Moment bounds of Phase type distributions based on the steepest increase property

Qiming He1 Gábor Horváth2 Illés Horváth3 Miklós Telek2

1University of Waterloo, Canada
2Budapest University of Technology and Economics, Hungary
3MTA-BME Information Systems Research Group, Hungary

ECQT, July 4, 2018, Jerusalem, Israel
Outline

ECQT 2016: conjectures on the moment bounds of FPHs.
ECQT 2018: proofs for some of those conjectures and some related results.

1 Introduction
2 Steepest increase property
3 PH Moment bounds
4 FPH Moment bounds
5 Final remarks
Phase type (PH) distributions

Summary

- “time to absorption in a Markov chain of N transient states”
- If the initial probability vector is α and the transient generator matrix is A then

$$f_Y(x) = \alpha e^{Ax}(-A)1,$$

and its kth moment is

$$m_k = \int x^k f_Y(x) dx = n! \alpha (-A)^{-n} 1,$$

where 1 is the column vector of ones.

Matrix representation allows nice matrix analytic description and numerical procedures.
Some properties

- non-unique representation (with invariant eigenvalues)

\[\hat{\alpha} = \alpha \mathbf{G}, \hat{\mathbf{A}} = \mathbf{G}^{-1} \mathbf{A} \mathbf{G}, \mathbf{G} \mathbf{1} = \mathbf{1}, \]

- Bounded coefficient of variation (cv)

\[cv = \frac{m_2}{m_1^2} - 1 \geq \frac{1}{N}, \]

by Aldous-Shepp (martingal), O’Cinneide (majorization).

- Equality is achieved by Erlang(N) distribution

\[f(x) = \frac{\lambda^N x^{N-1} e^{-\lambda x}}{(N - 1)!}. \]
PH distributions with finite support

Introduced by Ramaswami and Viswanath.

Based on ordinary PH random variables $\mathcal{Y}_i \equiv \text{PH}(\alpha_i, A_i)$ we define

1. $\mathcal{Z}_1 = b + (\mathcal{Y}_1 | \mathcal{Y}_1 < B - b)$,
2. $\mathcal{Z}_2 = B - (\mathcal{Y}_2 | \mathcal{Y}_2 < B - b)$
3. convex combination of \mathcal{Z}_1 and \mathcal{Z}_2

with PDFs

- $f_{\mathcal{Z}_1}(x) = \frac{1}{1 - \alpha_1 e^{A_1(B-b)}} \alpha_1 e^{A_1(x-b)(-A_1)} 1$
- $f_{\mathcal{Z}_2}(x) = \frac{1}{1 - \alpha_2 e^{A_2(B-b)}} \alpha_2 e^{A_2(B-x)(-A_2)} 1$
- $f_{\mathcal{Z}_3}(x) = cf_{\mathcal{Z}_1}(x) + (1 - c)f_{\mathcal{Z}_2}(x)$, with $0 < c < 1$

for $b < x < B$ and 0 otherwise.
Moments of FPH

The nth moment of Z_1 with parameters α, A over interval (b, B) is

$$m_n = \frac{\sum_{d=0}^{n} \binom{n}{d} d! \alpha(-A)^{-d} \left(b^{n-d} I - (b + T)^{n-d} e^{AT} \right) 1}{1 - \alpha e^{AT} 1},$$

where $T = B - b$.

We focus on $b = 0$. The cases when $b > 0$ can be computed from this moment relation.
Some extreme FTP distributions

A truncated exponential distribution with a very high intensity trends to a unit impulse at b.

A truncated exponential with a very small intensity tends to uniform distribution on (b, B), since

$$
\lim_{\lambda \to 0} f^{Exp}_{Z_1}(x) = \lim_{\lambda \to 0} \lambda e^{\lambda x} / (1 - e^{-\lambda}) = 1.
$$
Some extreme FPH distributions

Similarly, a truncated Erlang-N distribution with very small intensity gives $\lim_{\lambda \to 0} f_{\mathcal{Z}_1}^{\text{Erl}-N}(x) = N x^{N-1}$, yielding linear, quadratic, cubic distributions,

These FPHs are very hard to approximate with ordinary PHs.
In 1999, O’Cinneide published the steepest increase lemma:

Lemma

For a PH distribution of order \(m \)

\[
\frac{f'(t)}{f(t)} \leq \frac{m - 1}{t} - \lambda < \frac{m - 1}{t} \quad \text{for} \ t > 0,
\]

where \(\lambda > 0 \) is the dominant eigenvalue of \(A \).

