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Abstract

The characterization and the canonical representation of order-n phase type distri-
butions (PH(n)) is an open research problem.

This problem is solved for n = 2, since the equivalence of the acyclic and the
general PH distributions has been proven for a long time. However, no canonical
representations have been introduced for the general PH distribution class so far
for n > 2. In this paper we summarize the related results for n = 3. Starting from
these results we provide a canonical representation of the PH(3) class (that is a
minimal representation, too) and present a symbolical transformation procedure
to obtain the canonical representation based on any (not only Markovian) vector-
matrix representation of the distribution. We show that – using the same approach –
no symbolical results can be derived for the order-4 PH distributions, thus probably
the PH(3) class is the highest order PH class for which a symbolical canonical
transformation exists.

Using the transformation method to canonical form for PH(3) we numerically
evaluate the moment bounds of the PH(3) distribution set, compare it to the order-
3 acyclic PH distribution (APH(3)) class, and present other possible applications
of the canonical form.
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1 Introduction

Markovian structures are efficiently applied in various fields of stochastic mod-
eling because of their computability and numerical stability. Phase type dis-
tributions are non-negative distributions with Markovian structure [2,3]. They
are widely used in distribution approximation due to their computational ad-
vantages and easy integration in complex stochastic models.

The most common representation of a phase type distribution is the definition
of its initial probability vector α and generator matrix A. This representation
is known to be non-unique and non-minimal, thus there might be a vector α′

and a matrix A′, which define the same distribution. Furthermore, the number
of parameters (non-determined elements) of this representation is n2 + n− 1
when the cardinality of vector α and square matrix A is n (since A has
n2 elements and α has n − 1 assuming no probability mass at zero), while
the Laplace transform of PH(n) distributions – that uniquely determines the
distribution – has 2n− 1 roots and zeros.

To overcome these drawbacks a unique, minimal representation is required
which is commonly referred to as canonical representation. A canonical repre-
sentation is available for any order acyclic phase type distributions by Cumani
[4], and it is also known that any PH(2) distribution can be transformed to an
acyclic form [5] and this way the same canonical form is applicable of PH(2).

The canonical representation of PH(n) distributions is not known for n ≥ 4
and we present a proposal for the canonical representation of the PH(3) class
in this paper. The proposed representation has a special α vector and A
matrix such that it has exactly 2n − 1 = 5 parameters and it is proved to
exist for all PH(3) distributions. We also provide a procedure for transforming
any (not only Markovian) vector-matrix representation of the distribution
to the canonical form. The transformation procedure is composed of explicit
computational steps, whose most complex element is the evaluation of the
eigenvalues of the generator matrix (finding the roots of an order-3 polynomial,
for which symbolic solution is available).

Our results are very much based on the results of [6], where the unicyclic rep-
resentation of PH(3) distributions is proved. Indeed, the presented canonical
representation is unicyclic, but it extends the results of [6] with the careful
analysis of the initial probability vector of the canonical representation, which
is not taken into consideration in [6].

By means of this transformation procedure, which fails only when the input
vector-matrix pair cannot be transformed into a valid PH(3) representation,
we investigate also the moments bounds of the PH(3) class. Some results on
the bounds of the first three moments of PH(3) distributions are provided in
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[7], but the behaviour of the fourth and fifth moments are unknown to the
best of our knowledge.

The rest of the paper is organized as follows. Section 2 gives the definition
and the basic properties of PH(3) distributions. The unicyclic transformation
of PH(3) distributions is summarized in Section 3 and the proposed canonical
representation is presented in Section 4. The possible canonical forms of PH(4)
distributions are investigated in Section 5. Section 6 lists some applications
of the canonical form and the associated transformation method including a
numerical study of the moment bounds. The paper is concluded in Section 7.

2 PH distributions

Let X be a continuous non-negative random variable with cumulative distri-
bution function

F (t) = Pr(X < t) = 1− veHt1I ,

where the row vector v is referred to as the initial vector, square matrix H
as the generator and 1I as the closing vector. Without loss of generality [8],
we assume that the closing vector 1I is a column vector of ones, i.e., 1I =
[1, 1, . . . , 1]T . Since X is a continuous random variable, it has no probability
mass at zero, i.e., v1I = 1. The density, the Laplace transform and the moments
of X are

f(t) = veHt(−H)1I , (1)

f ∗(s) = E(e−sX ) = v(sI −H)−1(−H)1I , (2)

µn = E(X n) = n!v(−H)−n1I . (3)

When the cardinality of vector v and of square matrix H is n, we have the
following cases [9]:

• If f(t) ≥ 0 and
∫∞
0 f(t)dt = 1, then X has an order-n matrix exponen-

tial (ME(n)) distribution. The elements of v and H may be arbitrary real
numbers.

