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ABSTRACT
This paper aims to collect a set of properties of bilateral
phase type (BPH) distributions that helps their practical
use. Similar to the relation of the phase type (PH) and the
acyclic phase type (APH) distributions, it turns out that re-
stricting the underlying Markov chain to be acyclic results in
a more tractable class of distributions, the acyclic bilateral
phase type (ABPH) distributions. Here we present a canon-
ical representation, moment bounds and moment matching
methods for ABPH distributions.

Keywords
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1. INTRODUCTION
Because of their simplicity and tractability Markovian

models are widely used in applied stochastic modelling. For
the first sight, it is a limitation of Markov models that the
inter-event times of continuous time Markov chains (CTMC)
are exponentially distributed, but a set of exponentially dis-
tributed events controlled by a background CTMC can be
used to model non-exponential durations. The class of dis-
tributions composed this way is referred to as phase type
(PH) distributions (see, e.g. [12, 11]). Phase type distri-
butions find application in a wide range of fields and they
are also effectively applied to approximate general (non-PH)
non-negative distributions (a non-complete list of references:
[2, 4, 10, 7, 8, 6, 9]).

To extend the applicability of Markov modulated mod-
els in distribution fitting beyond non-negative distributions,
Ahn and Ramaswami recently introduced the class of bi-
lateral phase type (BPH) distributions [1]. This class of
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continuous distributions (assuming no probability mass at
zero) can have support on (0,∞), (−∞, 0) or (−∞,∞).

Together with the definition of BPH distributions the au-
thors posed several research problems in [1]. In this paper
we consider some of these problems and extend the classifi-
cation with the class of acyclic bilateral phase type (ABPH)
distributions. Throughout this paper we consider the case
with support on (−∞,∞) with no probability mass at zero.
The specialisation of the results to the other cases follows the
same pattern as the similar treatment of PH distributions.

The rest of the paper is organised as follows. Section
2 introduces the class of bilateral phase type distributions.
Section 3 presents the class of acyclic bilateral phase type
distributions and some of its properties. Symbolic moment
matching expressions and moment bounds are provided in
Section 4 and 5, respectively. Section 6 presents a moment
matching method, which generate BPH distributions based
on their first 3 moments, and Section 7 demonstrates the
behaviour of this method.

2. BILATERAL PHASE TYPE DISTRIBU-
TIONS

Following [1] we define the class of BPH distribution with
the help of Markov reward models.

Let {Z(t), t ≥ 0} be a continuous time Markov chain
(CTMC) on state space S = {1, 2, ..., N + 1} with gener-
ator Q = {qij} and initial probability vector γ. The state
space is composed by N transient state {1, 2, ..., N} and an
absorbing one {N + 1}.

We assign a real valued constant, referred to as reward
rate, to the states of S and a real valued reward function,
B(t), to Z(t) such that B(t) describes the reward accumu-
lated by Z(t) in the interval (0, t). B(0) = 0 and during the
sojourn in state i ∈ S the amount of accumulated reward
increases at rate ri, i.e., dB(t)/dt = ri, when Z(t) = i. If
ri is negative B(t) decreases during the sojourn in i. The
amount of reward accumulated during the interval (0, t) is

B(t) =

Z t

0

rZ(τ)dτ . (1)

Let R be the diagonal matrix composed of the reward rates
of the transient states, R = diag〈ri〉.

The time to absorption of the CTMC, τ = inf{t|Z(t) =
N +1}, is said to be phase type distributed with initial prob-
ability vector α, composed by the elements of γ associated
with the transient states, and generator A, composed by the



elements of Q associated with the transient states:

γ = [α, •]; Q =

»
A •
0 0

–
.

Definition 1. [1] The reward accumulated till absorp-
tion, B(τ), is bilateral phase type (BPH) distributed with
initial probability vector α, transient generator A and reward
matrix R.

