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tIn spite of the fa
t that dis
rete phase type (DPH) distributions are used almost as often as 
ontinuousphase type (CPH) distributions 
anoni
al representation is not available for general (
y
li
) order 3 DPHdistributions yet.In this paper we investigate the 
anoni
al representation of DPH distributions of order 3. During the 
ourseof this investigation we �nd that the problem of 
anoni
al representation of order 3 DPH distributions isfar more 
omplex than the one of order 3 CPH distribution. As a result we needed to distinguish 8 di�erentsub
lasses of order 3 DPH distributions, while it was enough to distinguish 3 sub
lasses of order 3 CPHdistributions for their 
anoni
al representation. Additionally, we were not able to prove all sub
lasses of DPHdistributions with the relatively simple methodology whi
h was su�
ient for the 
anoni
al representationof order 3 DPH distributions.Keywords: Dis
rete phase type distributions, Canoni
al representation, Similarity transformation.1 Introdu
tionSto
hasti
 performan
e models were restri
ted to �memoryless� distributions (expo-nential in 
ase of 
ontinuous time models and geometri
al in 
ase of dis
rete timemodels) for a long time in order to utilize the ni
e 
omputational properties of dis-
rete state Markov models. Phase-Type distributions [8,9℄ have been introdu
ed for
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Horvath, Papp, Telekrelaxing this modeling limitation on the 
onsidered distributions, while maintainingthe ni
e Markovian behavior.For a period of time 
ontinuous time sto
hasti
 models with CPH distributionswere more often applied in performan
e modeling of 
omputer and 
ommuni
ationsystems, but also in this period the analysis of the 
ontinuous time models were of-ten based on the method of embedded Markov 
hains, whi
h transforms the analysisproblem into dis
rete time. Later on, with the rise of slotted time tele
ommuni
a-tion proto
ols (e.g., ATM) dis
rete time models be
ome primary modeling tools (forre
ent surveys see [1,6℄). As a 
onsequen
e, approximation of experimental data setwith CPH gained more attention for a period of time. Espe
ially, the a
y
li
 subsetof CPH distributions gained popularity due to the simple 
anoni
al forms availablefor their representation [4℄. The use of a
y
li
 PH distributions has a further im-portant 
onsequen
e. A lot of properties of the a
y
li
 CPH and the a
y
li
 DPHdistributions are identi
al. For example the same 
anoni
al representations applyfor a
y
li
 DPH distributions as for a
y
li
 CPH ones [3℄. Due to this similarity theproblem of �tting DPH distributions was 
onsidered to be similar to the one of �t-ting CPH distributions, but this similarity is limited to the a
y
li
 PH distributionsonly, as it is indi
ated through a 
ounterexample in [11℄. The 
anoni
al represen-tation of order 3 CPH distributions is provided in [5℄. In this paper we investigatesimilar 
anoni
al forms for order 2 and 3 DPH distributions, whi
h is a mu
h moreinvolved problem. The 
omplexities of the 
anoni
al representation of order 3 CPHand DPH distributions are well represented by the number of forms needed to 
overthe whole order 3 CPH and DPH 
lasses. [5℄ reports 3 forms whi
h 
over the 
lassof order 3 CPH distributions, while here we present 8 forms to 
over the 
lass oforder 3 DPH distributions.In a pre
eding version of this paper [10℄ we have found 
anoni
al forms for DPHdistributions of order 3 with all possible eigenvalue stru
tures ex
ept one (referredto as PNP 
ase) and presented a 
onje
ture for that 
ase. In the mean time it turnedout that the 
onje
ture for the PNP 
ase in [10℄ was not valid. In this paper werepeat the proved �ndings of [10℄ for order 3 DPH distributions and devote spe
ialattention to the PNP 
ase. The �ndings of [10℄ for order 2 DPH distributions arenot presented here.The rest of the paper is organized as follows. The next se
tion provides a shortintrodu
tion of DPH distributions. Se
tion 3 summarizes the results of [10℄ on the
anoni
al representation of DPH distributions of order 3 with all possible eigenvaluestru
tures expe
t the PNP 
ase. The new results of the paper are presented inSe
tion 4, whi
h dis
usses the 
anoni
al representation of order 3 DPH distributionswith PNP eigenvalue stru
ture. The di�
ulty of the PNP 
ase 
omes from the fa
tthat the methodology whi
h allowed to prove the 
anoni
al forms for order 3 CPHand order 3 DPH with non PNP eigenvalue stru
ture is not appli
able for the PNP
ase.
2



