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Outline

ECQT 2016: conjectures on the moment bounds of FPHs.

ECQT 2018: proofs for some of those conjectures
and some related results.
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Phase type (PH) distributions

Summary
“time to absorption in a Markov chain of N transient states”
If the initial probability vector is α and the transient
generator matrix is A then

fY(x) = αeAx(−A)1,

and its k th moment is

mk =

∫
x

xk fY(x)dx = n!α(−A)−n1

where 1 is the column vector of ones.

Matrix representation allows nice matrix analytic description and
numerical procedures.
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PH distributions (with infinite support)

Some properties
non-unique representation (with invariant eigenvalues)

α̂ = αG, Â = G−1AG,G1 = 1,

Bounded coefficient of variation (cv)

cv =
m2

m2
1
− 1 ≥ 1

N
,

by Aldous-Shepp (martingal), O’Cinneide (majorization).
Equality is achieved by Erlang(N) distribution

f (x) =
λNxN−1e−λx

(N − 1)!
.
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PH distributions with finite support

Introduced by Ramaswami and Viswanath.

Based on ordinary PH random variables Yi ≡PH(αi ,Ai ) we
define

Z1 = b + (Y1|Y1 < B − b),
Z2 = B − (Y2|Y2 < B − b)
convex combination of Z1 and Z2

with PDFs
fZ1(x) =

1

1−α1eA1(B−b)1
α1eA1(x−b)(−A1)1,

fZ2(x) =
1

1−α2eA2(B−b)1
α2eA2(B−x)(−A2)1,

fZ3(x) = cfZ1(x) + (1− c)fZ2(x), with 0 < c < 1.
for b < x < B and 0 otherwise.
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Moments of FPH

The nth moment of Z1 with parameters α,A over interval (b,B)
is

mn =

∑n
d=0

(n
d

)
d !α(−A)−d

(
bn−d I − (b + T )n−deAT

)
1

1− αeAT1
,

where T = B − b.

We focus on b = 0. The cases when b > 0 can be computed
from this moment relation.
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Some extreme FTP distributions

A truncated exponential distribution with a very high intensity
trends to a unit impulse at b.

A truncated exponential with a very small intensity tends to
uniform distribution on (b,B), since

lim
λ→0

f Exp
Z1

(x) = lim
λ→0

λeλx/(1− e−λ) = 1.
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Some extreme FPH distributions

Similarly, a truncated Erlang-N distribution with very small
intensity gives limλ→0 f Erl−N

Z1
(x) = N xN−1, yielding linear,

quadratic, cubic distributions,
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These FPHs are very hard to approximate with ordinary PHs.
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Steepest increase property

In 1999, O’Cinneide published the steepest increase lemma:

Lemma
For a PH distribution of order m

f ′(t)
f (t)

≤ m − 1
t
− λ < m − 1

t
for t > 0,

where λ > 0 is the dominant eigenvalue of A.
The equality holds when Y is Erlang(m, λ) distributed.

It has several equivalent forms
d
dt (tf (t)) ≤ (m − λt)f (t) < mf (t),
d
dt

(
f (t)

tm−1

)
≤ −λf (t)

tm−1 < 0 .

The steepest increase of f (t) is tm−1.
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Steepest increase property

Proof by O’Cinneide(1999) based on a conjecture,
which is proved by Yao (2002).

Proof.

For CTMC generator Q of size m: QeQ ≤ (m − 1)eQ .

If A is a transient generator with dominant eigenvalue λ, then it
gives AeA ≤ (m − 1− λ)eA.

Setting A =: At we have eAtAt ≤ (m − 1− λt)eAt for t > 0.

Pre-multiplying and post-multiplying by α and −A1,
respectively, we obtain f ′(t)t ≤ (m − 1− λt)f (t).
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PH moment bounds based on steepest increase

Lemma
For n = 0,1, . . ., the n + 1-st moment of Y (of order m and with
dominant eigenvalue λ) is bounded by

E
(
Yn+1

)
≤ m + n

λ
E
(
Yn) ,

and the equality holds when Y is Erlang(m, λ).

