 1, 2, . . . , 2n − 1 and K is non-

redundant. As a consequence any representation obtained from matrix K via
similarity transforms is non-redundant as well. Let T be the square matrix,

whose elements are Tij =





1 i ≥ j

0 otherwise
. Introducing K′ = TKT−1, we have

µn/n! = e1K
neT

1 = e1K
′n1I. We refer to vector e1 and matrix K′ as the MRP

representation a PH distribution.

From MRP representation to Jordan representation

The Jordan decomposition of K′, K′ = Γ−1EΓ, results the Jordan represen-
tation as v = e1Γ

−1 and E.

From Laplace transform to Jordan representation

The previous 3 transformation methods already allow to transform the Laplace
representation to the Jordan representation. The companion form provides a

11



simpler way of this transformation.

Based on the coefficients of the rational Laplace transform

f ∗(s) =
ϕnsn−1 + ϕn−1s

n−2 + . . . + ϕ2s + ϕ1

sn + %nsn−1 + %n−1sn−2 + . . . + %2s + %1

+ ϕ0,

we can generate the companion form [6]

f ∗(s) = ν(sI−C)−1(−C)eT
1 ,

where ν = {ϕ1

%1

,
ϕ2

%1

, . . . ,
ϕn

%1

} and

C =




0 1
. . . 0 0

...
. . . . . . . . .

...

0 0
. . . 1 0

0 0 . . . 0 1

−%1 −%2 . . . −%n−1 −%n




.

Applying the C′ = TCT−1 transformation and the Jordan decomposition of
(−C′)−1, (−C′)−1 = Γ−1EΓ, we have the elements of the Jordan representa-
tion, v = νT−1Γ−1 and E.

From MRP representation to Markovian representation

The above presented transformations allow to transform from any men-
tioned representation to any other except to a Markovian representation. The
Markovian representation is not unique, hence we need a procedure that finds
one of the Markovian representations of the given distribution.

According to Theorem 1, all Markovian representations of a PH distribution
defined by {e1,K

′} are similar to e1 and K′ in the sense that there exists a
matrix, B, such that π′ = e1B and A′ = B−1(−K′)−1B are proper probabil-
ity vector and transient generator matrix, respectively. Section 6 presents a
method to find such matrix B.

4.3 Unique, minimal and real valued representations of PH distributions

From the above list of representations the moments and the Laplace represen-
tations are unique, minimal and real valued. For the use of these representation
in PH fitting we are in favour of using the moments representation because it
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carries more practical information. The main drawback of these two represen-
tations is that they do not indicate if a given set of 2n moments or the f ∗(s)
function defines a PH distribution or not. The numerical procedure presented
in Section 6 can be applied to answer this question (up to the precision of the
numerical procedure).

5 Transformation between MAP representations

5.1 Representations of Markov arrival processes

Markovian representation of MAPs

We refer to the matrix pair {D0,D1} as the Markovian representation of an
order n MAP. The number of parameters of this representation is 2n2 − n.
The Markovian representation is real valued but redundant and not unique.

Jordan representation of MAPs

We refer to the matrix pair {E,R} as the Jordan representation of the order
n MAP. The number of parameters of this representation is n2, since E is
a Jordan matrix of size n (n parameters), and R is an n × n matrix which
satisfies R1I = 1I (n(n−1) parameters). The Jordan representation is minimal
and unique but potentially complex valued.

Laplace representation of MAPs

We refer to the vector of coefficients of the rational function f ∗(s, z) as the
Laplace representation of the order n MAP. The number of parameters of this
representation is not larger than 2n2, since both the numerator and the denom-
inator are at most order n polynomials of s and z. The Laplace representation
is unique (with proper normalization), real valued but not minimal.

Moments representation of MAPs

We refer to the µi = E(X i
0), i = 1, . . . , 2n − 1 moments of the inter-arrival

time distribution and the ηij = E(X i
0X

j
1), i, j = 1, . . . , n − 1 joint moments

((2n − 1) + (n − 1)2 = n2 parameters) as the moments representation of the
order n MAP. The moments representation is unique, minimal and positive
real valued.

