
Acceptance-rejection methods for generating random
variates from matrix exponential distributions and rational

arrival processes

Gábor Horváth
Department of Telecommunications

Technical University of Budapest
H-1521 Budapest, Hungary
ghorvath@hit.bme.hu

Miklós Telek
Department of Telecommunications

Technical University of Budapest
H-1521 Budapest, Hungary

telek@hit.bme.hu

ABSTRACT
Stochastic models based on matrix exponential structures,
like matrix exponential distributions and rational arrival
processes, have gained popularity in analytical models re-
cently. However the application of these models in simu-
lation based evaluations is not as widespread yet. One of
the possible reasons is the lack of efficient random variates
generation methods. In this paper we propose methods for
efficient random variates generation for matrix exponential
stochastic models based on appropriate representations of
the models.

Keywords: Random number generation, Simulation, Matrix
Exponential Distributions, Rational Arrival Processes.

1. INTRODUCTION
Despite of the wide-spread usage of Markovian traffic mod-
els, phase-type (PH) distributions [13] and Markov arrival
processes (MAPs) [9], in simulations, there are surprisingly
few results available on the efficient generation of random
variates of these models. Furthermore, there are practically
no results available on the efficient generation of random
variates of matrix exponential (ME) distributions [10] and
rational arrival processes (RAPs) [1] apart from the trivial
and computationally heavy method based on the numerical
inversion of the cumulative distribution function [3]. The
aim of this paper is to propose efficient numerical methods
for random variate generation based on ME distributions
and various versions of RAPs. The few works dealing with
efficient generation of PH distributed random variates are
based on the stochastic interpretation of PH distributions.
These methods simulate the Markov chain which defines the
PH distribution until it reaches the absorbing state and gen-
erates the required random variates in an efficient way [14].
This procedure of simulating the underlying Markov chain
is referred to as play method in the sequel. Markovian traf-
fic models are defined by a set of matrices (including vec-

tors as special matrices) referred to as representation. The
representation is not unique. Different sets of matrices can
represent the same model. More recently, it has been recog-
nized that the computational complexity of the play method
depends on the particular representation of the PH distri-
bution [16, 15].

ME distributions and RAPs do not have a nice stochastic
interpretation. Consequently the methods available for gen-
erating random variates of Markovian traffic models cannot
be used for their simulation. To overcome this difficulty
we propose a version of the acceptance-rejection method.
The acceptance-rejection method is a widely used method
in simulation [17]. It consists of two main steps, drawing
random samples from an easy to compute distribution, and
accept the sample with a sample dependent probability such
that the overall probability density of the accepted sam-
ples is identical with the required one. The computational
complexity of this method depends on the sample efficiency,
which is the ratio of the number of accepted and the num-
ber of generated samples. Using a general distribution (e.g.
exponential) whose shape is different from the required one
results in a low sample efficiency. We propose specific meth-
ods with higher sample efficiency.

It turns out that, similar to the case of Markovian traffic
models, the representation of ME distributions and RAPs
affects the sample efficiency and the computational complex-
ity of generating random variates of these models. We eval-
uate the behaviour of two particular representations with
nice structural properties.

As it is demonstrated among the numerical experiments,
there are cases when the proposed method which is devel-
oped for simulating ME distributions and RAPs is more ef-
ficient for the simulation of Markovian models (PH distribu-
tions and MAPs) than the existing methods based on their
stochastic interpretations.

A procedure to generate pseudo random numbers uniformly
distributed on (0, 1) is part of all common programming
languages and simulation packages. In this work we investi-
gate the computational effort to generate random variates of
ME distribution and RAP using these uniformly distributed
pseudo random numbers. The complexity of various com-
putational steps might differ in various programming envi-

ronments. We define the computational complexity of the
proposed methods as a function of the more complex com-
putational steps (number of pseudo random samples, log
operations, exp operations).

The main part of the paper is devoted to ME distributed ran-
dom variate generation because it is a main building block
of RAP simulation. Section 2 introduces ME distributions
and RAPs and Section 3 summarizes the steps and the com-
plexity of generating random variates of Markkovian traffic
models. Having these preliminaries Section 4 introduces the
proposed acceptance-rejection method. Section 5 specializes
the acceptance-rejection method to particular representa-
tions which are efficient for random variate generation. The
use of ME distributed random number generation for sim-
ulating various RAPs is explained in Section 6. To demon-
strate the efficiency of the proposed methods examples and
related numerical experiments are presented in Section 7.

2. MATRIX EXPONENTIAL DISTRIBU-
TIONS AND RATIONAL ARRIVAL
PROCESSES

We start the summary of the preliminaries with the defi-
nition of ME and PH distributions and later we introduce
RAPs and MAPs and their variants.

Definition 1. The real valued row vector square matrix
pair of size N , (τ,T), defines a matrix exponential distribu-
tion iff

F (x) = Pr(X < x) = 1− τeTx1, x ≥ 0 (1)

is a valid cumulative distribution function (cdf), i.e., F (0) ≥
0, limx→∞ F (x) = 1 and F (x) is monotone increasing.

In (1), the row vector, τ , is referred to as the initial vector,
the square matrix, T, as the generator and 1 as the closing
vector. Without loss of generality [10], throughout this pa-
per we assume that the closing vector is a column vector of
ones, i.e., 1 = [1, 1, . . . , 1]T . Further more we restrict our
attention to the case when there is no probability mass at
0, i.e., F (0) = 0, or equivalently τ1 = 1.