• If v is a probability vector and H is a transient Markovian generator ma-
trix (i.e., the generator matrix of a transient continuous-time Markov chain
(CTMC)), then X has a PH(n) distribution. (The set of PH(n) distributions
form a true subset of the ME(n) set for n > 2.)

Vector v is a probability vector when vi ≥ 0, v1I = 1 and matrix H is a
transient Markovian generator when H is non-singular, H ii < 0, H ij ≥ 0 for
i 6= j, H1I ≤ 0, H1I 6= 0. Scalars like H ij denote the ijth element of matrix
H .

3



Definition 1 The (v,H) representation is a Markovian representation, if v
is a probability vector and H is a transient Markovian generator matrix.

In general it is not easy to check whether an f(t) in (1) corresponding to a
(v,H) pair is a density function. We have the following necessary conditions
(those that we use in the sequel, [10]):

• the eigenvalues of H have negative real part,
• the largest eigenvalue of H is real, and
• the initial value of the density function is non-negative:

f(0) = −vH1I ≥ 0 . (4)

Definition 2 Assuming B is a non-singular matrix such that B1I = 1I then
the vector-matrix pair vB, B−1HB define a similarity transform of the
vector-matrix pair v, H.

Note that the vector-matrix pairs v, H and vB, B−1HB represent the same
distribution, since

F̂ (t) = 1− vBeB−1HBt1I = 1− vBB−1eHtB1I = 1− veHt1I = F (t) .

Example 1

v =
[
0.1 0.5 0.4

]
, H =




−5 2 1

1 −2 1

1 0 −4




and

z =
[
−1.1 2.5 −0.4

]
, G =




−11 10 −1

−6.6 6 −1

−15 20 −6




represent the same distribution, since z = vB and G = B−1HB with

B =




1 0 0

−4 5 0

2 0 −1



. (z,G) is a non-Markovian representation of this PH(3)

distribution.

Now, we can refine the above definition of PH(n) distributions by means of
similarity transforms.

Definition 3 The random variable X with density function (1) is PH dis-
tributed if there is a non-singular matrix B, such that B1I = 1I, and
(vB,B−1HB) is a Markovian representation.
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π3 π2 π1

x3 x2 −x13x1

x13

Fig. 1. The structure of the considered unicyclic PH(3) distribution

Note that this definition implies that f(t) ≥ 0.

One of the main goals of this paper is to decide if such similarity transform
exists for a given non-Markovian vector-matrix pair, since the definition is
obvious when the vector-matrix pair is Markovian.

3 Unicyclic representation of PH(3) distributions

The results of this paper are based on the unicyclic transformation of PH(3)
distributions presented in [6]. We summarize the related results, in a slightly
modified way, for completeness.

Theorem 1 [6] If (v,H) is a Markovian representation of a PH(3) distribu-
tion then it can be similarity transformed to the following unicyclic Markovian
representation

π =
[
π1 π2 π3

]
, A =




−x1 0 x13

x2 −x2 0

0 x3 −x3




, (5)

where x1 ≥ x2 ≥ x3 > 0, 0 ≤ x13 < x1, 0 ≤ π1, π2, π3, π1 + π2 + π3 = 1 and
the procedure in Figure 2 generates this unicyclic representation.

The structure of the resulting unicyclic PH distribution is depicted in Figure
1.

The main difference between Theorem 1 ([6]) and the goal of this paper is
that Theorem 1 assumes that (v,H) is Markovian, while we look for a trans-
formation which is applicable for any non-Markovian (v,H) representation.
For example the procedure of Figure 2 gives a proper unicyclic representation
when it is called with the (v,H) pair of Example 1, but it gives complex
results when it is called with the (z,G) representation of the same PH(3)
distribution.

Let λ1, λ2, λ3 denote the eigenvalues of −H which are ordered such that
Re(λ1) ≥ Re(λ2) ≥ Re(λ3) and a0, a1, a2 the coefficients of the character-
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function PH(3)–to–unicyclic PH(3)
input: v,H (Markovian)
output: π, A (unicyclic)

begin
λ1, λ2, λ3 = decreasingly ordered eigenvalues of −H ,
a0 = λ1 λ2 λ3, a1 = λ1 λ2 + λ1 λ3 + λ2 λ3, a2 = λ1 + λ2 + λ3,