MRP representation of MAPs

We refer to the real valued matrix pair {K′,R′} as the MRP representation
of the order n MAP, where matrix K′ has the same role as in the case of PH
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distributions and matrix R′ represent the dependency of consecutive arrivals.
The definitions of these matrices are given in the next subsection. The num-
ber of parameters of this representation is usually more than n2. The MRP
representation is unique and real valued but redundant.

5.2 Transformation methods

From Markovian representation to Jordan representation

The Jordan representation of the non-redundant MAP with Markovian rep-
resentation D0,D1 is obtained using the Jordan decomposition (−D0)

−1 =
Γ−1EΓ, where the eigenvalues are ordered in E, Γ is normalized such that
Γ1I = 1I and R = ΓPΓ−1.

From Markovian, Jordan and MRP representations to Laplace and moments
representations

f ∗(s, z) = π(sI−D0−zD1)
−11I = π

(
s(−D0)

−1 + I− zP

)−1

(−D0)
−11I

= v(sE + I− zR)−1E1I = v(sK′ + I− zR′)−1E′1I,
(19)

E(X i0
0 X i1

1 . . . X ik
k )

i0!i1! . . . ik!
= π(−D0)

−i0P(−D0)
−i1 . . .P(−D0)

−ik1I

= v Ei0R Ei1 . . .REik1I = v K′i0R′ K′i1 . . .R′K′ik1I.
(20)

Further more we have

f(x0, x1, . . . , xk) = πeD0x0D1e
D0x1D1 . . . eD0xkD11I

= πeD0x0(−D0)PeD0x1(−D0)P . . . eD0xk(−D0)P1I

= ve(−E)−1x0E−1Re(−E)−1x1E−1R . . . e(−E)−1xkE−11I

= e1e
(−K′)−1x0K′−1R′e(−K′)−1x1K′−1R′ . . . e(−K′)−1xkK′−11I.

(21)

From moments to MRP representation

The first steps of the transformation is to generate the {e1,K
′} MRP rep-

resentation of the inter-arrival time distribution based on the moments µi =
E(X i

0), i = 0, 1, . . . , 2n−1 as it is discussed in the previous section, and the sec-
ond step is to obtain matrix R′ based on the ηij = E(X i

0X
j
1), i, j = 1, . . . , n−1

joint moments. Note that ηi0 = E(X i
0X

0
1 ) = η0i = E(X0

0X
i
1) = µi.

14



The second step is as follows. Based on the {e1,K
′} representation, the µi =

E(X i
0), i = 1, . . . , n − 1 moments and the ηij = E(X i

0X
j
1), i, j = 1, . . . , n − 1

joint moment, we compose 3 matrices of size n × n. Matrix N contains the
moments such that Nij = ηi−1,j−1, matrix Λe1 and Λ1I are such that the ith
row of Λe1 is e1(i−1)!K′i−1 and the jth column of Λ1I is (j−1)!K′j−11I. That
is

N =




1 µ1 µ2 . . .

µ1 η1,1 η1,2 . . .

µ2 η2,1 η2,2 · · ·
...

...
...

. . .




,Λe1 =




e1

e1K
′

e12!K′2

...




,Λ1I =



1IK′1I2!K′21I. . .




.

Based on these matrices, R′ is obtained as R′ = Λ−1
e1

NΛ−1
1I , since from

Nij = ηi−1,j−1 = E(X i−1
0 Xj−1

1 ) = e1(i−1)!K′i−1
R′ (j−1)!K′j−1

1I,

we have Λe1R
′Λ1I = N.

From MRP representation to Markovian representation

All Markovian representations of the MAP defined by the {K′,R′} MRP rep-
resentation are similar to −K′−1 and R′ in the sense that there exists a real
valued matrix, B, such that D0

′ = B−1(−K′)−1B and P′ = B−1R′B are
proper transient generator matrix and transition probability matrix (or equiv-
alently, the D0

′ = B−1(−K′)−1B and D1
′ = B−1K′−1R′B matrices form a

proper MAP). Section 6 provides a numerical procedure to obtain matrix B.

5.3 A note on MAP representations

Similar to the case of PH distributions the moments representation is a unique,
minimal and positive real valued representation. It has the same drawback that
the representation does not indicate if the process is a valid MAP.