The probability density function (pdf) of the matrix expo-
nential distribution defined by (τ,T) is

f(x) = τeTx(−T)1. (2)

To ensure that limx→∞ F (x) = 1, T has to fulfill the nec-
essary condition that the real parts of its eigenvalues are
negative (consequently T is non-singular).

The remaining constraint is the monotonicity of F (x), or,
equivalently, the non-negativity of f(x). This constraint is
the most difficult to check. The simulation methods pro-
posed below implement control checks to indicate if this
condition is violated during the simulation run.

Definition 2. If τ is non-negative and T has negative
diagonal and non-negative off diagonal elements then (τ,T)
is said to be Markovian and defines a PH distribution.

PH distributions can be interpreted as a time duration in
which a Markov chain having N transient and an absorb-
ing state arrives to the absorbing state. In case of a non-
Markovian representation, however, there is no such simple
stochastic interpretation available.

In case of N = 2 the class of ME distributions is identical
with the class of PH distributions, but if N > 2 the class
of PH distributions is a proper subset of the class of ME
distributions [19].

A rational arrival process (RAP) is a point process in which
the inter-arrival times are ME distributed [1, 11].

Definition 3. The square matrix pair of size N ,
(H0,H1), satisfying (H0 +H1) 1 = 0 defines a stationary
RAP iff the joint density function of the interarrival times

f(x1, . . . , xk) = τeH0x1H1e
H0x2H1 . . . e

H0xkH11 (3)

is non-negative for all k ≥ 1 and x1, x2, . . . , xk ≥ 0 and τ is
the unique solution of τ (−H0)

−1H1 = τ , τ1 = 1.

If the solution τ (−H0)
−1H1 = τ , τ1 = 1 is not unique then

(H0,H1) does not define the stationary behaviour of the
process.

RAPs inherit several properties from ME distributions. The
real parts of the eigenvalues of matrix H0 are negative; con-
sequently the matrix is non-singular. There is a real eigen-
value with maximal real part. Similar to the case of ME
distributions the non-negativity of the joint density func-
tion is hard to check and the proposed simulation methods
contain run time checks to indicate if the non-negativity of
the joint density is violated. The first interarrival time of
the RAP is ME distributed with initial vector τ and square
matrix H0. Vector τ and the off-diagonal blocks of matrix
H0 may contain negative elements. If H1 = −H01τ then
the consecutive interarrivals are independent and identically
distributed, that is the RAP is a renewal process with ME
distributed interarrivals.

Definition 4. If H1 ≥ 0 and all non-diagonal elements
of H0 are non-negative, then the matrix pair (H0,H1) is
said to be Markovian and define a Markov Arrival Process
(MAP).

The joint density function (3) of a MAP is always positive
and τ ≥ 0. In case of MAPs one can interpret the non-
diagonal elements of matrix H0 and the elements of H1 as
transition rates corresponding to hidden and visible events,
respectively. Vector τ can be interpreted as the state of the
MAP at time zero.

The extension of plain (single arrival, single event type)
MAPs to MAPs with batch arrivals (BMAPs) [9] and with
different types of arrivals (MMAPs) [7] can be applied to
RAPs as well. This extension results in batch rational
arrival process (BRAP) and marked rational arrival pro-
cess (MRAP) [2], respectively. The stochastic behaviour of
MRAPs and BRAPs is practically the same and we present
the discussion only one of them.

Definition 5. A set of square matrices of size N ,
(H0,H1, . . . ,HK), satisfying

∑K
k=0 Hk 1 = 0, defines a sta-

tionary MRAP with K event types iff the joint density func-
tion of the arrival sequence (consecutive interarrival times
and event types)

f(x1, k1, . . . , xj , kj) = τeH0x1Hk1
eH0x2Hk2

. . . eH0xjHkj
1
(4)

is non-negative for all j ≥ 1 and x1, x2, . . . , xj ≥ 0,
1 ≤ k1, k2, . . . , kj ≤ K and τ is the unique solution of

τ (−H0)
−1

∑K
k=1 Hk = τ , τ1 = 1.

If the solution τ (−H0)
−1 ∑K

k=1 Hk = τ , τ1 = 1 is not
unique then (H0,H1, . . . ,HK) does not define the station-
ary behaviour of the process.

The class of MRAPs contains MMAPs since an MRAP is
an MMAP if τ ≥ 0, Hk ≥ 0 for k = 1, . . . ,K and all non-
diagonal elements of H0 are non-negative.

For later use we also define the initial vector after the first
event. If a RAP with representation (H0,H1) starts with
initial vector α and the first arrival happens at time x
then the initial vector characterizing the second arrival is
αeH0xH1 / αeH0xH11. If an MRAP with representation
(H0,H1, . . . ,HK) starts with initial vector α, and the first
event happens at time x then the probability that the event
is of type k is αeH0xHk1 /

∑K
j=1 αe

H0xHj1. Further more,

if an MRAP with representation (H0,H1, . . . ,HK) starts
with initial vector α, the first arrival happens at time x and
it is of type k then the initial vector characterizing the sec-
ond arrival is αeH0xHk / αeH0xHk1.
The above matrix representations of the introduced pro-
cesses are not unique. Various similarity transformations
allow to generate different matrix representation of a given
process. Similarity transformations exists for matrix rep-
resentations of identical size [4] and different sizes [18].
We recall one of the possible similarity transformations for
MRAPs from [18] without proof. Similar transformations
for RAPs and ME distributions can be obtained as a special
case [5].