γu = 1
3
(a2 + 2

√
a2

2 − 3 a1), γ0 = 1
3
(a2 +

√
a2

2 − 3 a1),

γ` =





λ1 if λ1 ∈ real,

γ0 if λ1 ∈ complex,

φ = max {−H1,1, −H2,2, −H3,3},
x1 = max {φ, γ`},
x13 = x1 − a0 / (x2

1 − a2 x1 + a1),

x2 = 1
2

(
a2 − x1 +

√
(a2 − x1)2 − 4 (x2

1 − a2 x1 + a1)
)
,

x3 = 1
2

(
a2 − x1 −

√
(a2 − x1)2 − 4 (x2

1 − a2 x1 + a1)
)
,

π1 = v H 1I / (x13 − x1),
π2 = v (x1 I + H) H 1I / ((x13 − x1) x2) ,
π3 = v (x2 I + H) (x1 I + H) H 1I / ((x13 − x1) x2 x3) ,

return π =
[
π1 π2 π3

]
, A =




−x1 0 x13

x2 −x2 0

0 x3 −x3




,

end

Fig. 2. Unicyclic transformation of PH(3) distributions

istic polynomial of −H , i.e., x3 + a2x
2 + a1x + a0 = 0, where

a0 = λ1λ2λ3, a1 = λ1λ2 + λ1λ3 + λ2λ3, a2 = λ1 + λ2 + λ3. (6)

A simple interpretation of Theorem 1 is that the similarity transform with
matrix B makes the transformed matrix to be unicyclic if B is composed of
the column vectors {b1, b2, b3} where

b1 =
1

x13 − x1

H1I,

b2 =
1

(x13 − x1)x2

(x1I + H)H1I,

b3 =
1

(x13 − x1)x2x3

(x2I + H)(x1I + H)H1I,

(7)
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and

x13 = x1 − a0

x2
1 − a2x1 + a1

,

x2 =
a2 − x1 +

√
(a2 − x1)2 − 4(x2

1 − a2x1 + a1)

2
,

x3 =
a2 − x1 −

√
(a2 − x1)2 − 4(x2

1 − a2x1 + a1)

2
.

(8)

These expressions are obtained from the fact that the resulting generator A
has the same characteristic polynomial as the original H , i.e., the parameters
are obtained from the solution of the equations

a0 = (x1 − x13)x2x3, a1 = x1x2 + x2x3 + x3x1, a2 = x1 + x2 + x3. (9)

The transformation matrix B and the transformed unicyclic representation
A depend on the choice of x1. [6] showed the following properties of PH(3)
distributions and this similarity transform.

P1) When H is a Markovian generator then

γu =
a2 + 2

√
a2

2 − 3a1

3
, (10)

γ0 =
a2 +

√
a2

2 − 3a1

3
, (11)

γ` =





λ1, if λ1 is real,

γ0, if λ1 is complex
(12)

are real and positive such that γ0 ≤ γ` ≤ γu.
P2) When γ` ≤ x1 ≤ γu then the transformed generator matrix, A =

B−1HB is Markovian such that x1 ≥ x2 ≥ x3 > 0.

Indeed, property P2 holds also for any non-Markovian matrix H if its eigen-
values satisfy the requirements of PH(3) distributions:

• λ3 is real and positive,
• a2

2 − 3a1 ≥ 0.

Due to the fact that the similarity transform leaves the eigenvalues unchanged,
this generalization of property P2 is a consequence of property P1 and The-
orem 1.

We can summarize the results of [6] as follows. It defines a similarity transfor-
mation of PH(3) distributions to a unicyclic representation. This transforma-
tion depends on a parameter, x1. [6] also defines the range of parameter x1,
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(γ`, γu), where the transformed generator matrix is Markovian. The problem
which remains open is how to set parameter x1 such that the initial vector is
Markovian, i.e., is a proper probability vector.

In the procedure in Figure 2 parameter φ is used to ensure the positivity
of the initial vector. Unfortunately that approach is not sufficient when we
have a non-Markovian (v,H) representation, as it is the case with the non-
Markovian representation of Example 1. The next section investigates the
range of x1 where the initial vector is Markovian.

4 Canonical representation of PH(3) distributions

Using the similarity matrix defined in (7) the elements of the initial vector
π = vB are:

π1 =
−vH1I

x1 − x13

=
d1

x1 − x13

, (13)

π2 =
−v(x1I + H)H1I

(x1 − x13)x2

=
x1d1 + d2

(x1 − x13)x2

, (14)

π3 =
−v(x2I + H)(x1I + H)H1I

(x1 − x13)x2x3

=
x1x2d1 + (x1 + x2)d2 + d3

(x1 − x13)x2x3

, (15)

where di = −vH i1I, i = 1, 2, 3. The derivatives of the density function at
zero are closely related to these parameters since f (i)(0) = di+1 = −vH i+11I.
Consequently, for a Markovian (v,H) pair

P3) d1 > 0, or d1 = 0 and d2 ≥ 0,

must hold for having a non-negative density around zero.

