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Abstract

This paper presents a matching procedure for generating an acyclic phase type distribution of

order N given the first 2N − 1 moments, if they are feasible. The matching procedure uses an

iterative approach and, theoretically, it can be applied to match an arbitrary number of moments.

The first step of the iterative procedure contains the solution of an equation of order N and the order

is decreased by one in each consecutive step. Apart of these equations the procedure makes use of

explicit expressions. The practical applicability of the proposed procedure is limited by the numerical

accuracy of the solution of these equations and the complexity of the involved expressions. We present

examples for matching more than 10 moments with acyclic phase type distributions.

Keywords: acyclic phase type distribution, moments matching.

1 Introduction

The applicability of phase type distributions in stochastic models of real systems is determined by the

availability of appropriate phase type fitting procedures1. There are two main categories of phase type

fitting algorithms: numerical optimization [1, 5] and procedures that make use of explicit expressions. Up

1A survey of fitting algorithms can be found in [6].
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to now explicit expressions for matching only the first three moments of acyclic phase type distributions

(APH) have been known [9, 7, 8, 2]. This paper presents an iterative approach to match an arbitrary

number of moments with acyclic phase type distributions.

The solution of matching an arbitrary number of moments with matrix exponential distributions, which

is an even richer class of distributions, containing the APH class, has been known for more than a decade,

see [10]. However, the applicability of this matching procedure is limited because the class of matrix

exponential distributions and the properties of the matching method have the following disadvantages.

• The matrix exponential class contains the phase type and the acyclic phase type classes, but it also

contains distributions which cannot be represented as the time to absorption in a Markov chain.

These non-Markovian distributions might inhibit the use of the widely applied Markovian solution

techniques.

• The matching procedure calculates a matrix for any set of moments without indicating if the matrix

(together with the predefined initial and final vectors) corresponds to a matrix exponential distribu-

tion or not. When the procedure is called with the moments of a matrix exponential distribution of

order N it results in a true matrix exponential distribution of order N , but when it is called with an

invalid set of moments it results in a matrix which does not correspond to a real distribution. Unfor-

tunately, it is hard to check if a given matrix corresponds to a real matrix exponential distribution

[4].

The analytical description of the moment bounds of matrix exponential distributions would avoid the

second disadvantage, but they are not known beyond N = 2. The procedure presented in this paper avoids

the above mentioned disadvantages. APH matching results in a Markovian representation by definition

and the feasibility of the solution is obvious (a solution with real, positive intensities and real probabilities

between 0 and 1 is feasible).

With the procedure presented in this paper, matching the moments of an acyclic phase type distribution

of order N (APH(N)) requires the solution of an equation of order N . As a consequence, the matching

procedure has a symbolic solution up to N = 4 and numerical techniques are applicable for larger N .

Here we present the symbolic solution for N = 3 (matching 5 moments). Because of the complexity of

the symbolic solution for N = 4 we use a numerical technique for N ≥ 4. The practical applicability

of the proposed procedure is limited by the complexity of the involved expressions and by the numerical
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accuracy of the solution of the equation of order N . We present numerical results for matching more than

10 moments.

2 Notations and theoretical background

2.1 Normalized moments

Based on the ordinary moments mi we define the ith normalized moment as follows:

ni =
mi

mi−1m1
, i ≥ 1. (1)

Note that throughout this paper we consider only non-defective distributions whose 0th moment is assumed

to be 1. As a consequence the first normalized moment of the considered distributions is 1 (i.e., m0 = 1

and n1 = 1).

We introduce the normalized moments for two reasons.

• They simplify the problem of matching. With the use of normalized moments one can match the

first moment and the normalized moments, ni, 2 ≤ i ≤ N − 1, separately.

• They simplify the obtained expressions. E.g., the ith normalized moment of an Erlang(N) distrib-

ution is
N + i− 1

N
.

Based on (1), the ordinary moments can be calculated from the normalized moments using

mi = nimi−1m1 = mi
1

i∏

k=1

nk . (2)

2.2 Acyclic phase type distributions

Definition 1. An acyclic phase type distribution of order N , denoted by APH(N), is the distribution of

the time to absorption in an acyclic Markov chain with N transient states and an absorbing one.

Theorem 2. [3] Any APH(N) distribution can be represented in the canonical form (CF) depicted in

Figure 1 such that λ1 ≤ λ2 ≤ . . . ≤ λN .

Definition 3. The representation of an APH(N) in the structure of Figure 1 without any restrictions on

the order of the intensities is called its series representation.
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Figure 1: Canonical representation of APH(N) distributions

Both, the series and the canonical representations of an APH(N) distribution are defined by two

vectors p = {p1, . . . , pN} and λ = {λ1, . . . , λN}.

Corollary 4. The λ vectors of the different series representations of an APH(N) contains the same

intensities. They differ only in the order of these intensities.

Proof. The corollary is a consequence of Cumani’s result [3], but it can be derived also from the fact that

the eigenvalues of any triangular matrix are determined by the diagonal elements.

2.3 The 2Nth and the 2N+1th normalized moments of APH(N) distributions

As shown by Cumani in [3] an APH(N) distribution is characterized by 2N − 1 parameters. According

to [10], the first 2N − 1 moments of an APH(N) characterize the distribution2. As a consequence, one

can calculate the higher moments of an APH(N) in terms of the first 2N − 1 moments based on [10] (see

Appendix A). It is straightforward to transform this result into the relation of the normalized moments

n2N = F2N (n2, . . . , n2N−1), n2N+1 = F2N+1(n2, . . . , n2N ). (3)

For N = 2 the second and third normalized moments determine all higher normalized moments. In this

case the fourth and fifth normalized moments are

n4 =
2n2(9n2 + 2(n3 − 6)n3)

3(n2 − 2)n3
, (4)

n5 =
5n3(4n2(2n3 − 3n4) + 3n2

4)
6(2n3 − 3n2)n4

. (5)

2Indeed [10] proves this statement for the whole matrix exponential class using reduced moments.
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For N = 3, n2, n3, n4 and n5 determine all higher normalized moments. In this case

n6 =
(

n3(25n2(2n2(16n2
3 − 36n3n4 + 9n2

4)− 3n3(n4 − 8)n2
4))+

n3(120n2(6n2 + n3(n4 − 4)− 3n4)n4n5 − 36(n2 − 2)n2
4n

2
5)

)/

(
10n4(18n2

2 + 6n3n4 + n2n3(4n3 − 3(8 + n4)))n5

)
,

(6)

n7 =
(

7n4(−8n3n
2
5(3n4(3n5 − 5n6) + 5n2

6) + 5n2(12n2
5n

2
6 + 12n3n5(6n4n5 − 5n4n6 − 4n5n6)+

n2
3(75n2

4 − 180n4n5 + 48n2
5 + 80n5n6)))

)/(
20n5(5n3(4n2(2n3 − 3n4) + 3n2

4)+

6(3n2 − 2n3)n4n5)n6

)
.

