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Abstract

This paper presents a Markov arrival process (MAP) based methodology for the analysis of two-class queue-
ing networks with priority service nodes. We apply the multi-class extension of MAP, referred to as Marked
MAP (MMAP), for the description of the input and internal traffic in the queueing network. The MMAP
traffic description allows to capture not only the dependency structure of the traffic classes themselves, but
also the inter-class dependency of the high and low priority traffic.

To carry out MMAP based queueing network analysis the paper presents several contributions: the
departure process analysis of the MMAP/MAP/1 priority queue, an MMAP construction method based
on the joint moments of two consecutive inter-departure times and some new results towards the efficient
performance analysis of the MMAP/MAP/1 priority queue.

Numerical examples illustrate the accuracy of the proposed traffic based decomposition method.

Key words: Marked Markov arrival process, MMAP/MAP/1 queue, priority service, moments based
analysis, output process.

1. Introduction

Queueing network models are widely applied in performance analysis of computer and communication
systems for a long time [1, 2, 3]. At the beginning the applied queue models were restricted to have Poisson
or renewal arrival processes with i.i.d. service times. Apart of the exact analytical results which are based
on the product form of the stationary distribution of the number of customers at the queueing nodes, a set
of approximate analysis methods were developed. One of the most commonly applied approximate analysis
methods for queueing networks is the traffic based decomposition, where the nodes of the queueing network
are evaluated iteratively in isolation [4]. A node analysis is composed of three main steps, the aggregation
of the input streams in order to construct the input traffic of the node, the queueing analysis of node, and
the approximation of the departure process. Multi-class queueing network models are also available for a
long time [5], but the inter-dependency of the traffic classes is not captured in these models.

The evolution of MAP (Markovian Arrival Process) based traffic models allowed the extension of the
traffic based queueing network analysis to cope with dependent inter-arrival and service times [4, 6]. The
multi-class extension of MAP, referred to as Marked MAP (MMAP) is a traffic model that allows to capture
also the inter-dependency of the inter-arrival times of traffic classes [7, 8]. The performance analysis of some
queueing systems with MMAP traffic is considered, e.g., in [9, 10].

In this paper we present an approximate analysis method for two-class queueing networks with nodes
providing priority service. We restrict our attention to feed-forward queueing networks without loops. We
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model the input and the internal traffic by MMAPs, to allow input traffic exhibiting inter-class depen-
dency and to be able to model the inter-class dependency introduced by the queueing in a priority system.
We extend the existing results on MMAP queueing systems with the analysis of the departure process of
MMAP/MAP/1 queue with priority service. We compute the marginal moments and the joint moments
of two consecutive inter-departure times and construct an MMAP which has the same moments and joint
moments (up to a given order). This approach requires the extension of the moment based characterisation
of ordinary MAPs ([11]) to the multi-class MMAP case, which we also present in this paper.

The rest of the paper is organised as follows. A short introduction to MMAPs and a moment based
characterisation method is provided in Section 2. The analysis of the performance measures and the depar-
ture process of a single MMAP/MAP/1 priority queue is described in Section 3 while Section 4 describes
the analysis of a network of queues. Section 5 presents numerical examples, where results of the proposed
analysis method are compared with the results of discrete event simulation.

2. Marked Markov arrival processes – MMAPs

MMAPs are the multi-class extension of MAPs. Similar to MAPs, in a continuous time MMAP the
background process is a continuous time Markov chain (CTMC). This background process determines the
arrivals of the different classes of customers. Let C denote the number of different classes of customers. The
MMAP is defined by a set of matrices. Matrix D0 contains the transition rates of the background process
without an arrival event and Dc (c = 1, . . . , C) defines the transition rates of the background CTMC
accompanied by the arrival of a class c customer.

When the background process is ergodic the set of matrices D0 and Dc (c = 1, . . . , C) completely defines
the stationary behaviour of the MMAP. The generator of the background CTMC, often referred to as phase
process, is D = D0 +

∑C
c=1 Dc which is a proper generator matrix with row sums equal to 0. According

to this definition Dc ≥ 0 (c = 1, . . . , C) holds element-wise, and the off-diagonal elements of D0 are also
non-negative while the diagonal entries of D0 are negative.

The description of MMAPs is very similar to that of batch MAPs (BMAP) [12], the difference is that
a different number of customers of the same class arrive in a BMAP at an arrival instance, while a single
customer of one of the classes arrive in a MMAP.

Let Xi denote the inter-arrival time between the ith and the i+1th arrival. In case of ordinary MAPs a
commonly used measure to capture the dependency of the inter-arrival times is the lag-k correlation function
which is directly related to E(X0Xk), the joint mean of the 0th and kth inter-arrival times. Recent results
on the characterisation of MAPs showed ([11]) that, from the point of view of constructing MAPs with given
parameters, more useful measures are the joint moments of two consecutive inter-arrival times, E(Xi

0X
j
1).

It was shown, indeed, that 2n − 1 marginal moments and (n − 1)2 joint moments (thus n2 parameters all
together) uniquely determine a nonredundant MAP of order n, and a matching procedure was also presented
that constructs a MAP based on these parameters.

In case of MMAPs no such results are known. There are even no statistical measures in use to describe
both the intra- and inter-class dependencies. In this section we extend the results of [11]. We introduce
“marked” joint moments that are appropriate statistical measures to capture the inter-class dependencies.
Then we show that these joint moments together with the marginal moments form a set of Cn2 parameters
which uniquely determine an MMAP. We also provide a joint moments based MMAP construction method.