Horvath, Papp, Telek2 Introdu
tion2.1 Dis
rete phase type and matrix geometri
 distributionsWe de�ne DPH [8℄ and matrix geometri
 (MG) distributions and their 
ontinuous
ounterparts CPH [9℄ and matrix exponential (ME) distributions [2℄ �rst.De�nition 2.1 Let X be a dis
rete positive random variable with probability massfun
tion (pmf)
pi = Pr(X = i) = αAi−1a, i = 1, 2, . . . , (1)where α is an initial row ve
tor of size n, A is a square matrix of size n × n,

a = (1 − A1), 1 is the 
olumn ve
tor of ones of size n and α1 = 1 (there is noprobability mass at t = 0). In this 
ase, we say that X is matrix geometri
allydistributed with representation α,A, or shortly, MG(α,A) distributed.We anti
ipate here and dis
uss, in details, later that the ve
tor-matrix represen-tation (α,A) of a DPH distribution is not unique. More than one ve
tor-matrixpairs might represent the same distribution.De�nition 2.2 If X is an MG(α,A) distributed random variable, where α and Ahave the following properties:
• αi ≥ 0,
• Aij ≥ 0, A1 ≤ 1,
• I −A is non-singular, where I is the unity matrix,then we say that X is dis
rete phase type distributed with representation α,A, orshortly, DPH(α,A) distributed.The ve
tor-matrix representations satisfying the 
onditions of De�nition 2.2 are
alled Markovian.De�nition 2.3 If X is an DPH(α,A) distributed random variable and A is anupper triangular matrix then we say that X is a
y
li
 dis
rete phase type distributedwith representation α,A, or shortly, ADPH(α,A) distributed.The sets of ADPH, DPH, and MG distributions that 
an be des
ribed with size
n representations are referred to as order n ADPH, DPH, and MG distributions,respe
tively. From De�nition 2.1 � 2.3 it follows thatorder n ADPH ⊂ order n DPH ⊂ order n MG.[10℄ dis
usses the relation of these sets of distributions for order 2 and shows thatorder 2 ADPH ⊂ order 2 DPH ≡ order 2 MG.2.2 Continuous phase type and matrix exponential distributionsThe 
ontinuous 
ounterparts of these distributions are the CPH and the matrixexponential distributions. 3



Horvath, Papp, TelekDe�nition 2.4 Let X be a 
ontinuous positive random variable with 
umulativedistribution fun
tion (
df)
FX(x) = Pr(X < x) = 1− αeAx

1,where α is an initial row ve
tor of size n, A is a square matrix of size n×n, 1 is the
olumn ve
tor of ones of size n and α1 = 1 (there is no probability mass at t = 0).In this 
ase, we say that X is matrix exponentially distributed with representation
α,A, or shortly, ME(α,A) distributed.De�nition 2.5 If X is an ME(α,A) distributed random variable, where α and
A have the following properties: αi ≥ 0, Aii < 0, Aij ≥ 0 for i 6= j, A1 ≤ 0,
A is non-singular, then we say that X is 
ontinuous phase type distributed withrepresentation α,A, or shortly, CPH(α,A) distributed.De�nition 2.6 If X is a CPH(α,A) distributed random variable, where A is anupper triangular matrix then we say that X is a
y
li
 
ontinuous phase type dis-tributed with representation α,A, or shortly, ACPH(α,A) distributed.De�nition 2.7 Any order n ACPH(α,A) 
an be represented with the followingve
tor matrix pair

[γ1, γ2, . . . , γn] ,











−λ1 λ1. . . . . .
−λn−1 λn−1

−λn









where 0 ≤ γi ≤ 1 and λi are the eigenvalues of −A su
h that λi ≥ λi−1. Thisrepresentation is referred to as Cumani's 
anoni
al form [4℄.The ve
tor-matrix representations satisfying the 
onditions of De�nition 2.5 are
alled Markovian. By these de�nitions we have the following relations: order nACPH ⊂ order n CPH ⊂ order n ME. Further more for order 2 we have [7,11℄:order 2 ACPH ≡ order 2 CPH ≡ order 2 ME, whi
h is a signi�
antly di�eren
e
ompared to the order 2 sets of 
ontinuous distributions. In the sequel we fo
us ondis
rete distributions, the 
ontinuous ones are introdu
ed for indi
ating the relationsof DPH and CPH distributions.2.3 Similarity transformationA given DPH(α,A) distribution 
an be represented with more than one ve
tormatrix pair.Theorem 2.8 Let B a square matrix of size n su
h that B is invertible andB1 = 1.Then the ve
tor matrix pair γ = αB,G = B

−1
AB is another representation ofDPH(α,A). 4



Horvath, Papp, TelekProof
p̄i = Pr(X̄ = i) = γGi−1(1−G1)

= αB(B−1
AB)i−1(1−B

−1
AB1)

= αAi−1(1−A1) = pi.

