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Abstract—The decomposition based approximate numerical and the consecutive service times are independent. The evo-
analysis of queueing networks of MAP/MAP/1 queues is con- |ytion of packet switched communication networks during the
sidered in this paper. One of the most crucial decisions of gignties and nineties resulted in teletraffic with significant

decomposition based queueing network analysis is the description |ati hich lead to the devel t of deli
of inter-node traffic. Utilising recent results on Markov arrival correlation which lead to the development of new modeliing

processes (MAPs), we apply a given number of joint moments of Paradigms. _
the consecutive inter-event times to describe the inter-node traffic. ~ Several modelling approaches were developed to better

This traffic description is compact (uses far less parameters than describe the properties of packet traffic [8]. One of the lines
the alternative methods) and flexible (allows an easy reduction ¢ rasearch is based on Markovian models with the aim of

of the complexity of the model, which increases in each analysis extending the Poisson arrival process in order to capture more
step). Numerical examples demonstrate the accuracy and the 9 P P

computational complexity of the proposed approximate analysis Statistical properties of the traffic behaviour. A long series of
method. efforts resulted in the introduction of Markov arrival processes
Keywords: Queueing network, Markov arrival process, (MAPs) as it is surveyed in [7]. A main advantage of using
MAP/MAP/1 queue, Matrix-geometric method, Joint moment.  narkovian models for traffic description of queues is that there
are efficient numerical analysis methods, commonly referred to
as matrix analytic methods, for the evaluation of a Markovian
. INTRODUCTION queue (see e.g., [7] for an introduction and [6] for a set
o . work | delling tool f|mplemented methods).
PEN queueing Networks are a popuiar modetiing toof 1or 1,4 availability of flexible Markovian models gave a new
the performance analy5|s of computer and.telecommunlcatlﬁﬁbulse to the research on queueing network analysis [4], [9],
systkems:ﬂ:ETDaqt soluglo?f_ m_ethotds are_f_avallab_le ‘;_”'y fg_r tn%] Several approximate analysis methods were developed to
WOrks wi o1sson traflic INput, Specitic service time diStrz 5 mpine the results of these two fields for accurate approxima-
bution and service discipline. These restrictive assumptloElgn of queueing networks with Markovian node behaviour. In
make the exact solutions unlikely to use in practice. The m

. . . . s paper we present a new method along this line of research
reason is that in real systems the Poisson process is usu,

) ) ch is based on a recent result about the moments based
not a good model for the traffic behaviour. Instead the repé resentation of MAPS [10]

traffic can be bursty and correlated, and the service times in th

. . : he rest of the paper is organised as follows. Section I
service stations can be correlated as well. Since these featlﬁ'i‘?r%duces MAPs and some of their properties that are used

hi\’e an |mpact.gn the performance measures, they have 1q,pg o sequel. Section 1l provides a summary on the available
taken Into consideration. _ _ MAP based queueing network approximation methods. The

The attempts to analyse queueing networks with NOBt,,qgeq approximation procedure is introduced in Section IV,
Poisson traffic and non-exponential service time dlstrlbutlownich includes the exact computation of the moments and joint

dates back to the secpnd r;]alf of the last century% Lhe_f”iﬁbments of consecutive inter departure times of MAP/MAP/1
attempts were to consider the second moments of the inigi, o5 The numerical behaviour of the method is illustrated

arrivgl and thg service time d'istributio.ns ip the computation y three examples in Section V. Section VI concludes the
A widely applied approximation of this kind was mtegrate%aper

into the QNA tool [11], [12]. The intrinsic assumption in
these approximations is that the consecutive inter-arrival times 1. SUMMARY ON MAP RESULTS

This work is partially supported by OTKA grant no. K61709 and by EEC 1he arrivals of a MAP (Markovian Arrival Process) are
project Crutial. modulated by a background Markov chain. A transition in



the background Markov chain generates an arrival with raost popular ones is the lagk autocorrelationp;, defined
given probability; in addition, during a sojourn in a statas

of the Markov chain, arrivals are generated according to a E(XoXy) — E(X)?

Poisson process whose intensity depends on the state. For a Pk = BE(X?) — BE(X)? (1)

detailed introduction on MAP we refer, e.g., to [7]. Hereinafter o
we consider continuous time MAPs. The generator of tfdowever, recent results on the steady state characterisation of

continuous time Markov chain (CTMC) that modulates thgrdern non-redundant MAPs [10] showed that given— 1)°
arrivals is denoted byD, and the states of the Markov/0iNt moments of two consecutive inter-arrivals,

chain are referred to as thehasesof the arrival process. g = BXGX]), ij=1,....n-1, (8)
MAPs are usually defined by two matricd9o describes the

transition rates without an arrival afd, describes the onestogether with the firstn —1 moments of the inter-arrival time
with an arrival event. ThudD = Dy + D;. SinceD is a distribution,

generator matrix, its row sums are equal to zero,Id&,= 0, pi=E(X3), i=1,....2n—1, 9)
where 1 (0) denotes the column vector of ones (zeros) of

appropriate size. Consequenflyyl = —D; 1. Let us denote completely characterise the process. Based on this set of
the stationary distribution of the phase processiby is the moments and joint moments all other moments and joint
solution of the linear systemD = 0, o1 = 1. The average moments, e.g.,

arrival intensity of the MAP is then computed by: « the lag-k correlation for arbitrar¥, px,