Theorem 1. If there is a matrix W ∈ R
n,m, m ≥ n such

that 1n = W1m (where 1n is the column vector of size n),
WHk = GkW for k = 0, . . . ,K then (H0, . . . ,HK) and
(G0, . . . ,GK) define the same MRAP.

3. GENERATING RANDOM VARIATES OF
MARKOVIAN TRAFFIC MODELS

A trivial way to generate PH and ME distributed random
numbers is based on the numerical inversion of the cdf. This
computationally heavy method can be replaced by more ef-
ficient ones if the distribution allows a simple stochastic in-
terpretation, e.g., in case of PH distributions. Due to the
nice stochastic interpretation of PH distributions the gener-
ation of PH distributed random variate can be made with-
out the inversion of the numerical matrix exponential func-
tion in (1). Simulation approaches based on the underlying
Markov-chain interpretation are presented in [14, 16, 15].
Below we list some of the related results of these papers and

introduce some concepts which are used also in the current
work for efficient random number generation.

• General PH distributions: General PH distributions
can be interpreted as time to absorption of a Markov
chain with N transient states and an absorbing state.
The behavior of the Markov chain can be simulated by
drawing random samples for the initial state, and by
drawing random samples for the state sojourn times
and successor states, repeatedly, until the absorb-
ing state is reached. This method is referred to as
play method. Drawing samples of the state sojourn
times requires drawing exponentially distributed ran-
dom numbers (RExp(λ)) that are generated by trans-
forming a random number U uniformly distributed on
(0, 1) as

RExp(λ) = −
logU

λ
(5)

Choosing the initial or a successor state requires draw-
ing an additional random number U uniformly dis-
tributed on (0, 1) and comparing with the partial sums
of elements of the probability vector. The play method
is efficient if the mean number of state transitions be-
fore absorption is low. More efficient ways of gener-
ating random samples form PH distributions are pro-
posed and analyzed in [14, 16]. The complexity of
these methods can further improved by efficient dis-
crete random variable sampling using the alias method
[8].

• APH distributions: if the PH distribution has an
acyclic representation, even more efficient algorithms
exist to generate random variates. Each APH can be
transformed to one of the three canonical forms [6].
Assuming that an APH distribution is given in CF-1
form a random variate is generated in two steps: first
the initial state is drawn, then the time until absorp-
tion is sampled as the sum of exponentially distributed
sojourn times of states between the initial and the ab-
sorbing state. Due to the structure of the CF-1 form,
there is always exactly one successor state so there is no
need to draw sample for choosing next states. Another
important feature of the CF-1 is the lack of cycles; thus
the procedure terminates in at most as many steps as
the phases of the APH.

• Hyper-Erlang (HEr) distribution: HEr distribution is
a convex combination of Erlang distributions. In case
of a HEr representation first the Erlang branch has
to be chosen and than the Erlang distributed random
number has to be drawn. Drawing Erlang distributed
random variates require only a single evaluation of the
logarithm function that is a considerable advantage:

RErl(λ,n) =

n∑

i=1

−
logUi

λ
= −

1

λ
log

n∏

i=1

Ui (6)

• Hyper-Exponential (HE) distribution: HE distribution
is a convex combination of exponential distributions.
HE distribution is the most efficient representation of
PH distributions with respect to random number gen-
eration. Only two operations are required: to choose

the branch and to draw sample for the selected expo-
nential distribution.

• Feedback-Erlang block (FEB): A Feedback-Erlang
block is a series of independent, identical exponentially
distributed phases with a single feedback from the last
phase to the first one, as it is depicted in Figure 1. It
is the main building block of the monocyclic represen-
tation introduced in [12]. FEB has 3 parameters the
number of states n, the parameter of the exponential
distribution σ and the feedback probability z.

σ σ σ

z σ

(1-z) σσ

Figure 1: A single Feedback-Erlang block

FEB has the following advantages:

– it can represent complex eigenvalues in a Marko-
vian way,

– it represents a real eigenvalue as a single expo-
nential phase (n = 1, z = 0),

– its eigenvalues are easy to obtain which makes the
construction of FEBs easy,

– it is efficient to draw random numbers from FEB.

The generation of a sample from a FEB is similarly ef-
ficient to the generation of an Erlang distributed sam-
ple. First a geometrically distributed discrete random
variate is sampled with parameter z, ∆, and after that

RFEB(σ,n,z) = −
1

σ
log

n∆∏

i=1

Ui. (7)

4. GENERATING RANDOM VARIATES
FROM MATRIX-EXPONENTIAL DIS-
TRIBUTIONS HAVING A MARKOVIAN
GENERATOR

In this section we present the main concept of the proposed
acceptance-rejection method to generate random variates
from a ME distribution. To apply this method we assume
that the representation of the ME distribution has a Marko-
vian generator and a general initial vector (which might con-
tain negative elements). The next section proposes such
representations with Markovian generators. This section fo-
cuses only on the main idea of the proposed method. This
acceptance-rejection approach is the basis of the later intro-
duced simulation of ME distributions and various RAPs.