(2)
2There are important 
onsequen
es of Theorem 2.8. The B−1

AB transformationof matrix A, referred to as similarity transformation, maintains the eigenvalues ofmatrix A and only modi�es the asso
iated eigenve
tors. This way the eigenvaluesof the matrix of any representation are strongly related with the distribution and
an be used to 
hara
terize di�erent distribution sub
lasses.Further more, an in�nite set of ve
tor-matrix pairs represent a given ADPH,DPH, or MG distribution and ADPH and DPH distributions 
an be des
ribed withnon-Markovian ve
tor matrix pairs.De�nition 2.9 A 
anoni
al representation is a 
onvenient ve
tor-matrix pair 
ho-sen from the in�nite set of ve
tor-matrix pairs de�ning the same distribution.For the 
onvenient 
anoni
al representation of DPH distributions we follow thesame prin
iples as in [5℄. That is the 
anoni
al representation is Markovian, takesCumani's a
y
li
 
anoni
al form [4℄ if possible and 
ontains the maximal numberof zero elements. Among the 
andidates with these properties we 
hoose the oneswhi
h 
over the largest set of distributions in order to redu
e the set of 
onsideredstru
tures.3 Canoni
al form of order 3 DPH distributionsWe 
lassify order 3 DPH distributions a

ording to their eigenvalue stru
ture asfollows. We order the eigenvalues in de
reasing absolute value and denote the oneswith negative real part by N and the ones with non-negative real part by P. Forexample, PNP means that 1 ≥ |s1| ≥ |s2| ≥ |s3| and Re(s1) ≥ Re(s3) ≥ 0 > Re(s2),where si, i = 1, 2, 3 denote the eigenvalues. Due to the fa
t that the eigenvalue withthe largest absolute value (dominant) has to be real and positive (to ensure positiveprobabilities in (2) for large i) we have the following 
ases: PPP, PPN, PNP, PNN.Complex (
onjugate) eigenvalues 
an o

ur only in 
ases of PPP and PNN.3.1 Case PPPWe de�ne the 
anoni
al form in the PPP 
ase based on the 
anoni
al representationof order 3 CPH distribution.Theorem 3.1 If the eigenvalues of the order 3 DPH(γ,G) are all non-negative wede�ne the 
anoni
al form as follows. The ve
tor matrix pair (γ,G − I) de�ne anorder 3 CPH. Let (α,A) be the 
anoni
al representation of CPH(γ,G−I) as de�nedin [5℄. The 
anoni
al representation of DPH(γ,G) is (α,A + I).5



Horvath, Papp, TelekProof The 
omplete proof of the theorem requires the introdu
tion of the pro
edurede�ned in [5℄. Here we only demonstrate the result for the 
ase when the 
anoni
alrepresentation of CPH(γ,G − I) is a
y
li
. When the eigenvalues of G are 1 >

s1 ≥ s2 ≥ s3 > 0 the eigenvalues of G − I are 0 > s1 − 1 ≥ s2 − 1 ≥ s3 − 1 >

−1. In this 
ase the matrix of the a
y
li
 
anoni
al form of CPH(γ,G − I) is
A =








s3 − 1 0 s∗ = 0

1− s2 s2 − 1 0

0 1− s1 s1 − 1








and the asso
iated ve
tor α is non-negative. Finally,
A+ I =








s3 0 s∗ = 0

1− s2 s2 0

0 1− s1 s1







is non-negative and the asso
iated exit probabilityve
tor, 1−A1 = [1− s3, 0, 0]

T , is non-negative as well.In the general 
ase s∗ might be positive and si − 1, i = 1, 2, 3 are not theeigenvalues of A, but also in that 
ase it holds that the elements of A + I and
1−A1 are non-negative. 2The rest of the 
ases require the introdu
tion of new 
anoni
al stru
tures.3.2 Case PPNTheorem 3.2 If the eigenvalues of the order 3 DPH(γ,G) are 1 > |s1| ≥ |s2| ≥

|s3| and Re(s1) ≥ Re(s2) > 0 > Re(s3) then its 
anoni
al representation isDPH(γB,A), where
A =








x1 1− x1 0

0 x2 1− x2

0 x3 0







,

x1 = s1, x2 = s2 + s3, x3 = −s2s3
1−s2−s3

and matrix B is 
omposed by 
olumn ve
tors
b1 = 1− b2 − b3, b2 = 1

(1−x2)(1−x3)
G(1−G1), b3 = 1

1−x3
(1−G1).Proof The eigenvalues of the 
anoni
al matrix are s1, s2, s3. We need to prove that

0 ≤ xi < 1 and γbi ≥ 0 for i = 1, 2, 3. Based on the eigenvalue 
onditions of thePPN 
ase the validity of x1 and x2 readable. For x3 it is readable that x3 > 0 andfor the other boundary we have
−s2s3

