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On the Canonial Representation of Order 3Disrete Phase Type Distributions 4Illés Horváth1MTA-BME Information systems researh groupBudapest, HungaryJános Papp2Tehnial University of BudapestBudapest, HungaryMiklós Telek3Tehnial University of BudapestBudapest, HungaryAbstratIn spite of the fat that disrete phase type (DPH) distributions are used almost as often as ontinuousphase type (CPH) distributions anonial representation is not available for general (yli) order 3 DPHdistributions yet.In this paper we investigate the anonial representation of DPH distributions of order 3. During the ourseof this investigation we �nd that the problem of anonial representation of order 3 DPH distributions isfar more omplex than the one of order 3 CPH distribution. As a result we needed to distinguish 8 di�erentsublasses of order 3 DPH distributions, while it was enough to distinguish 3 sublasses of order 3 CPHdistributions for their anonial representation. Additionally, we were not able to prove all sublasses of DPHdistributions with the relatively simple methodology whih was su�ient for the anonial representationof order 3 DPH distributions.Keywords: Disrete phase type distributions, Canonial representation, Similarity transformation.1 IntrodutionStohasti performane models were restrited to �memoryless� distributions (expo-nential in ase of ontinuous time models and geometrial in ase of disrete timemodels) for a long time in order to utilize the nie omputational properties of dis-rete state Markov models. Phase-Type distributions [8,9℄ have been introdued for
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Horvath, Papp, Telekrelaxing this modeling limitation on the onsidered distributions, while maintainingthe nie Markovian behavior.For a period of time ontinuous time stohasti models with CPH distributionswere more often applied in performane modeling of omputer and ommuniationsystems, but also in this period the analysis of the ontinuous time models were of-ten based on the method of embedded Markov hains, whih transforms the analysisproblem into disrete time. Later on, with the rise of slotted time teleommunia-tion protools (e.g., ATM) disrete time models beome primary modeling tools (forreent surveys see [1,6℄). As a onsequene, approximation of experimental data setwith CPH gained more attention for a period of time. Espeially, the ayli subsetof CPH distributions gained popularity due to the simple anonial forms availablefor their representation [4℄. The use of ayli PH distributions has a further im-portant onsequene. A lot of properties of the ayli CPH and the ayli DPHdistributions are idential. For example the same anonial representations applyfor ayli DPH distributions as for ayli CPH ones [3℄. Due to this similarity theproblem of �tting DPH distributions was onsidered to be similar to the one of �t-ting CPH distributions, but this similarity is limited to the ayli PH distributionsonly, as it is indiated through a ounterexample in [11℄. The anonial represen-tation of order 3 CPH distributions is provided in [5℄. In this paper we investigatesimilar anonial forms for order 2 and 3 DPH distributions, whih is a muh moreinvolved problem. The omplexities of the anonial representation of order 3 CPHand DPH distributions are well represented by the number of forms needed to overthe whole order 3 CPH and DPH lasses. [5℄ reports 3 forms whih over the lassof order 3 CPH distributions, while here we present 8 forms to over the lass oforder 3 DPH distributions.In a preeding version of this paper [10℄ we have found anonial forms for DPHdistributions of order 3 with all possible eigenvalue strutures exept one (referredto as PNP ase) and presented a onjeture for that ase. In the mean time it turnedout that the onjeture for the PNP ase in [10℄ was not valid. In this paper werepeat the proved �ndings of [10℄ for order 3 DPH distributions and devote speialattention to the PNP ase. The �ndings of [10℄ for order 2 DPH distributions arenot presented here.The rest of the paper is organized as follows. The next setion provides a shortintrodution of DPH distributions. Setion 3 summarizes the results of [10℄ on theanonial representation of DPH distributions of order 3 with all possible eigenvaluestrutures expet the PNP ase. The new results of the paper are presented inSetion 4, whih disusses the anonial representation of order 3 DPH distributionswith PNP eigenvalue struture. The di�ulty of the PNP ase omes from the fatthat the methodology whih allowed to prove the anonial forms for order 3 CPHand order 3 DPH with non PNP eigenvalue struture is not appliable for the PNPase.
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Horvath, Papp, Telek2 Introdution2.1 Disrete phase type and matrix geometri distributionsWe de�ne DPH [8℄ and matrix geometri (MG) distributions and their ontinuousounterparts CPH [9℄ and matrix exponential (ME) distributions [2℄ �rst.De�nition 2.1 Let X be a disrete positive random variable with probability massfuntion (pmf)
pi = Pr(X = i) = αAi−1a, i = 1, 2, . . . , (1)where α is an initial row vetor of size n, A is a square matrix of size n × n,