(7)

Because of their complexity, we do not provide the expressions for higher order moments. These

expressions can be calculated up to N = 8 in about two minutes with a standard personal computer

(1.5GHz processor and 524MB RAM). The computation for N = 9 has such high memory requirement

that it cannot be performed with a computer with 524MB RAM.

3 The matching procedure

It is straightforward to compute the normalized moments, ni, 2 ≤ i ≤ 2N − 1, of an APH(N) distribution

in terms of its 2N − 1 parameters. The inverse, i.e. to determine the parameters given the normalized

moments, is non-trivial. In this section we present an iterative approach which, at each step, determines

two parameters of the APH(N) distribution.

The section starts with the building blocks and then describes the procedure itself. Section 3.1 investi-

gates the effects of extending an APH(N − 1) distribution with an additional phase. Based on properties

of the extension, the problem of matching 2N − 2 normalized moments with an APH(N) distribution can

be reduced to the problem of matching 2N − 4 normalized moments with an APH(N − 1) distribution.

This reduction step is described in Section 3.2. The complete algorithm is presented in Section 3.4.
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3.1 The APH(N − 1)-EXP structure

The extension of an APH(N − 1) distribution with an additional phase, as depicted in Figure 2, is

characterized by two parameters, p and λ. The following theorem and its corollary describe the effect of

the extension on the moments and normalized moments, respectively.

λ

APH(N)

1−p

APH(N−1)

  (   ,A)α λ

APH(N−1)

  (   ,A)α p

Figure 2: Realization of an APH(N) distribution by the composition of an APH(N − 1) distribution and
an additional phase

Theorem 5. The moments of the resulting APH(N −1)-EXP distribution, m′
i, can be expressed in terms

of the moments of the APH(N − 1) distribution, mi, and the two parameters of the extension (p and λ),

using

m′
i = i!λ−i


1 + p

i∑

j=1

λj mj

j!


 . (8)

Proof. Let fL(s) be the Laplace transform of the APH(N − 1) distribution. The Laplace transform of the

APH(N − 1)-EXP distribution, gL(s), is

gL(s) = pfL(s)
λ

s + λ
+ (1− p)

λ

s + λ
=

λ

s + λ

(
pfL(s) + 1− p

)
. (9)

To obtain its moments we first take the ith derivative of (9)

di

dsi
gL(s) =

i∑

j=0

(
i

j

)
di−j

dsi−j

(
λ

s + λ

)
dj

dsj

(
pfL(s) + 1− p

)
=

i∑

j=1

(
i

j

)
λ(i− j)!(−1)i−j(s + λ)−i+j−1 p

dj

dsj
fL(s) + λi!(−1)i(s + λ)−i−1

(
pfL(s) + 1− p

)

then by the limit s → 0

(−1)im′
i =

i∑

j=1

(
i

j

)
(i− j)!(−1)i−jλ−i+j p(−1)jmj + i!(−1)iλ−i .
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Multiplying both sides by (−1)i gives (8).

To simplify the following expressions and to eliminate the dependence on the first moment, we replace

the parameters, p and λ, by

a = m1λ and b = ap. (10)

Indeed a = m1
1/λ is the ratio of the means of the APH(N − 1) and the EXP parts of the APH(N − 1)-EXP

distribution.

Corollary 6. The normalized moments of the APH(N − 1)-EXP distribution, n′i, can be expressed in

terms of the normalized moments of the APH(N − 1) distribution, ni, using

n′i =

i


1 + b

i∑

j=1

aj−1

j!

j∏

k=1

nk




(1 + b)


1 + b

i−1∑

j=1

aj−1

j!

j∏

k=1

nk




(11)

Proof. From the definition of the normalized moments, using (8) and (2) we have

n′i =
m′

i

m′
i−1m

′
1

=

i!λ−i

(
1 + p

i∑

j=1

λj

j!

j∏

k=1

nkmj
1

)

(
(i− 1)!λ−i+1

(
1 + p

i−1∑

j=1

λj

j!

j∏

k=1

nkmj
1

))(
pm1 + λ−1

)
.

Introducing the a and b parameters results in (11).

3.2 Reduction to one phase less

Given 2N − 2 normalized moments, n′i, 2 ≤ i ≤ 2N − 1, we aim to find ni, 2 ≤ i ≤ 2N − 3, and a

and b such that the extension of an APH(N − 1) distribution whose normalized moments are ni with an

exponential phase according to Figure 2 with parameters a and b, results in an APH(N) distribution with

normalized moments n′i. To this end we derive the following two corollaries of Theorem 5.

Corollary 7. The inverse function of (8), i.e., the moments of the APH(N−1) distribution as a function
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of the moments of the APH(N − 1)-EXP distribution, have the following from

mi =
λm′

i − im′
i−1

λp
. (12)

Proof. We prove the corollary by induction. (12) holds for i = 1. Assuming that (12) holds for j ∈
{1, 2, . . . , i−1} from (8) we have

λi

i!
m′

i = 1 + p

i−1∑

j=1

λj

j!
mj + p

λi

i!
mi = 1 + p

i−1∑

j=1

λj

j!
λm′

j − jm′
j−1

λp
+ p

λi

i!
mi . (13)

That is
λi

i!
m′

i = 1 +
i−1∑

j=1

(
λjm′

j

j!
− λj−1m′

j−1

(j − 1)!

