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Abstract

In spite of the fact that discrete phase type (DPH) distributions are used almost as often as continuous
phase type (CPH) distributions canonical representation is not available for general (cyclic) order 3 DPH
distributions yet.

In this paper we investigate the canonical representation of DPH distributions of order 3. During the course
of this investigation we find that the problem of canonical representation of order 3 DPH distributions is
far more complex than the one of order 3 CPH distribution. As a result we needed to distinguish 8 different
subclasses of order 3 DPH distributions, while it was enough to distinguish 3 subclasses of order 3 CPH
distributions for their canonical representation. Additionally, we were not able to prove all subclasses of DPH
distributions with the relatively simple methodology which was sufficient for the canonical representation
of order 3 DPH distributions.
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1 Introduction

Stochastic performance models were restricted to “memoryless” distributions (expo-
nential in case of continuous time models and geometrical in case of discrete time
models) for a long time in order to utilize the nice computational properties of dis-
crete state Markov models. Phase-Type distributions [8,9] have been introduced for
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relaxing this modeling limitation on the considered distributions, while maintaining
the nice Markovian behavior.

For a period of time continuous time stochastic models with CPH distributions
were more often applied in performance modeling of computer and communication
systems, but also in this period the analysis of the continuous time models were of-
ten based on the method of embedded Markov chains, which transforms the analysis
problem into discrete time. Later on, with the rise of slotted time telecommunica-
tion protocols (e.g., ATM) discrete time models become primary modeling tools (for
recent surveys see [1,6]). As a consequence, approximation of experimental data set
with CPH gained more attention for a period of time. Especially, the acyclic subset
of CPH distributions gained popularity due to the simple canonical forms available
for their representation [4]. The use of acyclic PH distributions has a further im-
portant consequence. A lot of properties of the acyclic CPH and the acyclic DPH
distributions are identical. For example the same canonical representations apply
for acyclic DPH distributions as for acyclic CPH ones [3]. Due to this similarity the
problem of fitting DPH distributions was considered to be similar to the one of fit-
ting CPH distributions, but this similarity is limited to the acyclic PH distributions
only, as it is indicated through a counterexample in [11]. The canonical represen-
tation of order 3 CPH distributions is provided in [5]. In this paper we investigate
similar canonical forms for order 2 and 3 DPH distributions, which is a much more
involved problem. The complexities of the canonical representation of order 3 CPH
and DPH distributions are well represented by the number of forms needed to cover
the whole order 3 CPH and DPH classes. [5] reports 3 forms which cover the class
of order 3 CPH distributions, while here we present 8 forms to cover the class of
order 3 DPH distributions.

In a preceding version of this paper [10] we have found canonical forms for DPH
distributions of order 3 with all possible eigenvalue structures except one (referred
to as PNP case) and presented a conjecture for that case. In the mean time it turned
out that the conjecture for the PNP case in [10] was not valid. In this paper we
repeat the proved findings of [10] for order 3 DPH distributions and devote special
attention to the PNP case. The findings of [10] for order 2 DPH distributions are
not presented here.

The rest of the paper is organized as follows. The next section provides a short
introduction of DPH distributions. Section 3 summarizes the results of [10] on the
canonical representation of DPH distributions of order 3 with all possible eigenvalue
structures expect the PNP case. The new results of the paper are presented in
Section 4, which discusses the canonical representation of order 3 DPH distributions
with PNP eigenvalue structure. The difficulty of the PNP case comes from the fact
that the methodology which allowed to prove the canonical forms for order 3 CPH
and order 3 DPH with non PNP eigenvalue structure is not applicable for the PNP
case.
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2 Introduction

2.1 Discrete phase type and matriz geometric distributions

We define DPH [8] and matrix geometric (MG) distributions and their continuous
counterparts CPH [9] and matrix exponential (ME) distributions [2] first.

