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Abstract. The class of order 3 phase type distributions (PH(3)) is
known to be a proper subset of the class of order 3 matrix exponen-
tial distributions (ME(3)). In this paper we investigate the relation of
these two sets for what concerns their moment bounds.
To this end we developed a procedure to check if a matrix exponential
function of order 3 defines a ME(3) distribution or not. This procedure is
based on the time domain analysis of the density function. The proposed
procedure requires the numerical solution of a transcendent equation in
some cases.
The presented moment bounds are based on some unproved conjectures
which are verified only by numerical investigations.
Keywords: Matrix exponential distributions, Phase type distributions,
moment bounds.

1 Introduction

The availability of efficient matrix analytic methods (see e.g., [7, 10]) reinforced
the research of distributions with matrix exponential representation. The order
of these distributions is defined as the (minimal) cardinality of the matrix that
describes the distribution. The two main classes of these distributions are the
class of phase type distributions [8, 9], which has a nice stochastic interpretation
due to its underlying continuous time Markov chain, and the class of matrix
exponential distributions [1], which does not allow for a simple stochastic inter-
pretation.

It has been known for a long time that considering distributions of order 2
the two classes are identical, ME(2)≡PH(2), but for n > 2 PH(n) is a proper
subset of ME(n) [12]. Unfortunately there are no tools to investigate the relation
of the ME(n) and the PH(n) classes for n > 2. However, recent results on ME(3)
[5] and PH(3) [6] distributions make it possible to investigate the relation of the
ME(3) and the PH(3) classes.

The practical importance of low order PH and ME distributions comes from
the fact that the complexity of the matrix analytic analysis increases rapidly
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with the order of the model components (e.g., PH distribution of the service
time). Recent results suggest that matrix analytic methods are applicable for
models with matrix exponential distributions as well as for models with phase
type distributions [2]. Consequently, one can gain if the durations to be modelled
can be described by a ME distribution with lower order than the application of
a PH distributions would require.

We compare the flexibility of the ME(3) and the PH(3) classes through their
moment bounds. It is not the only and not necessarily the easiest way to com-
pare them, but this choice is motivated by the fact that moments and related
measures (e.g., coefficient of variation) are the most frequently used parameters
of distributions.

This paper is strongly related to the extensive work of Mark Fackrell in [5].
We reconsider some questions of [5] and complement those results with alterna-
tive ones. The main goal of this paper is to answer the following question ([5]
p. 110) “The class of PH distributions is a proper subset of the class of ME dis-
tributions, but how much larger is the latter class than the former?”. In [5] the
question is answered for ME(n) and ∪m≥n PH(m). We believe that this question
has more practical importance for ME(n) and PH(n). In this work we try to
answer this question for ME(3) and PH(3).

Related ME(3) results: [5] devotes its main attention to the matrix expo-
nential distributions of order n > 2 and provides important necessary conditions
for being a member of ME(n). Additionally, [5] provides necessary and suffi-
cient conditions for being a member of ME(3). These conditions are given in
the Laplace transform domain. Assuming that for a given triple {b1, b2, b3} the
Laplace transform of a matrix exponential function takes the form

x2s
2 + x1s + b1

s3 + b3s2 + b2s + b1

(i.e., there is no probability mass at 0) the linear and parametric curves provided
in [5] bound the region of {x1, x2} where the matrix exponential function is a
member of the ME(3) class.

Unfortunately, we did not find an easy implementation of these transform
domain constraints, and this is why we developed a time domain counterpart for
ME(3) characterization.

An important property of the ME(3) class, namely its minimal coefficient of
variation, is studied in [4]. The results provided here verify the ones provided
there.

Related PH(3) results: Another important preliminary work is [6] which
provides a canonical representation of PH(3) distributions. More precisely, [6]
presents an algorithm that transforms any order 3 matrix exponential function
to PH(3) canonical form if it is possible. In this paper, this algorithm is used to
characterize the borders of the PH(3) class.

The rest of the paper is organized as follows. Section 2 defines the class of
matrix exponential distributions and the basic notations. Section 3 presents a
procedure to check if a matrix exponential function of order 3 is a member of



the ME(3) class or not. Using this procedure and its counterpart for the PH(3)
class from [6], Section 4 investigates the relation of the moment bounds of these
two classes. The paper is concluded in Section 5.