The canonical form we propose in this paper is based on the following theorem.

Theorem 2 If (v, H) has a Markovian representation, then the similarity
transform with matrix B, defined in (7), with parameter

x1 =





max{γ2, γ`}, if v H 1I < 0,

γ`, if v H 1I = 0,
(16)

γ2 = −vH21I

vH1I
, (17)

provides a Markovian representation.
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Proof Due to Theorem 1 and B1I = 1I, if (v, H) has a Markovian represen-
tation, then B−1HB is Markovian, and x1−x13, x2, x3 are positive, when x1

is in the [γ`, γu] interval. Thus, it is enough to prove that vector {π1, π2, π3},
defined in (13)-(15), is non-negative when x1 takes is value according to (16).

π1 ≥ 0 follows immediately from (4), since if (v,H) has a Markovian repre-
sentation, then its density is non-negative at zero.

When vH1I = 0, π2 must be non-negative according to property P3.

When vH1I < 0, we can re-write (14) as:

π2 =
−vH1I

(x1 − x13)x2

(x1 − γ2). (18)

The first term of (18) is positive and the second term is non-negative when
x1 = max{γ2, γ`} according to (16).

For the analysis of π3 we re-write (15) as

π3 =
1

(x1 − x13)x2x3

(x1x2d1 + (x1 + x2)d2 + d3)︸ ︷︷ ︸
g(x1)

(19)

The first term is positive again, thus it remains to prove that g(x1) ≥ 0 if x1

is according to (16). The first derivative of g(x1) has at most two roots:

d

dx1

g(x1) = 0 ⇔ x1 =
a2 ±

√
a2

2 − 3a1

3
. (20)

If
√

a2
2 − 3a1 = 0 then γu = γ` = γ0 and x1 = γ` is the only valid value

according to Theorem 1.

If
√

a2
2 − 3a1 > 0 then the larger root of (20) equals to γ0, hence g(x1) is

a monotone function when x1 > γ0. In the x1 > γ0 region the increas-
ing/decreasing behaviour of g(x1) is determined by the sign of the second
derivative at x1 = γ0:

d2

dx2
1

g(x1)|x1=γ0 =
−2(a2d1 + 4d1

√
a2

2 − 3a1 + 3d2)

3
√

a2
2 − 3a1

(21)

When d1 = −vH1I = 0, then (21) is non-positive because the numerator is
non-positive due to property P3 and the denominator is positive. In this case
we have 2 subcases. If d2 = 0, then g(x1) is constant and x1 does not effect the
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sign of π3, when γ` ≤ x1 ≤ γu. If d2 > 0, then g(x1) is monotone decreasing
and the minimal x1 value of the valid range (γ` ≤ x1 ≤ γu and γ2 ≤ x1)
ensures the non-negativity of π3 (assuming that a Markovian representation
exists).

When d1 = −vH1I > 0 we have

d2

dx2
1

g(x1)|x1=γ0 =
−2 d1 (a2 + 4

√
a2

2 − 3a1 − 3γ2)

3
√

a2
2 − 3a1

= − 2 d1

3
√

a2
2 − 3a1︸ ︷︷ ︸
>0


3 (γu − γ2)︸ ︷︷ ︸

≥0

+ (3γu − a2)︸ ︷︷ ︸
>0


 ≤ 0,

(22)

where the positivity of the under-braced terms follows from
√

a2
2 − 3a1 >

0, and the non-negativity of the second term must hold since (v,H) has a
Markovian representation (according to the condition of the theorem) and
according to Theorem 1 it must have a unicyclic representation (x1 ≤ γu)
with a non-negative π2 (x1 ≥ γ2).

If the second derivative in (22) is negative then g(x1) is monotone decreasing at
x1 > γ0 and the minimal x1 value of the valid range (γ` ≤ x1 ≤ γu and γ2 ≤ x1)
ensures the non-negativity of π3 (assuming that a Markovian representation
exists).

If the second derivative in (22) equals to zero (i.e., γu = γ2) it means that
there is only a single x1 value, x1 = γu = γ2, which results in a Markovian
representation, because for x1 > γu matrix A is non-Markovian and for x1 < γ2

vector π is not a probability vector.

When
√

a2
2 − 3a1 > 0, the possible behaviors of g(x1) and the associated

choices of x1 are summarized in the following table.