Definition 2.1 Let X be a discrete positive random variable with probability mass
function (pmf)
pi=Pr(X =i)=aA"la, i=1,2,..., (1)

where « is an initial row vector of size n, A is a square matrix of size n X n,
a = (1— A1), 1 is the column vector of ones of size n and al = 1 (there is no
probability mass at ¢ = 0). In this case, we say that X is matrix geometrically
distributed with representation «, A, or shortly, MG(«, A) distributed.

We anticipate here and discuss, in details, later that the vector-matrix represen-
tation (a, A) of a DPH distribution is not unique. More than one vector-matrix
pairs might represent the same distribution.

Definition 2.2 If X' is an MG(«, A) distributed random variable, where o and A
have the following properties:

e a; >0,

e A;; >0, A1 <1,

e [ — A is non-singular, where I is the unity matrix,

then we say that X is discrete phase type distributed with representation «, A, or
shortly, DPH(a, A) distributed.

The vector-matrix representations satisfying the conditions of Definition 2.2 are
called Markovian.

Definition 2.3 If X' is an DPH(a, A) distributed random variable and A is an
upper triangular matrix then we say that X is acyclic discrete phase type distributed
with representation «, A, or shortly, ADPH(«, A) distributed.

The sets of ADPH, DPH, and MG distributions that can be described with size
n representations are referred to as order n ADPH, DPH, and MG distributions,
respectively. From Definition 2.1 — 2.3 it follows that

order n ADPH C order n DPH C order n MG.
[10] discusses the relation of these sets of distributions for order 2 and shows that
order 2 ADPH C order 2 DPH = order 2 MG.

2.2 Continuous phase type and matriz exponential distributions

The continuous counterparts of these distributions are the CPH and the matrix
exponential distributions.
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Definition 2.4 Let X be a continuous positive random variable with cumulative
distribution function (cdf)

Fx(z) = Pr(X <z) =1— aet®1,

where « is an initial row vector of size n, A is a square matrix of size n x n, 1 is the
column vector of ones of size n and a1l = 1 (there is no probability mass at ¢ = 0).
In this case, we say that X is matrix exponentially distributed with representation
a, A, or shortly, ME(«, A) distributed.

Definition 2.5 If X' is an ME(«, A) distributed random variable, where a and
A have the following properties: «a; > 0, A;; < 0, A;; > 0 for 7 # j, A1 <0,
A is non-singular, then we say that X is continuous phase type distributed with
representation a, A, or shortly, CPH(«, A) distributed.

Definition 2.6 If X is a CPH(«, A) distributed random variable, where A is an
upper triangular matrix then we say that X is acyclic continuous phase type dis-
tributed with representation a, A, or shortly, ACPH(«, A) distributed.

Definition 2.7 Any order n ACPH(a, A) can be represented with the following
vector matrix pair

SV

[71)72)"' )’Vn]a

where 0 < v; < 1 and \; are the eigenvalues of —A such that A; > A\;_;. This
representation is referred to as Cumani’s canonical form [4].

The vector-matrix representations satisfying the conditions of Definition 2.5 are
called Markovian. By these definitions we have the following relations: order n
ACPH C order n CPH C order n ME. Further more for order 2 we have [7,11]:
order 2 ACPH = order 2 CPH = order 2 ME, which is a significantly difference
compared to the order 2 sets of continuous distributions. In the sequel we focus on
discrete distributions, the continuous ones are introduced for indicating the relations
of DPH and CPH distributions.

2.8  Similarity transformation

A given DPH(«, A) distribution can be represented with more than one vector
matrix pair.

Theorem 2.8 Let B a square matriz of size n such that B is invertible and B1 = 1.
Then the vector matriz pair v = aB,G = B YAB is another representation of
DPH(a, A).
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Proof
pi = Pr(X =1i) =vG" (1 - G1)

= aB(B'AB)"(1- B"'AB1) (2)

=aA"1(1 - A1) = p;.
O

There are important consequences of Theorem 2.8. The B~! AB transformation
of matrix A, referred to as similarity transformation, maintains the eigenvalues of
matrix A and only modifies the associated eigenvectors. This way the eigenvalues
of the matrix of any representation are strongly related with the distribution and
can be used to characterize different distribution subclasses.