1− s2 − s3
< 1

−s2s3 < 1− s2 − s3

0 < 1− s2 − s3 + s2s3

0 < (1− s2)
︸ ︷︷ ︸

>0

(1− s3)
︸ ︷︷ ︸

>0

b2 and b3 are non-negative ve
tors, be
ause (1 − G1) and G(1 − G1) are theone and two steps exit probability ve
tor of DPH(γ,G) and 0 ≤ x2, x3 < 1.6



Horvath, Papp, TelekFinally, from the �rst 
olumn of the matrix equation GB = BA we have anotherexpression for b1, x1b1 = Gb1. That is, x1 = s1 is the largest eigenvalue of G and
b1 is the asso
iated eigenve
tor whi
h is positive a

ording to the Perron-Frobeniustheorem. 23.3 Case PNNTheorem 3.3 If the eigenvalues of the order 3 DPH(γ,G) are 1 > |s1| ≥ |s2| ≥

|s3|, Re(s1) > 0 > Re(s3) ≥ Re(s2) and |s2|
2 ≤ 2s1(−Re(s2)) then its 
anoni
alrepresentation is DPH(γB,A), where

A =








x1 1− x1 0

x2 0 1− x2

x3 0 0







,

x1 = −c2, x2 = −c1
1+c2

, x3 = −c0
1+c1+c2

, the matrix elements are de�ned based on the
oe�
ients of the 
hara
teristi
 polynomial of G, c0 = −s1s2s3, c1 = s1s2 + s1s3 +

s2s3, c2 = −s1−s2−s3. and matrix B is 
omposed by 
olumn ve
tors b1 = 1−b2−b3,
b2 =

1
(1−x2)(1−x3)

G(1−G1), b3 = 1
1−x3

(1−G1).Proof The eigenvalues of the 
anoni
al matrix are s1, s2, s3. We need to prove that
0 ≤ xi < 1 and γbi ≥ 0 for i = 1, 2, 3.Let λi = −si for i = 1, 2, 3. The tra
e of matrix G (the sum of its diagonalelements) equals to the sum of its eigenvalues and so the sum of the eigenvaluesas well as −c2 are non-negative. Consequently, 0 ≤ x1 < 1. Now we 
onsider x2.
(1 + c2) is positive, so we need to show that c1 is non-positive.If the eigenvalues are all real, then we 
an write

c1 = s1s2
︸︷︷︸

<0

+ s3
︸︷︷︸

<0

(s1 + s2)
︸ ︷︷ ︸

≥0

,that is the sum of a negative and a non-positive numbers, so the result will also benegative.If s2 and s3 are 
omplex 
onjugates, we 
an write them as s2 = −u + iv and
s3 = −u− iv where u, v are positive reals. With these notations:

c1 = s1(−u+ iv) + s1(−u− iv) + (u2 + v2) = u2 + v2 − 2s1u ≤ 0where the last inequality 
omes from |s2|
2 ≤ 2s1(−Re(s2)).Now we show that x2 is less than 1:

x2 < 1

−c1 < 1 + c2

0 < 1 + c1 + c27



Horvath, Papp, TelekWe 
an see that the last inequality holds if we write 1+ c1+ c2 in the following way:
1 + c1 + c2 = (1 + λ1)(1 + λ2)(1 + λ3)

︸ ︷︷ ︸

>0

−λ1λ2λ3
︸ ︷︷ ︸

<0

> 0,additionally, λ1λ2λ3 = c0 so we also get, that x3 is positive:
x3 =

−

<0
︷︸︸︷
c0

1 + c1 + c2
︸ ︷︷ ︸

>0

> 0.The upper bound of x3 also follows:
x3 < 1

−c0 < 1 + c1 + c2

0 < 1 + c0 + c1 + c2

0 < (1 + λ1)(1 + λ2)(1 + λ3)

b2 and b3 are non-negative ve
tors, be
ause (1 − G1) and G(1 − G1) are theone and two steps exit probability ve
tor of DPH(γ,G) and 0 ≤ x2, x3 < 1.Finally, from the matrix equation GB = BA we have an expli
it expression for
b1, b1 = 1

(1−x1)(1−x2)(1−x3)
G

2(1 −G1). That is, b1 is a probability ve
tor (G2(1 −

G1)) multiplied by a positive 
onstant. 2Theorem 3.3 does not 
over the 
ase when |s2|
2 > 2s1(−Re(s2)). This 
ase
an o

ur only when s2 and s3 are 
omplex 
onjugate eigenvalues. The followingtheorem applies in this 
ase.Theorem 3.4 If the eigenvalues of the order 3 DPH(γ,G) are 1 ≥ |s1| ≥ |s2| ≥ |s3|,