Let (α,A) of size N be the representation of the ME distri-
bution such that A is a Markovian generator matrix (non-
diagonal elements are non-negative, and the row sums are
non-positive). The probability density function can be ex-
pressed as a non-convex combination of PH distributions as
follows:

f(x) = αeAx(−A)1 =
N∑

i=1

αi · ei e
Ax(−A)1

︸ ︷︷ ︸

gi(x)

, (8)

with ei denoting a row vector of size N whose ith element is
one and all other elements are zeros. Observe that (ei,A) is
a Markovian representation of the PH distribution with pdf
gi(x); consequently

∫ ∞

0
gi(x)dx = 1.

To cope with the negative coefficients, we apply an
acceptance-rejection method to generate a random variate
as follows. The set of coefficients of the density function is
divided into A+ and A−, such that i ∈ A+ if αi ≥ 0 and
i ∈ A− otherwise. In this way f(x) is separated to a positive
(f+(x)) and a negative (f−(x)) parts

f(x) =
∑

i∈A+

αi · gi(x)

︸ ︷︷ ︸

f+(x)

+
∑

i∈A
−

αi · gi(x)

︸ ︷︷ ︸

f
−
(x)

. (9)

Note that f+(x) ≥ 0, ∀x ≥ 0 and f−(x) ≤ 0, ∀x ≥ 0 holds.

Multiplying with p∗ = 1/
∑

j∈A+
αj , the positive part gets

normalized and we get

f̂+(x) =
∑

i∈A+

αi p
∗ · gi(x), (10)

that is a valid phase-type distribution with Markovian rep-
resentation (p∗

∑

i∈A+
αi ei,A), where the initial vector is

non-negative and normalized. With these notations and def-
initions, the acceptance-rejection based method to generate
random numbers from (α,A) is formalized by Algorithm 1.

Algorithm 1 Algorithm for generating ME distributed ran-
dom variates having a Markovian generator

1: Start: Draw a f̂+(x) distributed random sample:
2: I = discrete random sample with distribution

p∗
∑

i∈A+
αi ei

3: R = random sample with pdf gI(x)
4: by any PH sampling method
5: if A− = ∅ then
6: return R
7: else
8: Calculate acceptance probability:

paccept(R) =
f+(R)+f

−
(R)

f+(R)

9: if paccept(R) < 0 then
10: error “INVALID DENSITY !!!”
11: end if
12: Draw a uniform sample U
13: if U < paccept(R) then
14: return R
15: else
16: goto Start
17: end if
18: end if

Theorem 2. Algorithm 1 provides an f(x) distributed
random number and the mean number of required samples is
geometrically distributed with parameter p∗, i.e., the proba-
bility that n samples are required is (1− p∗)n−1p∗.

Proof. Let f∗(x) be the probability density of the sam-
ple generated by Algorithm 1. In accordance with the stan-
dard proof of the acceptance rejection method we are going

to show that f∗(x) = f(x). The probability density that

the first step of the algorithm results in sample R is f̂+(R).
The probability density that sample R is the accepted can
be computed as

f∗(R) =
f̂+(R)paccept(R)

∫

x

f̂+(x)paccept(x)dx

=

p∗ f+(R)
f+(R) + f−(R)

f+(R)
∫

x

p∗ f+(x)
f+(x) + f−(x)

f+(x)
dx

=
p∗ f(R)

p∗
∫

x
f(x)dx

= f(R)

(11)

The steps of the iterative procedure are independent. The
probability of accepting a sample is

∫

x
f̂+(x)paccept(x)dx =

p∗.

5. GENERATING MATRIX-
EXPONENTIALLY DISTRIBUTED
RANDOM VARIATES USING
FEEDBACK-ERLANG BLOCKS

As it is shown in Section 4, there are several representa-
tions from which it is very efficient to draw random numbers.
In this section we present two general representations with
special structures which are composed by Feedback-Erlang
blocks.

5.1 Hyper-Feedback-Erlang Representation
Definition 6. A Hyper-Feedback-Erlang (Hyper-FE)

distribution is defined by an initial probability vector α and
a transient generator having the following special structure
(see Figure 2):

A =








M1

M2

. . .

MJ







, (12)

where matrices Mj of size njmj × njmj are the sub-
generators of several concatenated feedback Erlang blocks:

Mj(σj , nj , zj ,mj) =



















−σj σj

.

.

.

.

.

.

−σj σj

zjσj −σj (1 − zj)σj

.

.

.

.

.

.

−σj σj

.

.

.

.

.

.

−σj σj

zjσj −σj




















(13)

Having a general non-Markovian representation of a ME dis-
tribution, (τ,T), we look for an equivalent representation
(α,A) where A has Hyper-FE structure. We denote the
jth eigenvalue of T by λj (or, if it is a complex eigenvalue,
the complex conjugate eigenvalue pair by λj = aj + bji and
λj = aj − bji) and its multiplicity by ρj . The number of

λ1 λ1 λ1

z1 λ1

λ2 λ2 λ2

z2 λ2

λ2 λ2 λ2

z2 λ2

(1-z2) λ2

λ3 λ3 λ3

z3 λ3

(1-z1) λ1

(1-z2) λ2

(1-z3) λ3λ3

α1 α2 α3 α4

α5 α6 α7 α8 α9 α10 α11 α12

α13 α14 α15 α16 α17

Figure 2: Structure of the Hyper-Feedback-Erlang
Distribution

distinct real eigenvalues and complex conjugate eigenvalue
pairs is J .