Further more, an infinite set of vector-matrix pairs represent a given ADPH,
DPH, or MG distribution and ADPH and DPH distributions can be described with
non-Markovian vector matrix pairs.

Definition 2.9 A canonical representation is a convenient vector-matrix pair cho-
sen from the infinite set of vector-matrix pairs defining the same distribution.

For the convenient canonical representation of DPH distributions we follow the
same principles as in [5]. That is the canonical representation is Markovian, takes
Cumani’s acyclic canonical form [4] if possible and contains the maximal number
of zero elements. Among the candidates with these properties we choose the ones
which cover the largest set of distributions in order to reduce the set of considered
structures.

3 Canonical form of order 3 DPH distributions

We classify order 3 DPH distributions according to their eigenvalue structure as
follows. We order the eigenvalues in decreasing absolute value and denote the ones
with negative real part by N and the ones with non-negative real part by P. For
example, PNP means that 1 > |s1| > |s2| > |s3| and Re(s1) > Re(s3) > 0 > Re(s2),
where s;, 7 = 1,2, 3 denote the eigenvalues. Due to the fact that the eigenvalue with
the largest absolute value (dominant) has to be real and positive (to ensure positive
probabilities in (2) for large i) we have the following cases: PPP, PPN, PNP, PNN.
Complex (conjugate) eigenvalues can occur only in cases of PPP and PNN.

3.1 Case PPP

We define the canonical form in the PPP case based on the canonical representation
of order 3 CPH distribution.

Theorem 3.1 If the eigenvalues of the order 3 DPH(v,G) are all non-negative we
define the canonical form as follows. The vector matriz pair (7,G — I) define an
order 3 CPH. Let (o, A) be the canonical representation of CPH(y,G—1I) as defined
in [5]. The canonical representation of DPH(v,G) is (o, A + I).

D
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Proof The complete proof of the theorem requires the introduction of the procedure
defined in [5]. Here we only demonstrate the result for the case when the canonical
representation of CPH(y, G — I) is acyclic. When the eigenvalues of G are 1 >
51 > So > s3 > 0 the eigenvalues of G — I are 0 > s1 —1 > s9—1 > s3—1 >
—1. In this case the matrix of the acyclic canonical form of CPH(y,G — I) is

s3—1 0 s*=0
A= |1l—-598—1 0 and the associated vector « is non-negative. Finally,
0 1—s1s—1
S3 0 s*=0
A+T = |1—-359 s9 0 is non-negative and the associated exit probability

0 1—81 S1

vector, 1 — A1 = [1 — s3,0,0]", is non-negative as well.

In the general case s* might be positive and s; — 1, ¢ = 1,2,3 are not the
eigenvalues of A, but also in that case it holds that the elements of A + I and
1 — A1 are non-negative. g

The rest of the cases require the introduction of new canonical structures.

3.2 Case PPN

Theorem 3.2 If the eigenvalues of the order 3 DPH(v,G) are 1 > |si| > |s2| >
|sg| and Re(s;) > Re(sa) > 0 > Re(sz) then its canonical representation is
DPH(vB, A), where

X 1-— I 0

A= 0 xT9 1— o | »
0 T3 0

—5283

T1 = S1, T3 = S2+ 83, T3 = 700 and matriz B 1s composed by column vectors

b1 =1- bg - b3, bg - mG(l - G].), b3 - 17113(1 - Gl)

Proof The eigenvalues of the canonical matrix are s, so, s3. We need to prove that
0 <ax; <1and v >0 for ¢ = 1,2,3. Based on the eigenvalue conditions of the
PPN case the validity of 21 and xo readable. For zg it is readable that x3 > 0 and
for the other boundary we have
ﬂ < 1
1-— S9 — 83
—8983 < 1 — 89 — s3
0<1—s59— 53+ 5253
0 < (1—s2)(1—s3)
—_—— —

>0 >0

by and b3 are non-negative vectors, because (1 — G1) and G(1 — G1) are the
one and two steps exit probability vector of DPH(y,G) and 0 < x9,z3 < 1.