« the arbitrary joint momentsl(X¢° Xt ... X)),

A= aDil. (1) « the derivatives of the complementary cumulative distrib-
In the analysis of MAPs, the phase of the background ution function (ccdf) atz = 0,
CTMC at arrival instants plays an important role. The phase di )
process of the MAP at consecutive arrivals is referred to as the vi=-5(1-Fx())] =7Do'l,  (10)
process embedded at arrival instants. The state transition prob- o o f:“
ability matrix of the embedded processBs= (—Dg) 'D;. « the derivatives of the joint densitf(zo, r1) atzy = r1 =
The stationary probability vector of the embedded process, 0,
is the solution of the linear systenP = 7w, 71 = 1. o o
The stationary distribution of the underlying CTM&, and Vij = W—jf(xo, 1) =
the stationary distribution of the underlying CTMC at arrival Lo 1y so=z1=0 11)
epochs, are related by Do’ D1Dy? D11 = —7Dg' DDy’ 11 |
a=r(-Do)"! and 7= %a(—Do). ) « the derivatives of the joint densit§(xo, ..., z,) atzy =
- 4n 01
In steady state, the inter-arrival time is phase-type (PH) Py gin
distributed with initial probability vectorr and transient Vigyonsin = —= - —f (0, -, Tp) =
generatoq. Thus, the cumulative distribution function (cdf) Oz’ Oy’ To=...=2p,=0
of the inter-arrival time is DD D" Dy ... Do" D41,
Fx(z) = P(X < z) =1 — mePo?1, 3 12)
] . can be computed [3] where the mentioned derivatives can be
and itskth moment is considered as the extension of the moments or joint moments
iy = E(Xk) — kln(~Dg) 1. 4) series to the negative axis. We refer to the fitst — 1

moments, (9), and the firgth — 1) joint moments, (8), of
The inter arrival times in MAPs are not independent. Thgn ordern, non-redundant MAP abasic moments seNon-
joint density function of the inter-arrival time¥,, X, ..., X)  redundancy means that the basic moments set is composed
IS: by n? independent parameters, which is not the case, e.g.,
— reDozoy. JDorip.  Dozr, 1. when the inter-arrival time distribution is an order 1 phase
f(@o, @1, w) = me 1€ 1e--c ! ®) type distribution. The parameters are called independent if the
determinants of the moments matrices of dizéefined in [3]
From the joint density function the joint moments of the=  are non-zero whek < n.

0 <ap <ap <--- <ag-th inter arrival times can be derived The D,, D, representation is not a unique description of a

as MAP. There are infinitely many matrix pairs which result in the
E( Xé“ Xiill Xéi,) - same stationary behaviour. On the contrary, the representation
‘ A given by the basic moments set is a unique description of a
mig!(—=Dg) P74 /(—Dg) ™" (6) non-redundant MAP.

B ) » In Section IV we propose an approximate analysis tech-
oo PO a1, 1 (—Dg) TR - : : ; : e

: nigue. This technique requires the computation of the joint

Several statistical quantities can be used in practice rmoments of two consecutive inter-departure times from a
characterise the dependency structure of MAPs. One of tAP/MAP/1 queue. According to our knowledge, this step



cannot be performed based on the basic moments set repA fundamental result of the matrix analytic methods is that
resentation. For this reason we need to be able to genethie steady state distribution of QBDs is a matrix geometric
the Dy, D, representation for a given basic moments set. Tstribution, thus
this purpose a method composed of two steps is proposed in &
[10]. In the first step a non-Markovian matrix representation vk = voR7, k> 0. (16)

is generated and in the second step an equivalent Markovigdm the balance equations it follows tHatis the minimal

representation is found as a result of an optimisation proggon-negative solution of the following matrix-equation:
dure.

2
On the contrary to the above mentioned step, the proposed A1+ RAo+R°A_; =0. 17

technique contains a step that cannot be performed, accordiiigre are several efficient numerical algorithms to comjute
to our current knowledge, based on 1g, D, representation. 5] [7]. The v, part of the probability vector is the solution
This step is the model reduction which will be performed by the following set of linear equations:
simple truncation of the basic moments set defined in (9) and _ .
(8) 0= ’UQAO + ’UlA_l = ’U()(Ag -+ RA_l),
> 18
1:ZUOR’“1:@0(17R)*11. (18)
I1l. SUMMARY ON MAP BASED QUEUEING NETWORK =0