Re(s1) > 0 > Re(s3) ≥ Re(s2) and |s2|
2 > 2s1(−Re(s2)) then we use the same
anoni
al form as in 
ase of PPP in Theorem 3.1.Proof Similar to the proof of Theorem 3.1, this proof also builds on the pro
edureof [5℄ whi
h do not introdu
e here. 2The 
ases 
onsidered in this se
tion and in [5℄ have been proved based on theproperties of the eigenvalues and the fa
t that the probability mass (density) fun
tionof DPH (CPH) distributions are non-negative. It seems that for the PNP 
ase whi
his deferred to the next se
tion these properties are not su�
ient for proving the
ompleteness of the 
anoni
al forms, but the boundaries of the order 3 DPH 
lass(whi
h is di�erent from the ones of the order 3 MG 
lass) needs to be utilized in anexpli
it way. In other words utilizing the fa
t that the probability mass fun
tion ofDPH distributions is not negative is insu�
ient in the PNP 
ase.4 Case PNPFor the PNP 
ase the 
anoni
al form is based on the following main observation.8



Horvath, Papp, TelekObservation 1 If the eigenvalues of the order 3 DPH(γ,G), s1, s2, s3, are su
hthat 1 > |s1| ≥ |s2| ≥ |s3|, Re(s1) ≥ Re(s3) ≥ 0 > Re(s2) then it 
an be representedin one of the following three forms.PNP1: DPH(α,A), where
α = γB, A =








x1 1− x1 0

x2 0 1− x2

0 x3 0







,

c0 = −s1s2s3, c1 = s1s2 + s1s3 + s2s3, c2 = −s1 − s2 − s3, are the 
oe�
ientsof the 
hara
teristi
 polynomial of G, the matrix elements are de�ned based onthese 
oe�
ients as x1 = −c2, x2 = c0−c1c2
c2(1+c2)

, x3 = c0(1+c2)
c0−c2−c1c2−c2

2

and matrix Bis 
omposed by 
olumn ve
tors b1 = 1 − b2 − b3, b2 = 1
(1−x2)(1−x3)

G(1 − G1),
b3 =

1
1−x3

(1−G1).PNP2: DPH(α,A) with
α =

[
a3

1−s3
, a1s1+a2s2
(s1−1)(s2−1) ,

(a1+a2)(1−s1−s2)
(s1−1)(s2−1)

]

, A =








x1 0 0

0 x2 1− x2

0 x3 0







,where x1 = s3, x2 = s1 + s2, x3 = −s1s2

1−s1−s2
, and a1, a2 are the 
oe�
ients of thegeometri
 series of the probability mass fun
tion pi = a1s

i−1
1 + a2s

i−1
2 + a3s

i−1
3 .PNP3: DPH(α,A) with

α = γB, A =








x1 1− x1 0

x2 0 1− x2

0 x3 x33







,where the parameters are de�ned as a fun
tion of x33 and the 
oe�
ients of the
hara
teristi
 polynomial

x1 = −c2 − x33, x2 =
c0 − (c2 + x33)(c1 + x33(c2 + x33))

(c2 + x33 + 1)(c2 + 2x33)
,

x3 = −
(c2 + x33 + 1)(c0 + x33(c1 + x33(c2 + x33)))

x333 + 2(c2 + 1)x233 + (c1 + (c2 + 1)(c2 + 2))x33 − c0 + c2(c1 + c2 + 1)
,matrix B is 
omposed by 
olumn ve
tors b1 = 1−b2−b3, b2 = 1

(1−x2)(1−x3−x33)
(G−

x33I)(1 −G1), b3 = 1
1−x3−x33

(1−G1) and x33 is the smallest non-negative realsolution of α1 = γb1 = 0.It is important to note that, similar to the 
anoni
al representation of the pre-vious se
tion, the PNP1, PNP2, PNP3 representations as de�ned above are ap-pli
able with both, Markovian and non-Markovian, (γ,G) ve
tor-matrix pairs.9



Horvath, Papp, TelekBased on Observation 1, for the PNP 
ase a unique 
anoni
al form 
an be de�nedas follows. If PNP1 is Markovian then PNP1 is the 
anoni
al form. If PNP1is non-Markovian and PNP2 is Markovian then PNP2 is the 
anoni
al form. IfPNP1 and PNP2 are non-Markovian then PNP3 is the 
anoni
al form with thesmallest positive x33 whi
h satis�es αb1 = 0. The main observation is supported bythe following results.Theorem 4.1 Representations PNP1, PNP2 and PNP3 are identi
al with theorder 3 DPH(γ,G).Proof In all representations PNP1, PNP2 and PNP3, the eigenvalues of matrix
A are s1, s2, s3. The identity of representations PNP1 and PNP3 with DPH(γ,G)
omes from the fa
t that these representations are de�ned by a similarity transfor-mation with matrix B, and B is the solution of BA = GB. Representation PNP2is de�ned by the 
oe�
ients of the geometri
 series of the probability mass fun
tion.It is easy to see, that pi = a1s

