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Abstract. The characterization and the canonical representation of or-
der n phase type distributions (PH(n)) is an open research problem.
This problem is solved for n = 2, since the equivalence of the acyclic and
the general PH distributions has been proven for a long time. However,
no canonical representations have been introduced for the general PH
distribution class so far for n > 2. In this paper we summarize the
related results for n = 3. Starting from these results we recommend a
canonical representation of the PH(3) class and present a transformation
procedure to obtain the canonical representation based on any (not only
Markovian) vector-matrix representation of the distribution.
Using this canonical transformation method we evaluate the moment
bounds of the PH(3) distribution set and present the results of our nu-
merical investigations.
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1 Introduction

The Markovian structures are efficiently applied in various fields of stochastic
modeling because of their computability and numerical stability. Phase type
distributions are non-negative distributions with Markovian structure [10, 7].
They are widely used in distribution approximation due to their computational
advantages and easy integration in complex stochastic models.

The most common representation of a Phase type distribution is the defi-
nition of its initial probability vector α, and generator matrix A. This repre-
sentation is known to be non-unique and non-minimal, thus there might be a
vector α′ and a matrix A′, which define the same distribution. Furthermore,
the number of parameters (non-determined elements) of this representation is
n2 + n− 1 when the cardinality of vector α′ and square matrix A′ is n (since A
has n2 elements and α has n − 1 assuming no probability mass at zero), while
the Laplace transform of PH(n) distributions – that uniquely determines the
distribution – has 2n− 1 roots and zeros.
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To overcome these drawbacks a unique, minimal representation is required
which is commonly referred to as canonical representation. A canonical repre-
sentation is available for any order acyclic phase type distributions by Cumani
[4], and it is also known that any PH(2) distribution can be transformed to an
acyclic form [3] and this way the same canonical form is applicable of PH(2).

The canonical representation of PH(n) distributions is not known for n ≥ 4
and we present a proposal for the canonical representation of the PH(3) class
in this paper. The proposed representation has a special α vector and A matrix
such that it has exactly 2n − 1 = 5 parameters and it is proved to exist for
all PH(3) distributions. We also provide a procedure for transforming any (not
only Markovian) vector-matrix representation of the distribution to the canonical
form. The transformation procedure is composed of explicit computational steps,
whose most complex element is the evaluation of the eigenvalues of the generator
matrix (finding the roots of an order 3 polynomial, for which symbolic solution
is available).

Our results are very much based on the results of [5], where the unicyclic
representation of PH(3) distributions is proved. Indeed, the presented canonical
representation is unicyclic, but it extends the results of [5] with the careful
analysis of the initial probability vector of the canonical representation, which is
not taken into consideration in [5], because it aims to solve a different problem.

With the help of this transformation procedure, which fails only when the
input vector-matrix pair cannot be transformed into a valid PH(3) representa-
tion, we investigate also the moments bounds of the PH(3) class. Some results
on the bounds of the first 3 moments of PH(3) distributions are provided in [2],
but the behaviour of the 4th and 5th moments are unknown to the best of our
knowledge.

The rest of the paper is organized as follows. Section 2 gives the definition
and the basic properties of PH(3) distributions. The unicyclic transformation
of PH(3) distributions is summarized in Section 3 and the proposed canonical
representation is presented in Section 4. Section 5 lists some applications of the
canonical form and the associated transformation method and Section 6 demon-
strates the behaviour of the parameters used in the transformation procedure.
The paper is concluded in Section 7.

2 PH(3) distributions

Let X be a continuous non-negative random variable with cumulative distribu-
tion function

F (t) = Pr(X < t) = 1− veHt1I ,

where the row vector v is referred to as the initial vector, square matrix H as the
generator and 1I as the closing vector. Without loss of generality [8], we assume
that the closing vector, 1I, is a column vector of ones, i.e., 1I = [1, 1, . . . , 1]T .
Since X is a continuous random variable, it has no probability mass at zero, i.e.,
v1I = 1. The density, the Laplace transform and the moments of X are

f(t) = veHt(−H)1I , (1)



f∗(s) = E(e−sX ) = v(sI −H)−1(−H)1I , (2)

µn = E(Xn) = n!v(−H)−n1I . (3)

When the cardinality of vector v and of square matrix H is 3, we have the
following cases:

– If f(t) ≥ 0 and
∫∞
0

f(t)dt = 1, then X has an order 3 matrix exponen-
tial (ME(3)) distribution. The elements of v and H may be arbitrary real
numbers.