APPROXIMATIONS The simplicity of the matrix geometric distribution of the

A. MAP/MAP/1 Queues steady state probability vector allows a simple computation

In a MAP/MAP/1 queue the arrivals of customers is give];1or many performance measures. E.g., the mean queue length

by a MAP with matricesBo and B; meaning that the seriescan be computed as
of inter-arrival times are correlated. Also the service of the
customers is described by a MAP with matrices denoted by
So andS;. Thus, consecutive service times are correlated as
well. The steady state distribution embedded just after the depar-

The generator of the CTMC that models the queue has ties is computed by

E(N) = i k vR*1 =vR(I-R)721.  (19)
k=0

following block-tri-diagonal structure: Vi1 A 1
v? = 2L A, i3 0, (20)
KO Al Zk:l val]‘ )‘S
A, Ay Ay where \g denotes the stationary intensity of the departure

Q= A, Ay A ) (13) maP (So, S1) according to (1). The departure MAP is active
. . . while there is at least one customer in the queue and “gets
frozen” when the queue is idle.

where the matrix blocks are given by the following Kronecker

operations: B. MAP Models for the Departure Process
A;=B;®1 The exact departure process of a MAP/MAP/1 can be
Ao = By @ S given by a MAP with infinitely many phases. The background

(14) Markov chain of the MAP is the Markov chain of the queueing

A;1 =1®8,, model (see (13)). In this background process the backward
Aog=DBo®I, level transitions correspond to the departure of a job. Thus the
. . . . . . two matrices characterising the departure process exactly are
wherel denotes the identity matrix of appropriate dlmensml?iS follows:

A CTMC with generator matrix of block-structure given

in (13) is calledQuasi Birth-Deathprocess (QBD). Solution Apg Ax 0 0 0
methods exploiting the special structure of QBDs have an Do) — 0 A Ax O 0 ..
extensive literature (see, e.g., [2] for a recent survey). In o = |0 0 Ao A1 O ...p»
order to compute the performance measures of interest and : : .
to analyse the departure process of a MAP/MAP/1 queue, it - o o o0 o (21)
is necessary to compute the steady state probability vector A 0 0 0 T
. o . 1

The steady state vector is partitioned as D<1 ) 0 A, 0 0

v = [vo V1 U ], (15) : :

where alsav; is vector according to the block structure of the In [1] an approximation method is proposed for the de-
generator. Thus, thgh element of vector; is the probability parture process of MAP/PH/1 queues that is based on the
that there are jobs in the queue and the background procesgpropriate truncation of the exact infinite MAP. Recently, two
(that is the product space of the background processes of tasults have been published that are based on the same idea but
arrival and service process) is in stagte can be applied to MAP/MAP/1 queues as well. Both of them



truncate the infinite MAP at level, but in different ways. The where G can be computed frolmR using G = (—Ap —
structure of the approximating departure process is the saf®A ;)1 A _;. This construction (based on the idea of the

ETAQA methodology) ensures that the steady state probabili-

Ay A 0 0 0 -
00 Al A 0 0 ties of the truncated procesg and of the exact model, are
0 00 Al A 0 the same up to the clipping level, and for the clipping level
D™ — 0 1 On, = > 4o, Ui holds. As a consequence, the inter-departure
0 . . . . k) . . H
: : " " times and the lag-k correlations up to the truncation level
0O o 0 0 A, A, are preserved exactly.
L0 0 0 0 0 A, -
) 0 0 0 0 (22) IV. MOMENTS BASEDQN APPROXIMATION
A 0 0 0 0 In case of traffic based decomposition of QNs, the main
(n) 0 A, 0 O 0 elements of the computation are
D" = . .
1 : : . « traffic aggregation,
0 0 0 A, 0 0 « traffic splitting, o
o 0 0 0o A, A, « output process approximation,

only the definition of the special matrix block&, ; andA _,

differs.

« model reduction.

The concrete implementation of these steps depends on the
most important decision of the approximation which is the

The next two subsection provide a short overview on theggjection of the traffic description of the inter-node traffic.

methods.

C. Level probability based truncation method

The basic idea of the truncation method of [9] is that affoments set.
the levels: 2 n of the exact model are merged into the The main adVantage of this traffic deSCI’iption is that it
last level (referred to as the clipping level) of the truncatedjlows a natural and flexible scaling of the size of the traffic
model. All the forward and local transitions of the infinitedescription, i.e., the order of the MAP.
MAP correspond to local transitions in the truncated MAP, A major disadvantage of pure MAP based inter-node traffic
that givesAg = A; + Ag .
However, in case of departures there are two cases wHegreases node by node during the evaluation and there was

Similar to [5], [9] in this paper we also apply MAP to describe
the inter-node traffic, but in an essentially different way. In
this paper we represent the inter-node traffic with its basic

description is that the size of the inter-node MAP model

the truncated model is at the clipping level. According to [9]i© efficient and accurate model reduction method available for

the probability that the exact model is at level= n when keeping the size of the model moderate.