)

︸ ︷︷ ︸
λi−1m′

i−1

(i− 1)!

+p
λi

i!
mi , (14)

which gives (12) after some manipulation.

Corollary 8. The normalized moments of the APH(N − 1) distribution as a function of the normalized

moments of the APH(N − 1)-EXP distribution, have the following from

ni =
n′i−1(1 + b)

(
n′i(1 + b)− i

)

a

(
n′i−1(1 + b)− (i− 1)

) , i > 1 . (15)

Proof. From the definition of the normalized moments and (12) we have

ni =
mi

mi−1 m1
=

λm′
i − im′

i−1

λp
λm′

i−1 − (i− 1)m′
i−2

λp

a

λ

=
(λm′

i − im′
i−1)λ

(λm′
i−1 − (i− 1)m′

i−2)a
=

(
λ

m′
i

m′
i−1

− i

)
m′

i−1

m′
i−2

λ

(
λ

m′
i−1

m′
i−2

− (i− 1)
)

a

=

(
λn′i

1 + b

λ
− i

)
n′i−1

1 + b

λ
λ

(
λn′i−1

1 + b

λ
− (i− 1)

)
a

,

(16)
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where we applied m′
1 = (1 + b)/λ.

Based on (15), the ni, 2 ≤ i ≤ 2N − 3, normalized moments of the APH(N − 1) distribution are

explicitly known as a function of n′i, 2 ≤ i ≤ 2N − 3, and a and b. The two other unknowns, a and b,

can be determined based on the remaining two normalized moments n′2N−2 and n′2N−1. An equation to

determine a is constructed by the following steps:

Step 1 take (11) for i = 2N − 2,

Step 2 substitute n2N−2 by F2N−2(n2, ..., n2N−3) as provided by [10],

Step 3 substitute ni, 2 ≤ i ≤ 2N − 3 applying (15).

The resulting equation has two unknowns, a and b, and enjoys the following property.

Theorem 9. The equation to determine a is linear in a and hence it can be rearranged to have an explicit

expression for a as a function of n′i, 2 ≤ i ≤ 2N − 2, and b.

In a similar manner, an equation to determine b is constructed by the following steps:

Step 1 take (11) for i = 2N − 1,

Step 2 substitute n2N−1 by F2N−1(n2, ..., n2N−2) as provided by [10],

Step 3 substitute ni, 2 ≤ i ≤ 2N − 2 applying (15).

The resulting equation has a single unknown variable, b, and enjoys the following property.

Theorem 10. The equation to determine b is of order N in b and hence it can be rearranged to have a

polynomial equation of order N to determine b.

A consequence of Theorem 10 is that one can look for symbolic solution up to N = 4 (matching 7

moments). Fitting more than 7 moments requires the use of numerical techniques.

The proofs of Theorem 9 and 10 are in Appendix A. We demonstrate the procedure for obtaining

ni, 2 ≤ i ≤ 2N − 3, and a and b given n′i, 2 ≤ i ≤ 2N − 1, for N = 3 in Section 4.

3.3 Feasibility

The parameters of the APH(N − 1)-EXP structure, a and b, are positive real numbers with the following

bounds, 0 < a < ∞ and 0 < b = ap ≤ a (since 0 < p ≤ 1). p = 0 is not feasible because it results in an

exponential distribution, and a = 0 is not feasible because it implies m1 = 0 or λ = 0.
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Theorem 11. A set of normalized moments {n′2, . . . , n′2N−1} is feasible with an APH(N) distribution if

and only if there exists a solution of the reduction step, ni, 2 ≤ i ≤ 2N − 3, and a and b such that

• a and b are real numbers such that 0 < b (= ap) ≤ a,

• the normalized moments {n2, . . . , n2N−3} are feasible with an APH(N − 1) distribution.

Proof. The theorem is a consequence of Cumani’s seminal result (Theorem 2). Since any APH(N) can

be represented in canonical form, there is an APH(N) with the given moments if and only if there is an

APH(N − 1)-EXP structure with the given constraints.

The first condition of the theorem can be checked easily. The second condition has to be checked by

repeated applications of the reduction step. In each step the number of moments is decreased by two.

The whole procedure is described in the next section.

Theorem 11 has an important consequence. It allows us to check if a given set of moments is inside

the moments bounds of the APH(N) class or not. Indeed, the procedure described hereinafter directly

constructs an APH(N) distribution, if possible. To the best of our knowledge it is the first method to

check this property for more than three moments.

Due to the simple stochastic interpretation of the APH distribution, it is easy to check if the result

of the procedure is a proper APH distribution. This property is valuable with respect to the matrix

exponential case where the matrix representation, calculated from the set of moments [10], does not

indicate the feasibility of the solution.

3.4 Iterative approach of moments matching

Based on the reduction to one phase less presented in Section 3.2, the following iterative algorithm gen-

erates an APH(N) distributions given the first 2N − 1 moments.

1. We calculate the normalized moments, ni, 2 ≤ i ≤ 2N − 1, based on the first 2N − 1 ordinary

moments, mi, 1 ≤ i ≤ 2N − 1, according to (1).

2. The reduction step can be applied according to the tree scheme depicted in Figure 3. At level zero

we have ni, 2 ≤ i ≤ 2N − 1, i.e., the normalized moments. At the first level the reduction step

gives at most N different solutions (Theorems 9 and 10). The reduction step can be applied again

to any of these solutions leading to at most N(N − 1) nodes at the second level. In order to avoid
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cumbersome notation, indices of the different solutions for b, a and ni are indicated on the top of

the nodes. At the last level there are at most N ! nodes.

3. Taking any path from the root to a leaf gives a sequence of values for b and a. This sequence can be

used to construct an APH(N) distribution with normalized moments ni, 2 ≤ i ≤ 2N − 1. We start

with an APH(1) distribution with rate 1 and in each step the distribution is extended by one phase.

The values for a and b are taken from bottom to top and are applied according to (10). Note that,

as it will be illustrated later in this section, not all the paths lead to a proper APH(N) distribution.