– If v is a probability vector and H is a transient Markovian generator ma-
trix (i.e., the generator matrix of a transient continuous-time Markov chain
(CTMC)), then X has a PH(3) distribution. (The set of PH(3) distributions
form a true subset of the ME(3) set.)

Vector v is a probability vector when vi ≥ 0, v1I = 1 and matrix H is a
transient Markovian generator when Hii < 0, Hij ≥ 0 for i 6= j, H1I ≤ 0,
H1I 6= 0. Scalars like Hij denote the ijth element of matrix H.

Definition 1. The (v, H) representation is a Markovian representation, if v is
a probability vector and H is a transient Markovian generator matrix.

In general it is not easy to check whether an f(t) in (1) corresponding to
a (v, H) pair is a density function. We have the following necessary conditions
(those that we use in the sequel, [9]):

– the eigenvalues of H have negative real part,
– the largest eigenvalue of H is real, and
– the initial value of the density function is non-negative:

f(0) = −vH1I ≥ 0 . (4)

Definition 2. Assuming B is a non-singular matrix such that B1I = 1I then
the vector-matrix pair vB, B−1HB define a similarity transform of the vector-
matrix pair v, H.

Note that the vector-matrix pairs v, H and vB, B−1HB represent the same
distribution, since

F̂ (t) = 1− vBeB−1HBt1I = 1− vBB−1eHtB1I = 1− veHt1I = F (t) .

Example 1.

v =
[
0.1 0.5 0.4

]
, H =



−5 2 1
1 −2 1
1 0 −4




and

z =
[−1.1 2.5 −0.4

]
, G =



−11 10 −1
−6.6 6 −1
−15 20 −6






represent the same distribution, since z = vB and G = B−1HB with B =


1 0 0
−4 5 0
2 0 −1


. (z, G) is a non-Markovian representation of this PH(3) distribution.

Now, we can refine the above definition of PH(3) distributions with the help
of similarity transform.

Definition 3. The random variable, X , with density function (1), is PH(3)
distributed if there is a non-singular matrix B, such that B1I = 1I, and
(vB,B−1HB) is a Markovian representation.

Note that this definition implies that f(t) ≥ 0.
One of the main goals of this paper is to decide if such similarity trans-

form exists for a given non-Markovian vector-matrix pair, since the definition is
obvious when the vector-matrix pair is Markovian.

3 Unicyclic representation of PH(3) distributions

The results of this paper are based on the unicyclic transformation of PH(3)
distributions presented in [5]. We summarize the related results, in a bit modified
way, for completeness.

Theorem 1. [5] If (v, H) is a Markovian representation of a PH(3) distribu-
tion then it can be similarity transformed to the following unicyclic Markovian
representation

π =
[
π1 π2 π3

]
, A =



−x1 0 x13

x2 −x2 0
0 x3 −x3


 , (5)

where x1 ≥ x2 ≥ x3 > 0, 0 ≤ x13 ≤ x1, 0 ≤ π1, π2, π3, π1 + π2 + π3 = 1 and the
procedure in Figure 2 generates this unicyclic representation.

The structure of the resulting unicyclic PH distribution is depicted in Figure 1.