a = (1 − A1), 1 is the olumn vetor of ones of size n and α1 = 1 (there is noprobability mass at t = 0). In this ase, we say that X is matrix geometriallydistributed with representation α,A, or shortly, MG(α,A) distributed.We antiipate here and disuss, in details, later that the vetor-matrix represen-tation (α,A) of a DPH distribution is not unique. More than one vetor-matrixpairs might represent the same distribution.De�nition 2.2 If X is an MG(α,A) distributed random variable, where α and Ahave the following properties:
• αi ≥ 0,
• Aij ≥ 0, A1 ≤ 1,
• I −A is non-singular, where I is the unity matrix,then we say that X is disrete phase type distributed with representation α,A, orshortly, DPH(α,A) distributed.The vetor-matrix representations satisfying the onditions of De�nition 2.2 arealled Markovian.De�nition 2.3 If X is an DPH(α,A) distributed random variable and A is anupper triangular matrix then we say that X is ayli disrete phase type distributedwith representation α,A, or shortly, ADPH(α,A) distributed.The sets of ADPH, DPH, and MG distributions that an be desribed with size
n representations are referred to as order n ADPH, DPH, and MG distributions,respetively. From De�nition 2.1 � 2.3 it follows thatorder n ADPH ⊂ order n DPH ⊂ order n MG.[10℄ disusses the relation of these sets of distributions for order 2 and shows thatorder 2 ADPH ⊂ order 2 DPH ≡ order 2 MG.2.2 Continuous phase type and matrix exponential distributionsThe ontinuous ounterparts of these distributions are the CPH and the matrixexponential distributions. 3



Horvath, Papp, TelekDe�nition 2.4 Let X be a ontinuous positive random variable with umulativedistribution funtion (df)
FX(x) = Pr(X < x) = 1− αeAx

1,where α is an initial row vetor of size n, A is a square matrix of size n×n, 1 is theolumn vetor of ones of size n and α1 = 1 (there is no probability mass at t = 0).In this ase, we say that X is matrix exponentially distributed with representation
α,A, or shortly, ME(α,A) distributed.De�nition 2.5 If X is an ME(α,A) distributed random variable, where α and
A have the following properties: αi ≥ 0, Aii < 0, Aij ≥ 0 for i 6= j, A1 ≤ 0,
A is non-singular, then we say that X is ontinuous phase type distributed withrepresentation α,A, or shortly, CPH(α,A) distributed.De�nition 2.6 If X is a CPH(α,A) distributed random variable, where A is anupper triangular matrix then we say that X is ayli ontinuous phase type dis-tributed with representation α,A, or shortly, ACPH(α,A) distributed.De�nition 2.7 Any order n ACPH(α,A) an be represented with the followingvetor matrix pair

[γ1, γ2, . . . , γn] ,











−λ1 λ1. . . . . .
−λn−1 λn−1

−λn









where 0 ≤ γi ≤ 1 and λi are the eigenvalues of −A suh that λi ≥ λi−1. Thisrepresentation is referred to as Cumani's anonial form [4℄.The vetor-matrix representations satisfying the onditions of De�nition 2.5 arealled Markovian. By these de�nitions we have the following relations: order nACPH ⊂ order n CPH ⊂ order n ME. Further more for order 2 we have [7,11℄:order 2 ACPH ≡ order 2 CPH ≡ order 2 ME, whih is a signi�antly di�ereneompared to the order 2 sets of ontinuous distributions. In the sequel we fous ondisrete distributions, the ontinuous ones are introdued for indiating the relationsof DPH and CPH distributions.2.3 Similarity transformationA given DPH(α,A) distribution an be represented with more than one vetormatrix pair.Theorem 2.8 Let B a square matrix of size n suh that B is invertible andB1 = 1.Then the vetor matrix pair γ = αB,G = B

−1
AB is another representation ofDPH(α,A). 4



Horvath, Papp, TelekProof
p̄i = Pr(X̄ = i) = γGi−1(1−G1)

= αB(B−1
AB)i−1(1−B

−1
AB1)

= αAi−1(1−A1) = pi.

