
1

A Joint Moments Based Analysis of Networks of
MAP/MAP/1 Queues

András Horv́ath
Universit̀a di Torino

Dipartimento di Informatica, Torino, Italy, Email: horvath@di.unito.it
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Abstract—The decomposition based approximate numerical
analysis of queueing networks of MAP/MAP/1 queues is con-
sidered in this paper. One of the most crucial decisions of
decomposition based queueing network analysis is the description
of inter-node traffic. Utilising recent results on Markov arrival
processes (MAPs), we apply a given number of joint moments of
the consecutive inter-event times to describe the inter-node traffic.
This traffic description is compact (uses far less parameters than
the alternative methods) and flexible (allows an easy reduction
of the complexity of the model, which increases in each analysis
step). Numerical examples demonstrate the accuracy and the
computational complexity of the proposed approximate analysis
method.
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I. I NTRODUCTION

Open queueing networks are a popular modelling tool for
the performance analysis of computer and telecommunication
systems. Exact solution methods are available only for net-
works with Poisson traffic input, specific service time distri-
bution and service discipline. These restrictive assumptions
make the exact solutions unlikely to use in practice. The main
reason is that in real systems the Poisson process is usually
not a good model for the traffic behaviour. Instead the real
traffic can be bursty and correlated, and the service times in the
service stations can be correlated as well. Since these features
have an impact on the performance measures, they have to be
taken into consideration.

The attempts to analyse queueing networks with non-
Poisson traffic and non-exponential service time distributions
dates back to the second half of the last century. The first
attempts were to consider the second moments of the inter-
arrival and the service time distributions in the computations.
A widely applied approximation of this kind was integrated
into the QNA tool [11], [12]. The intrinsic assumption in
these approximations is that the consecutive inter-arrival times
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and the consecutive service times are independent. The evo-
lution of packet switched communication networks during the
eighties and nineties resulted in teletraffic with significant
correlation which lead to the development of new modelling
paradigms.

Several modelling approaches were developed to better
describe the properties of packet traffic [8]. One of the lines
of research is based on Markovian models with the aim of
extending the Poisson arrival process in order to capture more
statistical properties of the traffic behaviour. A long series of
efforts resulted in the introduction of Markov arrival processes
(MAPs) as it is surveyed in [7]. A main advantage of using
Markovian models for traffic description of queues is that there
are efficient numerical analysis methods, commonly referred to
as matrix analytic methods, for the evaluation of a Markovian
queue (see e.g., [7] for an introduction and [6] for a set
implemented methods).

The availability of flexible Markovian models gave a new
impulse to the research on queueing network analysis [4], [9],
[5]. Several approximate analysis methods were developed to
combine the results of these two fields for accurate approxima-
tion of queueing networks with Markovian node behaviour. In
this paper we present a new method along this line of research
which is based on a recent result about the moments based
representation of MAPs [10].

The rest of the paper is organised as follows. Section II
introduces MAPs and some of their properties that are used
in the sequel. Section III provides a summary on the available
MAP based queueing network approximation methods. The
proposed approximation procedure is introduced in Section IV,
which includes the exact computation of the moments and joint
moments of consecutive inter departure times of MAP/MAP/1
queues. The numerical behaviour of the method is illustrated
by three examples in Section V. Section VI concludes the
paper.

II. SUMMARY ON MAP RESULTS

The arrivals of a MAP (Markovian Arrival Process) are
modulated by a background Markov chain. A transition in
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the background Markov chain generates an arrival with a
given probability; in addition, during a sojourn in a state
of the Markov chain, arrivals are generated according to a
Poisson process whose intensity depends on the state. For a
detailed introduction on MAP we refer, e.g., to [7]. Hereinafter
we consider continuous time MAPs. The generator of the
continuous time Markov chain (CTMC) that modulates the
arrivals is denoted byD, and the states of the Markov
chain are referred to as thephasesof the arrival process.
MAPs are usually defined by two matrices.D0 describes the
transition rates without an arrival andD1 describes the ones
with an arrival event. ThusD = D0 + D1. SinceD is a
generator matrix, its row sums are equal to zero, i.e,D1 = 0,
where 1 (0) denotes the column vector of ones (zeros) of
appropriate size. Consequently,D01 = −D11. Let us denote
the stationary distribution of the phase process byα. α is the
solution of the linear systemαD = 0, α1 = 1. The average
arrival intensity of the MAP is then computed by:

λ = αD11. (1)

In the analysis of MAPs, the phase of the background
CTMC at arrival instants plays an important role. The phase
process of the MAP at consecutive arrivals is referred to as the
process embedded at arrival instants. The state transition prob-
ability matrix of the embedded process isP = (−D0)−1D1.
The stationary probability vector of the embedded process,π,
is the solution of the linear systemπP = π, π1 = 1.