Cases g(x1) at x1 > γ0 constraint of x1 choice of x1

d1 = 0, d2 > 0 mon. decreasing minimal value

d1 = 0, d2 = 0 constant minimal value

d1 > 0, γu > γ2 mon. decreasing minimal value

d1 > 0, γu = γ2 x1 = γu = γ2 constraint

That is, (16) sets x1 such that the obtained representation is Markovian when
a Markovian representation exists. 2
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function Canonical–PH(3)–transformation
input: v, H (any matrix representation)
output: π, A (Canonical representation if v, H is a PH(3))

begin

if v1 + v2 + v3 6= 1
error ”Probability mass at 0”,

λ1, λ2, λ3 = decreasingly ordered eigenvalues of −H,
if λ3 < 0 or λ3 ∈ C or v H 1I < 0

error ”Invalid eigenvalues”,
a0 = λ1 λ2 λ3, a1 = λ1 λ2 + λ1 λ3 + λ2 λ3, a2 = λ1 + λ2 + λ3

if a2

2
− 3 a1 < 0

error ”Invalid characteristic polynomial”,
γu = 1

3
(a2 + 2

√

a2

2
− 3 a1), γ0 = 1

3
(a2 +

√

a2

2
− 3 a1),

γ` =

{

λ1 if λ1 ∈ real,
γ0 if λ1 ∈ complex,

if v H 1I > 0 or (v H 1I == 0 and v H
2 1I > 0)

error ”Negative density around 0”,

γ2 =

{

−v H
2 1I / v H 1I if v H 1I < 0,

0 if v H 1I == 0,
if γ2 > γu

error ”π2 is negative”,
x1 = max {γ2, γ`},
x13 = x1 − a0 / (x2

1
− a2 x1 + a1),

x2 = 1

2

(

a2 − x1 +
√

(a2 − x1)2 − 4 (x2

1
− a2 x1 + a1)

)

,

x3 = 1

2

(

a2 − x1 −
√

(a2 − x1)2 − 4 (x2

1
− a2 x1 + a1)

)

,
π1 = v H 1I / (x13 − x1),
π2 = v (x1 I + H)H 1I / ((x13 − x1)x2),
π3 = v (x2 I + H) (x1 I + H)H 1I / ((x13 − x1)x2 x3),
if π3 < 0

error ”π3 is negative”,

return π =
[

π1 π2 π3

]

, A =





−x1 0 x13

x2 −x2 0
0 x3 −x3



,

end

Fig. 3. Canonical transformation of PH(3) distributions

4.1 The canonical transformation procedure

The transformation procedure is presented in Figure 3. If the procedure exits
with one of the error messages then the input does not represent a PH(3)
distribution. If the procedure completes, it gives back the canonical repre-
sentation of the given PH(3) distribution, which is Markovian, minimal and
unique as it is discussed in the next subsection.
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4.2 Properties of the proposed canonical form

If v is an arbitrary vector and H is an arbitrary matrix of cardinality three
such that (v,H) represents an order-3 phase type distribution, then (π,A) is
a Markovian representation of this PH(3) distribution.

(π,A) is unique, in the sense that for any (v,H) representation of a PH(3)
distribution the procedure provides the same (π, A) pair.

The PH(3) distributions are known to be determined by five parameters.
E.g., the first five moments or the five coefficients of the Laplace rational
transform uniquely determines a PH(3) distribution. Although not obvious
at first sight, the presented canonical form is also determined by exactly five
independent parameters. In the unicyclic form [6] there are six parameters
(x1, x2, x3, x13, π1, π2) and in the transformation procedure presented in this
paper one of these parameters is additionally set to a special value. The fol-
lowing constraint decreases the number of parameters to five:

f1) λ1 real, γ2 < γ` → x13 = 0,
f2) λ1 complex, γ2 < γ` → x1 = x2,
f3) γ` < γ2 → π2 = 0.

Indeed, these cases represent three different forms of the canonical represen-
tation.

It is an additional nice feature of the proposed canonical form that it is com-
patible with the widely used canonical representation of acyclic phase type
distributions [4], since when (v,H) represents an order-3 acyclic phase type
distribution, then form f1 gives Cumani’s canonical representation of that dis-
tribution.

5 Unicyclic representation of PH(4) distributions

5.1 Transformation to unicyclic representation

Based on the structure of the canonical representation of PH(3) distributions
we study the following unicyclic PH(4) structure.

Let (v,H) be a general matrix representation of a PH(4) distribution and
{λ1, λ2, λ3, λ4} its eigenvalues. The characteristic polynomial of H is x4 +
a3x

3 + a2x
2 + a1x + a0 where
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a0 = λ1λ2λ3λ4, (23)

a1 = λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4, (24)

a2 = λ1λ2 + λ1λ3 + λ2λ3 + λ1λ4 + λ2λ4 + λ3λ4, (25)

a3 = λ1 + λ2 + λ3 + λ4 (26)

Theorem 3 The (v,H) representation can be transformed to the (π,A) uni-
cyclic form where π = vB, A = B−1HB, B1I = 1I, and matrix A has the
form

A =




−x1 0 x13 x14

x2 −x2 0 0

0 x3 −x3 0

0 0 x4 −x4




.