(2)
2There are important onsequenes of Theorem 2.8. The B−1

AB transformationof matrix A, referred to as similarity transformation, maintains the eigenvalues ofmatrix A and only modi�es the assoiated eigenvetors. This way the eigenvaluesof the matrix of any representation are strongly related with the distribution andan be used to haraterize di�erent distribution sublasses.Further more, an in�nite set of vetor-matrix pairs represent a given ADPH,DPH, or MG distribution and ADPH and DPH distributions an be desribed withnon-Markovian vetor matrix pairs.De�nition 2.9 A anonial representation is a onvenient vetor-matrix pair ho-sen from the in�nite set of vetor-matrix pairs de�ning the same distribution.For the onvenient anonial representation of DPH distributions we follow thesame priniples as in [5℄. That is the anonial representation is Markovian, takesCumani's ayli anonial form [4℄ if possible and ontains the maximal numberof zero elements. Among the andidates with these properties we hoose the oneswhih over the largest set of distributions in order to redue the set of onsideredstrutures.3 Canonial form of order 3 DPH distributionsWe lassify order 3 DPH distributions aording to their eigenvalue struture asfollows. We order the eigenvalues in dereasing absolute value and denote the oneswith negative real part by N and the ones with non-negative real part by P. Forexample, PNP means that 1 ≥ |s1| ≥ |s2| ≥ |s3| and Re(s1) ≥ Re(s3) ≥ 0 > Re(s2),where si, i = 1, 2, 3 denote the eigenvalues. Due to the fat that the eigenvalue withthe largest absolute value (dominant) has to be real and positive (to ensure positiveprobabilities in (2) for large i) we have the following ases: PPP, PPN, PNP, PNN.Complex (onjugate) eigenvalues an our only in ases of PPP and PNN.3.1 Case PPPWe de�ne the anonial form in the PPP ase based on the anonial representationof order 3 CPH distribution.Theorem 3.1 If the eigenvalues of the order 3 DPH(γ,G) are all non-negative wede�ne the anonial form as follows. The vetor matrix pair (γ,G − I) de�ne anorder 3 CPH. Let (α,A) be the anonial representation of CPH(γ,G−I) as de�nedin [5℄. The anonial representation of DPH(γ,G) is (α,A + I).5



Horvath, Papp, TelekProof The omplete proof of the theorem requires the introdution of the proedurede�ned in [5℄. Here we only demonstrate the result for the ase when the anonialrepresentation of CPH(γ,G − I) is ayli. When the eigenvalues of G are 1 >

s1 ≥ s2 ≥ s3 > 0 the eigenvalues of G − I are 0 > s1 − 1 ≥ s2 − 1 ≥ s3 − 1 >

−1. In this ase the matrix of the ayli anonial form of CPH(γ,G − I) is
A =








s3 − 1 0 s∗ = 0

1− s2 s2 − 1 0

0 1− s1 s1 − 1








and the assoiated vetor α is non-negative. Finally,
A+ I =








s3 0 s∗ = 0

1− s2 s2 0

0 1− s1 s1







is non-negative and the assoiated exit probabilityvetor, 1−A1 = [1− s3, 0, 0]

T , is non-negative as well.In the general ase s∗ might be positive and si − 1, i = 1, 2, 3 are not theeigenvalues of A, but also in that ase it holds that the elements of A + I and
1−A1 are non-negative. 2The rest of the ases require the introdution of new anonial strutures.3.2 Case PPNTheorem 3.2 If the eigenvalues of the order 3 DPH(γ,G) are 1 > |s1| ≥ |s2| ≥

|s3| and Re(s1) ≥ Re(s2) > 0 > Re(s3) then its anonial representation isDPH(γB,A), where
A =








x1 1− x1 0

0 x2 1− x2

0 x3 0







,

x1 = s1, x2 = s2 + s3, x3 = −s2s3
1−s2−s3

and matrix B is omposed by olumn vetors
b1 = 1− b2 − b3, b2 = 1

(1−x2)(1−x3)
G(1−G1), b3 = 1

1−x3
(1−G1).Proof The eigenvalues of the anonial matrix are s1, s2, s3. We need to prove that

0 ≤ xi < 1 and γbi ≥ 0 for i = 1, 2, 3. Based on the eigenvalue onditions of thePPN ase the validity of x1 and x2 readable. For x3 it is readable that x3 > 0 andfor the other boundary we have
−s2s3

1− s2 − s3
< 1

−s2s3 < 1− s2 − s3

0 < 1− s2 − s3 + s2s3

0 < (1− s2)
︸ ︷︷ ︸

>0

(1− s3)
︸ ︷︷ ︸

>0

b2 and b3 are non-negative vetors, beause (1 − G1) and G(1 − G1) are theone and two steps exit probability vetor of DPH(γ,G) and 0 ≤ x2, x3 < 1.6