The stationary distribution of the underlying CTMC,α, and
the stationary distribution of the underlying CTMC at arrival
epochs,π, are related by

α = λπ(−D0)−1 and π =
1
λ

α(−D0). (2)

In steady state, the inter-arrival time is phase-type (PH)
distributed with initial probability vectorπ and transient
generatorD0. Thus, the cumulative distribution function (cdf)
of the inter-arrival time is

FX(x) = P (X < x) = 1− πeD0x1, (3)

and itskth moment is

µk = E(Xk) = k!π(−D0)−k1. (4)

The inter arrival times in MAPs are not independent. The
joint density function of the inter-arrival timesX0, X1, . . . , Xk

is:

f(x0, x1, . . . , xk) = πeD0x0D1eD0x1D1 . . . eD0xkD11.
(5)

From the joint density function the joint moments of thea0 =
0 < a1 < a2 < · · · < ak-th inter arrival times can be derived
as

E(Xi0
0 Xi1

a1
. . . Xik

ak
) =

πi0!(−D0)−i0Pa1−a0i1!(−D0)−i1

. . . Pak−ak−1ik!(−D0)−ik1.

(6)

Several statistical quantities can be used in practice to
characterise the dependency structure of MAPs. One of the

most popular ones is the lag− k autocorrelation,ρk, defined
as

ρk =
E(X0Xk)− E(X)2

E(X2)− E(X)2
. (7)

However, recent results on the steady state characterisation of
ordern non-redundant MAPs [10] showed that given(n−1)2

joint moments of two consecutive inter-arrivals,

ηij = E(Xi
0X

j
1), i, j = 1, . . . , n− 1, (8)

together with the first2n−1 moments of the inter-arrival time
distribution,

µi = E(Xi
0), i = 1, . . . , 2n− 1, (9)

completely characterise the process. Based on this set ofn2

moments and joint moments all other moments and joint
moments, e.g.,
• the lag-k correlation for arbitraryk, ρk,
• the arbitrary joint moments,E(Xi0

0 Xi1
a1

. . . Xik
ak

),
• the derivatives of the complementary cumulative distrib-

ution function (ccdf) atx = 0,

νi =
di

dxi
(1− FX(x))

∣∣∣∣
x=0

= πD0
i1, (10)

• the derivatives of the joint densityf(x0, x1) atx0 = x1 =
0,

γij =
∂i

∂xi
0

∂j

∂xj
1

f(x0, x1)

∣∣∣∣∣
x0=x1=0

=

πD0
iD1D0

jD11 = −πD0
iD1D0

j+11 ,

(11)

• the derivatives of the joint densityf(x0, . . . , xn) at x0 =
. . . = xn = 0,

γi0,...,in =
∂i

∂xi0
0

. . .
∂in

∂xin
n

f(x0, . . . , xn)
∣∣∣∣
x0=...=xn=0

=

πD0
i0D1D0

i1D1 . . .D0
inD11 ,

(12)
can be computed [3] where the mentioned derivatives can be
considered as the extension of the moments or joint moments
series to the negative axis. We refer to the first2n − 1
moments, (9), and the first(n − 1)2 joint moments, (8), of
an ordern, non-redundant MAP asbasic moments set. Non-
redundancy means that the basic moments set is composed
by n2 independent parameters, which is not the case, e.g.,
when the inter-arrival time distribution is an ordern−1 phase
type distribution. The parameters are called independent if the
determinants of the moments matrices of sizek defined in [3]
are non-zero whenk ≤ n.

TheD0,D1 representation is not a unique description of a
MAP. There are infinitely many matrix pairs which result in the
same stationary behaviour. On the contrary, the representation
given by the basic moments set is a unique description of a
non-redundant MAP.

In Section IV we propose an approximate analysis tech-
nique. This technique requires the computation of the joint
moments of two consecutive inter-departure times from a
MAP/MAP/1 queue. According to our knowledge, this step
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cannot be performed based on the basic moments set rep-
resentation. For this reason we need to be able to generate
the D0,D1 representation for a given basic moments set. To
this purpose a method composed of two steps is proposed in
[10]. In the first step a non-Markovian matrix representation
is generated and in the second step an equivalent Markovian
representation is found as a result of an optimisation proce-
dure.

On the contrary to the above mentioned step, the proposed
technique contains a step that cannot be performed, according
to our current knowledge, based on theD0,D1 representation.
This step is the model reduction which will be performed by
simple truncation of the basic moments set defined in (9) and
(8).

III. SUMMARY ON MAP BASED QUEUEING NETWORK

APPROXIMATIONS

A. MAP/MAP/1 Queues

In a MAP/MAP/1 queue the arrivals of customers is given
by a MAP with matricesB0 andB1 meaning that the series
of inter-arrival times are correlated. Also the service of the
customers is described by a MAP with matrices denoted by
S0 andS1. Thus, consecutive service times are correlated as
well.

The generator of the CTMC that models the queue has the
following block-tri-diagonal structure:

Q =




A0 A1

A−1 A0 A1

A−1 A0 A1

. . .
. . .

. . .