Let X(c)
i be Xi if the i+1th arrival is of class c and 0 otherwise. The joint density of X(c0)

0 , X
(c1)
1 , . . . , X

(ck)
k

for x0, x1, . . . , xk > 0 is

f(x0, x1, . . . , xk) = π eD0 x0 Dc0 e
D0 x1 Dc1 . . . e

D0 xk Dck
1I

where π is the steady-state probability vector of the background process at arrival events and 1I is the column
vector of ones. The “marked” joint moment of X(c0)

0 , X
(c1)
1 , . . . , X

(ck)
k for i0, i1, . . . , ik > 0 is

E

((
X

(c0)
0

)i0 (
X

(c1)
1

)i1
. . .
(
X

(ck)
k

)ik
)

=

π i0!(−D0)−i0−1Dc0 i1!(−D0)−i1−1Dc1 . . . ik!(−D0)−ik−1Dck
1I .

(1)
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The transition probability matrix of the discrete time Markov chain describing the phase transitions at
arrival events is given by P = (−D0)−1

∑C
c=1 Dc, thus π is the solution of πP = π and π1I = 1.

The stationary inter-arrival time is phase-type distributed, and its density function and moments are

f(x) = πeD0x
C∑

c=1

Dc1I, µi = E((X0)i) = i!π(−D0)−i1I, i ≥ 0, (2)

where we used that X0 =
∑C

c=1X
(c)
0 . The stationary arrival rate of class c is

λ(c) = αDc1I, 1 ≤ c ≤ C, (3)

where α is the stationary distribution of the phase process which can be determined from αD = 0, α1I = 1.
Furthermore, the joint moments of two consecutive arrivals when the first is of class c is

η
(c)
i,j = E

(
(X(c)

0 )i(X1)j
)

= i!j! π(−D0)−i−1Dc(−D0)−j1I, i > 0, j ≥ 0. (4)

For i = 0 we define η(c)
0,j as

η
(c)
0,j = Pr(X(c)

0 > 0)E
(
(X1)j

)
= j! π(−D0)−1Dc(−D0)−j1I, j ≥ 0. (5)

The joint moments, η(c)
i,j , play a central role in our analysis approach. In particular, we will show that

an appropriately chosen set of marginal and joint moments provide a unique representation of an MMAP
and we will use this representation for the traffic description in the queueing network. For this purpose we
need a method to obtain a MMAP from a set of joint moments.

The D0 and Dc (c = 1, . . . , C) representation of an MMAP is not unique. With a non-singular matrix
B for which B1I = 1I, the matrices H0 = B−1D0B and Hc = B−1DcB (c = 1, . . . , C) define the same
MMAP. This transformation is known as similarity transformation with matrix B. In this case D0, Dc and
H0, Hc (c = 1, . . . , C) are different representations of the same MMAP.

An MMAP is non-redundant when the π, D0 representation of the inter-arrival time distribution is
non-redundant [11]. The order of a non-redundant MMAP is the cardinality of matrix D0.

Theorem 1. Consider a non-redundant MMAP of order n whose moments and joint moments are µi and
η
(c)
i,j ( ∀i, j ≥ 0, c = 1, . . . , C). If a vector v and a matrix K (of cardinality n) are such that µi =
i! vKi1I, ∀i ≥ 0 then

H0 = (−K)−1, Hc = −H0Λ−1
v NcΛ−1

1I , 1 ≤ c ≤ C,

is a representation of the MMAP process where

Nc =


η
(c)
0,0 η

(c)
0,1 . . . η

(c)
0,n−1

η
(c)
1,0 η

(c)
1,1 . . . η

(c)
1,n−1

...
...

...
η
(c)
n−1,0 η

(c)
n−1,1 · · · η

(c)
n−1,n−1

 ,

Λv =


v
vK

...
(n−1)!vKn−1

 ,

Λ1I =

 1I K1I . . . (n−1)!Kn−11I

 .
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Proof 1. The following is a direct consequence of results presented in [13, 11, 14] for MAPs: for a non-
redundant MMAP

• Λv and Λ1I are non-singular;

• the first 2n− 1 moments of the inter-arrival time completely determine its distribution;

• the first joint moments of 2 consecutive inter-arrival intervals, in particular, η(c)
i,j , i, j = 0, . . . , n−1, 1 ≤

c ≤ C define the whole process.

The vector v and the matrix K is a non-redundant matrix exponential representation of the inter-arrival
time distribution, i.e., v e−K−1

x(−K)−11I = f(x), and can be computed by the algorithm presented in [13].
It remains to show that the joint moments of the MMAP with representation H0, Hc (c = 1, . . . , C) is

η
(c)
i,j , i, j = 0, . . . , n− 1, 1 ≤ c ≤ C. The joint moments of the MMAP given by H0, Hc (c = 1, . . . , C) are

ϑ
(c)
i,j = i!j! v(−H0)−i−1Hc(−H0)−j1I = i! vKi︸ ︷︷ ︸

row of Λv

Λ−1
v NcΛ−1

1I j! Kj1I︸ ︷︷ ︸
column of Λ1I

. (6)

We define matrix Θc, such that its i, j element is ϑ(c)
i,j . Based on (6) we have

Θc = ΛvΛ−1
v NcΛ−1

1I Λ1I = Nc (7)

which implies that ϑ(c)
i,j = η

(c)
i,j for i, j = 0, . . . , n− 1, 1 ≤ c ≤ C.