Horvath, Papp, TelekFinally, from the �rst olumn of the matrix equation GB = BA we have anotherexpression for b1, x1b1 = Gb1. That is, x1 = s1 is the largest eigenvalue of G and
b1 is the assoiated eigenvetor whih is positive aording to the Perron-Frobeniustheorem. 23.3 Case PNNTheorem 3.3 If the eigenvalues of the order 3 DPH(γ,G) are 1 > |s1| ≥ |s2| ≥

|s3|, Re(s1) > 0 > Re(s3) ≥ Re(s2) and |s2|
2 ≤ 2s1(−Re(s2)) then its anonialrepresentation is DPH(γB,A), where

A =








x1 1− x1 0

x2 0 1− x2

x3 0 0







,

x1 = −c2, x2 = −c1
1+c2

, x3 = −c0
1+c1+c2

, the matrix elements are de�ned based on theoe�ients of the harateristi polynomial of G, c0 = −s1s2s3, c1 = s1s2 + s1s3 +

s2s3, c2 = −s1−s2−s3. and matrix B is omposed by olumn vetors b1 = 1−b2−b3,
b2 =

1
(1−x2)(1−x3)

G(1−G1), b3 = 1
1−x3

(1−G1).Proof The eigenvalues of the anonial matrix are s1, s2, s3. We need to prove that
0 ≤ xi < 1 and γbi ≥ 0 for i = 1, 2, 3.Let λi = −si for i = 1, 2, 3. The trae of matrix G (the sum of its diagonalelements) equals to the sum of its eigenvalues and so the sum of the eigenvaluesas well as −c2 are non-negative. Consequently, 0 ≤ x1 < 1. Now we onsider x2.
(1 + c2) is positive, so we need to show that c1 is non-positive.If the eigenvalues are all real, then we an write

c1 = s1s2
︸︷︷︸

<0

+ s3
︸︷︷︸

<0

(s1 + s2)
︸ ︷︷ ︸

≥0

,that is the sum of a negative and a non-positive numbers, so the result will also benegative.If s2 and s3 are omplex onjugates, we an write them as s2 = −u + iv and
s3 = −u− iv where u, v are positive reals. With these notations:

c1 = s1(−u+ iv) + s1(−u− iv) + (u2 + v2) = u2 + v2 − 2s1u ≤ 0where the last inequality omes from |s2|
2 ≤ 2s1(−Re(s2)).Now we show that x2 is less than 1:

x2 < 1

−c1 < 1 + c2

0 < 1 + c1 + c27



Horvath, Papp, TelekWe an see that the last inequality holds if we write 1+ c1+ c2 in the following way:
1 + c1 + c2 = (1 + λ1)(1 + λ2)(1 + λ3)

︸ ︷︷ ︸

>0

−λ1λ2λ3
︸ ︷︷ ︸

<0

> 0,additionally, λ1λ2λ3 = c0 so we also get, that x3 is positive:
x3 =

−

<0
︷︸︸︷
c0

1 + c1 + c2
︸ ︷︷ ︸

>0

> 0.The upper bound of x3 also follows:
x3 < 1

−c0 < 1 + c1 + c2

0 < 1 + c0 + c1 + c2

0 < (1 + λ1)(1 + λ2)(1 + λ3)

b2 and b3 are non-negative vetors, beause (1 − G1) and G(1 − G1) are theone and two steps exit probability vetor of DPH(γ,G) and 0 ≤ x2, x3 < 1.Finally, from the matrix equation GB = BA we have an expliit expression for
b1, b1 = 1

(1−x1)(1−x2)(1−x3)
G

2(1 −G1). That is, b1 is a probability vetor (G2(1 −

G1)) multiplied by a positive onstant. 2Theorem 3.3 does not over the ase when |s2|
2 > 2s1(−Re(s2)). This asean our only when s2 and s3 are omplex onjugate eigenvalues. The followingtheorem applies in this ase.Theorem 3.4 If the eigenvalues of the order 3 DPH(γ,G) are 1 ≥ |s1| ≥ |s2| ≥ |s3|,

Re(s1) > 0 > Re(s3) ≥ Re(s2) and |s2|
2 > 2s1(−Re(s2)) then we use the sameanonial form as in ase of PPP in Theorem 3.1.Proof Similar to the proof of Theorem 3.1, this proof also builds on the proedureof [5℄ whih do not introdue here. 2The ases onsidered in this setion and in [5℄ have been proved based on theproperties of the eigenvalues and the fat that the probability mass (density) funtionof DPH (CPH) distributions are non-negative. It seems that for the PNP ase whihis deferred to the next setion these properties are not su�ient for proving theompleteness of the anonial forms, but the boundaries of the order 3 DPH lass(whih is di�erent from the ones of the order 3 MG lass) needs to be utilized in anexpliit way. In other words utilizing the fat that the probability mass funtion ofDPH distributions is not negative is insu�ient in the PNP ase.4 Case PNPFor the PNP ase the anonial form is based on the following main observation.8