i−1
1 + a2s

i−1
2 + a3s

i−1
3 = αAi−1(1−A1) for i ≥ 1. 2Theorem 4.2 If the order 3 DPH(γ,G) is PNP type then its PNP1 representationis su
h that matrix A is substo
hasti
 (non-negative with x3 < 1) and the se
ondand third 
oordinate of α is non-negative.Proof We need to prove that 0 ≤ xi < 1 and γbi ≥ 0 for i = 2, 3.Let λi = −si for i = 1, 2, 3. In this 
ase λ2 is stri
tly positive and so λ1 isalso stri
tly negative. λ3 is non-positive. So c0 = λ1λ2λ3 ≥ 0. The positivity of

x1 = −c2 follows from the fa
t that the sum of the eigenvalues of G is positive.
1 + c2 = 1 + λ1

︸ ︷︷ ︸

>0

+λ2 + λ3
︸ ︷︷ ︸

≥0

> 0

1 > −c2

1 > x1The �rst inequality follows from −1 < λ1 and |λ3| ≤ |λ2|. The next inequality alsofollows from −1 < λ1, λ3 and 0 < λ2.
1 + c0 + c1 + c2 = (1 + λ1)(1 + λ2)(1 + λ3) > 0In the following we use that −c2 < 1. From that we get c0 ≥ −c2c0.
c0 − c2 − c1c2 − c22 ≥ − c2

︸︷︷︸

<0

(1 + c1 + c2 + c0
︸ ︷︷ ︸

>0

) > 0The above expression is the denominator of x3. In its nominator c0 is non-negativeand 1 + c2 is positive, so x3 is non-negative too. We need to show that x3 < 1:
x3 < 1

c0 + c0c2 < c0 − c2 − c1c2 − c22
0 < −c2(1 + c0 + c1 + c2).10



Horvath, Papp, TelekWe saw that above. At the end of this 
ase we 
onsider x2:
x2 < 1

c0 − c1c2 > c2(1 + c2)

c0 − c2 − c1c2 − c22 > 0.We use here that the eigenvalues of λi are de
reasing and only λ2 is positive:
x2 =

−(

≤0
︷ ︸︸ ︷

λ1 + λ2)(

≤0
︷ ︸︸ ︷

λ1 + λ3)(

≥0
︷ ︸︸ ︷

λ2 + λ3)

− x1
︸︷︷︸

>0

(1− x1
︸ ︷︷ ︸

>0

)
≥ 0

b2 and b3 are non-negative ve
tors, be
ause (1 − G1) and G(1 −G1) are the oneand the two steps exit probability ve
tors of DPH(γ,G) and 0 ≤ x2, x3 < 1. 2A

ording to Theorem 4.2 the PNP1 representation of an order 3 DPH withPNP eigenvalue stru
ture is Markovian if and only if the �rst 
oordinate of itsinitial ve
tor is Markovian. The following Theorem presents the boundary of thisset.Theorem 4.3 If the order 3 DPH(γ,G) is PNP type then its PNP1 representationis Markovian i�
a2 >

(s2 − 1)(s1 + s3)

ϑ

(

a1(s1 − s3)
(
s21 + (s2 + s3 − 1)s1 + (s3 − 1)(s2 + s3)

)

− (s1 − 1)(s3 − 1)s3(s2 + s3)

)where
ϑ = (1− s1)

(
s22 − s23

) (
s22 + (s3 − 1)s2 + (s3 − 1)s3 + s1(s2 + s3 − 1)

)Proof A (non-Markovian) matrix representation of pi = a1s
i−1
1 +a2s

i−1
2 +a3s

i−1
3 is(κ,K) with κ = { a1

1−s1 ,
a2

1−s2 , 1−
a1

1−s1 −
a2

1−s2}, and K =








s1 0 0

0 s2 0

0 0 s3







. Transform-ing (κ,K) to PNP1 representation and solving α1 = γb1 > 0 gives the statementof the theorem. 2Theorem 4.4 If the order 3 DPH(γ,G) is PNP type then its PNP2 representationis Markovian if a1 + a2 > 0, a1s1 + a2s2 > 0 and 1− a1/(1− s1)− a2/(1− s2) > 0.Proof Matrix A is Markovian, be
ause the eigenvalue 
onditions readily ensurethat 0 < x1, x2, x3 < 1. Additionally, 
onditions a1 + a2 > 0, a1s1 + a2s2 > 0 and