[1] presents several properties of BPH distributions:

1. The class of BPH distributions inherits several useful
properties of PH distributions like denseness, closure
(for finite sum, mixture, linear combination), tractabil-
ity.

2. The (α, A, R) representation is not unique. E.g., if C
is a non-singular diagonal matrix with positive entries,
then (α, CA, CR) defines the same BPH distribution.
Thanks to this property all rates can be changed to 1
or -1 without changing the distribution.

3. One can eliminate the states with zero reward rates.

4. One of the most interesting properties of BPH distri-
butions is that they can be composed as the mixture
of a positive and a negative PH distribution.

A consequence of this composition, not mentioned in [1],
is that the BPH class also inherits closure property for min-
imum and maximum operation.

2.1 Moments of BPH distributions
Based on property 4 we introduce probability p, which is

the probability that the BPH distribution is positive, and 2
(positive) PH distributions, PH+ and PH−. The BPH takes
the value of PH+ with probability p and (−1)∗PH− with
probability 1−p. Let µi, µ

+
i , and µ−i be the ith moment the

BPH, PH+ and PH− distributions, respectively. With this
notation the moments of the BPH distribution satisfy

µi = pµ+
i + (−1)i(1− p)µ−i . (2)

2.2 Continuity behaviour at zero
The potential discontinuity of the probability density

function (pdf) of BPH distributions is mentioned in [1].
Practical applications of BPH distributions might require
that their pdf functions exhibit a given continuity behaviour
at zero. In particular we pay special attention to those
ABPH distributions whose pdf has equal left and right limit
at zero. These distributions will be referred to as ABPH-C.

3. ACYCLIC BILATERAL PHASE TYPE
DISTRIBUTIONS

To extend the applicability and tractability of BPH dis-
tributions we introduce the subclass with acyclic underlying
Markov chain.

Definition 2. The BPH distribution, whose underlying
Markov chain does not contain cycle (i.e., A is an upper
triangular matrix) is referred to as acyclic bilateral phase
type (ABPH) distribution.

Indeed ABPH distributions inherit the properties of the
APH distributions, such as denseness, closure (for finite sum,
mixture, linear combination, min/max operation), tractabil-
ity, real eigenvalues and we provide further consequences
below.

ABPH(n+, n−) denotes an acyclic bilateral phase type
distribution for which the number of phases with positive
(negative) rate is n+ (n−), where n+ ≥ 0 (n− ≥ 0).

Theorem 3. Any ABPH(n+, n−) distribution can be
transformed into the canonical form depicted in Figure 1.
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Figure 1: Canonical form of an ABPH(n+, n−) dis-
tribution with n+ = n and n− = m
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Figure 2: A path of an ABPH distribution

Proof. Consider a path with k− ≤ n− negative and
k+ ≤ n+ positive phases leading from an initial state to
the absorbing state as depicted in Figure 2. The path can
be reorganised in such way, as illustrated in Figure 3, that at
first the phases with positive rate are passed through. This
transformation obviously does not modify the probability
density of the fluid accumulated along the path. The same
probability density function can be realized by the structure
depicted in Figure 4. The initial probabilities of the negative
phases have to be set as

p−i =Pr{fluid accumulated along the path of Figure 3 (3)

is negative and fluid level crosses level zero

during the stay in the ith negative phase.}
The initial probabilities of the positive phases can be deter-
mined by interchanging the role of the negative and positive
phases.

The decomposition into negative and positive parts de-
scribed above can be performed for all possible paths of the
ABPH(n+, n−) distribution. By applying the results pre-
sented in [5], the probabilistic mixture of the negative (posi-
tive) parts of all paths can be realized by a single sequence of
n+ positive (n− negative) phases; this sequence is in canon-
ical form. The combination of the sequence with negative
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Figure 3: Reorganised path of an ABPH distribu-
tion
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Figure 4: Path of an ABPH distribution decom-
posed into negative and positive parts

phases and the sequence with positive phases results in the
structure depicted in Figure 1 with associated constraints
which is a canonical form for ABPH(n+, n−) distributions. 2