Horvath, Papp, TelekObservation 1 If the eigenvalues of the order 3 DPH(γ,G), s1, s2, s3, are suhthat 1 > |s1| ≥ |s2| ≥ |s3|, Re(s1) ≥ Re(s3) ≥ 0 > Re(s2) then it an be representedin one of the following three forms.PNP1: DPH(α,A), where
α = γB, A =








x1 1− x1 0

x2 0 1− x2

0 x3 0







,

c0 = −s1s2s3, c1 = s1s2 + s1s3 + s2s3, c2 = −s1 − s2 − s3, are the oe�ientsof the harateristi polynomial of G, the matrix elements are de�ned based onthese oe�ients as x1 = −c2, x2 = c0−c1c2
c2(1+c2)

, x3 = c0(1+c2)
c0−c2−c1c2−c2

2

and matrix Bis omposed by olumn vetors b1 = 1 − b2 − b3, b2 = 1
(1−x2)(1−x3)

G(1 − G1),
b3 =

1
1−x3

(1−G1).PNP2: DPH(α,A) with
α =

[
a3

1−s3
, a1s1+a2s2
(s1−1)(s2−1) ,

(a1+a2)(1−s1−s2)
(s1−1)(s2−1)

]

, A =








x1 0 0

0 x2 1− x2

0 x3 0







,where x1 = s3, x2 = s1 + s2, x3 = −s1s2

1−s1−s2
, and a1, a2 are the oe�ients of thegeometri series of the probability mass funtion pi = a1s

i−1
1 + a2s

i−1
2 + a3s

i−1
3 .PNP3: DPH(α,A) with

α = γB, A =








x1 1− x1 0

x2 0 1− x2

0 x3 x33







,where the parameters are de�ned as a funtion of x33 and the oe�ients of theharateristi polynomial

x1 = −c2 − x33, x2 =
c0 − (c2 + x33)(c1 + x33(c2 + x33))

(c2 + x33 + 1)(c2 + 2x33)
,

x3 = −
(c2 + x33 + 1)(c0 + x33(c1 + x33(c2 + x33)))

x333 + 2(c2 + 1)x233 + (c1 + (c2 + 1)(c2 + 2))x33 − c0 + c2(c1 + c2 + 1)
,matrix B is omposed by olumn vetors b1 = 1−b2−b3, b2 = 1

(1−x2)(1−x3−x33)
(G−

x33I)(1 −G1), b3 = 1
1−x3−x33

(1−G1) and x33 is the smallest non-negative realsolution of α1 = γb1 = 0.It is important to note that, similar to the anonial representation of the pre-vious setion, the PNP1, PNP2, PNP3 representations as de�ned above are ap-pliable with both, Markovian and non-Markovian, (γ,G) vetor-matrix pairs.9



Horvath, Papp, TelekBased on Observation 1, for the PNP ase a unique anonial form an be de�nedas follows. If PNP1 is Markovian then PNP1 is the anonial form. If PNP1is non-Markovian and PNP2 is Markovian then PNP2 is the anonial form. IfPNP1 and PNP2 are non-Markovian then PNP3 is the anonial form with thesmallest positive x33 whih satis�es αb1 = 0. The main observation is supported bythe following results.Theorem 4.1 Representations PNP1, PNP2 and PNP3 are idential with theorder 3 DPH(γ,G).Proof In all representations PNP1, PNP2 and PNP3, the eigenvalues of matrix
A are s1, s2, s3. The identity of representations PNP1 and PNP3 with DPH(γ,G)omes from the fat that these representations are de�ned by a similarity transfor-mation with matrix B, and B is the solution of BA = GB. Representation PNP2is de�ned by the oe�ients of the geometri series of the probability mass funtion.It is easy to see, that pi = a1s

i−1
1 + a2s

i−1
2 + a3s

i−1
3 = αAi−1(1−A1) for i ≥ 1. 2Theorem 4.2 If the order 3 DPH(γ,G) is PNP type then its PNP1 representationis suh that matrix A is substohasti (non-negative with x3 < 1) and the seondand third oordinate of α is non-negative.Proof We need to prove that 0 ≤ xi < 1 and γbi ≥ 0 for i = 2, 3.Let λi = −si for i = 1, 2, 3. In this ase λ2 is stritly positive and so λ1 isalso stritly negative. λ3 is non-positive. So c0 = λ1λ2λ3 ≥ 0. The positivity of

x1 = −c2 follows from the fat that the sum of the eigenvalues of G is positive.
1 + c2 = 1 + λ1