2 Matrix exponential distributions

Definition 1. The vector matrix pair (v, H) defines a matrix exponential dis-
tribution iff

F (t) = Pr(X < t) = 1− veHt1I , t ≥ 0 (1)

is a valid cumulative distribution function, i.e., F (0) ≥ 0, limt→∞ F (t) = 1 and
F (t) is monotone increasing.

In (1), the row vector, v, is referred to as the initial vector, the square matrix,
H, as the generator and 1I as the closing vector. Without loss of generality (see
[8]), throughout this paper we assume that the closing vector is a column vector
of ones, i.e., 1I = [1, 1, . . . , 1]T .

The density, the Laplace transform and the moments of the matrix exponen-
tial distribution defined by (v, H) are

f(t) = veHt(−H)1I , (2)

f∗(s) = E(e−sX) = v(sI −H)−1(−H)1I , (3)

µn = E(Xn) = n!v(−H)−n1I . (4)

To ensure that limt→∞ F (t) = 1, H has to fulfill the necessary condition that
the real parts of its eigenvalues are negative (consequently H is non-singular).

The remaining constraint is the monotonicity of F (t). It is the most difficult
property to check. Instead of checking if F (t) is monotone increasing, in the next
section, we check if f(t) is non-negative.

3 Matrix exponential distributions of order 3

We subdivide the class of ME(3) distributions according to the eigenvalue struc-
ture of H. With λ1, λ2, λ3 denoting the eigenvalues of the matrix −H, we have
the following possible cases:

– class A: λ1, λ2, λ3 ∈ R+, λ1 < λ2 < λ3

– class B: λ1, λ2, λ3 ∈ R+, λ1 = λ2 < λ3 or λ1 < λ2 = λ3

– class C: λ1 = λ2 = λ3 ∈ R+,
– class D: λ1 ∈ R+, λ2 = λ3 ∈ C+,

where R+ denotes the set of strictly positive real numbers and C+ the set of com-
plex numbers with strictly positive real part. The following subsections consider
these four cases.



3.1 Case A: 3 different real eigenvalues

In this case the general form of the density function and its derivative are

f(t) = a1e
−λ1t + a2e

−λ2t + a3e
−λ3t (5)

f ′(t) = −a1λ1e
−λ1t − a2λ2e

−λ2t − a3λ3e
−λ3t (6)

Without loss of generality, we check the non-negativity of f(t) assuming that
λ1 < λ2 < λ3.

Theorem 1. f(t) is non-negative for t ≥ 0 iff

– a1 + a2 + a3 ≥ 0 and
– a1 > 0 and

– if a2 < −a1
λ3 − λ1

λ3 − λ2
then a3 ≥ a1

λ2 − λ1

λ3 − λ2

(
−a2

a1

λ3 − λ2

λ3 − λ1

)λ3−λ1
λ2−λ1

.

Proof. First, we note that f(t) is a monotone increasing function of a1, a2 and a3

for t ≥ 0 and both f(t) and f ′(t) can have at most 2 roots in (0,∞) (excluding
0 and infinity).

The non-negativity of f(t) at t = 0 results in the first condition and the
non-negativity of f(t) at t →∞ results in the second condition of the theorem.

In the rest we suppose that a1 > 0 and a1 + a2 + a3 ≥ 0. We investigate the
non-negativity of f(t) by constructing f∗(t) = a1e

−λ1t + a2e
−λ2t + a∗3e

−λ3t such
that a∗3 takes the minimal a3 value with which f(t) is still non-negative, i.e., we
will have f∗(c) = 0 for some c ≥ 0.

We have the following two cases:

a) f∗(c) touches the x-axes at c > 0, that is, f∗(c) = 0 and f ′∗(c) = 0,
b) f∗(0) = 0 and f ′∗(0) ≥ 0.