According to our knowledge, the Laplace representation of MAPs is far less
studied than the Laplace representation of PH distributions. The authors be-
lieve that there should be a way to obtain a minimal description of MAPs
also in the Laplace domain and to transform the f ∗(s, z) function to another
representation, but the solutions of these problems are not known for us and
are out of the scope of the present paper.
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6 Finding a Markovian representation

In this section we focus on order n non-redundant MAPs and matrices of size
n× n.

Starting from the real valued matrices H0 and H1 which are such that the
joint moments

E(X i
0X

j
1) = ρi!(−H0)

−i (−H0)
−1H1 j!(−H0)

−j1I, i, j ∈ {0, 1, . . .} (22)

are the joint moments of a MAP, we look for a non-singular transformation
matrix B, for which B1I = 1I, and D0 = B−1H0B and D1 = B−1H1B are
valid generator matrices of a MAP.

Indeed, the transformation matrix has to be such that the elements of B−1H1B
and the off-diagonal elements of B−1D0B are non-negative. The non-positive
constraint on the diagonal elements of B−1D0B is automatically fulfilled in
this case, since for a valid MAP (H0 + H1)1I = 0 and from B1I = 1I we have
(D0 + D1)1I = B−1(H0 + H1)B1I = 0.

We apply an iterative numerical optimization method to find such matrix B,
starting from H0 and H1. The goal function and the elementary step of the
procedure are as follows.

The goal function

To obtain a numerically stable procedure we apply continuous, many times
differentiable error functions that penalize the negative elements, e.g.:

e1(a, x) = e−a·x a > 0,

e2(a, x) = e−(x−1)2a+3

a ∈ {1, 2, . . .}, (23)

where a is referred to as the penalty parameter. Based on these error functions
the overall goal function is

Ek(H0,H1) =
∑

i,j,i6=j

ek(a,H0i,j) +
∑

i,j

ek(a,H1i,j), k ∈ {1, 2}. (24)

The elementary transformation

The elementary transformation selects the best infinitesimal matrix of step
size b according to the goal function (if it is better than the current value).
The step size indicates how different is the transformed representation from
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the original. If b = 0 the transformed and the original representations are
identical. The infinitesimal transformation matrix of step size b is:

Bi,j(b) =

i




1 0 0 0 . . .

0 1 0 0 . . .
...

...
. . . . . . . . .

0 b 0 1− b 0

0 0 0 0 1




j

, (25)

and the elementary transformation selects the i, j pair that minimizes

min
i,j,i6=j

(
Ek(H0i,j(b),H1i,j(b)), Ek(H0i,j(−b),H1i,j(−b))

)
,

if it is less than Ek(H0,H1), where H0ij(b) = B−1
i,j (b)H0Bi,j(b) and H1ij(b) =

B−1
i,j (b)H1Bi,j(b) are the results of the infinitesimal transformation of step size

b.

6.1 Behaviour of the algorithm

Theoretically, any matrix B that transforms H0 and H1 into a Markovian
representation can be composed by a series of elementary transformations
with adequately chosen step sizes, but unfortunately, such matrix B is not
known beforehand. By this reason we use a numerical optimization to find
a Markovian representation. In practice, we need to minimize the number of
iterations and the numerical errors. The penalty parameter dominates the
level of numerical error, since at large a values the procedure adds numbers
of different orders of magnitude, and the step size parameter dominates the
required number of iterations. A large step size (b > 0.2) results in a faster
convergence, but the algorithm may stop quickly without finding a Markovian
solution. The algorithm stops when an elementary step does not improve the
goal function.

Based on these properties we use a heuristic approach that starts with a large
b (b = 0.25) and geometrically increases a when the convergence slows down
or stops.

According to our experiences there are cases when the convergence is rather
slow (with a given a, b setting) using error function e1, in these cases the use
of error function e2 might help to move out of this region. The adjustment of
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the parameters of our implementation is outlined in Figure 1.