6
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Finally, from the first column of the matrix equation GB = B A we have another
expression for by, x1by = Gby. That is, 1 = s1 is the largest eigenvalue of G and
by is the associated eigenvector which is positive according to the Perron-Frobenius
theorem. O

3.3 Case PNN

Theorem 3.3 If the eigenvalues of the order 3 DPH(v,G) are 1 > |si| > |s2| >
s3], Re(s1) > 0 > Re(s3) > Re(ss) and |s2|? < 2s1(—Re(ss)) then its canonical
representation is DPH(vB, A), where

I 1—.’E1 0
A= ) 0 1—1'2 ’
I3 0 0

—— . —C _ —Co .
T = —C, T2 = {74, L3 = Trate the matriz elements are defined based on the

coefficients of the characteristic polynomial of G, co = —$18283, €1 = $152 + $183 +
$983, Co = —S1—S9—s3. and matriz B is composed by column vectors by = 1—bo—bg,

by = G(1-G1), b3 =1-(1-G1).

1—x3

1
(1—z2)(1—z3)

Proof The eigenvalues of the canonical matrix are s, so, s3. We need to prove that
0<z;<1land vb; >0 fori=1,2,3.

Let \; = —s; for ¢ = 1,2,3. The trace of matrix G (the sum of its diagonal
elements) equals to the sum of its eigenvalues and so the sum of the eigenvalues
as well as —co are non-negative. Consequently, 0 < xy < 1. Now we consider xs.
(1 + ¢9) is positive, so we need to show that ¢; is non-positive.

If the eigenvalues are all real, then we can write

c1 =s152+ s3 (s1+ s2),
<0 <0 >0

that is the sum of a negative and a non-positive numbers, so the result will also be

negative.
If s5 and s3 are complex conjugates, we can write them as so = —u + iv and
s3 = —u — iv where u, v are positive reals. With these notations:

c1 = s1(—u +1iv) + s1(—u — iv) + (u® +v?) = v + 0% = 2570 < 0

where the last inequality comes from |s3|? < 2s1(—Re(s2)).
Now we show that x9 is less than 1:

To <1
—c1 <14c
0<1l+c +co

7
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We can see that the last inequality holds if we write 1+ ¢ + ¢2 in the following way:

l+ci4+co= (1 + )\1)(1 + )\2)(1 + )\3) — AAgA3 >0,
0
>0 <

additionally, A1 AoA3 = cg so we also get, that x3 is positive:

<0
S ltato
>0

xs3 > 0.

The upper bound of 3 also follows:

r3 <1

—cg<l+ci+c
O0<l+cyg+c+ceo
0< (14 AM)(1+X2)(1+ A3)

by and b3 are non-negative vectors, because (1 — G1) and G(1 — G1) are the
one and two steps exit probability vector of DPH(y,G) and 0 < z9,z3 < 1.

Finally, from the matrix equation GB = BA we have an explicit expression for
b1, by = (17:131)(171:132)(17:133)(;2(1 — G1). That is, b; is a probability vector (G*(1 —
G1)) multiplied by a positive constant. O

Theorem 3.3 does not cover the case when [sa|? > 2s1(—Re(ss)). This case
can occur only when ss and s3 are complex conjugate eigenvalues. The following
theorem applies in this case.

Theorem 3.4 If the eigenvalues of the order 3 DPH(v,G) are 1 > |s1| > |s2| > |s3],
Re(s1) > 0 > Re(s3) > Re(sa) and |s2|? > 2s1(—Re(sq2)) then we use the same
canonical form as in case of PPP in Theorem 3.1.