the truncated process is at clipping levelis approximated  In the following subsections we detail the elementary steps
using vectorv,, and probability that the exact model is aff the analysis together with the proposed, moments based
level i > n when the truncated process is at clipping lexel model reduction method. Both the aggregation and the traffic
is approximated using vectart = ZZo:nH vg. Indeed, [9] sPlitting step can be performed based purely either on the basic
approximates the probability that a departure of the truncatBPments set representation or on ihg, D, representation.
process at clipping level and phasej moves the truncated We present both approaches for completeness, in spite of
process to leveh — 1 as [v,];/([v;]; + [vn];), where[v,]; the fact that in practical computations we commonly apply
denotes theth element ofv,,. Thus the related blocks of thethe Do, D1 representation. The step of approximating the
truncated MAP are the following: output process of a MAP/MAP/1 queue can be done based

A on the Do, D, representation only. (Theoretically it should
A_, = Diag(v,) Diag™ (v, + v, ) A_y, 0, D1 rep y. ( y

B (23) be possible based on the moments representation too, but we

A_, = Diag(v,} ) Diag™ (v, +v; ) A_4, do not know how). The model reduction step is performed
where Diag(vec) denotes the diagonal matrixbased on the basic moments set representation only.
composed by the elements of vectopec. Since

Diag(v,) Diag™ (v, + v;;)+Diag(v, ) Diag™ (v, + v;) =1, A. Traffic aggregation
this definition ensures thaA _; + A_; = A_;. The fact that(Fo, F;) is the superposition ofDg, Dy)
and (Eg,E1) means that\r = Ap + Ag, Fo = Do @ Eo,
D. ETAQA Truncation Method Fi, =D; ®E;, andar = ap ® ag [7].
The efficiency of the method of [9] has been enhanced in Theé moments based description of traffic aggregation is
[5]. It that paper the blocks of the truncated model are defin@gesented in the following theorem.

as: Theorem 1. Let (Do,D;) and (Eq,E;) be MAPs and

Ao =A; + Ay, (Fo, F1) their superposition. Let/”, v and~/ denote the

n derivatives of the joint probability density function of two
A,=A,-AG 24 S - . . .

ot ! v (24) consecutive inter-arrival times @ as defined in (11", vF
A, =A,G,

andv!" the derivatives of the ccdf of the marginal distribution



of the inter-arrival times as defined in (10), ang,, A\ and which, based on the compatibility of ordinary and Kronecker
Ar their average arrival intensity as defined in (1), for thgroduct and applying (26), can be written as

three MAPs. Then the joint density of two consecutive inter- i g4l

arrival times of the superposed process satisfies ~E = ADAR Z Z () (J + 1)
i1 K /\D+/\Ek 0¢=0
ADAE © i\ (7 +1
Ia DAE J ) .
Vij = )\D + A\g kz:; < ) < ) (25) ( (ﬂ'DDol_leDoﬁ'l_zl) (ﬂ'EEOkH_ll) +
0£=0

(WDDOFHJ‘H—@I) (WEE()kilElEoZl) i
(WDDOquDlDOijzl) (TI_EEOkJrZ >+
D E D E

_1i_y¢ V R 2 1. ) .

Yiek—1,j—¢ Vi+e i—k+i—€ V.t 1> (WDDOZ—HJ—ZI) (WEEOkElEOZ]-))-

Proof: Based on (2) and the properties of the superposthis final expression equals to the right hand side of (2).
tion of MAPs we have that

D E D E
(%-k,j—é Vido—1 T Vilgyjr1—0 Vh—1,0-17T

- -1 (ap @ ap)(Do & Eo) = B. Traffic splitting
AD + Ap Markovian traffic splitting at the exit of a node of the
;(QD @ ap)(De@I+10Ey) = gueueing network means that departing customers are directed
AD + AE to a given consecutive node with probability If (Do, D1)
- (apDo ® ap + ap ® apEy), represents the departure process tfi@g + (1 — p)D1,pD1)
ADp + Ap characterises the traffic towards the given consecutive node
where we applied compatibility of the Kronecker product. By/]-
further application of (2) The moments based description of traffic splitting is demon-
strated here for a low order termh= 2,7 = 1. The description
T -t <>\D7TD ® Apme(—Eo) '+ of the general case requires cumbersome notation which we
ADp + AE avoid here.
py- (—D ),1@)A T . Let (D(),Dl) be a MAP and(Eo,El) = (DO + (1 —
DEDAT0 ERE ) = p)Dy,pD4) its split with probabilityp. Consequentlyap =
An ) ag, sinceD = Dg + Dy = Eg + Eq, and\g = pAp.
LSRR <7TD @7p(—Eo) ' +7p(—Do) ' @ 7r
Ap + g
(26) ’}/QEl = 7TEE02E1E01E11 =
The left hand side of (25) can be calculated as 7p(Do + (1 — p)D1)*pD1(Do + (1 — p)D1)'pD41,
v = mpFo'F1Fo’ M1 (27) where
= 7r(Do ® Eo)' (D1 ® E1)(Do ® Eo)’™'1 . (Do + (1 —p)D1)* =
Since Do’ + Do((1 — p)D1) + (1 — p)D1)Do + ((1 — p)D1)*
(Do & T)(I & Eo) = (Dol) & (IEo) = e )
(ID()) ® (EOI) = (I ® Eo)(DO ® I>7 Tp = E O(E(—Eo) = pi)\D OLD(—DO — (1 —p)Dl)
; 1
we can expandDg ¢ E¢)* as = Ap7Tp(—Do) " H(=Dg — (1 — p)Dy)
i i 1 1-—
(Do & Eo) _(D0®I+I®EO) :7TD<pI_ p E(-Do)" 1D1>:7TD,
= (Do @ 1) "I E (28)
Z ( > 0 ( 2 sincerp(—Dg)'D; = 7p. Using these
Y21 =
= Do F @ Eo.
/; <k> 0 0 7mp(Do + (1 — p)D1)*pD1(Dg + (1 — p)Dy)'pD11 =
Further more 7p(Do)*pD1DopD1 1+
. mpDo(1 — p)D1pD1DepD11+
7” = (Z <;> Do F® E0k> mp(1 —p)D1DopD1DopD;1+
k=0 7p(1 — p)*(D1)*pD1DepD;1+