 , (13)

where the matrix blocks are given by the following Kronecker
operations:

A1 = B1 ⊗ I,

A0 = B0 ⊕ S0,

A−1 = I⊗ S1,

A0 = B0 ⊗ I,

(14)

whereI denotes the identity matrix of appropriate dimension.
A CTMC with generator matrix of block-structure given

in (13) is calledQuasi Birth-Deathprocess (QBD). Solution
methods exploiting the special structure of QBDs have an
extensive literature (see, e.g., [2] for a recent survey). In
order to compute the performance measures of interest and
to analyse the departure process of a MAP/MAP/1 queue, it
is necessary to compute the steady state probability vectorv.
The steady state vector is partitioned as

v =
[
v0 v1 v2 . . .

]
, (15)

where alsovi is vector according to the block structure of the
generator. Thus, thejth element of vectorvi is the probability
that there arei jobs in the queue and the background process
(that is the product space of the background processes of the
arrival and service process) is in statej.

A fundamental result of the matrix analytic methods is that
the steady state distribution of QBDs is a matrix geometric
distribution, thus

vk = v0Rk, k > 0. (16)

From the balance equations it follows thatR is the minimal
non-negative solution of the following matrix-equation:

A1 + RA0 + R2A−1 = 0. (17)

There are several efficient numerical algorithms to computeR
[2], [7]. The v0 part of the probability vector is the solution
of the following set of linear equations:

0 = v0A0 + v1A−1 = v0(A0 + RA−1),

1 =
∞∑

k=0

v0Rk1 = v0(I−R)−11.
(18)

The simplicity of the matrix geometric distribution of the
steady state probability vector allows a simple computation
for many performance measures. E.g., the mean queue length
can be computed as

E(N) =
∞∑

k=0

k v0Rk1 = v0R(I−R)−21. (19)

The steady state distribution embedded just after the depar-
tures is computed by

v
(D)
i =

vi+1A1∑∞
k=1 vkA11

=
1
λS

vi+1A1, i ≥ 0, (20)

where λS denotes the stationary intensity of the departure
MAP (S0, S1) according to (1). The departure MAP is active
while there is at least one customer in the queue and “gets
frozen” when the queue is idle.

B. MAP Models for the Departure Process

The exact departure process of a MAP/MAP/1 can be
given by a MAP with infinitely many phases. The background
Markov chain of the MAP is the Markov chain of the queueing
model (see (13)). In this background process the backward
level transitions correspond to the departure of a job. Thus the
two matrices characterising the departure process exactly are
as follows:

D(∞)
0 =




A0 A1 0 0 0 . . .
0 A0 A1 0 0 . . .
0 0 A0 A1 0 . . .
...

...
. ..

. ..


 ,

D(∞)
1 =




0 0 0 0 . . .
A−1 0 0 0 . . .
0 A−1 0 0 . . .
...

...
. ..


 .

(21)

In [1] an approximation method is proposed for the de-
parture process of MAP/PH/1 queues that is based on the
appropriate truncation of the exact infinite MAP. Recently, two
results have been published that are based on the same idea but
can be applied to MAP/MAP/1 queues as well. Both of them
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truncate the infinite MAP at leveln, but in different ways. The
structure of the approximating departure process is the same

D(n)
0 =




A0 A1 0 0 0 . . .
0 A0 A1 0 0 . . .
0 0 A0 A1 0 . . .
...

...
. ..

. ..
0 0 0 0 A0 A1

0 0 0 0 0 Â0




,

D(n)
1 =




0 0 0 0 0 . . .
A−1 0 0 0 0 . . .
0 A−1 0 0 0 . . .
...

...
. ..

0 0 0 A−1 0 0
0 0 0 0 Â−1 Ǎ−1




,

(22)

only the definition of the special matrix blocks,Â−1 andǍ−1

differs.
The next two subsection provide a short overview on these

methods.

C. Level probability based truncation method

The basic idea of the truncation method of [9] is that all
the levels i ≥ n of the exact model are merged into the
last level (referred to as the clipping level) of the truncated
model. All the forward and local transitions of the infinite
MAP correspond to local transitions in the truncated MAP,
that givesÂ0 = A1 + A0 .

However, in case of departures there are two cases when
the truncated model is at the clipping level. According to [9],
the probability that the exact model is at leveli = n when
the truncated process is at clipping leveln is approximated
using vectorvn and probability that the exact model is at
level i > n when the truncated process is at clipping leveln
is approximated using vectorv+

n =
∑∞

k=n+1 vk. Indeed, [9]
approximates the probability that a departure of the truncated
process at clipping leveln and phasej moves the truncated
process to leveln − 1 as [vn]j/([v+

n ]j + [vn]j), where [vn]j
denotes thejth element ofvn. Thus the related blocks of the
truncated MAP are the following:

Â−1 = Diag〈vn〉Diag−1
〈
vn + v+

n

〉
A−1,

Ǎ−1 = Diag
〈
v+

n

〉
Diag−1

〈
vn + v+

n

〉
A−1,

(23)

where Diag〈vec〉 denotes the diagonal matrix
composed by the elements of vectorvec. Since
Diag〈vn〉Diag−1〈vn + v+

n 〉+Diag〈v+
n 〉Diag−1〈vn + v+

n 〉 = I,
this definition ensures that̂A−1 + Ǎ−1 = A−1.