4. SYMBOLIC EXPRESSIONS FOR 3 MO-
MENT MATCHING

4.1 Moments matching ABPH(1,1)
Assuming there is no probability mass at zero the first 3

moments define the parameters of an ABPH(1,1) based on
(2) which takes the form

µk = k!p(λ+)−k + k!(1− p)(λ−)−k , k = 1, 2, 3 . (4)

(4) simplify to a second order equation, whose relevant so-
lution is

p =
−27 µ2

1 µ2
2 + 18 µ3

2 + µ3 (µ3 −√c)

2 c

+
−12 µ3

1 (−2 µ3 +
√

c) + 9 µ1 µ2 (−2 µ3 +
√

c)

2 c
,

λ− =
−3 µ1 µ2 + µ3 +

√
c

3 µ2
2 − 2 µ1 µ3

, λ+ =
3 µ1 µ2 − µ3 +

√
c

3 µ2
2 − 2 µ1 µ3

,

where c = −27 µ2
1 µ2

2+18 µ3
2+24 µ3

1 µ3−18 µ1 µ2 µ3+µ2
3. The

µ1, µ2, µ3 moments are feasible ABPH(1, 1) moments (exists
an ABPH(1, 1), whose first 3 moments are µ1, µ2, µ3), if the
solution is feasible, i.e., 0 ≤ p ≤ 1, λ+ > 0, λ− > 0.

4.2 Moments matching with ABPH-C(1, 1)
distributions

The density of an ABPH(1, 1) is

f(t) =

(
(1− p)λ−eλ−t if t < 0,

pλ+e−λ+t if t > 0,
. (5)

where the λ+ > 0 and λ− > 0, are the parameters of the
positive and the negative parts and p (0 < p < 1) is the
mixing probability.

Applying (4) for k = 1, 2 and considering that the pdf has
to have equal left and right limits, i.e. pλ+ = (1 − p)λ−,
results in 3 equations for the three unknowns. There are
two solutions of this set of equation and the relevant one is:

p =
3µ2

1 − 2µ2 − µ1

p
2µ2−3µ2

1

6µ2
1 − 4µ2

,

λ+ =
−µ1 +

p
2µ2−3µ2

1

µ2 − 2µ2
1

, λ− =
µ1 +

p
2µ2−3µ2

1

µ2 − 2µ2
1

,

The µ1, µ2, µ3 moments are feasible ABPH-C(1, 1) moments,
if the solution is feasible, i.e., 0 ≤ p ≤ 1, λ+ > 0, λ− > 0.

5. MOMENT BOUNDS FOR 3 MOMENTS
The previous section presented results where the first 3

moments, or the moments and the continuity behaviour
uniquely determine the ABPH distribution. In this section
we extend the 3 moments based analysis for higher order
BHP distributions, but in this case the 3 moments do not
uniquely define the distribution. First we provide results on
the permissable range of the tree moments and than in the
next section a fitting procedure to create BPH distributions
with a given first 3 moments.

5.1 Moment bounds for ABPH distributions
Let n2 =

µ2
1

µ2
and n3 =

µ1µ2

µ3
denote the second and

third normalized moments of a distribution with ordinary
moments µ1, µ2, µ3. The following theorem is from [3].

Theorem 4. The second and third normalized moments
of the APH(n) class are subjects to the following constraints

n + 1

n
≤ n2 < ∞ , (6)

n3 lower bound:
8
><
>:

ln ≤ n3 if
n + 1

n
≤ n2 ≤ n + 4

n + 1
,

n + 1

n
n2 < n3 if

n + 4

n + 1
< n2 ,

n3 upper bound:
8
><
>:

n3 ≤ un if
n + 1

n
≤ n2 ≤ n

n− 1
,

n3 < ∞ if
n

n− 1
< n2 ,

(7)
where ln and un are defined as follows:

ln =
(3 + an)(n− 1) + 2 an

(n− 1)(1 + an pn)