Theorem 1 allows us to construct a representation for an MMAP when its moments and joint moments
are known. We will use this result for constructing an MMAP to approximate the departure process of a
queueing network node.

An important consequence of Theorem 1 is that the number of parameters to define a non-redundant
MMAP of order n is Cn2. The reason is that the first 2n− 1 moments of X0 define the distribution of the
inter-arrival times (v and K) and the matrices of the joint moments Nc are given by their Cn2 elements.
All together there are Cn2 + 2n− 1 parameters but they are not independent. For i = 0, . . . , n− 1 we have

µi = i!π(−D0)−i1I = i!π(−D0)−i−1(−D0)1I

= i!π(−D0)−i−1

C∑
c=1

Dc1I =
C∑

c=1

η
(c)
i,0

where we utilised that the row sum of D is zero. For j = 0, . . . , n− 1 we have

µj = E
(
Xj

1

)
=

C∑
c=1

Pr(X(c)
0 > 0)E

(
Xj

1

)
=

C∑
c=1

η
(c)
0,j .

These result in 2n−1 additional equations among the moments and the joint moments reducing the number
of independent parameters to Cn2.

3. Analysis of the MMAP/MAP/1 preemptive priority queue

In the considered queueing network model the nodes are MMAP/MAP/1 queues with priority service
and the two classes of customers referred to as high and low priority customers. This section is devoted to
the analysis of such MMAP/MAP/1 queues.

Our analysis approach is based on [15], where the analysis of the discrete time DMAP/PH/1 priority
queue is presented. In contrast to [15], here we consider the continuous time model and extend the results
of that paper in several ways. In our model the service times of the different classes are correlated (defined
by MAPs) and we provide new closed formulas and more efficient algorithms than the existing ones.
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The arrivals to the MMAP/MAP/1 preemptive priority queue are according to an MMAP given by
matrices D0,D1 and D2 with D1 corresponding to the high D2 to the low priority arrivals (with mean
arrival rate λ(1) and λ(2)). The service processes of customers are MAPs. The matrices defining the
service process of the high priority class are S

(1)
0 and S

(1)
1 while the ones of the low priority class are S

(2)
0

are S
(2)
1 (with mean service rate µ(1) and µ(2)). Throughout this paper we assume that the considered

MMAP/MAP/1 preemptive priority queues are stable, i.e.,

λ(1)

µ(1)
+
λ(2)

µ(2)
< 1,

which means that the server utilisation is less than one.
When the last customer of a given class leaves the system the phase process of the corresponding service

MAP stops and it resumes at the next arrival. The service discipline is preemptive priority, i.e., low priority
customers are served only when there are no high priority customers in the queue and the service of a low
priority customer is preempted when a high priority customer arrives to the queue.

3.1. The MMAP/MAP/1 preemptive priority queue as a QBD process
A three dimensional CTMC can be used to model the queue length behaviour. One dimension keeps

track of the queue length of the high priority queue, the second one the queue length of the low priority
queue, and the third dimension describes the phase of the arrival MMAP together with the phases of the
low and high priority service MAPs.

With proper numbering of the states the structure of the generator of this Markov chain is

Q =


A0 A1

A−1 A0 A1

A−1 A0 A1

. . . . . . . . .

 , (8)

where the blocks of the generator are infinite matrices corresponding to the same number of high priority
customers but different number of low priority customers and different phases of the arrival and service
processes. The blocks of Q are defined as

A1 = diag〈E1〉 (9)

A−1 = diag〈F (1)
1 〉 (10)

A0 =


E0 + F

(1)
0 E2

E0 + F
(1)
0 E2

E0 + F
(1)
0 E2

. . . . . .

 , (11)

A0 =


E0 E2

F
(2)
1 E0 + F

(2)
0 E2

F
(2)
1 E0 + F

(2)
0 E2

. . . . . .

 , (12)

with the notation

Ei = Di ⊗ IS(1) ⊗ IS(2) , i = 0, 1, 2, (13)

F
(1)
i = ID ⊗ S

(1)
i ⊗ IS(2) , i = 0, 1, (14)

F
(2)
i = ID ⊗ IS(1) ⊗ S

(2)
i , i = 0, 1, (15)
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where ID, IS(1) and IS(2) denote identity matrices whose size corresponds to the number of phases of the
arrival process, the service process of the high priority customers and the service process of the low priority
customers, respectively.

Since the generator is a QBD (with infinite number of phases), the solution is matrix-geometric, thus

πk = π0R
k , k ≥ 0, (16)

where πk is the vector of the steady state probability of the states with k high priority customers. This
vector can be partitioned according the number of low priority customers and will denote by πk,j the vector
of steady state probabilities for the states with k high priority customers and j low priority customers.
Furthermore, we denote the marginal steady state probability vectors of the classes as

π
(1)
i =

∞∑
j=0

πi,j , π
(2)
i =

∞∑
j=0

πj,i .

It is shown in [15] that matrix R has an upper-Toeplitz form and hence can be written as

R =


R0 R1 R2 R3 . . .

R0 R1 R2 . . .
R0 R1 . . .

R0 . . .
. . .

 . (17)

The upper-triangular structure follows from the priority service (the number of low priority customers can
not decrease when high priority customers are present in the system). The Toeplitz structure follows from
the independence of the number of low priority arrivals and the number of customers in the system.