PROCEDURE Minimize(H0,H1,errfunc,a,b,iter);
FOR i=1 TO iter DO
(H0new,H1new)= ElementaryStep(H0,H1,errfunc,a,b);
IF Markovian(H0new,H1new) THEN Exit(H0new,H1new);

IF GoalFunc(H0,H1,errfunc,a,b)=GoalFunc(H0new,H1new,errfunc,a,b) // if no improvement
THEN Return(H0,H1); // then return

ELSE (H0,H1)=(H0new,H1new); // else move to the new point
END;

END;

PROCEDURE Main(H0,H1);
IF Markovian(H0,H1) THEN Exit(H0,H1);
b=0.25;
FOR i=1 TO 10 DO // optimization with decreasing step size b

(H0,H1)= Minimize(H0,H1,e1,2,b,200); // goal function 1
(H0,H1)= Minimize(H0,H1,e1,1000,b,200); // goal function 2
(H0,H1)= Minimize(H0,H1,e2,1,b,200); // goal function 3
b=b/2; // decreasing the step size

END;
END;

Fig. 1. Adjustment of the a and b parameters and the error function

A detailed investigation of this algorithm is provided in [5]. [5] recommends
to cut the procedure into 2 passes. During the first pass the goal function is
insensitive to the H1 matrix. This way it might find a transformation that
results in a Markovian H′

0 = B′−1H0B
′ matrix faster. If H0 cannot be trans-

formed into a Markovian representation it already indicates that the H0 and
H1 matrices do not represent a MAP. If the first pass is successful, the sec-
ond pass starts from the obtained Markovian H′

0 matrix and the associated
H′

1 = B′−1H1B
′ matrix. In the second pass the goal function is sensitive to

both matrices.

6.2 Existence of the solution and application of the algorithm

Theorem 3 and its proof remains valid when D′
0 and D′

1 do not meet the
non-negativity (non-positivity) requirements of the Markovian generators. Ac-
cording to this extended version of Theorem 3, for a given H0 and H1 there
is a solution matrix B if the moments defined by (22) are the joint moments
of a non-redundant MAP of the same order and there is no such matrix B
otherwise. The procedure usually finds a solution in the former case and never
finds a solution in the later case as it is indicated by the numerical examples
in Section 7.

In case of PH distribution fitting the initial H0 and H1 matrices can be ob-
tained, e.g., from the MRP representation as H0 = (−K′)−1 and H1 = 1Ie1;
and in case of MAP fitting as H0 = (−K′)−1 and H1 = R′.
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6.3 A moments matching method

Based on the pieces presented in the previous sections and subsections we can
compose a moments matching method for PH distributions and MAPs:

• transformation from the moments representation to the MRP representa-
tion,

• transformation from the MRP representation to the Markovian representa-
tion.

To the best of our knowledge this is the first moments matching approach for
fitting general PH distributions and MAPs of order n based on the minimal
number of parameters.

7 Numerical examples

We have preformed a set of various tests to investigate the properties of the
presented moments matching method. It seems to provide a Markovian repre-
sentation in a wide range of cases. Some of these tests are summarized below.

7.1 Random MAP generation

We applied the transformation methods of Section 5 and the numerical pro-
cedure of Section 6 to perform the following series of computations:

step 1) random MAP generation,
step 2) computation of its moments representation,
step 3) computation of the MRP representation from the moments represen-

tation,
step 4) finding a MAP representation of the MRP representation.

First we applied the following simple random MAP generation method. The
off-diagonal elements of D0 and elements of D1 are uniformly distributed
samples between 0 and 1 and the diagonal elements of D0 are set such that
(D0 + D1)1I = 0.

Theoretically we should be able to find a MAP representation from the MRP
representation in all cases if our numerical method was perfect. Using the ran-
dom MAPs generated in the above described way, our method always found
a MAP representation. We performed this test up to order 8, where the com-
putation time of our Mathematica implementation increased to the order of a
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minute due to the increased complexity of the elementary iteration step.

We also test this procedure with a modified random MAP generator. Instead
of the uniformly distributed random samples between 0 and 1, the modified
procedure sets the matrix elements to 0 with probability p and to a uniformly
distributed random sample between 0 and 1 with probability 1−p. We dropped
the MAPs whose generator matrix, D0 + D1, was reducible.

For p = 0 the modified random MAP generator is the same as the original
one. When p is increasing the number of zero elements increases in D0 and
D1. In case of p < 0.5 the procedure still obtained MAP representation almost
always. When p increased above 0.5 there were less and less cases where the
procedure managed to find a MAP representation.