− 2 an(n + 1)

2(n− 1) + anpn(nan + 2n− 2)
,

(8)

un =
1

n2n2

„
2(n− 2)(n n2 − n− 1)

r
1 +

n(n2 − 2)

n− 1

+ (n + 2)(3nn2 − 2n− 2)

« (9)

with

pn =
(n + 1)(n2 − 2)

3n2(n− 1)

 
−2
√

n + 1p
4(n + 1)− 3nn2

− 1

!
,

an =
n2 − 2

pn(1− n2) +

r
p2

n +
pnn(n2 − 2)

n− 1

.

Let ABPH+(n, n−) denote an ABPH(n+, n−) distribution
with n+ = n, n− ≥ 1 (at least one negative phase), and
µ1 > 0 (positive first moment).

Theorem 5. The second and third normalised moments
of an ABPH+(n, n−) distribution are subject to the following
constraints:

n + 1

n
≤ n2 < ∞ , (10)



−∞ < n3 ≤ un if
n + 1

n
≤ n2 ≤ n

n− 1
,

−∞ < n3 < ∞ if
n

n− 1
< n2 ,

(11)

where un is given in (9) in Theorem 4. Note that

• the bounds for the second normalised moment are iden-
tical for both the APH(n) class and the ABPH+(n, n−)
class,

• the upper bound for the third normalised moment is
identical for both the APH(n) and the ABPH+(n, n−),

• the lower bound for the third normalised moment for
the ABPH+(n, n−) class is −∞,

• the bounds does not depend on the number of nega-
tive phases, i.e., a single negative phase is sufficient to
reach the bounds.

Proof. Thanks to Theorem 3 we can assume that the
ABPH+(n, n−) distribution is given by a mixture of an
ABPH(n+, 0) with n+ = n and an ABPH(0, n−) distribu-
tion. Let µ+

1 , µ+
2 , µ+

3 , n+
2 , n+

3 (−µ−1 , µ−2 ,−µ−3 , n−2 , n−3 ) de-
note the moments and the normalised moments of the
ABPH(n, 0) (ABPH(0, n−)) distribution. Then the mo-
ments of the ABPH+(n, n−) distribution satisfy (2). By
introducing a = µ+

1 /µ−1 the normalised moments of the
ABPH+(n, n−) distribution are

n2 =
n−2 (1− p) + a2n+

2 p

(−(1− p) + ap)2
, (12)

n3 =
−n−2 n−3 (1− p) + a3n+

2 n+
3 p

(−(1− p) + ap)(n−2 (1− p) + a2n+
2 p)

. (13)

Since the first moment of ABPH+(n, n−) is positive we must
have

pµ+
1 − (1− p)µ−1 > 0 and since p >

1

1 + a
. (14)

The second normalised moment given in (12) is monotone
decreasing in the interval p ∈ (1/(1+a), 1] and its limits are

lim
p→( 1

1+a )+
n2 = ∞ , lim

p→1
n2 = n+

2 . (15)

According to (6) n+
2 is bounded by (n + 1)/n ≤ n+

2 < ∞
and since (15) implies (10). The only value of p that satisfies
(12) and (14) is

p =
1

2(1 + a)2n2

„
2(1 + a)n2 − n−2 + a2n+

2 +
q

n−2 (4a(1 + a)n2 + n−2 ) + 2a2(2(1 + a)n2 − n−2 )n+
2 + a4n+

2
2
«

.