4. Finally, we set the first ordinary moment (the mean) by properly scaling the intensities of the result.

ni, 2 ≤ i ≤ 2N − 1

1

b, a

ni, 2 ≤ i ≤ 2N − 3

N

b, a

ni, 2 ≤ i ≤ 2N − 3

1, 1

b, a

ni, 2 ≤ i ≤ 2N − 5

1, N − 1

b, a

ni, 2 ≤ i ≤ 2N − 5

N, 1

b, a

ni, 2 ≤ i ≤ 2N − 5

N,N − 1

b, a

ni, 2 ≤ i ≤ 2N − 5

1, 1, ..., 1, 1

b, a

1, 1, ..., 1, 2

b, a

N,N − 1, ..., 3, 1

b, a

N,N − 1, ..., 3, 2

b, a

Figure 3: Tree scheme of the application of the reduction step

All the routes provide a series form (with coefficients which are not necessarily feasible). Due to fact

that they solve equations (15) and (3), they all provide the given 2N − 1 ordinary moments.

Corollary 12. The λ vectors of the N ! solutions contain the same intensity values with all possible

permutations.

Proof. The eigenvalues of the PH generator is determined by the first 2N − 1 moments of the distribution

[10]. In case of APH distributions the eigenvalues are real and they determine the departure rate of the

phases. N ! solutions are obtained by the permutations of these eigenvalues.

Let N = 3, m1 = 1, m2 = 42/25 ∼= 1.68, m3 = 61614/15625 ∼= 3.94, m4 = 4654584/390625 ∼= 11.92,

m5 = 17249112/390625 ∼= 44.16. The normalized moments are n2 = 42/25 ∼= 1.68, n3 = 1467/625 ∼= 2.35,
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a, b, n2, n3 a, b {p1, p2, p3} , {λ1, λ2, λ3}

1
7

12
,

7

18
,
100

49
,
78

25
1,1

3

4
,−1

8

�−1

9
,
7

9
,
1

3

�
,

�
25

9
,
25

12
,
25

18

�

1,2
4

3
,
1

6

�
1

12
,

7

12
,
1

3

�
,

�
25

12
,
25

9
,
25

18

�

2
39

28
,
13

12
,
350

169
,
1029

325
2,1

1

2
,− 1

14

�−1

9
,
8

9
,
2

9

�
,

�
25

9
,
25

18
,
25

12

�

2,2 2,
6

7

�
1

3
,
4

9
,
2

9

�
,

�
25

18
,
25

9
,
25

12

�

3
32

15
,
16

9
,
125

64
,
231

80
3,1

2

3
,

1

15

�
1

12
,
3

4
,
1

6

�
,

�
25

12
,
25

18
,
25

9

�

3,2
3

2
,
3

5

�
1

3
,
1

2
,
1

6

�
,

�
25

18
,
25

12
,
25

9

�

Table 1: The N ! different solutions of the iterative procedure for N = 3

n4 = 86196/28525 ∼= 3.02, n5 = 26619/7183 ∼= 3.71. Application of the iterative procedure is summarized

in Table 1. The first column gives the three different solutions for a, b, n2 and n3 at the first application

of the reduction step (first level of the tree in Figure 3). Then we apply the reduction step to all of these

three solutions. At this level the procedure results in two solutions for a and b. These solutions, which are

the leaves of the tree depicted in Figure 3, are listed in the second column. In the first two columns the

indices of the solutions are indicated as in Figure 3. The corresponding APH(3) distributions are given in

the third column by the initial probability vector and the vector of intensities.

As indicated by Corollary 12 the application of the procedure provides all permutations of the same

set of intensities. In this particular case 4 permutations of the 3! = 6 possible permutations result in

a proper APH(3) distribution. These 4 different series representations correspond to the same APH(3)

distribution, whose (unique) canonical representation is in the last row of the table.

The following corollary, whose proof is in Appendix B, indicates how to choose among the different

solutions.

Corollary 13. If the given moment set is feasible, selecting the largest solution for b in each step of the
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iterative procedure results in an APH distribution in CF, i.e., with non-decreasing intensities. If the given

moment set is not feasible, the solutions provided by the procedure are improper for an APH distribution.

Corollary 13 allows us to reduce the N ! possibilities to one. This clearly simplifies the procedure.

Furthermore, this solution is in CF which is a minimal unique representation of the APH distributions.

4 Constructing an APH(3) with given second to fifth normalized

moments

We apply the iterative procedure for N = 3 with normalized moments n′2, n
′
3, n

′
4 and n′5. In order to

construct an equation for a, as first step, we take (11) for i = 4:

n′4 =
4

(
1 + b

(
1 +

1
2
an2 +

1
6
a2n2n3 +

1
24

a3n2n3n4

))

(1 + b)
(

1 + b

(
1 +

1
2
an2 +

1
6
a2n2n3

)) .

Then n4 is substituted by F4(n2, n3) (given in (4)) which results in

n′4 =
4

(
1 + b

(
1 +

1
2
an2 +

1
6
a2n2n3 +

a3n2
2 (9n2 + 2 (n3 − 6)n3)

36 (n2 − 2)

))

(1 + b)
(

1 + b

(
1 +

1
2
an2 +

1
6
a2n2n3

)) .

By applying (15) to n2 and n3, and simplifying the right hand side we obtain

n′4 =
(

2(9a(−2 + n′2 + bn′2)(4 + n′2(−4 + (1 + b)2n′2))− 12abn′2(−2− b + (1 + b)2n′2)n
′
3+

2b(1 + b)n′2(−6n′3 + n′2(9 + (1 + b)n′3(−3 + n′3 + bn′3)))))
)/

(
(3b(1 + b)n′2(−2(1 + b + ab) + (1 + b)2n′2)n

′
3)

)
(17)

from which we have an expression for a as a function of n′2, n
′
3, n

′
4 and b.
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In order to construct the third order equation for b we take (11) for i = 5:

n′5 =
5

(
1 + b

(
1 +

1
2
an2 +

1
6
a2n2n3 +

1
24

a3n2n3n4 +
1

120
a4n2n3n4n5

))

(1 + b)
(

1 + b

(
1 +

1
2
an2 +

1
6
a2n2n3 +

1
24

a3n2n3n4

)) .