Jj+1 .
1 , 2 _
(D1 @I+1®E;) (Z (J + )DOJ-H—(Z ® Eﬂz) 1, 7p(Do)?*pD1(1 — p)D1pD; 1+
=\t mpDo(1 —p)D1pD+(1 — p)D1pD11+



7p(1 —p)D1DepD4 (1 — p)D1pD11+ the simplest. If there are at least two customers in the queue at
75(1 = p)2(D1)%pD1 (1 — p)D1pD11 = a departure, then the queue does not bec_or_ne empty before the
2 D 2(1 D 2(1 D next two departures. For this reason the joint moments of the
P2y P (D — P10 T ;p)%vl»ﬁ . next two inter-departure times do not depend on the arrivals.
P (1= p)* 750,01 +P°(1 —p)vs00 + (L= p)*1 000+  Consequently, in this case, it is enough to consider the state
p(1— p)2%f)i’>1’0’0 +p*(1 — p)37(f)3’0_’070’0 ) transitions which are assigned with a departuxe,;;, and the

. o ~ ones which are notAg + A;. As a result, in this case the
This example demonstrates that the derivatives of the JoLmnt moments can be computed as
e

densities of the split process can be computed from t . (D) . ,
ones of the original process without knowing By, Dy E(X{X{,N(0) > 2) =vy” il(—Ao — Ay)™"

representation. (Ao — A1) "'A_; jl(~Ag — Ay) V1 = (34)

C. Output process approximation véf) il(—Ap — A1) "TA 4 jl(—Ap — Ay) 71,

The moments based description of the departure process difrere N (¢) denotes the number of customers at timand

fers significantly from the approximation approaches describ@é assume that a departure occurred at0.

in Section l1I-C and IlI-D. Those techniques construct an |n the second case, i.e., when a departure leaves one
approximate departure process directly based on the behavigstomer in the queue, we need to take into consideration one
of the MAP/MAP/1 queue. Our approach instead is firgirrival as well in order to compute the joint moments of the
to compute dominant parameters of the departure proceséxt two inter-departure times. This arrival can happen either
namely the joint moments of the consecutive inter-departusefore or after the first departure and is taken into account by
times, and then to construct a MAP that realizes these patie block A, in position (2,3) of My in (32).

meters. The following theorem describes the computation ofSince in the third case the queue is left empty, for the
the joint moments of the departure process. calculation of the joint moments of the next two inter-departure

Theorem 2. The stationary joint moments of two consecutiviimes we have to consider two arrivals. The first happens

inter-departure of a MAP/MAP/1 queue can be computed efore the first departure and is taken into account by the
lock A in position(1,2) of Mg in (32). The second arrival

E(X}X]) =z il(~Mo) """ 'M; j!(—Mo) 71, (29) can happen either before the first departure or after the first
departure and is considered the same way as the arrival in the

where second case.
o |:U((JD) v§D) véf) , (30) The three cases can be organised in a single compact form
as presented in (29-33). [ ]
o Note that also the moments of the inter-departure times
Uéi) _ Z”/(CD) _ lvORS(I ~R) Ay, (31) can be cpmputed based on Theorem 2.b.y setfirtg O in
PR A (29). Having computed the moments and joint moments of the
departure process of a queue, we apply the method described
A, A 0 in [10] to construct a MAP with such parameters and use this
Mo=| 0 A A, 7 (32) MAR as approximation of the output process.
0 0 Ag+A; It is important to note that
« the MAP defined byMy and M; is not a good output
0 0 o0 process model of the MAP/MAP/1 queue,
M;=|A, o0 o. (33) « the embedded stationary distribution of the MAP defined
0 A, O by Mg andM; is different fromz,

« the finite dimensional matrix expression in (29) is exact,

Proof: Since we focus on the joint moments of two  pecause vector represents the effect of the infinite
consecutive inter-departure times we have to consider the queue.

following three cases:
« adeparture leaves the queue empty, with probabiéiﬁ); D. Model reduction
- a departure leaves one customer in the queue, Withthe gpplied model reduction is based on the natural as-

robability v{"; i i i

p yur % _ sumption that the lower moments carry more information on

« a departure !eav(eDs at least two customers in the queyy traffic behaviour than the higher ones. Consequently, the
with probability vy . moments based model reduction is a very natural procedure.