In case a) we have

f∗(c) = a1e
−λ1c + a2e

−λ2c + a∗3e
−λ3c = 0, (7)

f ′∗(c) = −a1λ1e
−λ1c − a2λ2e

−λ2c − a∗3λ3e
−λ3c = 0, (8)

from which

a2

a1
= −λ3 − λ1

λ3 − λ2
e(λ2−λ1)c, (9)

a∗3
a1

=
λ2 − λ1

λ3 − λ2
e(λ3−λ1)c. (10)

If a2 ≥ −a1
λ3 − λ1

λ3 − λ2
then there is no c > 0 that satisfies (9), since the left

hand side of (9) is negative and less than −λ3 − λ1

λ3 − λ2
. Consequently, case a) is not

possible when a2 ≥ −a1
λ3 − λ1

λ3 − λ2
.



If a2 < −a1
λ3 − λ1

λ3 − λ2
then c is obtained from (9) as

c =
log

(
−a2

a1

λ3 − λ2

λ3 − λ1

)

λ2 − λ1
,

and substituting it to (10) gives

a∗3 = a1
λ2 − λ1

λ3 − λ2

(
−a2

a1

λ3 − λ2

λ3 − λ1

)λ3−λ1
λ2−λ1

.

In case b) we have

f∗(0) = a1 + a2 + a∗3 = 0, (11)
f ′∗(0) = −a1λ1 − a2λ2 − a∗3λ3 ≥ 0. (12)

Substituting a∗3 = −a1 − a2 from (11) into (12) we have that (12) holds when

a2 ≥ −a1
λ3 − λ1

λ3 − λ2
. ut

3.2 Case B: 2 different real eigenvalues

In this case we have two options.

– The multiplicity of the dominant eigenvalue, λ1, (λ1 < λ2) is one and hence
the general form of the density function is

f1(t) = a1 e−λ1t + (a2 + a21t) e−λ2t. (13)

– The multiplicity of the dominant eigenvalue , λ1, (λ1 < λ2) is two and hence
the general form of the density function is

f2(t) = (a1 + a11t) e−λ1t + a2 e−λ2t. (14)

Theorem 2. f1(t) is non-negative for t ≥ 0 iff

– a1 + a2 > 0 and
– a1 ≥ 0 and
– a21 ≥ a∗21

where a∗21 is that solution of

a21 ea2λ2/a21 + a1(λ2 − λ1) e1+a2λ1/a21 = 0 (15)

which satisfies a21(1− (λ2 − λ1)) > a2(λ2 − λ1).



Proof. f1(t) is a monotone increasing function of a1, a2 and a21 for t ≥ 0 and
both f1(t) and f ′1(t) can have at most 2 roots in (0,∞) (excluding 0 and infinity).

The non-negativity of f1(t) at t = 0 results in the first condition and the
non-negativity of f1(t) at t → ∞ results in the second condition. The minimal
a21 value for which f1(t) is non-negative is obtained assuming that f1(t) touches
the x axes at t = c > 0, i.e., f1(c) = 0 and f ′1(c) = 0. Solving this set of equations
for a21 and c, we have

c =
a21 − a2(λ2 − λ1)

a21(λ2 − λ1)
,

and (15) and the a21(1 − (λ2 − λ1)) > a2(λ2 − λ1) condition is equivalent with
c > 0. ut
Theorem 3. f2(t) is non-negative for t ≥ 0 iff

– a1 + a2 > 0 and
– a11 ≥ 0 and
– a11 ≥ a∗11

where a∗11 is that solution of

a2 e
λ2

(
a1

a11
− 1

λ2−λ1

)
− a11(λ2 − λ1) e

λ1

(
a1

a11
− 1

λ2−λ1

)
= 0 (16)

which satisfies −a1(λ2 − λ1) > a11(1 + λ2 − λ1).

Proof. The proof follows the same pattern as the one for f1(t). ut
It has to be noted that the third condition of Theorem 2 and 3 are transcen-

dent, and consequently, numerical methods are required to compute them.

3.3 Case C: 1 real eigenvalue

In this case the general form of the density function is

f(t) = (a0 + a1t + a2t
2) e−λt (17)

(18)

Theorem 4. f(t) is non-negative for t ≥ 0 iff

– a0 > 0 and
– a2 > 0 and
– a1 ≥ −2

√
a0a2.

Proof. f(t) is a monotone increasing function of a0, a1 and a2 for t ≥ 0 and both
f(t) and f ′(t) can have at most 2 roots in (0,∞) (excluding 0 and infinity).