D. ETAQA Truncation Method

The efficiency of the method of [9] has been enhanced in
[5]. It that paper the blocks of the truncated model are defined
as:

Â0 = A1 + A0,

Â−1 = A−1 −A1G,

Ǎ−1 = A1G,

(24)

where G can be computed fromR using G = (−A0 −
RA−1)−1A−1. This construction (based on the idea of the
ETAQA methodology) ensures that the steady state probabili-
ties of the truncated processv̂k and of the exact modelvk are
the same up to the clipping level, and for the clipping level
v̂n =

∑∞
k=n vk holds. As a consequence, the inter-departure

times and the lag-k correlations up to the truncation leveln
are preserved exactly.

IV. M OMENTS BASEDQN APPROXIMATION

In case of traffic based decomposition of QNs, the main
elements of the computation are

• traffic aggregation,
• traffic splitting,
• output process approximation,
• model reduction.

The concrete implementation of these steps depends on the
most important decision of the approximation which is the
selection of the traffic description of the inter-node traffic.
Similar to [5], [9] in this paper we also apply MAP to describe
the inter-node traffic, but in an essentially different way. In
this paper we represent the inter-node traffic with its basic
moments set.

The main advantage of this traffic description is that it
allows a natural and flexible scaling of the size of the traffic
description, i.e., the order of the MAP.

A major disadvantage of pure MAP based inter-node traffic
description is that the size of the inter-node MAP model
increases node by node during the evaluation and there was
no efficient and accurate model reduction method available for
keeping the size of the model moderate.

In the following subsections we detail the elementary steps
of the analysis together with the proposed, moments based
model reduction method. Both the aggregation and the traffic
splitting step can be performed based purely either on the basic
moments set representation or on theD0,D1 representation.
We present both approaches for completeness, in spite of
the fact that in practical computations we commonly apply
the D0,D1 representation. The step of approximating the
output process of a MAP/MAP/1 queue can be done based
on the D0,D1 representation only. (Theoretically it should
be possible based on the moments representation too, but we
do not know how). The model reduction step is performed
based on the basic moments set representation only.

A. Traffic aggregation

The fact that(F0,F1) is the superposition of(D0,D1)
and (E0,E1) means thatλF = λD + λE , F0 = D0 ⊕ E0,
F1 = D1 ⊕E1, andαF = αD ⊗ αE [7].

The moments based description of traffic aggregation is
presented in the following theorem.

Theorem 1. Let (D0,D1) and (E0,E1) be MAPs and
(F0,F1) their superposition. LetγD

ij , γE
ij and γF

ij denote the
derivatives of the joint probability density function of two
consecutive inter-arrival times at0 as defined in (11),νD

i , νE
i

andνF
i the derivatives of the ccdf of the marginal distribution
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of the inter-arrival times as defined in (10), andλD, λE and
λF their average arrival intensity as defined in (1), for the
three MAPs. Then the joint density of two consecutive inter-
arrival times of the superposed process satisfies

γF
ij =

λDλE

λD + λE

i∑

k=0

j+1∑

`=0

(
i

k

)(
j + 1

`

)
(25)

(
γD

i−k,j−` νE
k+`−1 + νD

i−k+j+1−` γE
k−1,`−1+

γD
i−k−1,j−` νE

k+` + νD
i−k+j−` γE

k,`−1

)
.

Proof: Based on (2) and the properties of the superposi-
tion of MAPs we have that

πF =
−1

λD + λE
(αD ⊗ αE)(D0 ⊕E0) =

−1
λD + λE

(αD ⊗ αE)(D0 ⊗ I + I⊗E0) =

−1
λD + λE

(αDD0 ⊗ αE + αD ⊗ αEE0),

where we applied compatibility of the Kronecker product. By
further application of (2)

πF =
1

λD + λE

(
λDπD ⊗ λEπE(−E0)−1+

λDπD(−D0)−1 ⊗ λEπE

)
=

λDλE

λD + λE

(
πD ⊗ πE(−E0)−1 + πD(−D0)−1 ⊗ πE

)
.

(26)

The left hand side of (25) can be calculated as

γF
ij = πF F0

iF1F0
j+11 (27)

= πF (D0 ⊕E0)i(D1 ⊕E1)(D0 ⊕E0)j+11 .

Since

(D0 ⊗ I)(I⊗E0) = (D0I)⊗ (IE0) =
(ID0)⊗ (E0I) = (I⊗E0)(D0 ⊗ I),

we can expand(D0 ⊕E0)i as

(D0 ⊕E0)i = (D0 ⊗ I + I⊗E0)i

=
i∑

k=0

(
i

k

)
(D0 ⊗ I)i−k(I⊗E0)k

=
i∑

k=0

(
i

k

)
D0

i−k ⊗E0
k.