(16)

Substituting (16) into (13), it can be shown that n3 is a
monotone increasing function of a in the interval a ∈ (0,∞)
with limits

lim
a→0+

n3 = −∞ , lim
a→∞

=
n2n

+
3

n+
2

(17)

which implies the lower bound in (11) for the third nor-
malised moments of an ABPH+(n, n−) distribution. For
what concerns the upper bound, based on Theorem 4 and
(15) we have (n + 1)/n ≤ n+

2 ≤ n2. Theorem 4 implies
also that in the range n2+ ∈ [(n + 1)/n, n2] the quantity

n2n3+/n2+ is maximal if n2 = n2+ and n3+ is the maximal
third normalised moment realizable by an APH(n) distri-
bution. This implies the upper bound in (11) for the third
normalised moment of an ABPH+(n, n−) distribution which
is identical to that of an APH(n) distribution. 2

The numerical values of the bounds of the APH(n) and
the ABPH+(n, n−) class are illustrated in Figure 5 and 6.
The darkest shaded area contains those normalised moments
pairs that can be realized with two phases. Points in the sec-
ond darkest shaded area can be realized with three phases.
The dashed dotted line corresponds to n3 = n2 which is the
lower limit of non-negative random variables.

The structure of these bounds are presented in Figure 7
and 8. These figures indicate the n3 = 2n2 − 1 line as well
because it plays a special role. The second and third nor-
malised moments of the Erlang(n) (n ≥ 1) distributions lie
on this line.

Let ABPH−(n+, n) denote an ABPH(n+, n−) distribution
with n− = n, n+ ≥ 1 (at least one positive phase) and
µ1 < 0 (negative first moment).

Theorem 6. The second and third normalised moments
of an ABPH−(n+, n) distribution are subject to the following
constraints:

n + 1

n
≤ n2 < ∞ , (18)

−∞ < n3 ≤ un if
n + 1

n
≤ n2 ≤ n

n− 1
,

−∞ < n3 < ∞ if
n

n− 1
< n2 ,

(19)

where un is given in (9) in Theorem 4.

Proof. The theorem is the trivial counterpart of Theo-
rem 5. 2

The normalised moments cannot be used in the case when
the mean is zero. The following theorem gives the bounds
for the second and third moments for this case.

Theorem 7. The bounds for the second and the third
moments of a ABPH(n+, n−) distribution with zero mean
are

0 < µ2 < ∞ and −∞ < µ3 < ∞ . (20)

Proof. We prove the theorem only for the most re-
stricted case. Consider the ABPH(1,1) structure depicted
in Figure 9. From µ1 = 0 we have p/λ+ − (1 − p)/λ− = 0,
from which p+ = λ+/(λ+ + λ−). The second moment then
can be written as

µ2 =
2

λ− · λ+
=

2a

(λ−)2
(21)

where a = λ−/λ+. The limits for the second moment are

lim
λ−→∞

µ2 = 0, lim
λ−→0

µ2 = ∞ . (22)

From (21) we have

λ− =

r
2a

µ2
(23)
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Figure 5: Bounds of normalised moments of the
APH(n) class (n= 2, 3, 4, 8, 25)
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Figure 9: ABPH(1,1) distribution

with which the third moment is

µ3 =
3(a− 1)µ

3/2
2√

2a
. (24)

The limits for the third moment are

lim
a→0

µ3 = −∞, lim
a→∞

µ3 = ∞ . (25)

2

Since for any ABPH(n+, n−) with µ2 > 0, Theorem 7

implies that in case of zero mean, the combination of a single
negative and a single positive phase gives complete flexibility
with respect to the possible range of the second and third
normalised moments. Based on (24), given second and third
moments, µ2 and µ3, can be realized by

a =

8
>>><
>>>:

9µ3
2 + µ2

3 − µ3

p
18µ2

2 + µ2
3

9µ3
2

if µ3 < 0 ,

9µ3
2 + µ2

3 + µ3

p
18µ2

2 + µ2
3

9µ3
2

if 0 ≤ µ3 .

(26)

Then λ− is given by (23), λ+ = λ−/a and, based on the
zero mean assumption, p = 1/(1 + a).