Then n5 is substituted by F5(n2, n3, n4) (given in (5)) which results in

n′5 =

5

(
1 + b

(
1 +

1
2
an2 +

1
6
a2n2n3 +

1
24

a3n2n3n4 +
a4n2n

2
3

(
4n2 (2n3 − 3n4) + 3n2

4

)

144 (2n3 − 3n2)

))

(1 + b)
(

1 + b

(
1 +

1
2
an2 +

1
6
a2n2n3 +

1
24

a3n2n3n4

)) .

By applying (15) to n2, n3 and n4, and simplifying the right hand side we have

n′5 =
(

(5(−72n′3n
′
4 + 2n′22 (4(−3 + n′3 + bn′3)(9 + (1 + b)2n′23 )− 3(1 + b)2n′3(−3 + 2(1 + b)n′3)n

′
4)+

3n′2n
′
3(96− 12bn′4 + n′3(−16(2 + b) + 4(1 + b)(2 + b)n′4 + b(1 + b)2n′24 ))))

)/

(
(6(1 + b)n′3(−12− 3(1 + b)2n′22 + 2n′2(6 + b(3 + n′3 + bn′3)))n

′
4)

)

(18)

which provides a third order polynomial equation to determine b.

Solving (18) and substituting the solutions into (17) and (15) results in three solutions for n2, n3, a

and b. According to Corollary 13 we can take that with the largest b, check the feasibility of a and b and

look for an APH(2) with normalized moments n2 and n3 by applying the reduction step for N = 2.

5 Implementation and numerical accuracy

The presented method is implemented in Mathematica which allows us to check its properties by applying

either symbolic calculations (with exact rational representation of the involved quantities) or numerical

calculations with different precision. The experiments were carried out on a computer with 1.5GHz

processor and 524MB RAM.

The exact rational arithmetic is applicable only to moment sets that correspond to solution vectors

composed of rational numbers. We generated such moment sets by starting from an APH distribution

with rational initial probabilities and intensities. Based on the obtained rational moments the procedure

14



n2 n3 n4 n5 p λ

D1 2.5 10 34.16 52.23
�
2.412 10−3, 9.975 10−1

	 �
9.352 10−2, 1.026

	

D2 2.5 10 100 200
�
3.349 10−5, 1.205 10−1, 8.794 10−1

	 �
2.436 10−2, 5.380 10−1, 1.291

	

D3 2.5 10 50 200
�
4.383 10−7, 2.884 10−3, 9.971 10−1

	 �
1.228 10−2, 1.024 10−1, 1.029

	

D4 2.5 10 100 400
�
9.187 10−7, 4.958 10−3, 9.950 10−1

	 �
1.041 10−2, 1.335 10−1, 1.038

	

D5 2.5 10 50 400
�
9.500 10−9, 2.575 10−3, 9.974 10−1

	 �
4.828 10−3, 9.654 10−2, 1.027

	

Table 2: Normalized moments and descriptors of APH distributions for Example 1

calculated exactly the starting APH distribution for 8 phases (matching 15 moments) in 165 seconds.

We found that the standard floating point precision of Mathematica (16 digits) is usually sufficient

up to N = 5, but the round-off error is already visible in the 8th digit of the normalized moments.

Fitting higher order APH distributions requires higher numerical precision. For N = 5, using 32 digit

accuracy floating point arithmetic, the computation time is approximately the same and the round-off

error disappears. The computational complexity of matching higher order APH distributions increases

exponentially with the order. The calculations for 5,6,7 and 8 phases takes about 2.5, 5.5, 32 and 165

seconds, respectively. For N > 8 we cannot perform the procedure because with the computer we use we

are not able to provide the functions F2N (n2, ..., n2N−1) and F2N+1(n2, ..., n2N ).

6 Examples

We demonstrate the properties of moments based APH distribution matching through some simple nu-

merical examples.

Example 1: We construct APH distributions with m1 = 1 and the sets of normalized moments listed in

Table 2. Distribution D1 is the result of matching normalized moments n2 = 2.5 and n3 = 10 with an

APH(2). All higher order moments of this distribution are determined by n2 and n3. All other cases are

obtained by APH(3) distributions. Figure 4 presents the body and the tail of the pdf of the distributions.

The queue length distribution of the M/APH/1 queue with ρ = 0.8 utilization is provided in Figure

5. Even if the second and third normalized moments are identical, the distributions and the associated

15



queue length distributions can differ significantly. In particular, we can recognize the difference between

the role of the odd and the even moments. Comparing, for example, D2 and D4 ({n2, n3} = {100, 200}
and {n2, n3} = {100, 400}) indicates that a higher fifth moment results in a longer tail for the pdf

and also for the queue length distribution. Instead, comparing D2 and D3 ({n2, n3} = {100, 200} and

{n2, n3} = {50, 200}) indicates that a higher fourth moment results in a shorter tail.
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Figure 4: The body and the tail of the pdf of the distributions D1-D5
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Figure 5: The body and the tail of the queue length distribution of the M/APH/1 queue for distributions
D1-D5

Example 2: We match an APH distribution with m1 = 1 to sets of normalized moments listed in Table

3. Similar to Example 1, the first set of moments of this example (D6) can be realized with an APH(3)

distribution. The other cases require 4 phases. The pdf and the queue length distribution of the M/APH/1

queue with ρ = 0.8 utilization are provided in Figures 6 and 7, respectively. The different behaviour of

the odd and the even moments appears also in this case.

Example 3: We match APH distributions to a distribution with Pareto tail whose pdf is given by

16
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Figure 6: The body and the tail of the pdf of the distributions D6-D10

f(t) =





αB−1e−
α
B t for t ≤ B,

αBαe−αt−(α+1) for t > B,

where α = 3.5, B = 4 and the distribution is truncated at 104 to ensure finite higher moments. The

matching is performed based on the distributions first 3, 5 or 7 moments.

The pdf and the resulting queue length distributions are depicted in Figures 8 and 9, respectively.

The figures show that the approximate APH(3) and APH(4) distributions (matching 5 and 7 moments)

captures the slowly decaying tail behaviour of the Pareto-like distribution.