︸ ︷︷ ︸

>0

+λ2 + λ3
︸ ︷︷ ︸

≥0

> 0

1 > −c2

1 > x1The �rst inequality follows from −1 < λ1 and |λ3| ≤ |λ2|. The next inequality alsofollows from −1 < λ1, λ3 and 0 < λ2.
1 + c0 + c1 + c2 = (1 + λ1)(1 + λ2)(1 + λ3) > 0In the following we use that −c2 < 1. From that we get c0 ≥ −c2c0.
c0 − c2 − c1c2 − c22 ≥ − c2

︸︷︷︸

<0

(1 + c1 + c2 + c0
︸ ︷︷ ︸

>0

) > 0The above expression is the denominator of x3. In its nominator c0 is non-negativeand 1 + c2 is positive, so x3 is non-negative too. We need to show that x3 < 1:
x3 < 1

c0 + c0c2 < c0 − c2 − c1c2 − c22
0 < −c2(1 + c0 + c1 + c2).10



Horvath, Papp, TelekWe saw that above. At the end of this ase we onsider x2:
x2 < 1

c0 − c1c2 > c2(1 + c2)

c0 − c2 − c1c2 − c22 > 0.We use here that the eigenvalues of λi are dereasing and only λ2 is positive:
x2 =

−(

≤0
︷ ︸︸ ︷

λ1 + λ2)(

≤0
︷ ︸︸ ︷

λ1 + λ3)(

≥0
︷ ︸︸ ︷

λ2 + λ3)

− x1
︸︷︷︸

>0

(1− x1
︸ ︷︷ ︸

>0

)
≥ 0

b2 and b3 are non-negative vetors, beause (1 − G1) and G(1 −G1) are the oneand the two steps exit probability vetors of DPH(γ,G) and 0 ≤ x2, x3 < 1. 2Aording to Theorem 4.2 the PNP1 representation of an order 3 DPH withPNP eigenvalue struture is Markovian if and only if the �rst oordinate of itsinitial vetor is Markovian. The following Theorem presents the boundary of thisset.Theorem 4.3 If the order 3 DPH(γ,G) is PNP type then its PNP1 representationis Markovian i�
a2 >

(s2 − 1)(s1 + s3)

ϑ

(

a1(s1 − s3)
(
s21 + (s2 + s3 − 1)s1 + (s3 − 1)(s2 + s3)

)

− (s1 − 1)(s3 − 1)s3(s2 + s3)

)where
ϑ = (1− s1)

(
s22 − s23

) (
s22 + (s3 − 1)s2 + (s3 − 1)s3 + s1(s2 + s3 − 1)

)Proof A (non-Markovian) matrix representation of pi = a1s
i−1
1 +a2s

i−1
2 +a3s

i−1
3 is(κ,K) with κ = { a1

1−s1 ,
a2

1−s2 , 1−
a1

1−s1 −
a2

1−s2}, and K =








s1 0 0

0 s2 0

0 0 s3







. Transform-ing (κ,K) to PNP1 representation and solving α1 = γb1 > 0 gives the statementof the theorem. 2Theorem 4.4 If the order 3 DPH(γ,G) is PNP type then its PNP2 representationis Markovian if a1 + a2 > 0, a1s1 + a2s2 > 0 and 1− a1/(1− s1)− a2/(1− s2) > 0.Proof Matrix A is Markovian, beause the eigenvalue onditions readily ensurethat 0 < x1, x2, x3 < 1. Additionally, onditions a1 + a2 > 0, a1s1 + a2s2 > 0 and

1− a1/(1− s1)− a2/(1− s2) > 0 ensures that the 3rd, 2nd and 1st oordinate of α,respetively, are non-negative. 211