5.2 Moment bounds for ABPH-C distribu-
tions

In this section we deal with ABPH distributions whose pdf
has equal left and right limits at zero. A simple sufficient
but not necessary condition for having this property is that
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Figure 10: ABPH(n,1) distribution with equal limits
of the pdf at zero

every basic path contains both positive and negative phases.
As shown by Theorem 5, a single negative phase is enough

to have whole flexibility for the first three moments in case
of the ABPH+(n+, n−) class. The following theorem defines
a region of 2nd and 3rd normalised moments that can be
realized with a special ABPH-C+(n, 1) structure.

Theorem 8. Any point of the following second and
third normalised moment range can be obtained by an
ABPH+(n, 1) distribution, depicted in Figure 10, composed
of n positive phases and a single negative phase with zero
initial probability:

n + 1

n
≤ n2 < ∞ , (27)

ln < n3 < un, if n+1
n

< n2 < n
n−1

,

l̂n < n3 < ∞ , if n
n−1

< n2 ,
(28)

where

l̂n =
3

1− a1

− ((1− a1)n2 − 2)2

n2a1(1− a1)

„
2− a2

1

(1− a1)((1− a1)n2 − 2)

«
,

a1 =
n2 − 1 +

q
(n2 − 1)n+1

n
− 1

n

n2 − n+1
n

,

and ln and un are given in (8) and (9), respectively.

Proof. The moments of the given ABPH+(n, 1) structure
are

µ1 = µ+
1 − µ−1 , µ2 = µ+

2 + µ−2 − 2µ+
1 µ−1 ,

µ2 = µ+
3 − µ−3 − 3µ+

2 µ−1 + 3µ1 + µ−2 ,

where µ+
1 > µ−1 and µ−k = k!(µ−1 )k. Introducing a = µ+

1 /µ−1
and the normalised moments we obtain

n2 =
2(1− a) + a2n+

2

(a− 1)2
, (29)

n3 =
6(a− 1)− 3a2n+

2 + a3n+
2 n+

3

(a− 1)(2(1− a) + a2n+
2 )

. (30)

From µ+
1 > µ−1 we have a > 1.

In (29), n2 is a monotone decreasing function of a for
a > 1, such that lima→1+ n2 = ∞ and lima→∞ n2 = n+

2 ,
which, together with Theorem 4, means that

n + 1

n
≤ n+

2 ≤ n2 < ∞. (31)

Solving (29) for n+
2 we have

n+
2 =

(1− a)((1− a)n2 − 2)

a2
, (32)
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Figure 11: The lower bound of n3 when n2 > n/(n−1)
and n = 3

from which, for a given n2, n+
2 can take values in (0, n2),

where the lower limit is obtained as a → 1+ and the upper
as a → ∞. Since n+

2 is lower bounded according to (31)
(Theorem 4) the valid range of n+

2 is (n+1
n

, n2), and the
associated valid range of a is

a ∈ (a1,∞) , where a1 =
n2 − 1 +

q
(n2 − 1)n+1

n
− 1

n

n2 − n+1
n

.

(33)
For small n2 values, n2 < n

n−1
, (33) gives a high a1 value

(a1 > n +
p

2n(n− 1)), which indicates that the negative
part has a negligible role. This way for small n2 values we
bound n3 with the bounds of the positive part, which can
be obtained as a →∞.

Substituting (32) into (30) gives

n3 =
3

1− a
− ((1− a)n2 − 2)2

n2a(1− a)

n+
3

n+
2

. (34)

In (34), 3
1−a

is negative and n3 is an increasing function of
n+
3

n+
2

, since 1 − a is negative. For any n2 > n
n−1

, the a → ∞
limit results that n+

2 → n2 and n3 is unbounded from above,
because n+

3 is unbounded from above when n+
2 > n

n−1
.

The remaining limit (min n3 when n2 > n
n−1

) is based on

the lower bound of the
n+
3

n+
2

ratio. According to Theorem 4

min
n+

3

n+
2

≤ 2n+
2 − 1

n+
2

when
n + 1

n
< n+

2 , i.e., a ∈ (a1,∞).