Example 4: The normalized moments of the APH(5) distribution with

p =
{

7
50

,
2
25

,
11
50

,
9
25

,
1
5

}
and λ =

{
6
5
,
3
2
,
21
5

,
11
2

,
33
5

}

n2 n3 n4 n5 n6 n7

D6 2.5 10 50 200 429.46 560.28

D7 2.5 10 50 200 1000 2000

D8 2.5 10 50 200 600 2000

D9 2.5 10 50 200 1000 2800

D10 2.5 10 50 200 600 2800

Table 3: Normalized moments and descriptors of APH distributions of Example 2
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Figure 7: The body and the tail of the queue length distribution of the M/APH/1 queue for distributions
D6-D10
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Figure 8: The pdf of the Pareto-like and the matching APH distributions

are

n2 =
591837100
236021769

, n3 =
127015173550
30307977891

, n4 =
73234144433000
13008894074991

, n5 =
23269903941935150
3375288482772537

,

n6 =
19293234891794731100
2383303561732998063

, n7 =
9169582135866851564950
988006558808808179631

,

n8 =
12639577877112590464966000
1207476774457049490791373

, n9 =
125792074401828042303577430
10787879718115595961848481

and its first moment is 5121/7700. If performed symbolically, i.e. the involved quantities are calculated

exactly by rational fractions, the procedure returns an APH(5) distribution with exact rational fractions in

2.5 seconds. This distribution is the canonical representation of the original one and naturally has exactly

the same moments. When performed numerically, with accuracy set to 16 effective digits (it is the normal

machine precision), the procedure returns an APH(5) distribution whose normalized moments differ from

the original normalized moments at most by 10−7. Using 32 effective digits the error disappears.
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Figure 9: The queue length distribution of the M/•/1 queue with the Pareto-like and the matching APH
distributions

Example 5: The normalized moments of the APH(6) distribution with

p =
{

7
50

,
2
25

,
11
50

,
9
25

,
3
25

,
2
25

}
and λ =

{
6
5
,
3
2
,
16
5

,
21
5

,
11
2

,
33
5

}

are

n2 =
13910465950
7071632649

, n3 =
24046145958125
7798485420889

, n4 =
4466727822468564
1078460027763523

,

n5 =
1435435363741658131625
281715407081136714339

, n6 =
1927035881489971461789950
321893509448339352700643

,

n7 =
7403583591151809030412389625
1080334855880907800908681769

, n8 =
16466099579460034164965782200920
2134592759762499691866751133949

,

n9 =
98971954701929165646426693349164975
11539030932796105441953896021849713

, n10 =
349390344841677602778873382799288523250
36990438163330352563133155216939245523

,

n11 =
3638345221897932321274699737112766471711375
352575387225254335805805592556886837427947

and its first moment is 28031/30800. With symbolic computations the procedure returns an APH(6)

distribution with exact rational fractions in 5.5 seconds. When performed numerically with low accuracy

(16 or 32 effective digits) the procedure fails. With 48 effective digits the algorithm returns an APH(6)

whose normalized moments are equal to the original normalized moments (with respect to the first 48

digits) and whose parameters differ from the parameters of the original APH(6) at most by 10−15.

Example 6: The normalized moments of the APH(7) distribution with

p =
{

7
50

,
2
25

,
3

100
,

9
25

,
3
25

,
2
25

,
19
100

}
and λ =

{
6
5
,
3
2
,
16
5

,
21
5

,
11
2

,
33
5

, 7
}

19



are

n2 =
231370003400
106993755801

, n3 =
22323601720100
6638675152819

, n4 =
6126228628514858000
1387385281818168081

,

n5 =
5357085754374288325900
1001941629079290768471

, n6 =
36371002969685395640867400
5840991310566917790378547

n7 =
140685558226672418118570735100
19828197833968538714553476121

, n8 =
1571218174089671270601023873684000
197220451758798519832141580916321

,

n9 =
378861818429988484204018121271493140
42828657793879781911860359004846893

,

n10 =
20103343383358824457998073326051014657000
2065422032443846719910835390829735576681

,

n11 =
69887740898933010255011787166095371032412900
6575783517353288121386711786877960843290043

,

n12 =
79867798947162511649089160314693417481753706000
6927336412212148097395181990982615081615523387

,

n13 =
18049786717034286902032065423855354281464368290060
1451370953767661688772523069431994564714675304383

and its first moment is 109033/123200. As in the previous example, with symbolic computations the

procedure returns an APH(7) distribution with exact rational fractions in 32 seconds. With low accu-

racy the procedure returns incorrect values, while with higher accuracy the memory requirement of the

computation is over the available amount of memory (524MB RAM).

Example 7: If the input of the procedure is the set of normalized moments of the APH(8) distribution

with

p =
{

7
50

,
2
25

,
3

100
,

9
25

,
3
25

,
2
25

,
11
100

,
2
25

}
and λ =

{
6
5
,
3
2
,
16
5

,
21
5

,
11
2

,
33
5

, 7,
36
5

}

then symbolic computations returns the original APH(8) in 165 seconds. As in the case of the APH(7)

distribution, numerical computations fail either for low accuracy of for too high memory requirement.

7 Conclusion

The paper presents a moments matching method for the APH(N) class. According to the authors present

knowledge, this is the first procedure that provides a “Markovian” distribution based on more than 3

moments, which has practical importance in applied PH fitting.

The procedure can provide symbolic result up to order 4 and numeric results for higher orders. The
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practical applicability of the numerical procedure is limited by floating point errors and the complexity

of the involved expressions. According to our experiences the procedure becomes instable around order

5− 6 with standard floating point arithmetic and requires the use of higher numerical precision.

The procedure always provides solution when the given 2N−1 moments are the moments of an APH(N)

distribution (apart of numerical errors in case of numerical computation). This way the procedure allows

to investigate the symbolic/numeric moment bounds of the APH(N) class.
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A Proofs of Theorem 9 and 10

We start with a brief extract of the results presented in [10] which we use to determine the 2Nth and the

2N + 1th normalized moments of an APH(N) distribution in terms of the previous ones.