Based on this experience we conclude that the random MAPs with non-zero
elements allow a wider set of MAP representations than the ones that have
several zero elements, and our numerical procedure is more effective to find a
MAP representation when there is a wide range of possible MAP representa-
tions.

7.2 Random similarity transformation

We check the effect of initial representation on the performance of our numer-
ical procedure according to the following steps:

step 1) initial MAP representation, (D0,D1),
step 2) random matrix generation, B, such that B1I = 1I,
step 3) similarity transform, H0 = B−1D0B, H1 = B−1D1B,
step 4) finding a MAP representation of (H0,H1).

The applied random matrix generator sets the elements of the first n − 1
columns of B to be uniformly distributed samples between b̌ and b̂ and the el-
ements of the last column to satisfy B1I = 1I. (Singular matrices were dropped.)
The similarity transform with the obtained random matrices almost always
resulted non-markovian representations, even with b̌ = 0, b̂ = 1.

Tuning the b̌ and b̂ parameters of the random matrix generation we found that
the procedure is more or less insensitive to the similarity transformation. When
the original (D0,D1) matrices had mainly non-zero elements the procedure
found a MAP representation, and when the original (D0,D1) matrices had
several zero elements non of the random similarity transformation helped to
find a MAP representation.
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7.3 Approaching known limits of the Markovian set

We start from the following matrix exponential representation:

v = [0.2, 0.3, 0.5], H =




−1 0 0

0 −3 h

0 −h −3




.

The eigenvalues of H are −1,−3 ± hi. F (x) = 1 − veHt1I is a (matrix expo-
nential, see e.g. [6]) distribution function when h ≤ 2.30033340858 and F (x)
is a Phase type distribution (i.e., has a Markovian representation [11]) when
h ≤ 0.552748375. Our transformation method finds a Markovian representa-
tion in 57 iterations when h = 0.5, in 3155 iterations when h = 0.54 and it
fails to find a Markovian representation when h = 0.545. Modifying the error
functions to e−50x, e−200x, e−1000x, (compared to the one presented in Figure
1) we obtain a Markovian representation:

π = (0.000476066, 0.0144194, 0.985105) ,

A =




−1.161615445405 1.152943843029 0.001001275793779

0.00547506636475 −2.91106856299 2.833291906724

0.1783951586341 0.0000208821133978 −2.92731599159




.

It seems that increasing h towards 0.552748375 has the same effect as in-
creasing the number of zeros, i.e., it reduces the range of potential Markovian
representations of the F (x) distribution. At h = 0.552748375 there is one rep-
resentation (apart of the order of the states), whose structure is the same as
the canonical from presented in [9]:

π = (0, 0.01153060576692, 0.98846939298) ,

A =




−1.162691021171 1.162691021171 0

0 −2.91865448941 2.91865448941

0.1764859465857 0 −2.91865448941




.

7.4 Computational complexity

The computational complexity of the procedure is determined by the complex-
ity of an iteration step and by the number of iterations. The first one depends
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only on the size of the problem (O(n2), where n is size of the matrices), while
the second one depends on the input of the method. When the input is such
that it has a wide range of Markovian representations the procedure finds a
solution in some 100 iterations. If the input is close to the border of the set
of Markovian processes then the number of required iterations is increasing
and occasionally the process stops before finding a Markovian representation.
When the procedure is called with an input without a Markovian represen-
tation it performs the predefined number of iterations and never finds a false
Markovian representation.

Considering the robust and run time limited version of our procedure as it
is in Figure 1 we conclude that the procedure is able to find a Markovian
representation for the major part of the set of Markovian models and it fails
only around the border of this set. Whenever it fails it is due to the presence
of local optima of the considered goal functions.

8 Conclusions

This paper recommends applying unique and minimal representations of PH
and MAP processes instead of the redundant and non-unique Markovian rep-
resentations and presents a numerical procedure for deciding if a minimal set
of moments (composed of 2n − 1 moments in case of continuous PH distri-
butions and n2 moments and joint moments in case of MAPs) represents a
Markovian process or not.

Assuming that the moments set is transformed to MRP representation using
the method presented in [18] we have a non-redundant representation which
allows using the presented methodology. Currently we are working on the
enhancement of the presented numerical method for improving its performance
around the border of the Markovian sets. Future research plans include the
application of this transformation method to moments based MAP fitting.