For all the three cases, the computation of the joint momertss simply dropping the higher moments and joint moments
of inter-departure times is based on constructing the MAP thfatm the basic moments set. Namely, starting from the order

generates the departures and then computing the joint momentbasic moments sety;, ¢ = 1,...,2n — 1, and n;;,
based on (6). i,j =1,...,n—1, the reduced traffic description is the order
The process evolution up to the second departure is differdnt< n basic moments sefy;, ¢ = 1,...,2k — 1, and n;,

in the three cases. Let us first consider the third case whichijg =1,...,k — 1.



V. NUMERICAL EXAMPLES much larger than the one of the moments based representation.
A. Tandem Networks The traffic approximation with large MAPs has two negative
consequences:

In this section the presented joint moments base . : .
MAP/MAP/1 queueing network analysis method is evaluated * It slows down (or makes infeasible) the analysis of Node
B. When the truncation is at level= 20 the computation

on the three tandem queueing network examples provided in of the mean queue length of Node B took abbuinute,

[5]. The basic setup is depicted by Figure 1. The service times . .
at Node B are given by an Erlang-2 distribution with mean as opposed to the prompt results obtained with MAPs
with n < 5 phases.

1.25. Three different arrival and service MAPs are defined for .
« It does not scale well. If we have a larger gueueing

Node A as follows. network with more than just 2 nodes, the size of the
« Case a o ) o departure MAP grows exponentially with the number of
The service times at Node A are exponentially distributed 5 ith the truncation methods it becomes impossible
with meant, and the MAP generating the arrivals is given 4 anaivse a network composed by three tandem nodes if
by the following matrices: the clipping level isn > 10.

DA — —6.9375  0.9375 DA — 6 0 As reflected by the results in Table I, our MAP approximation
071 0.0625 —0.1958]"° 1710 0.1333(" of the departure process results in a compact MAP having only

The arrival intensity, squared coefficient of variation anggcel‘:\:georreitﬁéatﬁ] S’Czr;i zvfr?ewr::grﬁ:r:?;et?avs\,ls dggt r?g;?::t?g;
lag—1 correlation coefficient of this MAP areA = : ; 1P
9 with two states is more accurate than the truncation methods
0.5,c2 = 4.1, p; = 0.23. ;
. Case b with 12 states. _ _
The properties of the arrival process of Node A are We need to mention that with our current approach the

5 -~ o . output process of Node A can be approximated only with
0'5’%. N 18'8.6”)1. = 0.34, itis characterised by the MAP(2) and MAP(3) because the moments and joint moments
following matrices:

of the departure process of Node A are such that there is no

[—0.542409519  0.0037279 0 MAP(4) whose basic moments set is identical to the one of
D§ = | 0.004349217 —0.02298872  0.000621317 | , the departure process. In this paper we restrict our attention to
i 0 0.001242633 —2.269670072 the cases when the basic moments set of the output process is
[0.020503453 0 0.518178166 feasible for MAPs of a given order (i.e., the moments matching
DY = 0 0.017396869 0.000621317| . procedure of [10] is applicable). If it is not the case, then the
2.959107688 0.004970534 0.004349217 same moments based approximation could be applied together

L ) ) ... with a MAP fitting method (which finds a valid MAP whose
The service time of Node A2|s hyperexponentially d,'smbbasic moments set is as close to the one of the departure
uted with a mean of andc; = 2.62, thus the matrices ., o5 as possible). This possibility is out of the scope of this
of the service MAP are: paper (mainly because our current MAP fitting procedures are
gb — {—10 0 } gb _ { 5 5 ] not stable enough yet). In the consecutive examples we use
0 0 —0.52632)” "~ 0.26316 0.26316] ~ only MAP(2) and MAP(3) approximations due to the same
. Case ¢ reason. It is important to note that this is not a limitation

The arrival MAP is the same as in case b, but the servi@& the moments based approximation approach. The moments
times are correlatech(= —0.31), given by the following based approximation approach is applicable with any order

MAP: MAPs if a stable MAP fitting procedure provides the valid
MAP representation of the basic moments set.
S¢ = [_010 0 5?2632} , 8¢ = [0 520632 100] . Another important advantage of the moments based approx-
. : imation method is that the model size does not grow with

the number of nodes of the network. We can apply arbitrary
5 m_,m_» compact description for the output process of all nodes. Thus,
moments based approximation procedure does not have scaling
Node A Node B problems due to state space explosion.
Figure 2 depicts the autocorrelation of the internal traffic
between Node A and Node B and the queue length distribution
The method presented in this paper is compared to the oméNode B. As expected, by increasing the number of states
presented in [9] and [5] and summarised in Sections IlI-C amdore statistical quantities of the traffic are matched and
llI-D. First the mean queue length of Node B is investigatettherefore the accuracy of the approximation improves. In these
using different output approximation methods and differemxamples 3 phases are enough to capture the shape of the
truncation levels for Node A. autocorrelation function. Figure 2 presents the autocorrelation
The results are summarised in Table I. The accuracy foir low order lags, but the MAP representation of the output
the two truncation-based methods increases with increasprgcess makes it very simple to obtain also the asymptotic
truncation level. However, with these methods the order décay rate of the autocorrelation function, since it is the real
the MAP representing the departure traffic of Node A ipart of the subdominant eigenvalue Bf= (—Dg)'D;.