(35)

Taking the upper bound of the minimal
n+
3

n+
2

ratio and sub-

stituting it into (32) gives:

min n3 ≤ 3

1− a
− ((1− a)n2 − 2)2

n2a(1− a)

„
2− 1

n+
2

«
=

3

1− a
− ((1− a)n2 − 2)2

n2a(1− a)

„
2− a2

(1− a)((1− a)n2 − 2)

«
.

(36)
(36) is a monotone increasing function of a (when a > 1 and
n2 > 1). Substituting the minimal value of a, a = a1, gives
the missing lower bound of n3. 2

For n2 > n/(n − 1) and n = 3 the lower bound of n3 is
depicter in Figure 11. For small n2 values we have a large
a (which eliminates the effect of the negative part) and the
curve follows the increasing tendency of (7). Instead for
large n2 values the negative part makes its effect on the



minimal n3 value and at a given point it becomes negative
and diverges to −∞ as n2 tends to infinity.

6. MATCHING ALGORITHM FOR
THREE MOMENTS

6.1 Matching 3 moments with ABPH distri-
bution

Hereinafter we briefly sketch a procedure for the construc-
tion of an ABPH distribution with given first three moments,
µi, 1 ≤ i ≤ 3. The mean is assumed to be positive. If the
mean is negative the trivial counterpart of the procedure can
be applied.

From Theorem 5 we know that a single negative phase is
sufficient. With a single negative phase we have that n−2 = 2
and n−3 = 3. The number of phases on the positive side, n+,
can be easily determined based on the bounds provided in
(10) and (11). It can be seen from (15) and (17) that, in
order to construct an ABPH with given 2nd and 3rd nor-
malised moments, n2 and n3, we must have

n+
2 < n2 and

n+
2 n3

n2
< n+

3 .

The lower bound for n+
2 and the upper bound for n+

3 for
a given n+ are provided instead by Theorem 4. Having
chosen any pair (n+

2 ,n+
3 ) satisfying the above bounds, it is

possible to construct an ABPH distribution with given first
three moments, µi, 1 ≤ i ≤ 3. This can be done by solving
numerically (12) and (13) for a and p. Then µ+

1 can be
obtained from pµ+

1 − (1 − p)µ+
1 /a = µ1 and µ−1 = µ+

1 /a.
As a result, on the negative side we have a single phase
with mean µ−1 while on the positive side we have n+ phases
with mean µ+

1 and normalised moments n+
2 and n+

3 . The
distribution on the positive side can be constructed by the
algorithm presented in [3].

The actual values of n+
2 and n+

3 are chosen based on how
closely the resulting distribution fits the mean of the nega-
tive and the positive side of the original distribution. I.e.,
we aim to minimise the relative error

|µo+
1 − µ+

1 |
µo+

1

+
|µo−

1 − µ−1 |
µo−

1

, (37)

where µo+
1 and µo−

1 denote the mean of the original distri-
bution on the positive and the negative side, respectively.
This relative error is minimised through a numerical search
in that region of the (n+

2 ,n+
3 ) pairs which allows for the re-

alization of the given 2nd and 3rd normalised moments, n2

and n3.

6.2 Matching 3 moments with ABPH-C dis-
tribution

An algorithm for matching 3 moments with ABPH-C dis-
tributions can be defined based on Theorem 8. We can pro-
ceed as follows. The range for a is given in (33). Hav-
ing chosen a given value of a, based on (29), (30) and
µ = µ+

1 − µ+
1 /a we can obtain µ+

1 , n+
2 and n+

3 ; and we also
have that µ−1 = µ+

1 /a. The parameters of the positive phases
(Figure 10) then can be obtained based on µ+

1 , n+
2 and n+

3

by applying the algorithm given in [3]. The exit rate of the
negative phase instead is simply 1/µ−1 . The actual value of
a is chosen to minimise the error given in (37).
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Figure 12: Matching normal distribution with mean
and variance equal 1, D1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-2  0  2  4  6  8

original
ABPH

ABPH-C

Figure 13: Matching normal distribution with mean
equals 3 and variance equals 5, D6