For n = 0 and n = 1 it gives

E(Y) ≤ m
λ
, and E

(
Y2
)
≤ m + 1

λ
E(Y) .

That is, we have two bounds for SCVY
1
m
≤ SCVY ≤

m + 1
λE(Y)

− 1.
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PH moment bounds based on steepest increase

Bounds of SCV for ordinary PH distributions. The lower bound
is the 1/m by Aldous-Shepp, the upper bound is from the
steepest increase property.
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PH moment bounds based on steepest increase

Proof.

Multiplying d
dt (tf (t)) ≤ (m − λt)f (t) by tn and integrating from 0

to∞ gives

LHS =

∫ ∞
t=0

tnd(tf (t)) = [tn+1f (t)]∞0 −
∫ ∞

t=0
tf (t)dtn

= −n
∫ ∞

t=0
tf (t)tn−1dt = −nE

(
Yn) ;

RHS =

∫ ∞
t=0

tn(m − λt)f (t)dt = m
∫ ∞

t=0
tnf (t)dt − λ

∫ ∞
t=0

tn+1f (t)dt

= mE
(
Yn)− λE(Yn+1

)
,

from which we have −nE(Yn) ≤ mE(Yn)− λE
(
Yn+1) .
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FPH upper moment bounds

LetW = Y|Y < T , where Y is PH distributed. Its moments are
E
(
W i) = Ei (T )

E0(T ) , where Ei(T ) =
∫ T

t=0 t i f (t)dt .

Lemma

E
(
Wn) ≤ (m + n − 1)T

m + n
E
(
Wn−1

)
.

Proof.

Multiplying d
dt (tf (t)) ≤ mf (t) by tn−1(T − t) and integrating from

0 to T gives the lemma by the same steps.
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FPH upper moment bounds

Corollary

E(Wn) is bounded by

E
(
Wn) ≤ mT n

m + n
.

and the equality holds when Y is Erlang(λ,m) and λ→ 0.

Proof.

Recursively applying the previous lemma for moments 1, . . . ,n
gives the upper bound.

For n = 1, E(W) ≤ mT/(m + 1) indicates that no FPH
distribution with can have a mean close to the upper bound T .
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FPH upper moment bounds

For n = 2

SCVW =
E
(
W2)

E(W)2 − 1 ≤ (m + 1)T
(m + 2)E(W)

− 1.

Upper bounds of SCV forW distributions with T = 1
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FPH λ dependent moment bounds

Lemma
For n = 1,2, . . ., the n + 1-st moment ofW is bounded by

m + n + λT
λ

E
(
Wn)− (m + n − 1)T

λ
E
(
Wn−1

)
≤ E

(
Wn+1

)
≤ m + n

λ
E
(
Wn)− T n+1f (T )

E0(T )
<

m + n
λ

E
(
Wn)

Proof.

The lower bound is obtained by multiplying
d
dt (tf (t)) ≤ (m − λt)f (t) with (T − t)tn−1 and integrating from 0
to T ,

the lower bound is obtained by multiplying
d
dt (tf (t)) ≤ (m − λt)f (t) with tn and integrating from 0 to T .
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FPH λ dependent moment bounds

Corollary

SCVW =
E(W2)
E(W)2 − 1 is bounded by

m + 1 + λT
λE(W)

− mT
λ(E(W))2 − 1 ≤ SCVW <

m + 1
λE(W)

− 1.

Proof.

For n = 1 the previous lemma gives

m + 1 + λT
λ

E(W)− mT
λ
≤ E

(
W2
)
<

m + 1
λ

E(W)

from which the corollary comes by dividing with (E(W))2 and
subtracting 1.
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FPH bounds on the second moment
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Final remarks

Summary

Steepest increase property is also a tool to obtain moments
bounds.
It gives

λ dependent upper bounds for ordinary PH distributions,
λ dependent lower bounds and λ independent upper
bounds for finite PH distributions.

Plans

Analysis of queueing models with finite PH distributions.
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