1− a1/(1− s1)− a2/(1− s2) > 0 ensures that the 3rd, 2nd and 1st 
oordinate of α,respe
tively, are non-negative. 211



Horvath, Papp, TelekFor PNP3 representation the relation of the elements of ve
tor α and a1, a2 
anbe obtained in the same way as for PNP1 representation in the proof of Theorem4.3. The following theorems bound the set of order 3 DPH distributions whi
h haveMarkovian PNP3 representation.Observation 2 If the order 3 DPH(γ,G) is PNP type and its PNP1 repre-sentation is non-Markovian then its PNP3 representation is not Markovian if
a2 < (a1s1(−s1 + s3))/(s2(s2 − s3)).When x33 = s3 (the smallest positive eigenvalue) in the PNP3 representation(that is α1 = 0) the x3 element of the representation be
omes 0 and a2 = (a1s1(−s1+

s3))/(s2(s2−s3)). Below this boundary the PNP3 representation is not Markovian.Observation 3 If the order 3 DPH(γ,G) is PNP type and its PNP1 representationis non-Markovian then the upper boundary of the a2 parameter of the order 3 DPHdistributions with Markovian PNP3 representation is obtained when α2(x33) = 0.The expression for the upper boundary 
an be obtained by symboli
 analysistools, but it is extremely 
omplex and meaningless to present here, but numeri
analysis for a PNP triple of eigenvalues are easy to perform.4.1 Numeri
al demonstrationFor a given triple of PNP eigenvalues Theorem 4.3 de�nes a half plane on the a1, a2plane where the PNP1 representations are Markovian, while Theorem 4.4 de�nes atriangle on the same plane where the PNP2 representations are Markovian. Figure1 depi
ts these Markovian regions for PNP1 and PNP2 representations.Observations 2 and 3 presents the shape of the region where the PNP1 repre-sentation is non-Markovian and the PNP3 representation is Markovian. The lowerbound is a straight line while the upper bound has a strange 
urve. Figure 2 demon-strates Markovian regions for the three representations with the same eigenvalues.We note that the applied graphi
al tool has got some weaknesses. The triangularrepresenting Markovian PNP2 representations in Figure 2 should be identi
al withthe one in Figure 1. The tool tends to 
ut the peeks of the regions. For example boththe Markovian PNP2 and the Markovian PNP3 regions start from (a1, a2) = (0, 0)as it is the 
ase in Figure 1.It 
an be seen in Figure 2 that there is no need for PNP3 representation whenthe eigenvalues are 0.8,−0.7, 0.3. A di�erent 
ase o

urs when the eigenvalues are
0.25,−0.15, 0.05, see Figure 3. In this 
ase PNP2 representation useless and thePNP1 and PNP3 representations 
over the Markovian PNP2 aria. But there are
ases (e.g., when the eigenvalues are 0.28,−0.22, 0.05 in Figure 4) when all the threerepresentations are needed with the same set of eigenvalues. Figure 5) enlarges thearea where the three sets meet.4.2 Exhaustive sear
hFor the majority of the eigenvalue stru
tures, whi
h are dis
usses in Se
tion 3 wefound simple analyti
 ways to prove that all Markovian order 3 DPH with thegiven properties 
an be transformed into the asso
iated Markovian 
anoni
al form.Unfortunately, we 
ould not �nd su
h simple proof for the PNP 
ase.12



Horvath, Papp, Telek

0.00 0.05 0.10 0.15 0.20 0.25

-0.2

-0.1

0.0

0.1

0.2

Figure 1. Sets of the Markovian PNP1 and PNP2representations on the a1, a2 plane with eigenvalues
0.8,−0.7, 0.3
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Figure 2. Sets of the Markovian PNP1,PNP2 and PNP3 representations with eigenval-ues 0.8,−0.7, 0.3
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Figure 3. Limits of the Markovian PNP representa-tions with eigenvalues 0.25,−0.15, 0.05
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Figure 4. Limits of the Markovian PNP representa-tions with eigenvalues 0.28,−0.22, 0.05Looking for an approa
h to prove Observation 1 we 
onsidered the following ex-haustive method. Based on the fa
t that any Markovian order 3 DPH representationwith less than 6 zero elements in the representation (initial ve
tor, matrix and exitve
tor) 
an be similarity transformed to a Markovian representation with 6 zero el-ements, it is enough to prove that all Markovian order 3 DPH representations with6 zero elements 
an be represented a