In the generator of the resulting Hyper-FE representation
each matrix Mj in the block diagonal of A implements one
real eigenvalue or a conjugate complex eigenvalue pair of T.
The construction of matrix Mj is performed as follows [12]:

• if λj is real, the corresponding matrix degrades to an
Erlang block; thus the parameters of Mj are:

σj = λj , nj = 1, zj = 0, mj = ρj , (14)

• if λj is complex, the parameters of Mj are:

nj = the smallest integer for which aj/bj > tan(π/nj),

(15)

σj =
1

2

(

2aj − bj tan
π

nj
+ bj cot

π

nj

)

, (16)

zj =

(

1−

(

aj − bj tan
π

nj

)

/σj

)n

, (17)

mj = ρj . (18)

This construction ensures that A is a valid Markovian tran-
sient generator that has all the eigenvalues of T with the
proper multiplicities. However, the FEBs, implementing the
complex eigenvalues, introduce “extra” eigenvalues as well,
but they do not cause problems because the initial vector α
is set such that the“extra” eigenvalues have zero coefficients.

Initial vector α is obtained as follows [4]. Let n and m
(n ≤ m) be the size of T and A respectively. Compute
matrix W of size n×m as the unique solution of

TW = WA, W1 = 1, (19)

and the initial vector is

α = τ ·W (20)

Vector α is decomposed into sub-vectors according to the
block structure of A and the vector element associated with
state i of block j is denoted by αj,i. Similar to (8), the
probability density function can be then expressed as:

f(x) = αeAx(−A)1 =
J∑

j=1

njmj∑

i=1

αj,i · ei e
Mjx(−Mj)1

︸ ︷︷ ︸

gj,i(x)

, (21)

Observe that (ei,Mj) is a Markovian representation for
gk,i(x), from which it is very efficient to draw random num-
bers since it is composed by FEBs.

The method to obtain a random variate with density gk,i(x)
denoted by Rgk,i

is the following:

Lj,i = nj mj − i+ 1 +

mj∑

ℓ=⌈i/nj⌉

nj ·

⌊
logUℓ

log zj

⌋

, (22)

Rgj,i = −
1

σj
log

Lj,i∏

ℓ=1

Uℓ.

In this expression, Lj,i corresponds to the number of steps
(exponential distributions) taken before absorption. The
first term, nj mj − i+1 is the number of steps that is taken
without feedback, while the sum represents the steps due to
feedbacks: ⌊logUℓ/ log zj⌋ is the geometrically distributed
random variate for the number of feedback loops and nj is
the number of extra steps for a feedback loop.

In the case when αj,i ≥ 0, ∀i, j, generating a random variate
from f(x) is simple: draw a discrete random sample with dis-
tribution α for the starting point of the Hyper-FE structure,
and draw a gj,i(x) distributed random number according to
(22).

However, in case the initial vector has negative elements, we
apply the acceptance-rejection method to generate a ran-
dom variate as described in Section 3. Utilizing the efficient
Hyper-FE structure of A the random variate in the third
line of Algorithm 1 is generated efficiently.

In each iteration of the algorithm before accepting a sample
there is exactly one logarithm function computed to obtain
a sample from an Erlang distribution of order Lj,i and (mj−
⌈i/nj⌉ + 1) logarithm functions are computed to draw the
number of times a feedback loop is traversed in the FEBs.
Note that it is not necessary to evaluate log zj every time,
since it can be pre-calculated before starting the algorithm.
The total number of logarithms evaluated is

#ilog =
J∑

j=1

njmj∑

i=1

αj,i · (2 +mj − ⌈i/nj⌉). (23)

For the average number of uniformly distributed random
samples required in one iteration before accepting the sam-
ple we get

#iuni =
J∑

j=1

njmj∑

i=1

αj,i ·









(

1 +mj − ⌈i/nj⌉

)

︸ ︷︷ ︸

to evaluate Lj,i

+

(

nj mj − i+ 1 + (1 +mj − ⌈i/nj⌉)nj/(1− zj)

)

︸ ︷︷ ︸

E(Lj,i) uniforms required by Rgj,i










(24)

Taking into consideration that the mean number of rejec-
tions until a sample is accepted is p∗, we have the following

mean total number of basic operations

#log =
#ilog

p∗
, #uni =

#iuni

p∗
. (25)

5.2 Hypo-Feedback-Erlang Representation
Definition 7. A Hypo-Feedback-Erlang (Hypo-FE) dis-

tribution is defined by an initial probability vector α and
a transient generator having the following special structure
(see Figure 3):

A =








M1 M′
1

M2 M′
2

. . .

MJ







, (26)

where matrices Mj are defined in (13) and

M′
j = (−Mj)1 · e1 (27)

λ1 λ1 λ1

z1 λ1

λ2 λ2 λ2

z2 λ2

λ2 λ2 λ2

z2 λ2

(1-z2) λ2

λ3 λ3 λ3

z3 λ3

(1-z1) λ1

(1-z2) λ2

(1-z3) λ3λ3

α1 α2 α3 α4

α5 α6 α7 α8 α9 α10 α11 α12

α13 α14 α15 α16 α17

Figure 3: Structure of the Hypo-Feedback-Erlang
Distribution

Matrices Mj are constructed the same way as in Section 5.1,
and the initial vector is obtained by the same procedure.

Similar to the Hyper-FE structure, from the Hypo-FE struc-
ture it is also very efficient to draw random numbers.

Lj,i = nj mj − i+ 1 +

mj∑

ℓ=⌈i/nj⌉

nj ·

⌊
logUℓ

log zj

⌋

, (28)

Rgj,i = −
1

σj
log

Lj,i∏

ℓ=1

Uℓ +
J∑

r=j+1

(−1)
1

σr
log

Lr,1∏

ℓ=1

Uℓ. (29)

The only difference compared to Hyper-FE structure is that
after traversing the initially selected block (j), all consecu-
tive blocks are traversed until the absorbtion.