π3 π2 π1

x3 x2 −x13x1

x13

Fig. 1. The structure of the considered unicyclic PH(3) distribution

The main difference between Theorem 1 ([5]) and the goal of this paper is that
Theorem 1 assumes that (v, H) is Markovian, while we look for a transformation



function PH(3)–to–unicyclic PH(3)
input: v, H (Markovian)
output: π, A (unicyclic)

begin
λ1, λ2, λ3 = decreasingly ordered eigenvalues of −H,
a0 = λ1 λ2 λ3, a1 = λ1 λ2 + λ1 λ3 + λ2 λ3, a2 = λ1 + λ2 + λ3,
γu = 1

3
(a2 + 2

p
a2
2 − 3 a1), γ0 = 1

3
(a2 +

p
a2
2 − 3 a1),

γ` =

�
λ1 if λ1 ∈ real,
γ0 if λ1 ∈ complex,

φ = max {−H1,1, −H2,2, −H3,3},
x1 = max {φ, γ`},
x13 = x1 − a0 / (x2

1 − a2 x1 + a1),
x2 = 1

2

�
a2 − x1 +

p
(a2 − x1)2 − 4 (x2

1 − a2 x1 + a1)
�
,

x3 = 1
2

�
a2 − x1 −

p
(a2 − x1)2 − 4 (x2

1 − a2 x1 + a1)
�
,

π1 = v H 1I / (x13 − x1),
π2 = v (x1 I + H) H 1I / (x13 − x1) x2,
π3 = v (x2 I + H) (x1 I + H) H 1I / (x13 − x1) x2 x3,

return π =
�
π1 π2 π3

�
, A =

2
4
−x1 0 x13

x2 −x2 0
0 x3 −x3

3
5 ,

end

Fig. 2. Unicyclic transformation of PH(3) distributions

which is applicable for any non-Markovian (v,H) representation. For example
the procedure of Figure 2 gives a proper unicyclic representation when it is called
with the (v, H) pair of Example 1, but it gives complex results when it is called
with the (z, G) representation of the same PH(3) distribution.

Let λ1, λ2, λ3 denote the eigenvalues of −H which are ordered such that
Re(λ1) ≥ Re(λ2) ≥ Re(λ3) and a0, a1, a2 the coefficients of the characteristic
polynomial of −H, i.e.,

a0 = λ1λ2λ3, a1 = λ1λ2 + λ1λ3 + λ2λ3, a2 = λ1 + λ2 + λ3. (6)

A simple interpretation of Theorem 1 is that the similarity transform with matrix
B makes the transformed matrix to be unicyclic if B is composed by the column
vectors {b1, b2, b3} where

b1 =
1

x13 − x1
H1I,

b2 =
1

(x13 − x1)x2
(x1I + H)H1I,

b3 =
1

(x13 − x1)x2x3
(x2I + H)(x1I + H)H1I,

(7)



and

x13 = x1 − a0

x2
1 − a2x1 + a1

,

x2 =
a2 − x1 +

√
(a2 − x1)2 − 4(x2

1 − a2x1 + a1)
2

,

x3 =
a2 − x1 −

√
(a2 − x1)2 − 4(x2

1 − a2x1 + a1)
2

.

(8)

These expressions are obtained from the fact that the resulting generator A has
the same characteristic polynomial as the original H, i.e., the parameters are
obtained from the solution of the equations

a0 = (x1 − x13)x2x3, a1 = x1x2 + x2x3 + x3x1, a2 = x1 + x2 + x3. (9)

The transformation matrix B and the transformed unicyclic representation
A depend on the choice of x1. [5] showed the following properties of PH(3)
distributions and this similarity transform.

P1) When H is a Markovian generator then

γu =
a2 + 2

√
a2
2 − 3a1

3
, (10)

γ0 =
a2 +

√
a2
2 − 3a1

3
, (11)

γ` =
{

λ1, if λ1 is real,
γ0, if λ1 is complex (12)

are real and positive such that γ` ≤ γu.
P2) When γ` ≤ x1 ≤ γu then the transformed generator matrix, A = B−1HB

is Markovian such that x1 ≥ x2 ≥ x3 > 0.

Indeed, property P2 holds also for all non-Markovian matrix H if its eigen-
values satisfies the requirements of PH(3) distributions:

– λ3 is real and positive,
– a2

2 − 3a1 ≥ 0.

Due to the fact that the similarity transform leaves the eigenvalues unchanged,
this generalization of property P2 is a consequence of property P1 and Theorem
1.