ording to Observation 1.For a given distribution of the 6 zero elements su
h a proof is feasible and its
omplexity is 
omparable with the 
omplexity of the proofs of Se
tion 3. The weak-ness of this approa
h is the high number di�erent distribution of the 6 zero elements.We 
olle
ted the possible non-symmetri
 and non-
ir
ular symmetri
 distributionsof the 6 zero elements in the representation and eliminated the obviously meaning-less ones (e.g. where the matrix has lower rank) and we remained with more than300 di�erent stru
tures (a
tually we worked with 319 stru
tures, but some of themmight still be redundant). This high number of the di�erent distributions of zero13
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Figure 5. Enlarged plot of the Markovian PNP representations with eigenvalues 0.28,−0.22, 0.05elements inhibited as to prove Observation 1 along this approa
h.In spite of the fa
t that the exhaustive approa
h does not lead us to a formalproof we made a good use of it in extensive numeri
al analysis and 
ounter examplesear
h. Previously, we used a large number of random DPH generation for �nding
ounter examples [10℄, but the probability of sampling a DPH with a PNP eigenvaluestru
ture whose PNP1 and PNP2 representation are non-Markovian and PNP3representation is Markovian was negligible small. Based on the results of Se
tion 4the boundaries of the sets for whi
h the PNP1, PNP2 and PNP3 representationsare Markovian are easy to 
ompute, and due to the exhaustive approa
h we 
ouldfo
us the numeri
al investigations to the neighborhood of these boundaries.By implementing a general transformation method whi
h transforms to the 300di�erent stru
tures with 6 zero elements we 
omputed numeri
ally how many ofthem are Markovian for a s1, s2, s3, a1, a2 tuple. Our numeri
al experien
es veri�edObservation 1 together with Theorem 4.3, Theorem 4.4 and Observations 2 and 3.Outside the Markovian area of the PNP1, PNP2 and PNP3 representations nonof the other representations were Markovian, while inside the areas typi
ally morethan one of the 300 di�erent stru
tures were Markovian, and at least one of thePNP1, PNP2 and PNP3 representations was always among the Markovian ones.5 Implementation notesThe theorems presenting the 
anoni
al forms for various eigenvalue stru
tures de�neindeed expli
it pro
edures based on the eigenvalues (s1, s2, s3, with de
reasing ab-solute values) and o

asionally on the (a1, a2) 
oe�
ients. As an example Figure 6demonstrate the steps of the pro
edure for generating the PPN 
anoni
al form basedon Theorem 3.2. We note that this pro
edure 
an be 
alled with both, Markovianand non-Markovian γ,G representation.If the (a1, a2) 
oe�
ients are needed from a γ,G representation for a 
anoni
alform with di�erent eigenvalues, they 
an be obtained from the spe
tral de
omposi-tion of matrix G as follows. Let G =
∑3

k=1 skukvk be the spe
tral de
omposition14



Horvath, Papp, Telek1: pro
edure Canoni
alDPH-PP(γ,G)2: [s1, s2, s3] = eig(G);3: e = [1; 1; 1];4: x1 = s1; x2 = s2 + s3; x3 = −s2s3/(1− s2 − s3);5: b3 = 1/(1 − x3)(e −G ∗ e);6: b2 = 1/(1 − x2)G ∗ b3;7: b1 = e− b2 − b3;8: return (γ ∗ [b1, b2, b3],








x1 1− x1 0

0 x2 1− x2

0 x3 0







)9: end pro
edureFigure 6. Canoni
al representation of order 3 DPH with PPN eigenvalue stru
ture based on Theorem 3.2of G with right eigenve
tors uk and left eigenve
tors vk, then

pi = Pr(X = i) = γGi−1(1−G1) =
3∑

k=1

si−1
k

γukvk(1−G1)
︸ ︷︷ ︸

ak

, i = 1, 2, . . . ,de�nes the (a1, a2) 
oe�
ients.The only ex
eption, where the presented 
anoni
al form does not de�ne an ex-pli
it pro
edure is the PNP3 representation. In that 
ase the x33 value is de�ned asthe smallest non-negative real solution of γb1 = 0, whi
h is a polynomial equation oforder 3. Due to the expli
it solution of order 3 polynomial equations we 
ould havede�ned the solution expli
itly, but it was too 
omplex to be presented here. Sym-boli
 analysis pa
kages 
an easily 
ompute the expli
it expression for the solutionsof γb1 = 0. For a fully symboli
 analysis (based on the eigenvalues) those symboli
solutions 
an be used, otherwise one 
an resort to a numeri
al solution.The boundaries of the eigenvalue based de
ompositions are not dis
ussed yet.There are some boundaries, e.g., the limit between PPP and PPN eigenvalue stru
-tures where one of the eigenvalue is 0 and the obtained distribution 
an be rep-resented by an order 2 DPH. In other 
ases the 
anoni
al representation of bothsides of the limit are appli
able, e.g. on the limit between the PNP and PPN eigen-value stru
tures (for example s1 = 0.8, s2, s3 = ±0.4), both the PNP and the PPN
anoni
al forms are appli
able.Referen
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