The matrix R satisfies the following matrix-quadratic equation:

0 = A1 + RA0 + R2A−1 . (18)

Applying the definition of matrices A−1, A0 and A1, and exploiting the upper-Toeplitz structure of matrix
R we can derive relationships for matrices Ri, i ≥ 0 (see [15]). In particular, matrix R0 satisfies the
matrix-quadratic equation

0 = E1 + R0

(
E0 + F

(1)
0

)
+ R0

2F
(1)
1 (19)

while matrices Ri, i > 0 can be obtained recursively by solving the following set of linear equations:

0 = Ri−1E2 + Ri

(
E0 + F

(1)
0

)
+

i∑
k=0

RkRi−kF
(1)
1 . (20)

Further information can be devised on the series Ri, i ≥ 0, based on its generating function which we
denote by R(z) =

∑∞
i=0 z

iRi. From (20) we have that

0 = E1 + R(z)
(
zE2 + E0 + F

(1)
0

)
+ R(z)2F (1)

1 (21)

Evaluating (21) at z = 1 we have the following quadratic equations for R(s) =
∑∞

i=0 Ri:

0 = E1 + R(s)
(
E2 + E0 + F

(1)
0

)
+ R(s)2F

(1)
1 . (22)

Taking the derivative of (21) according to z at z = 1 the following linear equation is obtained for E(R) =∑∞
i=0 iRi

0 = E(R)
(
E2 + E0 + F

(1)
0

)
+ R(s)E2 + (E(R)R(s) + R(s)E(R))F (1)

1 . (23)

Note that the computation of R(s) and E(R) does not require the computation of the Ri series.
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3.2. Computation of π0

Vector π0 can be computed from the boundary equilibrium equations. It is the solution of the following
system of linear equations:

π0A0 + π0RA−1 = 0, π0,01I = 1− λ(1)

µ(1)
− λ(2)

µ(2)
. (24)

The definition of A0 and A−1, and the special structure of R reduce (24) to the solution of an M/G/1 type
CTMC with the following generator (similar to [16]):

Q0 =


E0 + R0F

(1)
1 E2 + R1F

(1)
1 R2F

(1)
1 R3F

(1)
1 . . .

F
(2)
1 E0 + F

(2)
0 + R0F

(1)
1 E2 + R1F

(1)
1 R2F

(1)
1 . . .

F
(2)
1 E0 + F

(2)
0 + R0F

(1)
1 E2 + R1F

(1)
1 . . .

. . . . . . . . . . . .

 . (25)

The solution of the M/G/1 type chain is based on its invariant matrix G whose entry in position (i, j) is
the probability that starting in state i at level n, the first state visited at level n− 1 is state j [12]. Several
algorithms exist for the computation of G based on

0 = F
(2)
1 + (E0 + F

(2)
0 )G + E2G2 +

∞∑
i=0

RiF
(1)
1 Gi,

see [17] for a list of the most advanced ones and [18] for a tool that implements these algorithms.
Having computed G, vectors π0,i can be computed by the recursive formula proposed in [19] as

π0,i = −

(
i−1∑
k=0

π0,kTi−k

)
T0
−1, i ≥ 1, (26)

where

T1 = E2G +
∞∑

k=1

RkF
(1)
1 Gk−1,

Ti =
∞∑

k=i

RkF
(1)
1 Gk−i, i ≥ 2, (27)

T0 = E0 + F
(2)
0 + R0F

(1)
1 + T1G .

For i = 0, vector π0,0 can be obtained as the solution of the following set of linear equations:

π0,0

(
E0 + R0F

(1)
1 − T1T0

−1F
(2)
1

)
= 0, π0,01I = 1− λ(1)

µ(1)
− λ(2)

µ(2)
. (28)

3.3. Performance measures
Based on (16) and the block structure of matrix R, (17), the steady state probability vector of the

number of high and low priority customers in the system can be expressed as

πi,j =
j∑

k=0

πi−1,kRj−k , i ≥ 1, j ≥ 0, (29)

7



from which the generating function of the steady state distribution is

π(v, z) =
∞∑

i=0

∞∑
j=0

vizjπi,j = π0(z)(I − vR(z))−1 . (30)

The steady state distribution of the high priority customers can be computed by appropriate summation
of the right hand side of (29). We have that

π
(1)
i =

∞∑
j=0

πi,j =
∞∑

j=0

j∑
k=0

πi−1,kRj−k =
∞∑

k=0

πi−1,k

∞∑
j=0

Rj = π
(1)
i−1R

(s) , i ≥ 1 . (31)

It means that the queue length distribution is matrix geometric with matrix coefficient equal to R(s). The
expected number of high priority customers is thus

L1 =
∞∑

i=0

∞∑
j=0

iπi,j1I = π
(1)
0 R(s)(I −R(s))−21I . (32)

Note that, as a consequence of the preemptive priority policy the high priority class can be analysed
independently without taking into account the low priority customers. This can be seen easily by observing
that R(s) can be obtained from (22), which does not involve any information on the service process of the
low priority customers. Indeed, R(s) can be computed as R(s) = R̂(s) ⊗ IS(2) where R̂(s) is obtained from
the QBD process describing only the high priority customers

0 = Ê1 + R̂(s)
(
Ê2 + Ê0 + F̂

(1)
0

)
+ R̂(s)2F̂

(1)
1 , (33)

with

Êi = Di ⊗ IS(1) , F̂
(1)
i = ID ⊗ S

(1)
i , i = 0, 1. (34)