The cost of generating a random sample from the Hypo-FE
structure is calculated similar to the Hyper-FE case. The
final expressions including the cost of sample rejections are

#log =

1

p∗

J∑

j=1

njmj∑

i=1

αj,i ·

[

(2 +mj − ⌈i/nj⌉) +
J∑

r=j+1

(1 +mr)

]

(30)

#uni =
1

p∗

J∑

j=1

njmj∑

i=1

αj,i ·

[

(1 +mj − ⌈i/nj⌉)
︸ ︷︷ ︸

to evaluate Lj,i

+

(

nj mj − i+ 1 + (1 +mj − ⌈i/nj⌉)nj/(1− zj)

)

︸ ︷︷ ︸

E(Lj,i) uniforms required by first term of Rgj,i

+

J∑

r=j+1

(

mr + nr mr + nr mr/(1− zr)

)

︸ ︷︷ ︸

uniforms required by the sum in Rgj,i

]

(31)

It might appear that generating Hypo-FE distributed sam-
ple is more expensive compared to Hyper-FE distributed
one due to the additional sum appearing in Rgj,i in (28).
However, the initial vectors (α) of the two representations
are different; consequently the mean number of rejections
p∗ are different as well. There are examples in which the
Hyper-FE, and other examples in which the Hypo-FE rep-
resentation gives the better performance and the difference
can be significant in either direction.

6. GENERATING RANDOM VARIATES
FROM VARIOUS RATIONAL ARRIVAL
PROCESSES

The introduced random number generation method can be
used to generate samples of various versions of rational ar-
rival processes. The simple case is when a RAP generates
single arrivals of a single type. More complex cases, BRAPs
or MRAPs, arise when batch arrivals or arrivals of different
types are allowed.

Generating RAP samples. When generating random vari-
ates from RAPs the state vector of the RAP has to be
stored between consecutive arrivals. Thus, the procedure
consists of two steps: in the first step the inter-arrival
time is drawn (that is ME distributed with parameters
being the current state vector and H0), then the new
state vector is calculated just after the arrival. Consid-
ering the RAP with representation (H0,H1) the follow-
ing procedure generates a stationary series of random vari-
ates.

1: α = τ
2: while samples required do
3: R = a random sample from ME(α,H0)

4: α =
αeH0RH1

αeH0RH11
5: end while

The output of the algorithm is composed by the consecutive
R values.

If additionally, an initial vector of the RAP is known at
time 0 then, instead of the stationary initial vector, this
initial vector needs to be stored in α in the first step of the
algorithm.

Generating MRAP samples. Considering an
MRAP (or equivalently a BMRAP) with repre-
sentation (H0,H1, . . . , HK) the following procedure

generates stationary random samples of the pro-
cess.

1: α = τ
2: while samples required do
3: R = random sample from ME(α,H0)
4: for k = 1 to K do
5: pk = αeH0RHk1 /

∑K
j=1 αe

H0RHj1
6: if pk < 0 then
7: error “INVALID PROCESS !!!”
8: end if
9: end for
10: B = random sample with distribution {p1, . . . pK}
11: store R,B

12: α =
αeH0RHB

αeH0RHB1
13: end while

In this algorithm, each random sample is a pair representing
the inter-arrival time R and the type of the arrival (the batch
size) B.

Similar to the previous RAP sample generation case the first
step of the algorithm needs to be modified if the process
starts from an initial vector different from the stationary
one.

If any of these algorithms is called with a set of matrices (or
initial vector) which do not represent a valid distribution
or a valid process the procedure might throw two kinds of
errors. Either in line 10 of Algorithm 1 or in line 7 of the
MRAP algorithm (in case of MRAP simulation). Indeed
simulation is one of the few available methods to check if
a set of matrices define a valid ME distribution or arrival
process.

7. NUMERICAL EXPERIMENTS
The two methods presented in the paper have been imple-
mented in C++ using the Eigen3 linear algebra library. Dur-
ing the implementation it turned out that the most time
consuming step of the algorithm is the evaluation of f+(x)
and f−(x) for every sample. This step is required only when
the target distribution has a Hyper-FE or a Hypo-FE repre-
sentation with some negative elements in the initial vector
(p∗ < 1). The computation of f+(x) and f−(x) requires
the evaluation of a matrix exponential function. Our imple-
mentation uses a Jordan decomposition based solution for
the matrix exponential. The decomposition step has to be
performed only once during the initialization of the compu-
tation. The repeated sampling of a ME distribution requires
only the calculation of as many (scalar-) exponentials as the
size of the representation of the distribution. The number of
the computed scalar exponentials is #iexp. All the results
in this section are obtained on an average PC with an Intel
Core2 processor running at 3 GHz.

7.1 Generating PH distributed samples
In this section we examine how the efficiencies of the pro-
posed procedures compare to the play method for PH dis-
tributions. For this reason we generated a large number of
random PH distributions of order 8 and executed all the
procedures. All the elements of the generator and the initial
vector of the PH were uniformly distributed random num-

bers in (0, 1), except the transition rates to the absorbing
state that is considered to be a free parameter (denoted by
λ). With this parameter we can control the number of steps
before absorption in the play method.