Proof Similar to the proof of Theorem 3.1, this proof also builds on the procedure
of [5] which do not introduce here. O

The cases considered in this section and in [5] have been proved based on the
properties of the eigenvalues and the fact that the probability mass (density) function
of DPH (CPH) distributions are non-negative. It seems that for the PNP case which
is deferred to the next section these properties are not sufficient for proving the
completeness of the canonical forms, but the boundaries of the order 3 DPH class
(which is different from the ones of the order 3 MG class) needs to be utilized in an
explicit way. In other words utilizing the fact that the probability mass function of
DPH distributions is not negative is insufficient in the PNP case.

4 Case PNP

For the PNP case the canonical form is based on the following main observation.

8
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Observation 1 If the eigenvalues of the order 8 DPH(v,G), s1,82,83, are such
that 1 > |s1] > |s2| > |ss|, Re(s1) > Re(sg) > 0 > Re(sz) then it can be represented
i one of the following three forms.

PNP1: DPH(a, A), where

T 1—:61 0

OZZ’YB, A: T2 0 1—$2 )

0 I3 0
Co = —S815283, C1 = 5152 + $1S83 + 5983, Co = —S81 — S — 83, are the coeﬁ?cients
of the characteristic polynomial of G, the matriz elements are defined based on
these coefficients as x1 = —co, 9 = %, x3 = cOfi(;(ijlc;)icg and matriz B
is comz;osed by column vectors by = 1 — by — b3, by = mG(l - G1),
bs = = (1-G1).
PNP2: DPH(a, A) with
X 0 0
_ + (a1+ag)(1—s51—s2) —
= |15 G DD ] A=10xz1-2

0 T3 0

where x1 = S3, To = §1 + So, T3 = 1:881122, and ay,as are the coefficients of the

geometric series of the probability mass function p; = a1s' ' + agsh '+ agsh '

PNP3: DPH(a, A) with

T 1 — X1 0
OZZ’YB, A= T2 0 1—$2 9
0 3 x33

where the parameters are defined as a function of xss and the coefficients of the
characteristic polynomial

co — (c2 + x33)(c1 + x33(c2 + 233))
(ca + 33 + 1)(c2 + 2233)
_ (CQ + x33 + 1)(00 + .1‘33(61 + .1‘33(62 + .1‘33)))
235 +2(co + D)ads + (c1 + (2 + 1) (c2 + 2))wsg — o + ca(cr + 2 + 1)

xr1 = —C2 —XI33, X2=

r3 —

matriz B is composed by column vectors by = 1—by—bs, by = (1712)(117:”37133) (G-

z33l)(1 — G1), by = m(l — G1) and w33 is the smallest non-negative real
solution of ay = vby = 0.
It is important to note that, similar to the canonical representation of the pre-
vious section, the PNP1, PNP2, PNP3 representations as defined above are ap-

plicable with both, Markovian and non-Markovian, (v, G) vector-matrix pairs.

9
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Based on Observation 1, for the PNP case a unique canonical form can be defined
as follows. If PNP1 is Markovian then PNP1 is the canonical form. If PNP1
is non-Markovian and PNP2 is Markovian then PNP2 is the canonical form. If
PNP1 and PNP2 are non-Markovian then PNP3 is the canonical form with the
smallest positive x33 which satisfies ab; = 0. The main observation is supported by
the following results.

Theorem 4.1 Representations PNP1, PNP2 and PNP3 are identical with the
order 3 DPH(v,G).

Proof In all representations PNP1, PNP2 and PNP3, the eigenvalues of matrix
A are s, 82, s3. The identity of representations PNP1 and PNP3 with DPH(v, G)
comes from the fact that these representations are defined by a similarity transfor-
mation with matrix B, and B is the solution of BA = GB. Representation PNP2
is defined by the coefficients of the geometric series of the probability mass function.
It is easy to see, that p; = als’fl + ags’;l + agsg_l =aA"H1 - A1) fori>1. O

Theorem 4.2 If the order 3 DPH(~y,G) is PNP type then its PNP1 representation
is such that matriz A is substochastic (non-negative with s < 1) and the second
and third coordinate of « is non-negative.