Matrices R̂(s), Êi and F̂
(1)
i contain only the phase of the arrival process and the phase of the service process

of the high priority class.
The steady state distribution of the low priority customers can be computed by appropriate summation

of the right side of (29), we have that

π
(2)
j =

∞∑
i=0

πi,j =
∞∑

i=1

j∑
k=0

πi−1,kRj−k + π0,j =
j∑

k=0

( ∞∑
i=1

πi−1,k

)
Rj−k + π0,j =

j∑
k=0

π
(2)
k Rj−k + π0,j . (35)

Introducing π(2)(z) =
∑∞

j=0 z
jπ

(2)
j and π0(z) =

∑∞
j=0 z

jπ0,j , it simplifies to

π(2)(z) = π0(z)(I −R(z))−1, (36)

from which the expected number of low priority customers in the queue, L2, can be calculated by taking
the derivative according to z at z = 1. We have that

L2 = π(2)′(1)1I =
(
π0
′(1)(I −R(s))−1 + π

(1)
0 (I −R(s))−1E(R)(I −R(s))−1

)
1I , (37)

where we denote by f ′ the derivative of function f . From (26) we have that

π0(z)T (z)− π0,0T0 = 0, (38)

where T (z) =
∑∞

i=0 z
iTi. Based on (27) it can be expressed as

T (z) =
∞∑

k=0

RkF
(1)
1

k∑
i=0

Gk−izi + E0 + zE2 + F
(2)
0 + E2G. (39)
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Substituting z = 1 into (38) and into the derivative of (38) with respect to z we obtain

π
(1)
0 T (1)− π0,0T0 = 0, (40)

π0
′(1)T (1) + π

(1)
0 T ′(1) = 0 . (41)

(40) and (41) defines a system of linear equations for the computation of π(1)
0 and π0

′(1), where T (1) and
T ′(1) can be obtained based on (39) as

T (1) =
∞∑

k=0

RkF
(1)
1

k∑
i=0

Gi + E0 + E2 + F
(2)
0 + E2G, (42)

T ′(1) =
∞∑

k=0

RkF
(1)
1

k∑
i=0

iGk−i + E2 . (43)

3.4. Output process
In this section, by extending the approach presented in [20] to multi-class queues, we describe the

computation of the joint moments of the output process, η(1)
i,j , η

(2)
i,j . The main idea of this approach is that

the stochastic behaviour of two consecutive departure intervals is independent of the number of customers
in the queue when there are at least two customers. It is because the system cannot become idle during
the two consecutive departure intervals in this case. As a consequence, in case of a single-class queue, it is
enough to consider 3 cases: the first departure interval starts with zero, one or more than one customers.

In case of two-class queueing systems we need to consider similar cases with respect to both traffic classes.
The following six cases have to be distinguished:

• 0, 0: the last departure left the system empty,

• 1, 0: at the last departure one high and zero low priority customers are left in the system,

• 1, 1+: at the last departure one high and at least one low priority customers are left in the system,

• 2+, 0+: at the last departure at least two high priority customers are left in the system,

• 0, 1: at the last departure zero high and one low priority customers are left in the system,

• 0, 2+: at the last departure zero high and at least two low priority customers are left in the system.

The departure process of a MAP/MAP/1 queue is an infinite state MAP [21] and similarly, the departure
process of the MMAP/MAP/1 priority queue is an infinite MMAP. This MMAP generates a class-1 (class-2)
arrival when a class-1 (class-2) departure happens in the system. The computation of the joint moments
of the output process, η(1)

i,j , η
(2)
i,j , is rather difficult based on this infinite MMAP representation. Instead of

this representation we construct a finite MMAP (considering the above listed 6 cases), such that the joint
distribution of the first two arrivals of this MMAP (starting from the given initial distribution) is identical
with the one of two consecutive stationary departures of the MMAP/MAP/1 priority queue.

The blocks of the matrices of this finite MMAP are constructed from the block matrices of the QBD
describing the queue length process ((9)-(12)), such that the transitions between the 6 listed cases are taken
into consideration. The initial probability distribution is computed according to the stationary distribution
of the queue length process just after a departure considering the 6 listed cases.
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The matrices of the resulting MMAP representation are as follows:

H0 =


M1 E1 E2

M2 E2 E1

M3 E1

M4

E1 M5 E2

E1 M6

 (44)

H1 =



0 0 0 0 0 0
F

(1)
1 0

F
(1)
1 0

F
(1)
1 0

0
0


(45)

H2 =



0 0 0 0 0 0
0
0
0

F
(2)
1 0

F
(2)
1

 , (46)

where the diagonal blocks of H0 are:

M1 = E0, (47)

M2 = E0 + F
(1)
0 , (48)

M3 = E0 + E2 + F
(1)
0 , (49)

M4 = E0 + E1 + E2 + F
(1)
0 , (50)

M5 = E0 + F
(2)
0 , (51)

M6 = E0 + E2 + F
(2)
0 . (52)

The steady-state distribution of the MMAP/MAP/1 queue just after a departure can be calculated from
the stationary distribution as

vi,j =


πi+1,jF

(1)
1

λ(1) + λ(2)
, i > 0, j ≥ 0

π1,jF
(1)
1 + π0,j+1F

(2)
1

λ(1) + λ(2)
, i = 0, j ≥ 0.