The similarity matrix of this transformation, B = [b1, b2, b3, b4], is composed
of the following column vectors

b1 =
−H1I

x1 − x13 − x14

, b2 =
(x1I + H)b1

x2

,

b3 =
(x2I + H)b2

x3

, b4 =
(x3I + H)b3

x4

− x13b1

x4

,

where x1 and x13 are arbitrary parameters and x14, x2, x3, x4 are the solution
of the following set of equations

a0 = (x1 − x13 − x14)x2x3x4, (27)

a1 = (x1 − x13)x2x3 + x1x2x4 + x1x3x4 + x2x3x4, (28)

a2 = x1x2 + x1x3 + x2x3 + x1x4 + x2x4 + x3x4, (29)

a3 = x1 + x2 + x3 + x4 . (30)

Proof The coefficients of the characteristic polynomial of A are given at the
right hand side of (27)-(30). H and A are similar since their characteristic
polynomials are identical due to (27)-(30). The columns of the similarity ma-
trix B can be obtained from the columns of the matrix equation HB = BA,
which are

Hb1 =−x1b1 + x2b2 , (31)

Hb2 =−x2b2 + x3b3 , (32)

Hb3 =−x3b3 + x4b4 + x13b1 , (33)

Hb4 =−x4b4 + x14b1 . (34)

Summing up (31)-(34) and using B1I = 1I we have
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H1I =−x1b1 + x13b1 + x14b1 , (35)

from which b1 =
−H1I

x1 − x13 − x14

. Consecutively substituting the result into

(31)-(33) we obtain b2, b3, b4, respectively. 2

Corollary 1 Starting from (27) - (30) and having x1 and x13 fixed,
x14, x2, x3, x4 are obtained as the solution of an order-6 equation.

Consequently, there is no symbolic transformation method to the (π,A) uni-
cyclic form.

Corollary 1 remains valid also when x13 = 0.

5.2 Experimentation with the (π, A) representation

We have implemented the transformation method defined in Theorem 3 and
additionally we implemented transformation methods to the following simple
order-4 generators

A14 = A with x13 = 0,

A13 =




−x1 0 x13 0

x2 −x2 0 0

0 x3 −x3 0

0 0 x4 −x4




, A24 =




−x1 0 0 0

x2 −x2 0 x24

0 x3 −x3 0

0 0 x4 −x4




.

Having these transformation methods we checked if general PH(4) distribu-
tions can be transformed to the given specific forms. We found that none of
the A13, A14 and A24 forms are sufficiently general to transform all PH(4)
distributions into that form. Indeed, we found that it is usually impossible to
transform between these forms. I.e., having a PH(4) distribution whose gen-
erator has the form of A24, it is commonly not possible to transform it to the
form of A13 and A14, and so on.

In contrast, we found that the (π,A) representation, with properly chosen x1

and x13 parameters, is general enough to cover all PH(4) examples we tried
with.

The (π,A) representation is defined by nine parameters, x1, x2, x3, x4, x13,
x14, π1, π2, π3.

Assuming that the (π,A) representation is a candidate for the canonical rep-
resentation of PH(4) distributions and that the canonical representation of
PH(4) distributions contains the minimal number of parameters (which is
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seven), two additional constraints should apply. Some of the possible con-
straints are x13 = 0, x14 = 0, π2 = 0, π3 = 0, x1 = x2, x2 = x3, x3 = x4. Con-
sidering only these constraints we have a wide variety of different constraint-
pairs. Some of them might be too restrictive, but e.g., x13 = x14 = 0 results
in the acyclic subclass of PH(4) distributions.

6 Practical application of the PH(3) canonical form

6.1 Phase type fitting

There is a large number of PH distribution fitting methods available in the
literature (for a survey see [11]). Some of them operate on the full PH class
while others look for the solution in a subclass of the PH distributions. The
most commonly used subclasses for fitting purposes are the APH class, the
hyper-exponential distributions and the hyper-Erlang structure. At first sight
these structural restrictions seem to decrease the efficiency of the fitting meth-
ods, since they look for the best fit in a smaller class of distributions. However,
based on practical experiments, the opposite seems to be true: fitting a dis-
tribution with a restricted PH sub-class often provides better results, both in
terms of distance and speed. The reason is that methods optimizing the full
PH generator matrix and initial probability vector are often circling around
different representations of the same distribution. Methods operating on the
restricted PH sub-classes have an easier job, since they optimize fewer para-
meters.