Further more

γF
ij = πF

(
i∑

k=0

(
i

k

)
D0

i−k ⊗E0
k

)

(D1 ⊗ I + I⊗E1)

(
j+1∑

`=0

(
j + 1

`

)
D0

j+1−` ⊗E0
`

)
1,

which, based on the compatibility of ordinary and Kronecker
product and applying (26), can be written as

γF
ij =

λDλE

λD + λE

i∑

k=0

j+1∑

`=0

(
i

k

)(
j + 1

`

)

( (
πDD0

i−kD1D0
j+1−`1

)(
πEE0

k+`−11
)

+
(
πDD0

i−k+j+1−`1
)(

πEE0
k−1E1E0

`1
)

+
(
πDD0

i−k−1D1D0
j+1−`1

)(
πEE0

k+`1
)

+
(
πDD0

i−k+j−`1
)(

πEE0
kE1E0

`1
) )

.

This final expression equals to the right hand side of (25).

B. Traffic splitting

Markovian traffic splitting at the exit of a node of the
queueing network means that departing customers are directed
to a given consecutive node with probabilityp. If (D0,D1)
represents the departure process then(D0 +(1− p)D1, pD1)
characterises the traffic towards the given consecutive node
[7].

The moments based description of traffic splitting is demon-
strated here for a low order term,i = 2, j = 1. The description
of the general case requires cumbersome notation which we
avoid here.

Let (D0,D1) be a MAP and(E0,E1) = (D0 + (1 −
p)D1, pD1) its split with probabilityp. Consequently,αD =
αE , sinceD = D0 + D1 = E0 + E1, andλE = pλD.

γE
2,1 = πEE0

2E1E0
1E11 =

πD(D0 + (1− p)D1)2pD1(D0 + (1− p)D1)1pD11,

where

(D0 + (1− p)D1)2 =

D0
2 + D0((1− p)D1) + ((1− p)D1)D0 + ((1− p)D1)2

and

πE =
1

λE
αE(−E0) =

1
pλD

αD(−D0 − (1− p)D1)

=
1

pλD
λDπD(−D0)−1(−D0 − (1− p)D1)

= πD

(
1
p

I− 1− p

p
(−D0)−1D1

)
= πD,

(28)
sinceπD(−D0)−1D1 = πD. Using these

γE
2,1 =

πD(D0 + (1− p)D1)2pD1(D0 + (1− p)D1)1pD11 =

πD(D0)2pD1D0pD11+
πDD0(1− p)D1pD1D0pD11+
πD(1− p)D1D0pD1D0pD11+

πD(1− p)2(D1)2pD1D0pD11+

πD(D0)2pD1(1− p)D1pD11+
πDD0(1− p)D1pD1(1− p)D1pD11+
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πD(1− p)D1D0pD1(1− p)D1pD11+
πD(1− p)2(D1)2pD1(1− p)D1pD11 =

p2γD
2,1 + p2(1− p)γD

1,0,1 + p2(1− p)γD
0,1,1+

p2(1− p)2γD
0,0,0,1 + p2(1− p)γD

2,0,0 + p2(1− p)2γD
1,0,0,0+

p2(1− p)2γD
0,1,0,0 + p2(1− p)3γD

0,0,0,0,0 .

This example demonstrates that the derivatives of the joint
densities of the split process can be computed from the
ones of the original process without knowing itsD0,D1

representation.

C. Output process approximation

The moments based description of the departure process dif-
fers significantly from the approximation approaches described
in Section III-C and III-D. Those techniques construct an
approximate departure process directly based on the behaviour
of the MAP/MAP/1 queue. Our approach instead is first
to compute dominant parameters of the departure process,
namely the joint moments of the consecutive inter-departure
times, and then to construct a MAP that realizes these para-
meters. The following theorem describes the computation of
the joint moments of the departure process.

Theorem 2. The stationary joint moments of two consecutive
inter-departure of a MAP/MAP/1 queue can be computed as

E(Xi
0X

j
1) = z i!(−M0)−i−1M1 j!(−M0)−j1, (29)

where

z =
[
v
(D)
0 v

(D)
1 v

(D)
2+

]
, (30)

v
(D)
2+ =

∞∑

k=2

v
(D)
k =

1
λ

v0R3(I−R)−1A1, (31)

M0 =




A0 A1 0
0 A0 A1

0 0 A0 + A1


 , (32)

M1 =




0 0 0
A−1 0 0
0 A−1 0


 . (33)

Proof: Since we focus on the joint moments of two
consecutive inter-departure times we have to consider the
following three cases:

• a departure leaves the queue empty, with probabilityv
(D)
0 ;

• a departure leaves one customer in the queue, with
probability v

(D)
1 ;

• a departure leaves at least two customers in the queue,
with probability v

(D)
2+ .

For all the three cases, the computation of the joint moments
of inter-departure times is based on constructing the MAP that
generates the departures and then computing the joint moments
based on (6).

The process evolution up to the second departure is different
in the three cases. Let us first consider the third case which is

the simplest. If there are at least two customers in the queue at
a departure, then the queue does not become empty before the
next two departures. For this reason the joint moments of the
next two inter-departure times do not depend on the arrivals.
Consequently, in this case, it is enough to consider the state
transitions which are assigned with a departure,A−1, and the
ones which are not,A0 + A1. As a result, in this case the
joint moments can be computed as

E(Xi
0X

j
1 , N(0) ≥ 2) = v

(D)
2+ i!(−A0 −A1)−i

(−A0 −A1)−1A−1 j!(−A0 −A1)−j1 =

v
(D)
2+ i!(−A0 −A1)−i−1A−1 j!(−A0 −A1)−j1,

(34)

whereN(t) denotes the number of customers at timet and
we assume that a departure occurred att = 0.