(53)

The initial probability distribution of the 6 cases, v = (v0,0, v1,0, v1,1+, v2+,0+, v0,1, v0,2+), are computed

10



based on (53) and (29) as

v0,0 =
π1,0F

(1)
1 + π0,1F

(2)
1

λ(1) + λ(2)
=
π0,0R0F

(1)
1 + π0,1F

(2)
1

λ(1) + λ(2)
, (54)

v1,0 =
π2,0F

(1)
1

λ(1) + λ(2)
=
π0,0R0

2F
(1)
1

λ(1) + λ(2)
, (55)

v1,1+ =

∑∞
j=1 π2,jF

(1)
1

λ(1) + λ(2)
=

∑∞
j=0

∑j
k=0

∑k
l=0 π0,lF

(1)
1 − π0,0R0

2F
(1)
1

λ(1) + λ(2)
=

=
∑∞

l=0 π0,lR
(s)2F

(1)
1 − π0,0R0

2F
(1)
1

λ(1) + λ(2)
=
π

(1)
0 R(s)2F

(1)
1 − π0,0R0

2F
(1)
1

λ(1) + λ(2)
,

(56)

v2+,0+ =

∑∞
i=3

∑∞
j=0 πi,jF

(1)
1

λ(1) + λ(2)
=
∑∞

i=3 π
(1)
i F

(1)
1

λ(1) + λ(2)
=
∑∞

i=3 π
(1)
0 R(s)i

F
(1)
1

λ(1) + λ(2)
=

=
π

(1)
0 R(s)3(I −R(s))−1F

(1)
1

λ(1) + λ(2)
,

(57)

v0,1 =
π1,1F

(1)
1 + π0,2F

(2)
1

λ(1) + λ(2)
=

(π0,0R1 + π0,1R0)F (1)
1 + π0,2F

(2)
1

λ(1) + λ(2)
, (58)

v0,2+ =

∑∞
j=3 π0,jF

(2)
1 +

∑∞
j=2 π1,jF

(1)
1

λ(1) + λ(2)
=

=
(π(1)

0 − π0,0 − π0,1 − π0,2)F (2)
1 + (

∑∞
j=0 π1,j − π0,0R0 − π0,0R1 − π0,1R0)F (1)

1

λ(1) + λ(2)
=

=
(π(1)

0 − π0,0 − π0,1 − π0,2)F (2)
1 + (

∑∞
j=0

∑j
k=0 π0,kRj−k − π0,0R0 − π0,0R1 − π0,1R0)F (1)

1

λ(1) + λ(2)
=

=
(π(1)

0 − π0,0 − π0,1 − π0,2)F (2)
1 + (π(1)

0 R(s) − π0,0R0 − π0,0R1 − π0,1R0)F (1)
1

λ(1) + λ(2)
.

(59)

Having computed the vector v and the matrices H0, H1 and H2, we compute the joint moments of the
output process according to (4) as

η
(c)
i,j = i!j! v(−H0)−i−1Hc(−H0)−j1I, i, j ≥ 0, c = 1, 2.

4. Analysis of a network of MMAP/MAP/1 preemptive priority queues

According to the principles of the traffic based decomposition, the analysis of a queueing network is
performed by the analysis of the network nodes in isolation in an appropriate order. If there is no loop in
the network, which is our assumption in this paper, then a single round of analysis of the network nodes
is sufficient. In case of a network with feed-back the computation has to be repeated until a convergence
criterion is reached.

In this section, first we give a recapitulation of the analysis of a single node and then turn our attention
to the decomposition based analysis of a network of nodes.

4.1. Algorithm for the analysis of a single node
Based on the results presented in Section 3, the analysis of a MMAP/MAP/1 preemptive priority queue

is performed as

1. compute R0, R(s) and E(R) based on the quadratic equations (19), (21) and (22), respectively;
2. compute Ri, i ≥ 1 based on the system of linear equations given by (20) up to i = k for which the

error ||(R(s) −
∑k

i=0 Ri)|| is smaller then a predefined precision;
11



3. compute G for the M/G/1 type process given in (25);
4. compute T1 and T0 based on (27);
5. compute π0,0 by (28);
6. compute T (1) and T ′(1) based on (42) and (43);
7. compute π(1)

0 and π0
′(1) based on (40) and (41);

8. for the average number of high and low priority customers: compute L1 and L2 from (32) and (37);
9. for the output process: compute π0,1 and π0,2 by (26) with (27) and then apply equations from (44)

to (59);
10. for the steady state distribution π0,j : apply (26) with (27);
11. for the steady state distribution πi,j : apply (29).

For step 1 and step 3 see [17] and [18] for algorithms and tools.

4.2. Analysis of the network of nodes
The analysis of a network node requires the following computation steps:

• superposition of the incoming traffic arriving from different sources (preceding nodes and environment),

• computation of the performance measures,

• departure traffic approximation,

• traffic splitting.

The choice of MMAPs as traffic descriptors in multi-class queueing networks is fortunate since the MMAP
model class is closed for two basic operations: superposition and splitting.

The matrices of the MMAP of the superposed traffic are obtained by using Kronecker operators. Let us
denote the representation of the ith traffic stream to superpose by D

(i)
0 , D

(i)
1 , D

(i)
2 . When the traffic of n

MMAPs are superposed the superposed MMAP can be represented as:

Dk = D
(1)
k ⊕D

(2)
k ⊕ · · · ⊕D

(n)
k , k = 0, 1, 2.

The traffic splitting step is also easy to describe using the matrix representation of the MMAP. Suppose
that the output MMAP of node k is characterised by D0, D1, D2 and the probability that a departing high
(low) priority customer is directed from node k to node ` is p(1)

k` (p(2)
k` ). In this case the traffic from node k

to node ` is an MMAP with representation

D
(k`)
0 = D0 + (1− p(1)

k` )D1 + (1− p(2)
k` )D2, D

(k`)
1 = p

(1)
k` D1, D

(k`)
2 = p

(2)
k` D2.