The non-negativity of f(t) at t = 0 results in the first condition and the
non-negativity of f(t) at t →∞ results in the second condition.

Supposing that a0 > 0 and a2 > 0 we have the following two cases:

– if a1 ≥ 0 then a0 + a1t + a2t
2 is monotone increasing on (0,∞),

– if a1 < 0 then a0 + a1t + a2t
2 has a minimum at t = − a1

2a2
which is a0− a2

1
4a2

.

From which the third condition comes. ut



3.4 Case D: one real and a pair of complex eigenvalues

In this case the general form of the density function is

f(t) = a1 e−λ1t + a2 cos(ωt + φ) e−λct (19)

where, for uniqueness, a2 and φ are defined such that a2 > 0 and −π < φ ≤ π.

Theorem 5. f(t) is non-negative for t ≥ 0 iff

– a1 + a2 cos(φ) > 0 and
– a1 > 0 and
– λ1 ≤ λc and
– a2 < a1e

(λc−λ1)
2π
ω and

– if a1 < a2 (< a1e
(λc−λ1)

2π
ω ) then f(ť) ≥ 0 and f(t̂) ≥ 0 and

– if a1 < a2 (< a1e
(λc−λ1)

2π
ω ) and f ′(t) has roots in [ť, t̂] then f(t) ≥ 0 at those

roots,

where ť = max
(
0, π−2φ

2ω

)
and t̂ = min

(
1

λc−λ1
log

(
a2
a1

)
, π−φ

ω

)
.

Proof. The non-negativity of f(t) at t = 0 results in the first condition and the
non-negativity of f(t) at t →∞ results in the second and the third conditions.
The sign of f(t) is determined by two main factors:

– the relation of the two exponential functions a1 e−λ1t and a2 e−λct,
– the value of the cyclic term cos(ωt + φ).

Supposing that the first 3 conditions hold, f(t) has the following properties:

– f(t) is a monotone increasing function of a1 for t ≥ 0.
– Both f(t) and f ′(t) might have infinitely many roots in (0,∞) (excluding 0

and infinity).
– If a1 > a2 then a1 e−λ1t > a2 e−λct for ∀t > 0, and consequently f(t) > 0

for ∀t > 0. If a1 < a2 and λ1 < λc then a1 e−λ1t > a2 e−λct for ∀t > tr =
1

λc−λ1
log(a2

a1
), and consequently f(t) > 0 for ∀t > tr, since tr is the solution

of a1 e−λ1tr > a2 e−λctr and the quicker decay of e−λct ensures the last
statement.

– If at the end of the first period of cos(ωt + φ), i.e., at tp = 2π
ω we have

a1 e−λ1tp < a2 e−λctp , then for t = π−φ
ω < tp we have

f(π−φ
ω ) = a1 e−λ1

π−φ
ω + a2 cos(ω π−φ

ω + φ) e−λc
π−φ

ω

= a1 e−λ1
π−φ

ω − a2 e−λc
π−φ

ω < a1 e−λ1tp − a2 e−λctp < 0 .

– If f(t) > 0 for ∀t > 0 for a given a2 then f̃(t) = a1 e−λ1t + ã2 cos(ωt +
φ) e−λct > 0 for ∀t > 0 and ∀ã2 ∈ [0, a2].

– If f(t) ≥ 0 for ∀t ∈ [0, tp] then f(t) ≥ 0 for ∀t > 0, because the
non-negativity of f(t) for [tp,∞) is equivalent with the non-negativity of
a1 e−λ1t + ã2 cos(ωt + φ) e−λct, where ã2 = a2 e−(λc−λ1)tp ≤ a2.