Proof We need to prove that 0 < x; < 1 and vb; > 0 for ¢ = 2, 3.

Let \; = —s; for ¢« = 1,2,3. In this case Ay is strictly positive and so \; is
also strictly negative. As is non-positive. So ¢y = A1AsA3 > 0. The positivity of
x1 = —cy follows from the fact that the sum of the eigenvalues of G is positive.

I4+eco=14+XA+A+A3>0
—_——  ———
>0 >0
1> —co
1>2

The first inequality follows from —1 < A; and |A3| < |A2|. The next inequality also
follows from —1 < A1, A3 and 0 < Ao.

Il+cot+er+ea=04+M)1+X)(1+A3)>0
In the following we use that —co < 1. From that we get ¢y > —cacy.

co—Co—cCiea—c3>— ¢ (14¢14+co4cp) >0
~— ——

<0 >0

The above expression is the denominator of x3. In its nominator ¢y is non-negative
and 1+ ¢o is positive, so 3 is non-negative too. We need to show that z3 < 1:

T3 <1
co + copcar < cg — Cc2 — 109 —cg
0< —62(1 +co+c1 +62).

10
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We saw that above. At the end of this case we consider xs:

To < 1
co — crea > co(1 + ¢2)

C()—CQ—ClCQ—C%>O.
We use here that the eigenvalues of \; are decreasing and only Ag is positive:
<0 <0 >0

(A A) (A A3) (A2 + A3) >0

Tro =

— I (1—(E1)
~ S
>0 >0

by and bs are non-negative vectors, because (1 — G1) and G(1 — G1) are the one
and the two steps exit probability vectors of DPH(vy, G) and 0 < x5, 23 < 1. a

According to Theorem 4.2 the PNP1 representation of an order 3 DPH with
PNP eigenvalue structure is Markovian if and only if the first coordinate of its
initial vector is Markovian. The following Theorem presents the boundary of this
set.

Theorem 4.3 If the order 3 DPH(~v,G) is PNP type then its PNP1 representation
18 Markovian iff

(s2 — 1)(s1 + s3)
)

as > <a1(81 —s3) (S% + (524 s3 — 1)s1 + (s3 — 1)(s2 + s3))

— (81 — 1)(83 — 1)83(82 + Sg))
where

¥ =(1—s1)(s5—53) (s3+ (53— 1)sa+ (s3 — 1)s3 + s1(s2 + 53 — 1))

Proof A (non-Markovian) matrix representation of p; = ays} ' +agsh ' +agst ' is
S1 00

(k, K) with k = {1291, 12252’ 1-— 1291 — 122}, and K =] 0 sy 0 [. Transform-
00 53

ing (k, K) to PNP1 representation and solving a; = by > 0 gives the statement

of the theorem. O

Theorem 4.4 If the order 3 DPH(~y,G) is PNP type then its PNP2 representation
is Markovian if a; + a2 > 0, a181 + agse > 0 and 1 —ay /(1 — s1) —az/(1 — s9) > 0.

Proof Matrix A is Markovian, because the eigenvalue conditions readily ensure
that 0 < x1, 29,23 < 1. Additionally, conditions a; + as > 0, a1 + asse > 0 and
1—a1/(1—s1)—aa/(1—s2) > 0 ensures that the 3rd, 2nd and 1st coordinate of «,
respectively, are non-negative. O

11
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For PNP3 representation the relation of the elements of vector o and a1, as can
be obtained in the same way as for PNP1 representation in the proof of Theorem
4.3. The following theorems bound the set of order 3 DPH distributions which have
Markovian PNP3 representation.