Horvath, Papp, TelekFor PNP3 representation the relation of the elements of vetor α and a1, a2 anbe obtained in the same way as for PNP1 representation in the proof of Theorem4.3. The following theorems bound the set of order 3 DPH distributions whih haveMarkovian PNP3 representation.Observation 2 If the order 3 DPH(γ,G) is PNP type and its PNP1 repre-sentation is non-Markovian then its PNP3 representation is not Markovian if
a2 < (a1s1(−s1 + s3))/(s2(s2 − s3)).When x33 = s3 (the smallest positive eigenvalue) in the PNP3 representation(that is α1 = 0) the x3 element of the representation beomes 0 and a2 = (a1s1(−s1+

s3))/(s2(s2−s3)). Below this boundary the PNP3 representation is not Markovian.Observation 3 If the order 3 DPH(γ,G) is PNP type and its PNP1 representationis non-Markovian then the upper boundary of the a2 parameter of the order 3 DPHdistributions with Markovian PNP3 representation is obtained when α2(x33) = 0.The expression for the upper boundary an be obtained by symboli analysistools, but it is extremely omplex and meaningless to present here, but numerianalysis for a PNP triple of eigenvalues are easy to perform.4.1 Numerial demonstrationFor a given triple of PNP eigenvalues Theorem 4.3 de�nes a half plane on the a1, a2plane where the PNP1 representations are Markovian, while Theorem 4.4 de�nes atriangle on the same plane where the PNP2 representations are Markovian. Figure1 depits these Markovian regions for PNP1 and PNP2 representations.Observations 2 and 3 presents the shape of the region where the PNP1 repre-sentation is non-Markovian and the PNP3 representation is Markovian. The lowerbound is a straight line while the upper bound has a strange urve. Figure 2 demon-strates Markovian regions for the three representations with the same eigenvalues.We note that the applied graphial tool has got some weaknesses. The triangularrepresenting Markovian PNP2 representations in Figure 2 should be idential withthe one in Figure 1. The tool tends to ut the peeks of the regions. For example boththe Markovian PNP2 and the Markovian PNP3 regions start from (a1, a2) = (0, 0)as it is the ase in Figure 1.It an be seen in Figure 2 that there is no need for PNP3 representation whenthe eigenvalues are 0.8,−0.7, 0.3. A di�erent ase ours when the eigenvalues are
0.25,−0.15, 0.05, see Figure 3. In this ase PNP2 representation useless and thePNP1 and PNP3 representations over the Markovian PNP2 aria. But there areases (e.g., when the eigenvalues are 0.28,−0.22, 0.05 in Figure 4) when all the threerepresentations are needed with the same set of eigenvalues. Figure 5) enlarges thearea where the three sets meet.4.2 Exhaustive searhFor the majority of the eigenvalue strutures, whih are disusses in Setion 3 wefound simple analyti ways to prove that all Markovian order 3 DPH with thegiven properties an be transformed into the assoiated Markovian anonial form.Unfortunately, we ould not �nd suh simple proof for the PNP ase.12
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Figure 1. Sets of the Markovian PNP1 and PNP2representations on the a1, a2 plane with eigenvalues
0.8,−0.7, 0.3
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Figure 2. Sets of the Markovian PNP1,PNP2 and PNP3 representations with eigenval-ues 0.8,−0.7, 0.3
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Figure 3. Limits of the Markovian PNP representa-tions with eigenvalues 0.25,−0.15, 0.05
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Figure 4. Limits of the Markovian PNP representa-tions with eigenvalues 0.28,−0.22, 0.05Looking for an approah to prove Observation 1 we onsidered the following ex-haustive method. Based on the fat that any Markovian order 3 DPH representationwith less than 6 zero elements in the representation (initial vetor, matrix and exitvetor) an be similarity transformed to a Markovian representation with 6 zero el-ements, it is enough to prove that all Markovian order 3 DPH representations with6 zero elements an be represented aording to Observation 1.For a given distribution of the 6 zero elements suh a proof is feasible and itsomplexity is omparable with the omplexity of the proofs of Setion 3. The weak-ness of this approah is the high number di�erent distribution of the 6 zero elements.We olleted the possible non-symmetri and non-irular symmetri distributionsof the 6 zero elements in the representation and eliminated the obviously meaning-less ones (e.g. where the matrix has lower rank) and we remained with more than300 di�erent strutures (atually we worked with 319 strutures, but some of themmight still be redundant). This high number of the di�erent distributions of zero13