The canonical form of PH(3) distributions can be utilized to develop more effi-
cient PH fitting methods. These canonical forms are minimal representations,
thus the optimization methods find the solution more easily.

Since there are three different canonical forms, the optimization has to be
performed with all three structures and the best fit should be selected as a
final result.

To show the benefits of canonical forms in distribution fitting we present some
numerical examples. We developed a simple fitting method in Matlab. This
method uses the built-in optimization procedure of Matlab (based on the line
search algorithm) with the subject function set to cross entropy. Cross entropy
is a popular quantity to measure the goodness of fit, because for discrete
sample it equals to the log-likelihood. It is defined by:

−Ĥ =
∫ ∞

0
log f̂(t) dF (t),
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where f̂(t) is the density function of the fitting PH distribution and F (t) de-
notes the cdf of the distribution to fit. The initial point was the best selected
from hundred random PHs. During the numerical experiments the target dis-
tributions were W1, U1 and ME distributions defined in [12]:

fW1(t) =
β

η

(
t

η

)β−1

e−( t
η )

β

with η = 1, β = 1.5

fU1(t) = 1, 0 ≤ t ≤ 1

fME(t) =

(
1 +

1

(2π)2

)
(1− cos(2πt))e−t

W1 U1 ME

Distance Time Distance Time Distance Time

Full PH3 0.0018 56.5 s 21.4404 75 s 18.2410 38.6586 s

Form f1) 0.0018 19.4 s 16.67 9.8 s 18.0000 9.1 s

Form f2) 0.0018 11 s 16.67 14.3 s 17.9174 14.64 s

Form f3) 0.0018 24.17 s 16.67 11.2 s 17.9174 13.97 s
Table 1
Summary of the PH fitting results

The results are summarized in Table 1. In the first case (W1) all the considered
PH structures resulted in equally good fits, however the canonical forms found
the optimal fit faster. In the second test (U1) the fit with the full PH distribtion
was slightly worse compared to the canonical forms. The table reflects the
significant difference in the optimization speed in this case, too. In the third
case (ME), the worst results are obtained by the full PH(3) structure, followed
by the acyclic form f1), and the best results are achieved by f2) and f3). Again,
optimization is faster with the usage of the canonical forms.

6.2 Moment matching with PH(3)

The presented transformation procedure is also applicable for moment match-
ing with PH(3) distributions. For a given set of {µ1, . . . µ5} moments we can
generate a PH(3) distribution, whose first five moments are {µ1, . . . µ5}. This
moments fitting procedure is composed of the following two steps.

• The first step is to compute a vector and matrix pair, (v,H), for which
i!v(−H)−i1I = µi, i = 1, . . . , 5. The procedure of Appie van de Liefvoort in
[13] produces such (v,H) pair with a proper transformation of the closing
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Fig. 4. PH fitting results for the ME distribution

vector 3 .
• Starting from (v,H) the canonical PH(3) transformation procedure gen-

erates the Markovian representation of the PH(3) distribution, whose first
five moments are {µ1, . . . µ5}.

Example 2 When the first five moments are
{1.85111, 5.45136, 22.2838, 118.094, 774.513} the procedure of [13] gives

v =
[
1/3 1/3 1/3

]
, H =




−2.92628 44.7789 −40.8522

−0.398989 −3.56926 3.0189

−0.267678 2.9026 −3.68557




,

and the canonical transformation procedure gives

π =
[
0.0865519 0.124609 0.788839

]
, A =




−4.20997 0 0.360255

4.20997 −4.20997 0

0 1.76118 −1.76118




.

6.3 Moments bounds of the PH(3) class

The presented transformation procedure is also applicable for evaluating the
borders of the PH(3) distribution class. Indeed the above moment fitting pro-

3 In [13] the initial and the closing vector are {1, 0, 0, . . . , 0}. In our case the closing
vector is {1, 1, . . . , 1}, hence a similarity transformation is required as described in
[9].
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cedure terminates properly only when {µ1, . . . µ5} are the moments of a PH(3)
distribution and the moment matching method aborts with some error if there
is no PH(3) distribution whose moments are {µ1, . . . µ5}.

To demonstrate the moment bounds of the PH(3) distribution set we first
introduce the normalized moments ni = µi

µ1µi−1
, n1 = 1. The normalized mo-

ments are time unit independent “normalized” quantities, which carry the
structural information of the moments apart from a time unit dependent scal-
ing factor. n2 is closely associated with the squared coefficient of variation (c2

v)
as n2 = c2

v + 1.