Observation 2 If the order 3 DPH(v,G) is PNP type and its PNP1 repre-
sentation is non-Markovian then its PNP3 representation is not Markovian if

az < (a1s1(—s1 +s3))/(s2(s2 — s3)).

When z33 = s3 (the smallest positive eigenvalue) in the PNP3 representation
(that is a3 = 0) the x5 element of the representation becomes 0 and ag = (a1s1(—s1+
s3))/(s2(s2 —s3)). Below this boundary the PNP3 representation is not Markovian.

Observation 3 If the order 3 DPH(~y,G) is PNP type and its PNP1 representation
18 non-Markovian then the upper boundary of the as parameter of the order 8 DPH
distributions with Markovian PNP3 representation is obtained when as(xss) = 0.

The expression for the upper boundary can be obtained by symbolic analysis
tools, but it is extremely complex and meaningless to present here, but numeric
analysis for a PNP triple of eigenvalues are easy to perform.

4.1 Numerical demonstration

For a given triple of PNP eigenvalues Theorem 4.3 defines a half plane on the ay, as
plane where the PNP1 representations are Markovian, while Theorem 4.4 defines a
triangle on the same plane where the PNP2 representations are Markovian. Figure
1 depicts these Markovian regions for PNP1 and PNP2 representations.

Observations 2 and 3 presents the shape of the region where the PNP1 repre-
sentation is non-Markovian and the PNP3 representation is Markovian. The lower
bound is a straight line while the upper bound has a strange curve. Figure 2 demon-
strates Markovian regions for the three representations with the same eigenvalues.
We note that the applied graphical tool has got some weaknesses. The triangular
representing Markovian PNP2 representations in Figure 2 should be identical with
the one in Figure 1. The tool tends to cut the peeks of the regions. For example both
the Markovian PNP2 and the Markovian PNP3 regions start from (a1, as) = (0,0)
as it is the case in Figure 1.

It can be seen in Figure 2 that there is no need for PNP3 representation when
the eigenvalues are 0.8,—0.7,0.3. A different case occurs when the eigenvalues are
0.25,—0.15,0.05, see Figure 3. In this case PNP2 representation useless and the
PNP1 and PNP3 representations cover the Markovian PNP2 aria. But there are
cases (e.g., when the eigenvalues are 0.28, —0.22,0.05 in Figure 4) when all the three
representations are needed with the same set of eigenvalues. Figure 5) enlarges the
area where the three sets meet.

4.2 Ezhaustive search

For the majority of the eigenvalue structures, which are discusses in Section 3 we
found simple analytic ways to prove that all Markovian order 3 DPH with the
given properties can be transformed into the associated Markovian canonical form.
Unfortunately, we could not find such simple proof for the PNP case.
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representations on the aj, az plane with eigenvalues
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Figure 2. Sets of the Markovian PNPI1,
PNP2 and PNP3 representations with eigenval-
ues 0.8,—0.7,0.3
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Figure 3. Limits of the Markovian PNP representa-

Figure 4. Limits of the Markovian PNP representa-
tions with eigenvalues 0.25, —0.15,0.05

tions with eigenvalues 0.28, —0.22,0.05

Looking for an approach to prove Observation 1 we considered the following ex-
haustive method. Based on the fact that any Markovian order 3 DPH representation
with less than 6 zero elements in the representation (initial vector, matrix and exit
vector) can be similarity transformed to a Markovian representation with 6 zero el-
ements, it is enough to prove that all Markovian order 3 DPH representations with
6 zero elements can be represented according to Observation 1.

For a given distribution of the 6 zero elements such a proof is feasible and its
complexity is comparable with the complexity of the proofs of Section 3. The weak-
ness of this approach is the high number different distribution of the 6 zero elements.
We collected the possible non-symmetric and non-circular symmetric distributions
of the 6 zero elements in the representation and eliminated the obviously meaning-
less ones (e.g. where the matrix has lower rank) and we remained with more than
300 different structures (actually we worked with 319 structures, but some of them
might still be redundant). This high number of the different distributions of zero

13
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Figure 5. Enlarged plot of the Markovian PNP representations with eigenvalues 0.28, —0.22,0.05

elements inhibited as to prove Observation 1 along this approach.