In the second case, i.e., when a departure leaves one
customer in the queue, we need to take into consideration one
arrival as well in order to compute the joint moments of the
next two inter-departure times. This arrival can happen either
before or after the first departure and is taken into account by
the blockA1 in position (2, 3) of M0 in (32).

Since in the third case the queue is left empty, for the
calculation of the joint moments of the next two inter-departure
times we have to consider two arrivals. The first happens
before the first departure and is taken into account by the
block A1 in position(1, 2) of M0 in (32). The second arrival
can happen either before the first departure or after the first
departure and is considered the same way as the arrival in the
second case.

The three cases can be organised in a single compact form
as presented in (29-33).

Note that also the moments of the inter-departure times
can be computed based on Theorem 2 by settingj to 0 in
(29). Having computed the moments and joint moments of the
departure process of a queue, we apply the method described
in [10] to construct a MAP with such parameters and use this
MAP as approximation of the output process.

It is important to note that
• the MAP defined byM0 andM1 is not a good output

process model of the MAP/MAP/1 queue,
• the embedded stationary distribution of the MAP defined

by M0 andM1 is different fromz,
• the finite dimensional matrix expression in (29) is exact,

because vectorz represents the effect of the infinite
queue.

D. Model reduction

The applied model reduction is based on the natural as-
sumption that the lower moments carry more information on
the traffic behaviour than the higher ones. Consequently, the
moments based model reduction is a very natural procedure.
It is simply dropping the higher moments and joint moments
form the basic moments set. Namely, starting from the order
n basic moments set,µi, i = 1, . . . , 2n − 1, and ηij ,
i, j = 1, . . . , n− 1, the reduced traffic description is the order
k < n basic moments set,µi, i = 1, . . . , 2k − 1, and ηij ,
i, j = 1, . . . , k − 1.
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V. NUMERICAL EXAMPLES

A. Tandem Networks

In this section the presented joint moments based
MAP/MAP/1 queueing network analysis method is evaluated
on the three tandem queueing network examples provided in
[5]. The basic setup is depicted by Figure 1. The service times
at Node B are given by an Erlang-2 distribution with mean
1.25. Three different arrival and service MAPs are defined for
Node A as follows.

• Case a
The service times at Node A are exponentially distributed
with mean1, and the MAP generating the arrivals is given
by the following matrices:

Da
0 =

[−6.9375 0.9375
0.0625 −0.1958

]
, Da

1 =
[
6 0
0 0.1333

]
.

The arrival intensity, squared coefficient of variation and
lag−1 correlation coefficient of this MAP are:λ =
0.5, c2

v = 4.1, ρ1 = 0.23.
• Case b

The properties of the arrival process of Node A areλ =
0.5, c2

v = 18.86, ρ1 = 0.34, it is characterised by the
following matrices:

Db
0 =



−0.542409519 0.0037279 0
0.004349217 −0.02298872 0.000621317

0 0.001242633 −2.269670072


 ,

Db
1 =




0.020503453 0 0.518178166
0 0.017396869 0.000621317

2.259107688 0.004970534 0.004349217


 .

The service time of Node A is hyperexponentially distrib-
uted with a mean of1 and c2

v = 2.62, thus the matrices
of the service MAP are:

Sb
0 =

[−10 0
0 −0.52632

]
, Sb

1 =
[

5 5
0.26316 0.26316

]
.

• Case c
The arrival MAP is the same as in case b, but the service
times are correlated (ρ = −0.31), given by the following
MAP:

Sc
0 =

[−10 0
0 −0.52632

]
, Sc

1 =
[

0 10
0.52632 0

]
.

Node A Node B

Fig. 1. Tandem network used in Example 1

The method presented in this paper is compared to the ones
presented in [9] and [5] and summarised in Sections III-C and
III-D. First the mean queue length of Node B is investigated
using different output approximation methods and different
truncation levels for Node A.

The results are summarised in Table I. The accuracy of
the two truncation-based methods increases with increasing
truncation level. However, with these methods the order of
the MAP representing the departure traffic of Node A is

much larger than the one of the moments based representation.
The traffic approximation with large MAPs has two negative
consequences:
• It slows down (or makes infeasible) the analysis of Node

B. When the truncation is at leveln = 20 the computation
of the mean queue length of Node B took about1 minute,
as opposed to the prompt results obtained with MAPs
with n ≤ 5 phases.

• It does not scale well. If we have a larger queueing
network with more than just 2 nodes, the size of the
departure MAP grows exponentially with the number of
hops. With the truncation methods it becomes impossible
to analyse a network composed by three tandem nodes if
the clipping level isn > 10.