Horvath, Papp, Telek

0.10 0.12 0.14 0.16 0.18 0.20

0.15

0.20

0.25

0.30

0.35

Figure 5. Enlarged plot of the Markovian PNP representations with eigenvalues 0.28,−0.22, 0.05elements inhibited as to prove Observation 1 along this approah.In spite of the fat that the exhaustive approah does not lead us to a formalproof we made a good use of it in extensive numerial analysis and ounter examplesearh. Previously, we used a large number of random DPH generation for �ndingounter examples [10℄, but the probability of sampling a DPH with a PNP eigenvaluestruture whose PNP1 and PNP2 representation are non-Markovian and PNP3representation is Markovian was negligible small. Based on the results of Setion 4the boundaries of the sets for whih the PNP1, PNP2 and PNP3 representationsare Markovian are easy to ompute, and due to the exhaustive approah we ouldfous the numerial investigations to the neighborhood of these boundaries.By implementing a general transformation method whih transforms to the 300di�erent strutures with 6 zero elements we omputed numerially how many ofthem are Markovian for a s1, s2, s3, a1, a2 tuple. Our numerial experienes veri�edObservation 1 together with Theorem 4.3, Theorem 4.4 and Observations 2 and 3.Outside the Markovian area of the PNP1, PNP2 and PNP3 representations nonof the other representations were Markovian, while inside the areas typially morethan one of the 300 di�erent strutures were Markovian, and at least one of thePNP1, PNP2 and PNP3 representations was always among the Markovian ones.5 Implementation notesThe theorems presenting the anonial forms for various eigenvalue strutures de�neindeed expliit proedures based on the eigenvalues (s1, s2, s3, with dereasing ab-solute values) and oasionally on the (a1, a2) oe�ients. As an example Figure 6demonstrate the steps of the proedure for generating the PPN anonial form basedon Theorem 3.2. We note that this proedure an be alled with both, Markovianand non-Markovian γ,G representation.If the (a1, a2) oe�ients are needed from a γ,G representation for a anonialform with di�erent eigenvalues, they an be obtained from the spetral deomposi-tion of matrix G as follows. Let G =
∑3

k=1 skukvk be the spetral deomposition14



Horvath, Papp, Telek1: proedure CanonialDPH-PP(γ,G)2: [s1, s2, s3] = eig(G);3: e = [1; 1; 1];4: x1 = s1; x2 = s2 + s3; x3 = −s2s3/(1− s2 − s3);5: b3 = 1/(1 − x3)(e −G ∗ e);6: b2 = 1/(1 − x2)G ∗ b3;7: b1 = e− b2 − b3;8: return (γ ∗ [b1, b2, b3],








x1 1− x1 0

0 x2 1− x2

0 x3 0







)9: end proedureFigure 6. Canonial representation of order 3 DPH with PPN eigenvalue struture based on Theorem 3.2of G with right eigenvetors uk and left eigenvetors vk, then

pi = Pr(X = i) = γGi−1(1−G1) =
3∑

k=1

si−1
k

γukvk(1−G1)
︸ ︷︷ ︸

ak

, i = 1, 2, . . . ,de�nes the (a1, a2) oe�ients.The only exeption, where the presented anonial form does not de�ne an ex-pliit proedure is the PNP3 representation. In that ase the x33 value is de�ned asthe smallest non-negative real solution of γb1 = 0, whih is a polynomial equation oforder 3. Due to the expliit solution of order 3 polynomial equations we ould havede�ned the solution expliitly, but it was too omplex to be presented here. Sym-boli analysis pakages an easily ompute the expliit expression for the solutionsof γb1 = 0. For a fully symboli analysis (based on the eigenvalues) those symbolisolutions an be used, otherwise one an resort to a numerial solution.The boundaries of the eigenvalue based deompositions are not disussed yet.There are some boundaries, e.g., the limit between PPP and PPN eigenvalue stru-tures where one of the eigenvalue is 0 and the obtained distribution an be rep-resented by an order 2 DPH. In other ases the anonial representation of bothsides of the limit are appliable, e.g. on the limit between the PNP and PPN eigen-value strutures (for example s1 = 0.8, s2, s3 = ±0.4), both the PNP and the PPNanonial forms are appliable.Referenes[1℄ Alfa, A., Disrete time queues and matrix-analyti methods, Top 10 (2002), pp. 147�185.URL http://dx.doi.org/10.1007/BF02579008[2℄ Bladt, M. and M. F. Neuts, Matrix-exponential distributions: Calulus and interpretations via �ows,Stohasti Models 19 (2003), pp. 113�124.[3℄ Bobbio, A., A. Horváth, M. Sarpa and M. Telek, Ayli disrete phase type distributions: Propertiesand a parameter estimation algorithm, Performane Evaluation 54 (2003), pp. 1�32.[4℄ Cumani, A., On the anonial representation of homogeneous Markov proesses modelling failure-timedistributions, Miroeletronis and Reliability 22 (1982), pp. 583�602.15
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