According to these properties, if λ1 < λc,

– a2 ≤ a1 implies that f(t) is non-negative.
– a2 > a1e

(λc−λ1)
2π
ω or equivalently tr > tp implies that f(t) is not non-

negative,
– if a1 < a2 ≤ a1e

(λc−λ1)
2π
ω then f(t) can become negative depending on the

initial phase of the cosine term. f(t) can become negative only when the
cosine term is negative, e.g., t ∈ (π−2φ

2ω , 3π−2φ
2ω ), but due to the faster decay

of the e−λct term it is enough to study the first interval, where the cosine
term takes the values from 0 to −1, i.e., (π−2φ

2ω , π−φ
ω ). Depending on the

initial phase, φ, π−2φ
2ω can be less than 0 and π−φ

ω can be greater than tr.
Considering these additional constraints ť and t̂ defines the borders of the
decisive interval. If f(t) is non-negative on [ť, t̂] it is non-negative for ∀t > 0.
f ′(ť) < 0 because both e−λ1t and cos(ωt + φ) e−λct decay at t = ť.
If f ′(t̂) is non-positive, f ′(t) has 0, 1, or 2 roots in [ť, t̂], and the sign of f(t)
at these roots decides the non-negativity of f(t).
If f ′(t̂) is positive, f(t) has a single minimum in [ť, t̂], and the sign of this
minimum decides the non-negativity of f(t). ut

4 Moments bounds of the ME(3) class

The previous section provides results to check the ME(3) membership of order
3 matrix exponential functions. We implemented those checks in a Mathematica
function. Using this implementation, in this section, we numerically investigate
the flexibility of the ME(3) class compared to the limits of the PH(3) class, for
which similar results are provided in [6] to check PH(3) membership.

A continuous ME(3) or PH(3) distribution is uniquely characterized by its
first 5 moments. For a given set of {µ1, . . . , µ5} moments we check the ME(3)
and PH(3) membership with a two step procedure.

– The first step is to compute a vector and matrix pair of order 3, (v, H),
for which i!v(−H)−i1I = µi, i = 1, . . . , 5. The procedure of Appie van de
Liefvoort in [12] provides such (v, H) pair with a proper transformation of
the closing vector3.

– Starting from (v, H), if the PH(3) transformation procedure in [6] generates
a valid canonical representation then {µ1, . . . µ5} represents a member of
the PH(3) set. Similarly, if the matrix exponential function, veHt(−H)1I, is
non-negative according to the checks of the previous section then {µ1, . . . µ5}
represents a member of the ME(3) set.

As in previous works, to reduce the number of parameters we introduce the
normalized moments, ni = µi

µi−1µ1
, which eliminate a scaling factor and represent

the shape of ME(3) and PH(3) distributions with 4 parameters, {n2, n3, n4, n5}.
3 In [12] the initial and the closing vectors are {1, 0, 0, . . . , 0}. In our case the closing

vector is {1, 1, . . . , 1}, hence a similarity transformation is required as described in
[11].



The subsequent numerical results are divided into investigations of the n2, n3

domain with arbitrary n4, n5 and investigations of the n4, n5 domain with given
n2, n3.

4.1 The second and third normalized moments

The n2, n3 normalized moment bounds of the PH(3) class are not completely
known yet. There is a proved result for the valid range of the APH(3) class [3],
and there is a numerically checked conjecture that the related borders of the
PH(3) class coincide with the ones of the APH(3) class [6]. Here we compare the
borders of the ME(3) class with these borders of the PH(3) class.

To check if an n2, n3 pair is inside the range of the ME(3) class is rather
difficult. We have tools to check if {n2, n3, n4, n5} defines an ME(3) distribution.
Based on this tool, for a given n2, n3 pair a natural procedure would be to check
the ME(3) membership of {n2, n3, x, y}, where x and y run through the positive
quarter plain. Unfortunately, this procedure is infeasible, because it is practically
impossible to find valid n4, n5 pairs with exhaustive search.

To get around this problem we applied special ME(3) subclasses whose struc-
ture is defined by 2 shape parameters and a scaling factor. Having these sub-
classes we set the 2 shape parameters to match n2, n3 and checked if we obtained
a valid distribution.

The Exp-Erlang and the Erlang-Exp distributions in [3] form such subsets,
which we used for n2, n3 pairs inside the range of the PH(3) class.