As reflected by the results in Table I, our MAP approximation
of the departure process results in a compact MAP having only
a few (2 or 3) states, and even with 2 states we get reasonably
accurate results. In Case a the moments based approximation
with two states is more accurate than the truncation methods
with 12 states.

We need to mention that with our current approach the
output process of Node A can be approximated only with
MAP(2) and MAP(3) because the moments and joint moments
of the departure process of Node A are such that there is no
MAP(4) whose basic moments set is identical to the one of
the departure process. In this paper we restrict our attention to
the cases when the basic moments set of the output process is
feasible for MAPs of a given order (i.e., the moments matching
procedure of [10] is applicable). If it is not the case, then the
same moments based approximation could be applied together
with a MAP fitting method (which finds a valid MAP whose
basic moments set is as close to the one of the departure
process as possible). This possibility is out of the scope of this
paper (mainly because our current MAP fitting procedures are
not stable enough yet). In the consecutive examples we use
only MAP(2) and MAP(3) approximations due to the same
reason. It is important to note that this is not a limitation
of the moments based approximation approach. The moments
based approximation approach is applicable with any order
MAPs if a stable MAP fitting procedure provides the valid
MAP representation of the basic moments set.

Another important advantage of the moments based approx-
imation method is that the model size does not grow with
the number of nodes of the network. We can apply arbitrary
compact description for the output process of all nodes. Thus,
moments based approximation procedure does not have scaling
problems due to state space explosion.

Figure 2 depicts the autocorrelation of the internal traffic
between Node A and Node B and the queue length distribution
of Node B. As expected, by increasing the number of states
more statistical quantities of the traffic are matched and
therefore the accuracy of the approximation improves. In these
examples 3 phases are enough to capture the shape of the
autocorrelation function. Figure 2 presents the autocorrelation
for low order lags, but the MAP representation of the output
process makes it very simple to obtain also the asymptotic
decay rate of the autocorrelation function, since it is the real
part of the subdominant eigenvalue ofP = (−D0)−1D1.
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Fig. 2. Autocorrelation and queue length distribution in Example 1

#States Case a. #States Case b. Case c.

Simulation n/a 0.9517 n/a 3.48825 3.08063
moments n=2 2 0.93967 2 2.5053 2.55597

based n=3 3 0.954241 3 3.48803 3.01978
ETAQA n=2 6 0.833259 18 2.58742 2.61587

n=5 12 0.900164 36 2.91293 2.73691
n=10 22 0.936189 66 3.20054 2.95097
n=20 42 0.949793 126 3.41015 3.04765

Level n=2 6 0.902632 18 3.52804 3.05992
prob. n=5 12 0.939841 36 3.53408 3.08245

based n=10 22 0.947761 66 3.5002 3.0771
n=20 42 0.951109 126 3.4889 3.07611

TABLE I
MEAN QUEUE LENGTH ONNODE B IN EXAMPLE 1

B. A Three-Node Network with Superposition

As a second example we consider a simple network com-
posed by three nodes as depicted in Figure 3.

Node A

Node B

Node C

Fig. 3. The queueing network used in Example 2

The MAPs of the arrival and service at the nodes are as
follows.

• At Node A the arrival process is given by

DA
0 =



−25 3 10
1 −6 0
0 4 −10


 , DA

1 =




10 0 2
2 3 0
5 0 1


 ,

with λ = 6.63, c2
v = 1.31, ρ1 = 0.027, the service MAP

is defined by

SA
0 =

[−30 12
0 −9

]
, SA

1 =
[
15 3
2 7

]
,

with λ = 10, c2
v = 1.16, ρ1 = 0.025.

• The arrival and service MAPs at Node B are

DB
0 =

[−60 10
1 −5

]
, DB

1 =
[
50 0
0 4

]
,

SB
0 =

[−80 40
6 −20

]
, SB

1 =
[
20 20
7 7

]
,

with the arrival process having properties ofλ =
8.18, c2

v = 2.2, ρ1 = 0.19 and the basic properties of
the service MAP areλ = 18.63, c2

v = 1.23, ρ1 = 0.
• The MAP describing the service process of Node C is

given by

SC
0 =

[−100 10
1 −16

]
, SC

1 =
[
80 10
1 14

]
.

The basic properties of this MAP areλ = 21.8, c2
v =

1.58, ρ1 = 0.13.
The performance measure of interest is the same as before,

the mean queue length at Node C. Unfortunately our trial
to compare our results with the ones of the truncation-based
methods failed because we were not able to perform the analy-
sis even at the lowest possible truncation leveln = 2 due to
infeasible computation time. Our Mathematica implementation
did not terminate in an hour. The reason is that the output
MAP of Node A has18, the one of Node B has12 phases
when the truncation level is minimal,n = 2. As a result,
the superposed MAP has216 phases, and, together with the
service process of Node C (MAP(2)), the QBD representing
the behaviour of Node C has432 phases. The solution of (17)
becomes infeasible at the required level of accuracy for this
size.
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Node A, B output MAP(2) MAP(3)