7. NUMERICAL EXAMPLE
In this section we consider a few simple examples. The

distribution whose normalised moments we match with an
ABPH distribution is the normal distribution. Parameters
of the distributions are given in Table 1 which lists: the
parameters of the normal distribution (the mean and the
variance); the second and the third normalised moments of
the normal distribution, n2 and n3; probability of positive
values in the original distribution, po+; the mean of the nor-
mal distribution on the negative and on the positive side,
µo+

1 and µo−
1 .

The distributions are matched by both procedures pro-
posed. Numerical characteristics of the resulting distribu-
tions are summarised in Table 2 which lists for both meth-
ods: the necessary number of phases on the positive side, n+;
probability of positive values in the matching distribution,
p+; the mean of the matching distribution on the negative
and the positive side, µ+

1 and µ−1 .
Figures 12 and 13 depict the pdf of two cases, D1 and D6.

In Figure 12 it can be seen that we have jump at 0 in the pdf
of the matching ABPH distribution. In Figure 13 one can
observe instead a case in which the ABPH distribution is
not able to fit closely po+. This happens because the region
of the (n+

2 ,n+
3 ) pairs from which n2 and n3 can be realized is

very narrow (n+
2 has to be between 1.5 and 1.5555). In both



µ1 var. n2 n3 po+ µo+
1 µo−

1
D1 1 1 2 2 0.8413 1.2876 0.5251
D2 1 3 4 2.5 0.7181 1.8145 1.0752
D3 1 5 6 2.667 0.6726 2.2000 1.4657
D4 3 1 1.1111 1.2 0.9986 3.0044 0.2831
D5 3 3 1.3333 1.5 0.9583 3.1609 0.7034
D6 3 5 1.5555 1.7142 0.9101 3.3985 1.0363
D7 5 1 1.04 1.0769 1− 3 10−7 5 0.1865
D8 5 3 1.12 1.2143 0.9980 5.0107 0.5045
D9 5 5 1.2 1.3333 0.9873 5.0742 0.7777

Table 1: Parameters of normal distributions matched by ABPH distributions

ABPH ABPH-C
n+ p+ µ+

1 µ−1 n+ p+ µ+
1 µ−1

D1 2 0.9231 1.1601 0.9206 5 0.8685 1.2524 0.6656
D2 2 0.7401 1.7324 1.0855 3 0.7625 1.6791 1.1810
D3 2 0.6984 2.0613 1.4576 3 0.7245 1.9953 1.6057
D4 10 0.9973 3.0138 2.1362 18 0.9947 3.0180 0.4100
D5 4 0.9802 3.1037 2.1406 8 0.9697 3.1221 0.9076
D6 2 0.9986 3.0189 10.9965 6 0.9210 3.3352 1.2986
D7 26 0.9999 5.0005 10.7464 38 1− 2 10−6 5 6.2865
D8 9 0.9988 5.0128 5.8747 17 0.9984 5.0119 2.4256
D9 6 0.9914 5.0731 3.4007 12 0.9678 5.0168 0.6839

Table 2: Characteristics of the matching ABPH and ABPH-C distributions

case the ABPH-C distribution gives a closer approximation
of the pdf of the original distribution, but uses more phases.

Another way of fitting with ABPH distributions is to cal-
culate the first three moments on the negative and on the
positive side and perform the fitting of the two sides inde-
pendently. This would result in higher accuracy (po+, µo+

1

and µo−
1 would be matched perfectly), but requires more

phases. For example fitting a normal distribution with mean
and variance equal 1, requires 5 phases if we match the first
three moments on both sides while it requires 3 with the pro-
cedure proposed in this paper. For what concerns ABPH-C
distributions, performing the fitting of the positive and the
negative side in separation is not trivial.
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