For a given number of phases, N , the following two N + 1 × N + 1 matrices of factorial moments,

ri = mi/i!, are constructed

M2N =

∣∣∣∣∣∣∣∣∣∣∣∣∣

r0 r1 · · · rN

r1 r2 · · · rN+1

...
...

rN rN+1 · · · r2N

∣∣∣∣∣∣∣∣∣∣∣∣∣

, M2N+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

r1 r2 · · · rN+1

r2 r3 · · · rN+2

...
...

rN+1 rN+2 · · · r2N+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (19)

Then r2N can be obtained as a function of ri, 0 ≤ i ≤ 2N − 1 by solving the equation det(M2N ) = 0. It

follows from the definition of the determinant that

det(M2N ) =
N+1∑

i=1

rN+i−1deti,N+1(M2N ) = r2N det(M2N−2) +
N∑

i=1

rN+i−1 deti,N+1(M2N ),

where deti,j(M2N ) is the (signed) subdeterminant of the element i, j. From which we have

r2N = −
∑N

i=1 rN+i−1 deti,N+1(M2N )
det(M2N−2)

. (20)
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and, similarly, one can obtain

r2N+1 = −
∑N

i=1 rN+i deti,N+1(M2N+1)
det(M2N−1)

. (21)

Corollary 14. The determinant of the n× n matrix,

∣∣∣∣∣∣∣∣∣∣∣∣∣

ra1+1 ra2+1 · · · ran+1

ra1+2 ra2+2 · · · ran+2

...
...

ra1+n ra2+n · · · ran+n

∣∣∣∣∣∣∣∣∣∣∣∣∣

, (22)

is a sum of products rp1
i1

rp2
i2
· · · rpm

im
, where each products have the following property

m∑

j=1

pj = n, and
m∑

j=1

ijpj =
n∑

j=1

aj +
n(n + 1)

2
(23)

Proof. The corollary holds for n = 1. Assuming that the corollary holds for k > 1 we evaluate the

determinant of the matrix of (22) for n = k +1 using the subdeterminants of the last row and we get (23)

for k + 1.

Corollary 14 has the following consequences. The terms of det(M2N ), rp1
i1

rp2
i2
· · · rpm

im
, as well as the terms

of the numerator of (20) satisfy
∑m

j=1 pj = N +1, and
∑m

j=1 ijpj = N(N +1). The terms of det(M2N−2),

which give the the denominator of (20), satisfy
∑m

j=1 pj = N, and
∑m

j=1 ijpj = N(N −1). The terms of

det(M2N+1) and the terms of the numerator of (21) satisfy
∑m

j=1 pj = N +1, and
∑m

j=1 ijpj = (N +1)2.

The terms of det(M2N−1), which give the denominator of (21) satisfy
∑m

j=1 pj = N, and
∑m

j=1 ijpj = N2.

As an example, for N = 2, (21) results in r5 =
−r3

3 + 2r2r3r4 − r1r
2
4

r2
2 − r1r3

, where for any product in the

numerator we have
∑m

j=1 pj = 3, and
∑m

j=1 ijpj = 9, while for the denominator we have
∑m

j=1 pj = 2,

and
∑m

j=1 ijpj = 4.

From (20) and (21) one can obtain F2N (n2, ..., n2N−1) and F2N+1(n2, ..., n2N ) using r0 = 1, ri =

1
i!

∏i
j=1 nj , for 1 ≤ i ≤ 2N − 1. Based on the above discussed properties of r2N and r2N+1, we have the

following properties of F2N (n2, ..., n2N−1) and F2N+1(n2, ..., n2N ).

Property 1. F2N (n2, ..., n2N−1) is a fraction of sums of products of normalized moments. For any

product of the numerator, np1
i1

np2
i2
· · ·npn

in
, there exists a constant K such that K ≤ ∑n

j=1 pj ≤ K + 1. For
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any product of the denominator, np1
i1

np2
i2
· · ·npn

in
, we have K − 1 ≤ ∑n

j=1 pj ≤ K.

As an example consider (4) in which the some of the exponents of any product of the numerator

(denominator) is either two or three (one or two).

Property 2. F2N+1(n2, ..., n2N ) is a fraction of sums of products of normalized moments. For any product

of the numerator np1
i1

np2
i2
· · ·npn

in
, there exists a constant K such that

∑n
j=1 pj = K. For any product of the

denominator, np1
i1

np2
i2
· · ·npn

in
, we have

∑n
j=1 pj = K − 1.

As an example consider (5) in which the some of the exponents of any product of the numerator

(denominator) is three (two).

The above two properties allows us to determine the structure of the two equations that are used to

determine a and b.

Proof of Theorem 9. By Step 1 of the procedure to construct the equation for a we have

n′2N−2 =

(2N − 2)


1 + b

2N−2∑

j=1

aj−1

j!

j∏

k=1

nk




(1 + b)


1 + b

2N−3∑

j=1

aj−1

j!

j∏

k=1

nk




. (24)

Then by Step 2 we obtain

n′2N−2 =

(2N − 2)


1 + b

2N−3∑

j=1

aj−1

j!

j∏

k=1

nk +
ba2N−3

(2N − 2)!
F2N−2(n2, ..., n2N−3)

2N−3∏

k=1

nk




(1 + b)


1 + b

2N−3∑

j=1

aj−1

j!

j∏

k=1

nk




.

According to Property 1, F2N−2(n2, ..., n2N−3) is of the form

∑

i

2N−3∏

j=2

n
ei,j

j

∑

k

2N−3∏

l=2

n
fk,l

l
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and there exists a constant, K such that

K ≤
2N−2∑

j=2

ei,j ≤ K + 1, ∀i, and K − 1 ≤
2N−2∑

l=2

fk,l ≤ K, ∀k.

In Step 3, ni is substituted according to (15). We obtain

n′2N−2 =(2N − 2)


1 + b + b

2N−3∑

j=2

aj−1

j!

j∏

k=2

n′k−1(1 + b) (n′k(1 + b)− k)
a

(
n′k−1(1 + b)− (k − 1)

) + (25)

ba2N−3

(2N − 2)!