The computation of the performance measures of a node is detailed in Section 3.3 (see also Section 4.1
for a summary).

The departure process approximation is based on the joint moments of two consecutive inter-departure
times. A set of joint moments of the departure process is computed by the method detailed in Section 3.4.
Then an MMAP is constructed using the moments based characterisation method presented in Section 2.

The moments based departure process approximation has the following two advantages:

• it is compact: 2n2 statistical properties are carried in an order-n MMAP, including inter-class corre-
lations,

• it is scalable: the more accurate departure process approximation we want, the more joint moments
are computed and the higher order output MMAP is applied.

12



Node A Node B

Figure 1: Tandem queue

Node A

Node B

Node C

Figure 2: Queueing network with traffic aggregation

5. Numerical examples

In this section we evaluate the accuracy of the presented queueing network analysis method. The
analytical results are compared to results obtained by discrete event simulation. The simulation tool is
based on the OMNeT++ framework [22], that provides all the basic functionality necessary for simulation:
event handling, random number generation, statistical tools, etc. It has a flexible module structure that
allows the easy integration of custom modules. For the validation we developed an MMAP traffic source
module (approx. 100 lines of C++ code), an MMAP/MAP/1 priority buffer module (approx. 200 lines) and
a traffic splitter module (70 lines). The connection between the modules is described in a separate network
description file according to the topologies used in the examples. Each simulation run took 2 minutes on a
PC with a 2 GHz CPU.

For the numerical examples we consider three topologies: a tandem queue (Figure 1); a simple 3-node
network with traffic aggregation (Figure 2) which we will refer to as aggregation network; and a fork and
join structure (Figure 3) which requires both splitting and aggregation of traffic flows. For all the examples
the input traffic is defined by the MMAP

D0 =
[
−6.9375 0.9375
0.0625 −0.1958

]
, D1 = p1

[
6 0
0 0.1333

]
, D2 = (1− p1)

[
6 0
0 0.1333

]
(60)

where p1 determines the percentage of high priority customers. In case of the tandem network and the fork
and join network we have only one input stream from the environment, in case of the aggregation network
the are two, and both of them are according to D0, D1 and D2. For this MMAP the arrival intensity, the
squared coefficient of variation and the lag−1 correlation coefficient (disregarding the class of the arriving
customer) are 0.5, 4.1 and 0.23, respectively.

The service process is either exponential

S
(i,node)
0 =

[
−c(i,node)

]
, S

(i,node)
1 =

[
c(i,node)

]
, i = 1, 2, (61)

or it is described by the order-2 MAP

S
(i,node)
0 = c(i,node)

[
−10 0

0 −0.52632

]
, S

(i,node)
1 = c(i,node)

[
0 10

0.52632 0

]
, i = 1, 2, (62)

where c(1,node) (c(2,node)) will be set according to the desired utilisation factor of the high (low) priority class
at node node. This order-2 MAP introduces correlation in the service process. In the evaluated examples
we used either the exponential or the order-2 MAP service for all nodes of the queueing networks. This
experimental setup is very simple but we found that the cases with different arrival MMAPs and service
MAPs at the different nodes for the different classes did not add much to the set of conclusions we can draw
from these numerical examples and it would increase the complexity of the description of the considered
examples.

5.1. Tandem queues
Figure 4 and 5 report results regarding the mean number of high and low priority customers in the

tandem queue with exponential servers. For all the figures hereinafter we present the numerical parameters
13



Node A

Node B

Node CNode D

Figure 3: Fork and join queueing network

in the title of the figure. In particular, ρN,i denotes the utilisation for class i at node N . We performed
the calculations applying 2 and 3 state approximations of the output process of the first queue. One can
observe that using 3 states the results are closer to those obtained by simulation.

In Figure 6 and 7 we report the results regarding the tandem queue with correlated service process. In this
case using 3 states does not improve much with respect to using 2 states departure MMAP approximation.
Moreover, for the case reported in Figure 7, with high values of utilisation the 3 state output process
approximation of the first queue causes numerical problems in the analysis of the second queue (Section 4.1
step 2).

5.2. Aggregation network
Figure 8 and 9 report results for the aggregation network with exponential servers while Figure 10 and

11 with correlated service process. The aggregation is modeled either directly by the Kronecker sum of the
2 state output approximations of node A and B which results in a 4 state input MMAP for node C, or
by the 2 state moment based reduction of this MMAP. That is, we compute the moments and the joint
moments of the 4 state superposed MMAP and compute the 2 state MMAP, whose µi, i = 1, 2, 3 moments
and η

(c)
i,j , i, j = 0, 1, 2, c = 1, 2 joint moments are identical with the ones of the 4 state superposed MMAP.

5.3. Fork and join network
Figure 12 and 13 depict results for the fork and join network with exponential servers while 14 and 15

with correlated service process. The aggregation of the output traffic of node B and C are performed either
with 2 or 4 phases as it was described in case of the aggregation network.

5.4. Applicability properties of the proposed method
The applicability of traffic based decomposition methods depend on several small details of the method.

We summarize some of these properties based on our numerical experiences first for single node analysis
and then for network analysis.

The proposed analysis contains iterative numerical procedures to compute characterizing matrices. The
running time and the accuracy of these methods depend on the predefined stopping criterion. One can
tune the accuracy versus running time trade off with these parameters. In general, the number of required
iterations is moderate for low utilisation and increases sharply at high utilisation.