Appendix

A Normalized Jordan decomposition

Theorem 5 If PH(π,A) is a non-redundant PH distribution then there is an
(−A)−1 = Γ̂−1EΓ̂ Jordan decomposition of (−A)−1 such that Γ̂1I = 1I.

Proof: Let (−A)−1 = Γ−1EΓ be an arbitrary Jordan decomposition of
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(−A)−1, xi the ith column of Γ−1 and yi the ith row of Γ. We need to
prove that {Γ1I}i = yi1I 6= 0 or if {Γ1I}i = yi1I = 0 then there is a
Γ−1EΓ = Γ−1G−1EGΓ transformation for which {GΓ1I}i 6= 0.

Let #n be the number of Jordan blocks of E and nj the size of the jth Jordan

block (
∑#n

j=1 nj = n). We introduce the Jordan block decomposition

Γ−1EΓ =
#n∑

j=1

XjEjYj, (A.1)

where Ej is the jth Jordan block and Xj and Yj are the associated n×nj and
nj × n part of Γ−1 and Γ, respectively. Without loss of generality we study
only the first Jordan block.

Let λ1 be the eigenvalue of the first Jordan block and x` and y` be the `th
column of X1 and the `th row of Y1, respectively, 0 ≤ ` ≤ n1.

We consider two cases, the first is when the `th row of E1 contains a single
non-zero element, the λ1 > 0 eigenvalue, in the diagonal (` = n1) and the
second is when the `th row of E1 contains two non-zero elements, the λ1 > 0
eigenvalue in the diagonal and 1 in the sub-diagonal (` < n1). In the first case
the `th row is the last row of the Jordan block, in the second case the `th row
is one of the internal rows of the Jordan block.

According to (A.1) the contribution of the λ1 eigenvalue to the ith moment,
µi = i! π(−A)−i1I, is characterized by πX1E1

iY11I, where, for i ≥ n1,

πX1E1
iY11I =

π



x1 x2 . . . xn1







λ1 1 0 . . .

0 λ1
. . . . . .

...
. . . . . . 1

0 0 . . . λ1




i 


y1

y2

...

yn1




1I =

n1∑

`=1


∑̀

j=1

πxj λi−j+1
1


 y`1I =

n1∑

`=1

λi−j+1
1




n1−`+1∑

j=1

πxj yj+`−11I


 =

n1∑

`=1

λi−`+1
1 c1`.

(A.2)
In the last expression c1` denotes the coefficient of λi−`+1

1 , the contribution of
the λ1 eigenvalue according to the given power. Based on (A.2) yn11I is non-
zero, because if yn11I = 0 then c1n1 = 0 and PH(π,A) is redundant since the
multiplicity of the contribution of the λ1 eigenvalue is less than n1.

If for any j, 1 ≤ j < n1 we have yj1I = 0 we apply the transformation E1 =

23



G1
−1 G1 E1 = G1

−1 E1 G1 with

G1 =




1 g1 g2 . . .

0 1
. . . . . .

...
. . . . . . g1

0 . . . 0 1




, (A.3)

which commutes with E1 due to the structure of the Jordan blocks. It results

πX1E
i
1Y11I =

π



x1 x2 . . . xn1




G−1
1




λ1 1 0 . . .

0 λ1
. . . . . .

...
. . . . . . 1

0 0 . . . λ1




i 


y1 +
∑n1

k=2 ykgk−1

...

yn1−1 + g1yn1

yn1




1I.

(A.4)

Based on yn11I 6= 0 we set g1 such that (yn1−1 + g1yn1)1I 6= 0, and successively
we set gk, 1 ≤ k ≤ n1 − 1, such that all row-sums of G1Y1 are non-zero.

Finally, having {Γ1I}i 6= 0 or {GΓ1I}i 6= 0 the ith row of Γ̂ is composed by
the ith row of Γ divided by {Γ1I}i or the ith row of GΓ divided by {GΓ1I}i,
respectively.
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[10] A. Horváth and M. Telek. PhFit: A general purpose phase type fitting tool. In
Tools 2002, pages 82–91, London, England, April 2002. Springer, LNCS 2324.
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