For n2, n3 pairs outside the range of the PH(3) class we used the following
function with complex roots (a1 = a2 = a, λ1 = λ2 = λ in (19))

f(t) = a e−λt(1 + cos(ωt + φ)) (20)

where a is a normalizing constant (
∫

t
e−λt(1 + cos(ωt + φ))dt = 1/a), λ is the

scaling factor and ω and φ are the two shape parameters. When λ = 1

n2 =
2

(√
1 + ω2 + cos(φ + arctan(ω))

) ((
1 + ω2

) 3
2 + cos(φ + 3 arctan(ω))

)

(1 + ω2 + cos(φ + 2 arctan(ω)))2
,

n3 =
3

(√
1 + ω2 + cos(φ + arctan(ω))

) ((
1 + ω2

)2 + cos(φ + 4 arctan(ω))
)

(1 + ω2 + cos(φ + 2 arctan(ω)))
(
(1 + ω2)

3
2 + cos(φ + 3 arctan(ω))

) .

For a given n2, n3 pair solving this equation for the φ, ω pair gives a matrix
exponential function whose second and third normalized moments are n2 and
n3. The non-negativity of this function can be checked by Theorem 5.

Figure 1 depicts the borders of the ME(3) class (obtained for subclass (20))
and the borders of the PH(3) class (inner borders of the figure) on the n2, n3

plain. Our numerical investigations suggest that the outer borders in Figure
1 are the borders of the whole ME(3) class, but we cannot prove it. The left
most point of these borders, n2 = 1.200902 gives the ME(3) distribution with



minimal n2 or, equivalently, with minimal coefficient of variation, and this point
corresponds to the minimal coefficient of variation of the ME(3) class reported
in [4]. The PH(3) class, and consequently the ME(3) class, are known to be
only lower bounded when n2 > 1.5. That is why the upper bound curves end at
n2 = 1.5.

The results of Section 3 indicate already that the borders of the ME(3) class
do not exhibit nice closed form expressions, but numerical methods are required
for their evaluation. We used the standard floating point precision of Mathemat-
ica to compute the presented results, but these computations are numerically
sensitive.

1.2 1.3 1.4 1.5 1.6 1.7 1.8
n21.4

1.6

1.8

2

2.2

2.4

n3

Fig. 1. The range of second and third normalized moments of the PH(3) and ME(3)
classes

4.2 The fourth and fifth normalized moments

In this section we study the region of realizable fourth and fifth normalized
moments (n4 and n5) for a given pair of second and third normalized moments
(n2 and n3). In order to find this region we make use of the subclasses presented
in Section 4.1. We use Erlang-Exp distributions [3] inside the PH(3) borders of
Figure 1 and the subclass defined by (20) between the PH(3) and the ME(3)
borders. First we generate a matrix exponential function from the given ME(3)
subclass that realizes the pair (n2,n3). Then we calculate n4 and n5 for this
matrix exponential function and use them as starting point in exploring the
realizable region of n4 and n5. Since the realizable region of the PH(3) class is a
subregion of the realizable region of the ME(3) class, it is easier to start from a
PH(3) point if possible.

We start by considering cases for which n2 = 1.45. Based on the results
presented in Section 4.1, with this value of n2 the interval of realizable third
normalized moments is (1.6517, 2.1498) with ME(3) while it is (1.8457, 1.9573)



with PH(3). First we look at the middle point of the n3 interval that can be
realized with a PH(3), i.e., n3 = 1.9015. Figure 2 depicts the realizable region
of n4 and n5 for both PH(3) and ME(3). In all the figures we have n4 on the
x-axes and n5 on the y-axes. Further, the lighter gray region contains the points
that are realized with a ME(3) or PH(3) with one real and a pair of complex
eigenvalues (class D) while the darker gray area contains points where the ME(3)
or PH(3) is realized with three real eigenvalues. It is clear from Figure 2 that
the ME(3) gives much higher flexibility than the PH(3) does. In Figure 3 we
concentrate on the lower peak of the regions depicted in Figure 2. ME(3) is
somewhat more flexible in this subregion as well and one can observe that the
flexibility is increased both for what concerns the distribution with one real and
two complex eigenvalues and for what concerns the distributions with three real
eigenvalues.