Furthermore, the departure process of a node with high utilisation exhibits extremely strong correlation
structure. Similar to MAPs, MMAPs of a given order also have limitations in approximating strong correla-
tion patterns. The departure process of a node with high utilisation is typically far from the ones which can
be approximated by MMAPs with small number of phases. Consequently, the output process approximation
gives more precise results with lower values of utilisation.

In this work we consider feed forward networks. The computational complexity of a large network is
linear with the number of nodes. The probability of computational instability does not increase with the
number of evaluated nodes. The accuracy at a given node is rather determined by the traffic pattern of that
node than the number of nodes analyzed before the current one. Approximation errors do not necessarily
accumulate through the consecutive node analyzes, since the traffic components coming from previously
computed nodes might be negligible compared to the external traffic directed to the current node (which is
exact).
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Figure 4: Mean queue lengths for the tandem queue with exponential servers; utilisations are such that ρA,1 = 1/3ρA,2 =
ρB,1 = 1/3ρB,2, 75% percent of customers is of class 1.
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Figure 5: Mean queue lengths for the tandem queue with exponential servers; utilisations are such that 1/3ρA,1 = ρA,2 =
1/3ρB,1 = ρB,2, 75% percent of customers is of class 2.
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Figure 6: Mean queue lengths for the tandem queue with correlated service process; utilisations are such that ρA,1 = 1/3ρA,2 =
ρB,1 = 1/3ρB,2, 75% percent of customers is of class 1.
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Figure 7: Mean queue lengths for the tandem queue with correlated service process; utilisations are such that 1/3ρA,1 = ρA,2 =
1/3ρB,1 = ρB,2, 75% percent of customers is of class 2.
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Figure 8: Mean queue lengths for the aggregation network with exponential servers; utilisations are ρA,1 = 0.6, ρA,2 =
0.2, ρB,1 = 0.2, ρB,2 = 0.6, ρC,1 = 3/4ρC,2, 50% percent of customers is of class 1.
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Figure 9: Mean queue lengths for the aggregation network with exponential servers; utilisations are ρA,1 = 0.4, ρA,2 =
0.4, ρB,1 = 0.4, ρB,2 = 0.4, ρC,1 = 3/4ρC,2, 50% percent of customers is of class 1.
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Figure 10: Mean queue lengths for the aggregation network with correlated service process; utilisations are ρA,1 = 0.6, ρA,2 =
0.2, ρB,1 = 0.2, ρB,2 = 0.6, ρC,1 = 3/4ρC,2, 50% percent of customers is of class 1.
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Figure 11: Mean queue lengths for the aggregation network with correlated service process; utilisations are ρA,1 = 0.4, ρA,2 =
0.4, ρB,1 = 0.4, ρB,2 = 0.4, ρC,1 = 3/4ρC,2, 50% percent of customers is of class 1.
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Figure 12: Mean queue lengths for the fork and join queueing network with exponential servers; utilisations are ρA,1 =
0.4, ρA,2 = 0.4, ρB,1 = 0.4, ρB,2 = 0.4, ρC,1 = 0.4, ρC,2 = 0.4 and ρD,1 = ρD,2, splitting probabilities are s1,A→B = 0.5 and
s2,A→B = 0.5, 50% percent of customers is of class 1.
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Figure 13: Mean queue lengths for the fork and join queueing network with exponential servers; utilisations are ρA,1 =
0.2, ρA,2 = 0.6, ρB,1 = 0.4, ρB,2 = 0.4, ρC,1 = 0.6, ρC,2 = 0.2 and ρD,1 = ρD,2, splitting probabilities are s1,A→B = 0.25 and
s2,A→B = 0.75, 50% percent of customers is of class 1.
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Figure 14: Mean queue lengths for the fork and join queueing network with correlated service process; utilisations are ρA,1 =
0.4, ρA,2 = 0.4, ρB,1 = 0.4, ρB,2 = 0.4, ρC,1 = 0.4, ρC,2 = 0.4 and ρD,1 = ρD,2, splitting probabilities are s1,A→B = 0.5 and
s2,A→B = 0.5, 50% percent of customers is of class 1.
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Figure 15: Mean queue lengths for the fork and join queueing network with correlated service process; utilisations are ρA,1 =
0.2, ρA,2 = 0.6, ρB,1 = 0.4, ρB,2 = 0.4, ρC,1 = 0.6, ρC,2 = 0.2 and ρD,1 = ρD,2, splitting probabilities are s1,A→B = 0.25 and
s2,A→B = 0.75, 50% percent of customers is of class 1.
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Our general conclusion about the behavior of the numerical method is that the proposed method is
applicable for reasonably large networks with moderate utilisation and its accuracy is mainly determined by
the traffic patterns of the node.

6. Conclusion

We have presented an approximate analysis approach for queueing networks with two classes of customers
and preemptive priority service. It is a traffic based decomposition method which captures the intra- and
inter-class dependencies in the network traffic. The proposed method required the extension of previously
available analysis results to several directions: moments based characterisation of MMAPs, analysis and
departure process approximation of MMAP/MAP/1 preemptive priority queues.

The paper presents numerical examples about the application of the proposed analysis method. The
results indicate that several numerical and theoretical issue remain open for future work. For example,
the stable numerical analysis of the queuing node and the investigation of the correlation limits of MMAPs.
Another related future plan is the application of the proposed procedure for the analysis of queueing networks
with feedback.
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