Fig. 1. Tandem network used in Example 1
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Fig. 2. Autocorrelation and queue length distribution in Example 1

[ | #States| Case a. | #States| Case b.| Case c. |
Simulation n/a 0.9517 n/a 3.48825| 3.08063
moments n=2 2 0.93967 2 2.5053 | 2.55597
based n=3 3 0.954241 3 3.48803 | 3.01978
ETAQA n=2 6 0.833259 18 2.58742 | 2.61587
n=5 12 0.900164 36 2.91293 | 2.73691

n=10 22 0.936189 66 3.20054 | 2.95097

n=20 42 0.949793 126 3.41015| 3.04765

Level n=2 6 0.902632 18 3.52804 | 3.05992
prob. n=5 12 0.939841 36 3.53408 | 3.08245
based n=10 22 0.947761 66 3.5002 3.0771
n=20 42 0.951109 126 3.4889 | 3.07611

TABLE |

MEAN QUEUE LENGTH ONNODE B IN EXAMPLE 1

B. A Three-Node Network with Superposition

As a second example we consider a simple network com-
posed by three nodes as depicted in Figure 3.

Node A

Node C

Hm/jﬂmﬁ

Node B

Fig. 3. The queueing network used in Example 2

The MAPs of the arrival and service at the nodes are

follows.
« At Node A the arrival process is given by

-25 3 10
Dy=|1 -6 0|,
0 4 -10

D =

10

2
5

o w o

2
0,
1

is defined by

A_'—SO 12] A_ |15 3

So = 0 9] St = 2 7’
with A = 10,2 = 1.16, p; = 0.025.

o The arrival and service MAPs at Node B are

pB_ [-60 10] B _ {50 0}

1 -5 0 4

B —80 40 B 20 20
SO_{G —-20]° Sl_[? 7]’

with the arrival process having properties of =

8.18,c¢2 = 2.2,p; = 0.19 and the basic properties of

the service MAP are\ = 18.63,¢2 = 1.23,p; = 0.
« The MAP describing the service process of Node C is

given by

c —100 10 C 80 10
SO_[ 1 16}’ S1 _{1 14]'

The basic properties of this MAP are = 21.8,¢2 =

1.58, p1 = 0.13.
The performance measure of interest is the same as before,
the mean queue length at Node C. Unfortunately our trial
to compare our results with the ones of the truncation-based
methods failed because we were not able to perform the analy-
sis even at the lowest possible truncation levek 2 due to
wfeasible computation time. Our Mathematica implementation
did not terminate in an hour. The reason is that the output
MAP of Node A hasl8, the one of Node B ha$2 phases
when the truncation level is minimah = 2. As a result,
the superposed MAP haxd 6 phases, and, together with the
service process of Node C (MAP(2)), the QBD representing
the behaviour of Node C ha2 phases. The solution of (17)
becomes infeasible at the required level of accuracy for this

with A = 6.63,¢2 = 1.31,p; = 0.027, the service MAP size.



[ Node A, B output] MAP(2) [ MAP(3B) | [ | Node D | Node A [ Node B [ Node C |

Simulation 4.63527 Simulation | 4.24696 | 1.0709 | 1.94556 | 5.4563
Compressed  n=3 4.313268 (-7%) | 4.06334 (-12%) MAP(2) | 4.24962| 1.06936| 1.9342 | 5.23628
aggregate  n=5 n/a 4.23841 (-9%) Rel. error | -0.06% -0.1% -0.5% -4%
n=7 n/a 4.31843 (-7%) MAP(3) | 4.24962| 1.07144 | 1.94196 | 5.25906
Non compressed Rel. error | -0.06% | 0.05% -0.2% -3.6%
aggregate (n=4,9) 4.32768 (-6.5%)| 4.44595 (-4%) TABLE Il
Renewal output approx} 4.32768 (-6.5%)| 4.2384 (-8.5%)

MEAN QUEUE LENGTH OF NODES INEXAMPLE 3
TABLE I
MEAN QUEUE LENGTH OFNODE C IN EXAMPLE 2 . . )
MAP model capturing some correlation measures of the traffic.
o The queue length distribution and the autocorrelation of the

MAP() - ] traffic feeding Node C are depicted in Figure 4.