In spite of the fact that the exhaustive approach does not lead us to a formal
proof we made a good use of it in extensive numerical analysis and counter example
search. Previously, we used a large number of random DPH generation for finding
counter examples [10], but the probability of sampling a DPH with a PNP eigenvalue
structure whose PNP1 and PNP2 representation are non-Markovian and PNP3
representation is Markovian was negligible small. Based on the results of Section 4
the boundaries of the sets for which the PNP1, PNP2 and PNP3 representations
are Markovian are easy to compute, and due to the exhaustive approach we could
focus the numerical investigations to the neighborhood of these boundaries.

By implementing a general transformation method which transforms to the 300
different structures with 6 zero elements we computed numerically how many of
them are Markovian for a sy, So, 53, a1, as tuple. Our numerical experiences verified
Observation 1 together with Theorem 4.3, Theorem 4.4 and Observations 2 and 3.
Outside the Markovian area of the PNP1, PNP2 and PNP3 representations non
of the other representations were Markovian, while inside the areas typically more
than one of the 300 different structures were Markovian, and at least one of the
PNP1, PNP2 and PNP3 representations was always among the Markovian ones.

5 Implementation notes

The theorems presenting the canonical forms for various eigenvalue structures define
indeed explicit procedures based on the eigenvalues (s, 2, 3, with decreasing ab-
solute values) and occasionally on the (a1, a2) coefficients. As an example Figure 6
demonstrate the steps of the procedure for generating the PPN canonical form based
on Theorem 3.2. We note that this procedure can be called with both, Markovian
and non-Markovian ~y, G representation.

If the (a1, az) coefficients are needed from a -, G representation for a canonical
form with different eigenvalues, they can be obtained from the spectral decomposi-
tion of matrix G as follows. Let G = 22:1 spupvE be the spectral decomposition

14
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1: procedure CanonicalDPH-PP(v, G)
2 [81,8%83] = elg(G)u
3 e=[L1;1]
4: x1 = S1; T = Sz + 53; T3 = —s253/(1 — s2 — 53);
5 b3 =1/(1 —z3)(e — G *e);
6 b2:1/(1—5132)G*b3;
7 b1 =€ — bg — bg;
I 1-— T 0
8: return (v [b1,b2,b3], | 0 29 1—x9|)

0 T3 0
9: end procedure

Figure 6. Canonical representation of order 3 DPH with PPN eigenvalue structure based on Theorem 3.2
of G with right eigenvectors uy and left eigenvectors v, then
3
pi=Pr(X =i) =7G" (1 -G1) = Zs}:lfyukvk(l -G1), i=12,...,
defines the (a1, as) coefficients.

The only exception, where the presented canonical form does not define an ex-
plicit procedure is the PNP3 representation. In that case the z33 value is defined as
the smallest non-negative real solution of vb; = 0, which is a polynomial equation of
order 3. Due to the explicit solution of order 3 polynomial equations we could have
defined the solution explicitly, but it was too complex to be presented here. Sym-
bolic analysis packages can easily compute the explicit expression for the solutions
of vby = 0. For a fully symbolic analysis (based on the eigenvalues) those symbolic
solutions can be used, otherwise one can resort to a numerical solution.

The boundaries of the eigenvalue based decompositions are not discussed yet.
There are some boundaries, e.g., the limit between PPP and PPN eigenvalue struc-
tures where one of the eigenvalue is 0 and the obtained distribution can be rep-
resented by an order 2 DPH. In other cases the canonical representation of both
sides of the limit are applicable, e.g. on the limit between the PNP and PPN eigen-
value structures (for example s; = 0.8, s2,s3 = £0.4), both the PNP and the PPN
canonical forms are applicable.
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