We can summarize the results of [5] as follows. It defines a similarity transfor-
mation of PH(3) distributions to a unicyclic representation. This transformation
depends on a parameter, x1. [5] also defines the range of parameter x1, (γ`, γu),
where the transformed generator matrix is Markovian. The problem which re-
mains open is how to set parameter x1 such the initial vector is Markovian, i.e.,
is a proper probability vector.

In the procedure in Figure 2 parameter φ is used to ensure the positivity of
the initial vector. Unfortunately that approach is not sufficient when we have a



non-Markovian (v, H) representation, as it is the case with the non-Markovian
representation of Example 1. The next section investigates the range of x1 where
the initial vector is Markovian.

4 Canonical representation of PH(3) distributions

Using the similarity matrix defined in (7) the elements of the initial vector π =
vB are:

π1 =
−vH1I

x1 − x13
=

d1

x1 − x13
, (13)

π2 =
−v(x1I + H)H1I

(x1 − x13)x2
=

x1d1 + d2

(x1 − x13)x2
, (14)

π3 =
−v(x2I + H)(x1I + H)H1I

(x1 − x13)x2x3
=

x1x2d1 + (x1 + x2)d2 + d3

(x1 − x13)x2x3
, (15)

where di = −vHi1I, i = 1, 2, 3. The derivatives of the density function at 0
are closely related with these parameters since f (i)(0) = di+1 = −vHi+11I.
Consequently, for a Markovian (v,H) pair

P3) d1 > 0, or d1 = 0 and d2 ≥ 0,

must hold for having a non-negative density around zero.
The canonical form we propose in this paper is based on the following theo-

rem.

Theorem 2. If (v, H) has a Markovian representation, then the similarity
transform with matrix B, defined in (7), with parameter

x1 =
{

max{γ2, γ`}, if v H 1I < 0,
γ`, if v H 1I = 0,

(16)

γ2 = −vH21I
vH1I

, (17)

provides a Markovian representation.

Proof Due to Theorem 1 and B1I = 1I it is enough to prove that π1, π2, π3 ≥ 0
in (13), (14), (15), for some x1 in the [γ`, γu] interval, where x1−x13, x2, x3 are
positive and [γ`, γu] is not empty.

π1 ≥ 0 follows immediately from (4), since if (v, H) has a Markovian repre-
sentation, then its density is non-negative at 0.

When vH1I = 0, π2 must be non-negative according to property P3. When
vH1I < 0, we can re-write (14) as:

π2 =
−vH1I

(x1 − x13)x2
(x1 − γ2). (18)



The first term of (18) is positive and the second term is non-negative when
x1 = max{γ2, γ`} according to (16).

For the analysis of π3 we re-write (15) as

π3 =
1

(x1 − x13)x2x3
(x1x2d1 + (x1 + x2)d2 + d3)︸ ︷︷ ︸

g(x1)

(19)

The first term is positive again, thus it remains to prove that g(x1) > 0 if x1 is
according to (16). The first derivative of g(x1) has two roots:

d

dx1
g(x1) = 0 ⇔ x1 =

a2 ±
√

a2
2 − 3a1

3
. (20)

The larger root equals to γ0, hence g(x1) is a monotone function when x1 > γ0.
In the x1 > γ0 region the increasing/decreasing behaviour of g(x1) is determined
by the sign of the second derivative at x1 = γ0:

d2

dx2
1

g(x1)|x1=γ0 =
−2(a2d1 + 4d1

√
a2
2 − 3a1 + 3d2)

3
√

a2
2 − 3a1 (21)

When d1 = −vH1I = 0, then the second derivative is non-positive due to prop-
erty P1 and P3 and when d1 = −vH1I > 0 we have

d2

dx2
1

g(x1)|x1=γ0 =
−2(a2 + 4

√
a2
2 − 3a1 − 3γ2)

3d1

√
a2
2 − 3a1

= − 2
3d1

√
a2
2 − 3a1︸ ︷︷ ︸
≥0


3 (γu − γ2)︸ ︷︷ ︸

≥0

+ (3γu − a2)︸ ︷︷ ︸
≥0


 ≤ 0,

(22)

where the non-negativity of the first under-braced term follows from property
P1, the non-negativity of the second term must hold since (v, H) is Markovian
and according to Theorem 1 it must have a unicyclic representation (x1 ≤ γu)
with a non-negative π2 (x1 ≥ γ2). The non-negativity of the third under-braced
term follows from Re(λ1) ≤ γu and the fact that Re(λ1) ≥ Re(λ2) ≥ Re(λ3).