Queue length distribution of Node C

C. A Four-Node Network with Splitting and Superposition

Probability

As a last example we consider a queueing network with
both splitting and superposition. Figure 5 depicts the structure
of this network. The MAP describing the arrivals entering to

0 2 4 6 8 10 12 14 16 18

Buffer size the network (i.e., the traffic of Node D) is given by
Autocorrelation of the traffic feeding Node C
009 "Simulation —625 75 25 25 0 5
o e DP=|25 -15 0|, DP=|5 75 0],
' 0 10 —-25 125 0 2.5

with average intensity, coefficient of variation and lag-1 cor-
relation coefficient ofA = 16.6,c2 = 1.31,p; = 0.027. The
matrices of the service MAP are

Autocorrelation

N ] b [-625 25 b [25 125
v T T So = { 0 1750 ST |0 75
Fig. 4. Autocorrelation of arrivals and queue length distribution of Node C
in Example 2 The basic properties of the service MAP are= 21.71,¢2 =

1.31, p1 = 0.007.
The service processes of Nodes A, B and C are the same as in
For the superposition of the output traffic of Node A anéxample 2. Each departing customer of Node D is directed to
Node B we used both the direct method based on Kroneck@sde A with probability0.3 and to Node B with probability
algebra and the moments based superposition methodgaf.
Theorem 1 obtaining the same results.

The results of the moments based approximation are sum-
marised in Table Il. The header indicates how many phases Node A
have been used to approximate the output of Node A and B— - JITO—
Node D / Node C

“Compression” refers to the number of phases the superposed
MAP is compressed to ("n/a” indicates that the field has no
meaning, e.g., compression of the superposed trafficstates Node B
is not possible when a MAP(2) approximation is used since
the superposed traffic has onlystates in this case). Fig. 5. The queueing network used in Example 3

According to the expectations the results are more accurate
when MAPs(3) are used for the output process approximationThe mean queue length results of the nodes are summarised
of Node A and B. The compression decreases the accuré#gcylable Ill. In this example the accuracy is reasonable high
of the approximation. Surprisingly, the 2-state output approghe error is belowt% compared to the simulation) both when
imation provides better results than the 3-state one when HéPs(2) and MAPs(3) are used to approximate the departure
superposed traffic is compressed. We do not have expligaffic of the queues.
explanation for this phenomena, we believe however that itFigure 6 depicts the queue length distribution of the nodes
is due to the random interplay of the two approximations, thend the autocorrelation of the arriving traffic. The queue length
one of the output process and the one of the compressitistribution is approximated very accurately even if the high
of the superposed process. The table also contains the misgpacorrelations are not captured exactly. Computation time of
gueue length when the output of Node A and Node B ibese results was betweén- 2 seconds which indicates that
approximated by a renewal process. In spite of the low lagtiis approximation method does not have scaling problems and
correlation of the MAPs of this example the results indicatean be applied for more complex queueing networks. This is
that the renewal output assumption is less accurate than tioe the case with the truncation based methods.
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Fig. 6. Autocorrelation of arrivals and queue length distribution of nodes in Example 3

VI. CONCLUSIONS [6] B. V. Houdt. MATLAB toolbox for solving quasi-birth-and-
This paper provides an approximation for the output process ﬂﬁgt/r}wv'\cc\% 1m S{'i/ 'Z'C/ 1b:lr\1/c’icmnh%nu-§tlj|p-free type markov chains.
_Of MAP/MAP/l queues. In particular, we propose approx{7] G. Latouche and V. Ramaswanfitroduction to matrix analytic
imating the output process of a MAP/MAP/1 queue based methods in stochastic modelin§IAM, Philadelphia, 1999.

on the moments of the inter-departure time and the joini8] J. Roberts, U. Mocci, and J. Virtamo (edsByoadband Network

moments of two consecutive inter-departure times. Then this_ Teletraffic Springer, 1996. B ,
R. Sadre and B.R. Haverkort. Characterizing traffic streams

approximation is used for the analysis of queueing networks) in networks of MAP/MAP/1 queues. IProceedings 11th

with traffic superposition and splitting. GI/ITG Conference on Measuring, Modelling and Evaluation
The proposed moments based approximation method were of Computer and Communication Systems (MMB 20payes

tested in numerical examples and showed reasonable accuracy 195-208. VDE Verlag, 2001.

compared to simulation results. An important feature of tHé0] M. Telek and G. Horéth. A minimal representation of Markov

. . . . arrival processes and a moments matching metRedormance
proposed method is that the size of the traffic models remains Evaluation 64(9-12):1153-1168, Aug. 2007.

small during the analysis of larger queueing networks. Thigy) . whitt. Approximating a point process by a renewal process,
was not the case with the previously proposed approximations. | : Two basic methodsOperations Researcipages 125-147,

Due to this property the moments based approximation pro- 1982.

vides a fast approximation of larger queueing networks th&kel W. Whitt. Approximations for departure processes and queues

the previously analysable ones in series.Naval Research Logistics Quarterlpages 499-521,
’ 1984.
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