Fig. 2. Realizable n4, n5 normalized moments with PH(3) (on the left) and ME(3) (on
the right) in case of n2 = 1.45 and n3 = 1.9015

Fig. 3. Lower peak of the realizable n4, n5 region with PH(3) (on the left) and ME(3)
(on the right) in case of n2 = 1.45 and n3 = 1.9015



Now we turn our attention to such n3 values that cannot be realized by a
PH(3) with n2 = 1.45. In particular, Figure 4 depicts the realizable n4,n5 regions
for n2 = 1.45,n3 = 1.725 and n2 = 1.45,n3 = 2.1 which lie respectively beneath
and above the n3 interval that can be realized with PH(3). By comparison with
Figure 2 it is clear that approaching the possible minimum and maximum values
of n3 the realizable n4,n5 region not only changes its shape but it is shrinking
as well. To illustrate further this shrinking, Figure 5 depicts the realizable n4,n5

region for n2 = 1.45,n3 = 2.1249 and n2 = 1.45,n3 = 2.1373 where the realizable
region gets narrower and shorter.

Fig. 4. Realizable n4, n5 normalized moments with ME(3) for n2 = 1.45 and n3 = 1.725
(on the left) and n2 = 1.45 and n3 = 2.1 (on the right)

Fig. 5. Realizable n4, n5 normalized moments with ME(3) for n2 = 1.45 and n3 =
2.1249 (on the left) and n2 = 1.45 and n3 = 2.1373 (on the right)

Next we investigate a few cases with n2 = 1.6. We start with two such values
of n3, namely 1.9 and 2.0, that cannot be realized with a PH(3). The realizable
n4, n5 pairs are depicted in Figure 6. Diverging from the minimal n3 value, i.e. by



increasing the actual value of n3 the realizable region becomes larger. Diverging
further from the minimal n3 value, we choose n3 = 2.2 which can be realized by
PH(3). Figure 7 depicts the lower peak of the realizable n4, n5 region for PH(3)
and ME(3). This figure reports new qualitative properties. It indicates that the
realizable n4, n5 region can be composed by more than two areas and the arias
are not concave. The n2 = 1.6, n3 = 2.2 case is further illustrated by Figure
8, there is no upper bound for n4 and n5. Figure 9 illustrates instead how the
realizable n4,n5 is changed and moved by increasing n3 to 2.3.

Fig. 6. Realizable n4, n5 normalized moments with ME(3) for n2 = 1.6 and n3 = 1.9
(on the left) and n2 = 1.6 and n3 = 2.0 (on the right)

Fig. 7. Lower peak of the realizable n4, n5 region with PH(3) (on the left) and ME(3)
(on the right) in case of n2 = 1.6 and n3 = 2.2

In the following we investigate cases with n2 = 2.2. Figure 10 depicts the
realizable region for n3 = 2.7333 which cannot be realized by PH(3) and n3 =
2.9333 which is the lower limit for PH(3), i.e., in this point a single (n4, n5) point
can be realized with PH(3). For n3 = 3.1333 the regions are shown in Figure 11



Fig. 8. Realizable n4, n5 region with PH(3) (on the left) and ME(3) (on the right) in
case of n2 = 1.6 and n3 = 2.2

Fig. 9. Realizable n4, n5 region with PH(3) (on the left) and ME(3) (on the right) in
case of n2 = 1.6 and n3 = 2.3



and for n3 = 3.3333 in Figure 12. With n3 = 3.1333 there are upper bounds for
n4 and n5 which are not present with n3 = 3.3333.

Fig. 10. Realizable n4, n5 region with ME(3) for n3 = 2.7333 (on the left) and n3 =
2.9333 (on the right) in case of n2 = 2.6

Fig. 11. Realizable n4, n5 region with PH(3) (on the left) and ME(3) (on the right) in
case of n2 = 2.2 and n3 = 3.1333

5 Conclusions

This paper is devoted to the investigation of the border of ME(3) distributions.
To this end we collected necessary and sufficient conditions for different kinds
of order 3 matrix exponential functions to be non-negative. It turned out that
these conditions are explicit in some cases, but they require the solution of a
transcendent equation in other cases. Due to this fact, only numerical methods
are available for the investigation of ME(3) borders.



Fig. 12. Realizable n4, n5 region with PH(3) (on the left) and ME(3) (on the right) in
case of n2 = 2.2 and n3 = 3.3333

Using those necessary and sufficient conditions we completed a set of numeri-
cal evaluations. The results show, in accordance with the common expectations,
that the ME(3) set has very complex moments borders and it is significantly
larger than the PH(3) set.
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