∑

i

2N−3∏

j=2

(
n′j−1(1 + b)

(
n′j(1 + b)− j

)

a
(
n′j−1(1 + b)− (j − 1)

)
)ei,j

∑

k

2N−3∏

l=2

(
n′l−1(1 + b) (n′l(1 + b)− l)
a

(
n′l−1(1 + b)− (l − 1)

)
)fk,l

2N−3∏

k=2

n′k−1(1 + b) (n′k(1 + b)− k)
a

(
n′k−1(1 + b)− (k − 1)

)




/

(26)

(1 + b)


1 + b + b

2N−3∑

j=2

aj−1

j!

j∏

k=2

n′k−1(1 + b) (n′k(1 + b)− k)
a

(
n′k−1(1 + b)− (k − 1)

)




 . (27)

In the above equation, parts (25) and (27) do not depend on a. Part (26) instead depends on a in such a

way that the whole equation (25-27) can be rearranged to the form

n′2N−2 =

C1 + a

C2

aK
+

C3

aK+1

C4

aK−1
+

C5

aK

C6
(28)

where the constants, Ci, 1 ≤ i ≤ 6 are independent of a. It is easy to see that (28) can be rearranged to

an equation which is linear in a.

Proof of Theorem 10. Step 2 of the procedure to construct the equation for b leads to

n′2N−1 =

(2N − 1)


1 + b

2N−2∑

j=1

aj−1

j!

j∏

k=1

nk +
ba2N−2

(2N − 1)!
F2N−1(n2, ..., n2N−2)

2N−2∏

k=1

nk




(1 + b)


1 + b

2N−2∑

j=1

aj−1

j!

j∏

k=1

nk




.

After application of step 3, by similar steps as in the proof of Theorem 9 and considering Property 2, we
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obtain an equation of the form

n′2N−1 =

D1(1 + b)2N−2 + (1 + b)2N−2

∑

i

∏2N−2
j=2 (n′j(1 + b)− j)gi,j

D2,i b
P2N−2

j=2 gi,j

∑

k

∏2N−3
l=2 (n′l(1 + b)− l)hk,l

D3,k b
P2N−3

l=2 hk,l

D4(1 + b)2N−1
(29)

where the constants, D1, D2,i, D3,k, D4 are independent of b and a. Moreover

2N−2∑

j=2

gi,j ≤ N, ∀i, and
2N−2∑

l=2

hk,l ≤ N − 1, ∀k.

It is easy to verify that rearranging (29) we can obtain a polynomial equation for b which is of order N in

b.

B Selecting the solution of interest

To be unique the canonical representation of an acyclic phase type distributions requires that λ1 ≤ λ2 ≤
. . . ≤ λN . The following theorem allows us to select the solution of b which results in an APH(N)

distribution in CF, i.e., with non-decreasing intensities.

Theorem 15. Among the APH(N − 1)-EXP representations of an APH(N) distribution the largest b

value is associated with the one where the intensity of the additional phase is the largest intensity.

Proof. Starting from an APH∗(N−1)-EXP representation of an APH(N) distribution where the intensity

of the additional phase (λ∗) is not the largest intensity we apply an equivalent transformation into an

APH (̂N − 1)-EXP structure such that the intensity of the additional phase becomes the largest inten-

sity (λ̂). The steps of the transformation are depicted in Figure 10. In the first step we replace the

APH∗(N − 1) distribution with its CF (Fig. 10b). Consequently λ̃N−1 = λ̂ is the largest intensity of the

APH(N) distribution. The obtained structure is decomposed into an APH(N−2) part and two additional

exponential phases (Fig. 10c). After that the last two phases are interchanged such that the APH(N)

distribution remains the same (Fig. 10d). This transformation is due to the fact that

p̂
λ̂

s + λ̂

λ∗

s + λ∗
+ (1− p∗)

λ∗

s + λ∗
=

(
p̂ + (1− p∗)

λ̂− λ∗

λ̂

)
λ∗

s + λ∗
λ̂

s + λ̂
+ (1− p∗)

λ∗

λ̂

λ̂

s + λ̂
.
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λ*

p* p*1−

APH (N−1)*

APH(N)

a)

c) d)
λ̂ λ*

p̂ p*1−

APH(N−2)

p̂p*−

λ* λ̂

λ̂
λ̂ λ*−

p*1−( )p̂ +
λ̂
λ*

p*1−( )

APH(N−2)

p̂p*−

λ̂
λ*

p*1−( )

λ̂

λ̂
λ*

p*1−( )1−

APH (N−1)^e)

λ*

p*1−

APH (N−1)*

p* p* p*

EXP

1p N−1p

N−1λ1
λ

~

~ ~ λ

~

^

p̂=

=

N−2p

N−2λ

~

~
b)

Figure 10: Equivalent transformation of APH(N − 1)-EXP forms

The b parameter of the original APH∗(N−1)-EXP representation, b∗ (Fig. 10a), and the final APH (̂N−1)-

EXP representation, b̂ (Fig. 10e), are

b∗ = p∗m∗
1λ
∗ and b̂ =

(
1− (1− p∗)

λ∗

λ̂

)
m̂1λ̂,

where m∗
1 is the mean of APH∗(N − 1) and m̂1 is the mean of APH (̂N − 1).

m∗
1 =

N−1∑

i=1

p̃i

N−1∑

j=i

1
λ̃j

= (1− p̃N−1)m′
1 +

1
λ̃N−1

=
(

1− p̂

p∗

)
m′

1 +
1

λ̂
,

m̂1 =
p∗ − p̂

1− (1− p∗)λ∗

λ̂

m′
1 +

1

λ̂
,

where m′
1 is the mean of the APH(N − 2) and p̂ = p∗p̃N−1. Finally substituting m∗

1 and m̂1 results:

b̂− b∗ =
(

λ̂(p∗ − p̂)m′
1 + 1− (1− p∗)

λ∗

λ̂

)
−

(
λ∗(p∗ − p̂)m′

1 + p∗
λ∗

λ̂

)

= (λ̂− λ∗)︸ ︷︷ ︸
>0

(p∗ − p̂)︸ ︷︷ ︸
p∗(1−p̃N−1)>0

m′
1 + 1− λ∗

λ̂︸ ︷︷ ︸
>0

+ p∗
λ∗

λ̂
− p∗

λ∗

λ̂︸ ︷︷ ︸
0

> 0 .

Corollary 13 is a consequence of Theorems 11 and 15, and Corollary 12.
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