Simulation 4.63527
Compressed n=3 4.313268 (-7%) 4.06334 (-12%)

aggregate n=5 n/a 4.23841 (-9%)
n=7 n/a 4.31843 (-7%)

Non compressed
aggregate (n=4,9) 4.32768 (-6.5%) 4.44595 (-4%)

Renewal output approx. 4.32768 (-6.5%) 4.2384 (-8.5%)

TABLE II
MEAN QUEUE LENGTH OFNODE C IN EXAMPLE 2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  2  4  6  8  10  12  14  16  18

P
ro

ba
bi

lit
y

Buffer size

Queue length distribution of Node C

Simulation
MAP(3)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0  2  4  6  8  10  12  14

A
ut

oc
or

re
la

tio
n

Lag

Autocorrelation of the traffic feeding Node C

Simulation
MAP(3)

Fig. 4. Autocorrelation of arrivals and queue length distribution of Node C
in Example 2

For the superposition of the output traffic of Node A and
Node B we used both the direct method based on Kronecker
algebra and the moments based superposition method of
Theorem 1 obtaining the same results.

The results of the moments based approximation are sum-
marised in Table II. The header indicates how many phases
have been used to approximate the output of Node A and B.
“Compression” refers to the number of phases the superposed
MAP is compressed to (”n/a” indicates that the field has no
meaning, e.g., compression of the superposed traffic to5 states
is not possible when a MAP(2) approximation is used since
the superposed traffic has only4 states in this case).

According to the expectations the results are more accurate
when MAPs(3) are used for the output process approximation
of Node A and B. The compression decreases the accuracy
of the approximation. Surprisingly, the 2-state output approx-
imation provides better results than the 3-state one when the
superposed traffic is compressed. We do not have explicit
explanation for this phenomena, we believe however that it
is due to the random interplay of the two approximations, the
one of the output process and the one of the compression
of the superposed process. The table also contains the mean
queue length when the output of Node A and Node B is
approximated by a renewal process. In spite of the low lag-1
correlation of the MAPs of this example the results indicate
that the renewal output assumption is less accurate than the

Node D Node A Node B Node C

Simulation 4.24696 1.0709 1.94556 5.4563
MAP(2) 4.24962 1.06936 1.9342 5.23628

Rel. error -0.06% -0.1% -0.5% -4%
MAP(3) 4.24962 1.07144 1.94196 5.25906

Rel. error -0.06% 0.05% -0.2% -3.6%

TABLE III
MEAN QUEUE LENGTH OF NODES INEXAMPLE 3

MAP model capturing some correlation measures of the traffic.
The queue length distribution and the autocorrelation of the

traffic feeding Node C are depicted in Figure 4.

C. A Four-Node Network with Splitting and Superposition

As a last example we consider a queueing network with
both splitting and superposition. Figure 5 depicts the structure
of this network. The MAP describing the arrivals entering to
the network (i.e., the traffic of Node D) is given by

DD
0 =



−62.5 7.5 25
2.5 −15 0
0 10 −25


 , DD

1 =




25 0 5
5 7.5 0

12.5 0 2.5


 ,

with average intensity, coefficient of variation and lag-1 cor-
relation coefficient ofλ = 16.6, c2

v = 1.31, ρ1 = 0.027. The
matrices of the service MAP are

SD
0 =

[−62.5 25
0 −17.5

]
, SD

1 =
[
25 12.5
10 7.5

]
.

The basic properties of the service MAP areλ = 21.71, c2
v =

1.31, ρ1 = 0.007.
The service processes of Nodes A, B and C are the same as in
Example 2. Each departing customer of Node D is directed to
Node A with probability0.3 and to Node B with probability
0.7.

Node A

Node B

Node CNode D

Fig. 5. The queueing network used in Example 3

The mean queue length results of the nodes are summarised
in Table III. In this example the accuracy is reasonable high
(the error is below4% compared to the simulation) both when
MAPs(2) and MAPs(3) are used to approximate the departure
traffic of the queues.

Figure 6 depicts the queue length distribution of the nodes
and the autocorrelation of the arriving traffic. The queue length
distribution is approximated very accurately even if the high
lag-correlations are not captured exactly. Computation time of
these results was between1− 2 seconds which indicates that
this approximation method does not have scaling problems and
can be applied for more complex queueing networks. This is
not the case with the truncation based methods.
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Fig. 6. Autocorrelation of arrivals and queue length distribution of nodes in Example 3

VI. CONCLUSIONS

This paper provides an approximation for the output process
of MAP/MAP/1 queues. In particular, we propose approx-
imating the output process of a MAP/MAP/1 queue based
on the moments of the inter-departure time and the joint
moments of two consecutive inter-departure times. Then this
approximation is used for the analysis of queueing networks
with traffic superposition and splitting.

The proposed moments based approximation method were
tested in numerical examples and showed reasonable accuracy
compared to simulation results. An important feature of the
proposed method is that the size of the traffic models remains
small during the analysis of larger queueing networks. This
was not the case with the previously proposed approximations.
Due to this property the moments based approximation pro-
vides a fast approximation of larger queueing networks than
the previously analysable ones.
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