The average number of basic operations is summarized by
Table 1. In case of the Hypo-FE and Hyper-FE based meth-
ods, the cost of computing the exponential function to cal-
culate f+(x) and f−(x), if required, appears as well. The
p∗ parameter that indicates the mean number of rejected
samples is also given in the Table. The basic operations
#ilog, #iuni and #iexp are meant for one iteration only.
To obtain the total number of basic operations they have to
be multiply by the mean number of iterations that is 1/p∗.
Interestingly, the 3000 random PH distributions generated
during the experiment had a valid Hypo-FE representation
in all of the cases. This way the Hypo-FE based method did
not calculate the acceptance probability, f+(x) and f−(x);
thus no exponential functions were computed. The Table
shows that the per-iteration cost of the Hyper-FEs is the
best among the compared procedures. However, most PH
distributions do not have a Hyper-FE representation with
p∗ = 1. As λ increased, some PH distributions have got a
Hyper-FE representation with p∗ = 1.

The results of the actual implementations are depicted in
Figure 4.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 0.5 1 1.5 2 2.5 3

S
am

pl
es

 p
er

 s
ec

on
d

Rate to absorbing state

Play method
cdf inversion

Hyper-FE
Hypo-FE

Figure 4: Random samples per second in case of
random PH distributions

The figure indicates that the play method is very sensitive
to the number of steps taken before absorption, while the
Hypo-FE and Hyper-FE based methods provide an almost
constant performance. Interestingly, in spite of the larger
cost per iteration, the Hypo-FE based method provides bet-
ter performance than Hyper-FE based one in several cases
because that representation gives better acceptance proba-
bility thus less rejections are required. We can conclude this
numerical experiment of generating PH distributed random
samples that the Hypo-FE and Hyper-FE based methods
provide a better performance than the play method if the
PH takes several steps until absorption.

7.2 Generating ME distributed samples

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.5 1 1.5 2 2.5 3

f(
x)

x

Figure 5: Probability density function of ME distri-
bution with representation (τ,T)

Consider the ME distribution with representation (τ,T),
where

τ = {7.69231,−6.69231, 0}, T =





−2 0 0
0 −3 1
0 −1 −3



 .

Its probability density function is depicted in Figure 5. The
eigenvalues of T are {−2,−3 + 1i,−3 − 1i}, and the cor-
responding feedback Erlang blocks (in both the Hyper-FE
and the Hypo-FE representations) are

M1 = −2, M2 =





−σ σ 0
0 −σ σ
zσ 0 σ



 , (32)

with σ = 2.42265, z = 0.108277. The transformation matrix
to the Hyper-FE and Hypo-FE representations are obtained
based on (19).

W (hyper)=





1. 0. 0. 0.
0. −0.46943 0.543647 0.925783
0. −0.0281766 −0.82339 1.85157



 ,

W (hypo)=





−0.11547 0.0281766 0.16151 0.925783
0 −0.46943 0.543647 0.925783
0 −0.0281766 −0.82339 1.85157



.

Based on these transformation matrices the initial vectors
of the Hyper-FE and Hypo-FE representations are

α(hyper) =
[
7.69231 3.14157 −3.63825 −6.19563

]
,

α(hypo) =
[
−0.888231 3.35832 −2.39587 0.925783

]
.

Based on the initial vectors the mean number of required
iterations can be obtained as

1/p∗(hyper) =
∑

i∈A+

α(hyper) = 10.83388,

1/p∗(hypo) = 4.284103,

thus, more than twice as many rejections occur when using
the Hyper-FE structure.

To illustrate the behaviour of Algorithm 1 Figure 6 and 7
depict the density to draw samples from, f+(x), and the
acceptance probability function, paccept(x), respectively. It

Play method Hyper-FE Hypo-FE
λ #uni #log #iuni #ilog #iexp p∗ #iuni #ilog #iexp p∗

0.1 144.19 71.594 1.0074 1.0039 8 0.99724 16.017 7.6263 0 1
0.5 32.393 15.696 1.0377 1.0192 8 0.98685 13.791 6.4696 0 1
1 17.686 8.3432 1.0747 1.0378 8 0.97469 11.541 5.4732 0 1
2 10.703 4.8514 1.1331 1.0649 8 0.95899 8.8631 4.3851 0 1
4 7.0355 3.0178 1.1992 1.099 7.984 0.93797 6.1525 3.4279 0 1
8 5.1654 2.0827 1.1892 1.0945 7.808 0.94059 4.0318 2.7877 0 1

Table 1: Number of basic operations required in case of random PH distributions

can be observed that the f+(x) density corresponding to the
Hypo-FE representation captures the behavior of the origi-
nal pdf better; thus the acceptance probabilities are higher.
It can also be observed that the original pdf approaches 0 at
around x = 0.32, this behaviour can not be captured by the
PH distribution of low order that is why the acceptance-
rejection method is required. The acceptance probability
function takes very low value to ensure the low density of
the samples around x = 0.32.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 2.5 3

f̂+(x)

x

With Hyper-FE
With Hypo-FE

Figure 6: Probability density function f̂+(x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

pacc(x)

x

With Hyper-FE
With Hypo-FE

Figure 7: Probability of accepting sample x

The number of basic operations per random sample and the
overall performance of the methods are summarized in Table
2. The Hypo-FE based method is 5 times faster than the
cdf inversion based method for this example.