Closed form symbolical bounds for the second and third normalized moments
of APH(n) distributions are published in [7]. The moment formulas of PH(3)
distributions are much more complex than the ones of the APH(3). We were
not able to derive symbolic bounds for the normalized moments of PH(3)
distributions. Instead, we investigated the moment bounds by an exhaustive
search in the space of first five moments. In case of any given set of first five
moments we applied the method detailed in Section 6.2 to check the PH(3)
feasibility of the moments.

6.3.1 Bounds of the third normalized moment

With our numerical procedure we found that the bounds of the third nor-
malized moments of the APH(3) and of the general PH(3) distrib-
utions are the same. Thus, in terms of the first three moments the general
PH(3) distributions do not add extra flexibility over the APH(3) class. This
statement is confirmed later by observing that the feasible range of n4 reduces
to zero at the upper and lower bounds of the third normalized moments of the
APH(3) class (see Figure 8).

The bounds for n3 are provided by [7] for the APH(3) class, depicted in Figure
5. Two sets can be distinguished according to the figure, n3 is lower and upper
bounded in the first one (corresponding to 4/3 ≤ n2 < 3/2, called SET-1 in
the sequel), while it is only lower bounded in the second (where n2 > 3/2,
called SET-2 in the sequel).

6.3.2 Bounds of the fourth normalized moment

We also investigated the fourth normalized moment as a function of the second
and third normalized moments. We found that n4 is lower bounded over the
feasible n2, n3 range, the lower bound is depicted in Figure 6. We repeated the
same experiments with the APH(3) class, and found that the lower bounds
are different: somewhat tighter compared to the general PH(3) class.
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When investigating the upper bound of n4 we found that it is unbounded in
SET-2 both in case of APH(3) and general PH(3) distributions. However in
SET-1 it is upper bounded, with different upper bounds for the APH(3) and
PH(3) case. Figure 7 shows the difference between the maximum feasible n4 as
a function of n2 and n3. This figure clearly shows that the difference between
the bounds is small, the largest difference is 0.004.

The range of n4 feasible by the APH(3) and PH(3) classes (thus, the upper
bound minus the lower bound) is depicted in Figure 8 in SET-1. (The jagged
lines are due to numerical inaccuracies). At the borders of the feasible regions
the upper and lower bounds of n4 are equal.
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6.3.3 The bounds of the fourth and fifth normalized moments

On the next figures we compare the feasible (n4, n5) regions of the general
PH(3) and of the APH(3) distributions with different n2, n3 settings (n2 =
1.91696 and n3 = 2.8699 in Figure 9 and n2 = 1.49 and n3 = 1.99 in Figure
10).

The figures have been generated as follows. We applied the canonical trans-
formation procedure for each pixel (representing an n2, n3, n4, n5 tuple) on the
figure. The white pixels mean that the corresponding moments are not feasible
with a PH(3) distribution. Light grey pixels are used where the solution is of
form f1 (thus, an APH(3)), dark grey pixels where it is of form f2, and black
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pixels where it is of form f3. The results conform to our findings in the pre-
vious section, namely that the majority of the moments feasible by a PH(3)
distribution is actually feasible for an APH(3) distribution, when n2 > 1.5. In
this case the feasible n4, n5 values seems to follow a similar structure as the
one reported in [14] for feasible n2, n3 values (a lower bounded triangle with
a bounded extension). We found that the difference between the PH(3) and
APH(3) class gets to be significant when n2 < 1.5. It seems that in this case
the feasible n4, n5 values are bounded according to Figure 10 (and the lower
bounded triangle part is missing).
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Fig. 9. Feasible n4, n5 normalized moments of PH(3) and APH(3) distributions when
n2 = 1.91696 and n3 = 2.8699
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Fig. 10. Feasible n4, n5 normalized moments of PH(3) and APH(3) distributions
when n2 = 1.49 and n3 = 1.99
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The authors thank the help of Laura Fábián whose numerical investigations
led to the canonical representation of PH(3) distributions. We also thank the
detailed comments of the reviewers, which improved a lot the presentation of
the paper.

7 Conclusion

In a number of practical applications it is very efficient to use the canonical
representation of PH distributions that have as few parameters as possible.
The problem of canonical representation of high order PH distributions is still
open, but in this paper we presented a canonical representation for order-3
PH distributions. This canonical representation uses the unicyclic structure of
He and Zhang and additionally ensures that the initial vector is non-negative.

We demonstrated potential applications of the canonical form and the associ-
ated transformation method through the analysis of the moments bounds of
the PH(3) class. Furthermore, we presented and evaluated candidates for the
canonical form of the PH(4) distribution class.
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