If the second derivative in (22) equals to 0 it means that there is only a single
x1 value, x1 = γu, which results in a Markovian representation.

If the second derivative in (22) is negative then g(x1) has a local maximum
at x1 = γ0, and it is monotone decreasing function at x1 > γ0. To obtain a
valid generator x1 > γ` must hold as well, and since γ` ≥ γ0, the largest feasible
π3 value is obtained at x1 = γ`. Since (v, H) has a unicyclic representation
according to Theorem 1, π3 is non-negative in this point.

We demonstrate the numerical behaviour of π2 and π3 as a function of x1 in
Section 6.



4.1 The canonical transformation procedure

The transformation procedure is presented in Figure 3. If the procedure exits
with one of the error messages then the input does not represent a PH(3) dis-
tribution. If the procedure completes, it gives back the canonical representation
of the given PH(3) distribution, which is Markovian, minimal and unique as it
is discussed in the next subsection.

function Canonical–PH(3)–transformation
input: v, H (any matrix representation)
output: π, A (Canonical representation if v, H is a PH(3))

begin
if v1 + v2 + v3 6= 1

error ”Probability mass at 0”,
λ1, λ2, λ3 = decreasingly ordered eigenvalues of −H,
if λ3 < 0 or λ3 ∈ C or v H 1I < 0

error ”Invalid eigenvalues”,
a0 = λ1 λ2 λ3, a1 = λ1 λ2 + λ1 λ3 + λ2 λ3, a2 = λ1 + λ2 + λ3

if a2
2 − 3 a1 < 0
error ”Invalid characteristic polynomial”,

γu = 1
3

(a2 + 2
p

a2
2 − 3 a1), γ0 = 1

3
(a2 +

p
a2
2 − 3 a1),

γ` =

�
λ1 if λ1 ∈ real,
γ0 if λ1 ∈ complex,

if v H 1I > 0 or (v H 1I == 0 and v H2 1I > 0)
error ”Negative density around 0”,

γ2 =

�−v H2 1I / v H 1I if v H 1I < 0,
0 if v H 1I == 0,

if γ2 > γu

error ”π2 is negative”,
x1 = max {γ2, γ`},
x13 = x1 − a0 / (x2

1 − a2 x1 + a1),

x2 = 1
2

�
a2 − x1 +

p
(a2 − x1)2 − 4 (x2

1 − a2 x1 + a1)
�
,

x3 = 1
2

�
a2 − x1 −

p
(a2 − x1)2 − 4 (x2

1 − a2 x1 + a1)
�
,

π1 = v H 1I / (x13 − x1),
π2 = v (x1 I + H) H 1I / (x13 − x1) x2,
π3 = v (x2 I + H) (x1 I + H) H 1I / (x13 − x1) x2 x3,
if π3 < 0

error ”π3 is negative”,

return π =
�
π1 π2 π3

�
, A =

2
4
−x1 0 x13

x2 −x2 0
0 x3 −x3

3
5,

end

Fig. 3. Canonical transformation of PH(3) distributions



4.2 Properties of the proposed canonical form

If v is an arbitrary vector and H is an arbitrary matrix of cardinality 3 such that
(v, H) represents an order 3 phase type distribution, then (π,A) is a Markovian
representation of this PH(3) distribution.

(π, A) is unique, in the sense that for any (v, H) representation of a PH(3)
distribution the procedure provides the same (π, A) pair.