7.3 Generating RAP samples
From Section 6 it is obvious that random samples from a
RAP can be generated efficiently once we have an efficient
method to draw ME distributed random numbers. Through
the previous two examples the behavior of the presented

acceptance-rejection methods have been studied and com-
pared in details. Here we provide a simpler example to
demonstrate the efficiency of our methods for generating
samples from a RAP.

The matrices of the RAP used in this example are as follows:

H0 =





−2 0 0
0 −3 1
0 −1 −2



 , H1 =





1.8 0.2 0
0.2 1.8 0
0.2 1.8 1



 . (33)

A significant performance hit over the ME distributed ran-
dom number generators is that a matrix exponential func-
tion has to be evaluated after drawing a sample to calculate
the initial state vector for the next arrival. However, this
time consuming step is required in all methods for gener-
ating random variates. Consequently, we expect lower per-
formance than in case of ME distributed random sample
generation, but according to Table 3 the Hyper-FE and the
Hypo-FE based methods are still 6 times faster than the cdf
inversion based one in this particular example. The num-
ber of basic operations are omitted since they vary with the
initial vector in each step.

Method for ME Samples/sec

Cdf inversion 55872
Hyper-FE 336247
Hypo-FE 329224

Table 3: Comparison of three methods for generat-
ing RAP samples

8. CONCLUSIONS
The paper proposes acceptance rejection based numerical
methods for generating ME, RAP and MRAP samples. The
key of the numerical efficiency of the acceptance rejection
based methods is the high acceptance probability and the
low computational cost of elementary random number gen-
eration. Numerical investigations shows that both of these
elements depends on the representation of the models. We
investigated the efficiency of two FEB based representations,
which were relatively efficient in a wide range of cases, but
optimal representation of these models, which makes the
simulation most efficient is still an open research problem.

9. REFERENCES
[1] S. Asmussen and M. Bladt. Point processes with

finite-dimensional conditional probabilities. Stochastic
Processes and their Application, 82:127–142, 1999.

Method #uni #log #exp p∗ Samples/sec

Cdf inversion 1 0 324.83 n/a 54869
Hyper-FE 28.998 13.428 31.681 0.094693 179560
Hypo-FE 27.51 8.022 12.033 0.24932 277581

Table 2: Comparison of three methods for generating ME distributed samples

[2] N. G. Bean and B. F. Nielsen. Quasi-birth-and-death
processes with rational arrival process components.
Stochastic Models, 26(3):309–334, 2010.

[3] E. Brown, J. Place, and A. Van de Liefvoort.
Generating Matrix Exponential Random Variates.
Simulation, 70:224–230, April 1998.

[4] P. Buchholz and M. Telek. On minimal
representations of rational arrival processes. Madrid
Conference on Queueing Theory, MCQT, 2010.
submitted for publication.

[5] P. Buchholz and M. Telek. Stochastic Petri nets with
matrix exponentially distributed firing times.
Performance Evaluation, 67(12):1373–1385, 2010.

[6] A. Cumani. On the canonical representation of
homogeneous Markov processes modelling failure-time
distributions. Microelectronics and Reliability,
22:583–602, 1982.

[7] Qi-Ming He and Marcel Neuts. Markov arrival
processes with marked transitions. Stochastic
Processes and their Applications, 74:37–52, 1998.

[8] R. Kronmal and A. Peterson. On the alias method for
generating random variables from a discrete
distribution. The American Statistician,
33(4):214–218, 1979.

[9] G. Latouche and V. Ramaswami. Introduction to
Matrix-Analytic Methods in Stochastic Modeling.
Series on statistics and applied probability.
ASA-SIAM, 1999.

[10] L. Lipsky. Queueing Theory: A linear algebraic
approach. MacMillan, New York, 1992.

[11] K. Mitchell. Constructing a correlated sequence of
matrix exponentials with invariant first order
properties. Operations Research Letters, 28:27–34,
2001.

[12] S. Mocanu and C. Commault. Sparse representations
of phase-type distributions. Commun. Stat., Stochastic
Models, 15(4):759 – 778, 1999.

[13] Marcel F. Neuts. Matrix-Geometric Solutions in
Stochastic Models. An Algorithmic Approach. Dover
Publications, Inc., New York, 1981.

[14] Marcel F. Neuts and Miriam E. Pagano. Generating
random variates from a distribution of phase type. In
WSC ’81: Proceedings of the 13th conference on
Winter simulation, pages 381–387, Piscataway, NJ,
USA, 1981. IEEE Press.

[15] P. Reinecke, M. Telek, and K. Wolter. Reducing the
cost of generating APH-distributed random numbers.
In 15th Int. Conf. on Measurement, Modelling and
Evaluation of Computing Systems (MMB), volume
5987 of LNCS, pages 274–286, Essen, Germany, March
2010. Springer.

[16] P. Reinecke, K. Wolter, L. Bodrog, and M. Telek. On
the cost of generating PH-distributed random
numbers. In Int. Workshop on Performability

Modeling of Computer and Communication Systems
(PMCCS), pages 1 – 5, Eger, Hungary, Sept. 2009.

[17] C.P. Robert and G. Casella. Monte Carlo Statistical
Methods. Springer-Verlag, New-York, 2004.

[18] M. Telek and G. Horváth. A minimal representation of
Markov arrival processes and a moments matching
method. Performance Evaluation, 64(9-12):1153–1168,
2007.

[19] A. van de Liefvoort. The moment problem for
continuous distributions. Technical report, University
of Missouri, WP-CM-1990-02, Kansas City, 1990.