The PH(3) distributions are known to be determined by 5 parameters.
E.g., the first 5 moments, or the 5 coefficients of the Laplace rational trans-
form uniquely determines a PH(3) distribution. Although not obvious from
the first sight, the presented canonical form is also determined by exactly
5 independent parameters. In the unicyclic form [5] there are 6 parameters
(x1, x2, x3, x13, π1, π2) and in the transformation procedure presented in this pa-
per one of these parameters is additionally set to a special value. The following
constraint decreases the number of parameters to 5:

f1) λ1 real, γ2 < γ` → x13 = 0,
f2) λ1 complex, γ2 < γ` → x1 = x2,
f3) γ` < γ2 → π2 = 0.

Indeed, these cases represent three different forms of the canonical representa-
tion.

It is an additional nice feature of the proposed canonical form that it is
compatible with the widely used canonical representation of acyclic phase type
distributions [4], since when (v, H) represents an order 3 acyclic phase type
distribution, then form f1 gives the Cumani’s canonical representation of that
distribution.

5 Practical application of the canonical form and the
transformation procedure

5.1 Phase type fitting

The currently available PH(3) fitting methods are either restricted to the acyclic
subclass of PH(3) distributions (e.g., [6]) or they are not restricted, but their
performance is limited by the fact that they optimize too many parameters
(e.g., [1]). The canonical representation allows to eliminate the weakness of the
second type of fitting methods. Using the 3 potential forms of the canonical
representation one can compose 3 fitting methods (for form f1, f2 and f3) with
minimal number of parameters and the best of the 3 gives the best fit over the
whole PH(3) class.

5.2 Moment matching with PH(3)

The presented transformation procedure is also applicable for moment matching
with PH(3) distributions. For a given set of {µ1, . . . µ5}moments we can generate
a PH(3) distribution, whose first five moments are the same. This moments
fitting procedure is composed by the following 2 steps.



– The first step is to compute a vector and matrix pair, v,H, for which
i!v(−H)−i1I = µi, i = 1, . . . , 5. The procedure of Appie van de Liefvoort
in [12] produces such v, H pair with a proper transformation of the closing
vector1.

– Starting from v, H the canonical PH(3) transformation procedure gener-
ates the Markovian representation of the PH(3) distribution, whose first 5
moments are {µ1, . . . µ5}.

Example 2. For example, when the first 5 moments are
{1.85111, 5.45136, 22.2838, 118.094, 774.513} the procedure of [12] gives

v =
[
1/3 1/3 1/3

]
, H =



−2.92628 44.7789 −40.8522
−0.398989 −3.56926 3.0189
−0.267678 2.9026 −3.68557


 ,

and the canonical transformation procedure gives

π =
[
0.0865519 0.124609 0.788839

]
, A =



−4.20997 0 0.360255
4.20997 −4.20997 0

0 1.76118 −1.76118


 .

5.3 Moments bounds of the PH(3) class

The presented transformation procedure is also applicable for evaluating the
borders of the PH(3) distribution class. Indeed the above described moment
fitting procedure terminates properly only when {µ1, . . . µ5} are the moments of
a PH(3) distribution and the moment matching method aborts with some error
if there is no PH(3) distribution whose moments are {µ1, . . . µ5}.

To demonstrate the moment bounds of the PH(3) distribution set we first
introduce the normalized moments ni = µi

µ1µi−1
. The normalized moments are

time unit independent “normalized” quantities, which carry the structural in-
formation of the moments apart of a time unit dependent scaling factor. n2 is
closely associated with the squared coefficient of variation, c2

v. n2 = c2
v + 1. The

second and third normalized moments of APH(n) distributions are studied in [2,
11].

Example 3. We study the fourth and fifth normalized moments of PH(3) distri-
butions with two pairs of second and third normalized moments.

The first point, n2 = 1.6 and n3 = 2.3, is taken in the n2 < 2 range, where
the coefficient of variation is less than 1, while the second point, n2 = 2.018
and n3 = 3.036, is taken in the n2 > 2 range. The feasible range of normalized
moment n4 and n5 are depicted in Figure 4 and 5, respectively. It is interesting
to see that the fifth normalized moment, n5, is both upper and lower bounded
as well in the first case, while it is only lower bounded in the second case.

The presented canonical transformation procedure gives a tool for the nu-
merical investigation of the moments bounds, but the detailed qualitative inves-
tigation of these moments bounds is out of the scope of this paper.
1 In [12] the initial and the closing vector are {1, 0, 0, . . . , 0}. In our case the closing

vector is {1, 1, . . . , 1}, hence a similarity transformation is required.
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Fig. 5. Legal n4, n5 normalized moments
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6 Numerical examples

6.1 Dependence of bounding quantities on the matrix elements

We demonstrate the dependence of the bounding quantities of the canonical
representation, γ0, γ`, γ2, γu, on the elements of the PH representation through
some numerical examples.

We study the dependence of the bounding quantities on the initial dis-
tribution using the following representation, v =

[
x 0.8− x 0.2

]
and H =


−3 0 2.5
2 −2 0
0 1 −1


. The result is presented in Figure 6. In this case all quantities which

are associated with the Markovian representation of the generator matrix (the
coefficients of the characteristic polynomial, a0, a1, a2, the eigenvalues, λ1, λ2, λ3

and the associated bounding quantities, γ0 = 2.57735, γ` = 2.57735, γu = 3.1547)
remain constant and only γ2 changes which is associated with the Markovian rep-
resentation of the initial vector. The x1 value of the canonical representation is
determined by γ` if x < 0.660434 and it is determined by γ2 for larger x values.

The dependence on the feedback element, x13, is investigated using v =

[
0.62 0.246 0.134

]
and H =



−3 0 x
2 −2 0
0 1 −1


. The curves in Figure 7 indicates

another behaviour. γ2 = 2.20645 is independent of the feedback element, but in
this case some other, generator matrix related quantities, are constant as well.
The a1 and the a2 coefficients of the characteristic polynomial are constant. As
a consequence γ0 = 2.57735 and γu = 3.1547 are independent on x1. Only the
a0 coefficient of the characteristic polynomial changes with x, which makes the



eigenvalues depend on x as well. In the x ∈ {0, 0.2} range the λ1 eigenvalue is
real and it determines the x1 value of the canonical representation. When x is
greater γ0 determines the x1 value.

The most complicated behaviour has been obtained when the intensity of

a transition is changing. For v =
[
0.62 0.246 0.134

]
and H =



−3 0 1
x −x 0
0 1 −1




the bounding quantities are depicted in Figure 8. In this case γ2 has a linearly
decreasing behaviour starting from 3, the γu function has a minimum at x = 1,
the λ1 eigenvalue is real and equals to γ` while x < 1.1 and it is complex and
γ` = γ0 when x > 1.1. γ0 is an increasing function of x starting from 2.21525.
The x1 value equals to γ2 when x < 2.01 and it equals to γ0 for larger x.
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6.2 Dependence of the unicyclic representation on x1

In the majority of the cases γ` and/or γu allows a Markovian representation. The

case when v =
[
0.72 0.146 0.134

]
and H =



−3 0 2.025
2 −2 0
0 1 −1


, is different, since in

this case γ2 = 2.59444 > γ` = γ0 = 2.57735 and γu = 3.1547 > γz = 3.15186,
i.e., none of γ` and γu results in a Markovian representation. The behaviours of
π2 and π3 are depicted in Figure 9. The y axis is set to γ` = γ0 and the grid line
to γu. It is also visible that π3 has a maximum at γ0.
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7 Conclusion

In a number of practical applications it is very efficient using the canonical rep-
resentation of PH distributions that have as few parameters as possible. The
problem of canonical representation of high order PH distributions is still open,
but in this paper we presented a canonical representation for order 3 PH dis-
tributions. This canonical representation uses the unicyclic structure of He and
Zhang and additionally ensures that the initial vector is positive.

We demonstrated potential applications of the canonical form and the asso-
ciated transformation method through the analysis of the moments bounds of
the PH(3) class.
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