The equality holds when \(\gamma \) is Erlang(\(m, \lambda \)) distributed.

It has several equivalent forms

- \(\frac{d}{dt} (tf(t)) \leq (m - \lambda t)f(t) < mf(t), \)
- \(\frac{d}{dt} \left(\frac{f(t)}{t^{m-1}} \right) \leq -\frac{\lambda f(t)}{t^{m-1}} < 0. \)

The steepest increase of \(f(t) \) is \(t^{m-1} \).
Proof by O’Cinneide (1999) based on a conjecture, which is proved by Yao (2002).

Proof.

For CTMC generator \(Q \) of size \(m \): \(Q e^Q \leq (m - 1) e^Q \).

If \(A \) is a transient generator with dominant eigenvalue \(\lambda \), then it gives \(A e^A \leq (m - 1 - \lambda) e^A \).

Setting \(A =: A t \) we have \(e^{A t} A t \leq (m - 1 - \lambda t) e^{A t} \) for \(t > 0 \).

Pre-multiplying and post-multiplying by \(\alpha \) and \(-A 1\), respectively, we obtain \(f'(t) t \leq (m - 1 - \lambda t) f(t) \).
PH moment bounds based on steepest increase

Lemma

For $n = 0, 1, \ldots$, the $n+1$-st moment of \mathcal{Y} (of order m and with dominant eigenvalue λ) is bounded by

$$E\left(\mathcal{Y}^{n+1}\right) \leq \frac{m+n}{\lambda} E(\mathcal{Y}^n),$$

and the equality holds when \mathcal{Y} is Erlang(m, λ).

For $n = 0$ and $n = 1$ it gives

$$E(\mathcal{Y}) \leq \frac{m}{\lambda}, \quad \text{and} \quad E(\mathcal{Y}^2) \leq \frac{m+1}{\lambda} E(\mathcal{Y}).$$

That is, we have two bounds for $SCV_{\mathcal{Y}}$

$$\frac{1}{m} \leq SCV_{\mathcal{Y}} \leq \frac{m+1}{\lambda E(\mathcal{Y})} - 1.$$
PH moment bounds based on steepest increase

Bounds of SCV for ordinary PH distributions. The lower bound is the $1/m$ by Aldous-Shepp, the upper bound is from the steepest increase property.
PH moment bounds based on steepest increase

Proof.

Multiplying \(\frac{d}{dt}(tf(t)) \leq (m - \lambda t)f(t) \) by \(t^n \) and integrating from 0 to \(\infty \) gives

\[
LHS = \int_{t=0}^{\infty} t^n d(tf(t)) = [t^{n+1} f(t)]_{t=0}^{\infty} - \int_{t=0}^{\infty} tf(t)dt^n
\]

\[
= -n \int_{t=0}^{\infty} tf(t)t^{n-1}dt = -n \mathbb{E}(Y^n);
\]

\[
RHS = \int_{t=0}^{\infty} t^n (m - \lambda t)f(t)dt = m \int_{t=0}^{\infty} t^n f(t)dt - \lambda \int_{t=0}^{\infty} t^{n+1} f(t)dt
\]

\[
= m \mathbb{E}(Y^n) - \lambda \mathbb{E}(Y^{n+1}),
\]

from which we have \(-n \mathbb{E}(Y^n) \leq m \mathbb{E}(Y^n) - \lambda \mathbb{E}(Y^{n+1}) \).
FPH upper moment bounds

Let $\mathcal{W} = \mathcal{Y} | \mathcal{Y} < T$, where \mathcal{Y} is PH distributed. Its moments are

$$E(\mathcal{W}^i) = \frac{E_i(T)}{E_0(T)},$$

where $E_i(T) = \int_{t=0}^{T} t^i f(t)dt$.

Lemma

$$E(\mathcal{W}^n) \leq \frac{(m + n - 1)T}{m + n} E(\mathcal{W}^{n-1}).$$

Proof.

Multiplying $\frac{d}{dt}(tf(t)) \leq mf(t)$ by $t^{n-1}(T - t)$ and integrating from 0 to T gives the lemma by the same steps.
Corollary

$E(W^n)$ is bounded by

$$E(W^n) \leq \frac{mT^n}{m + n}.$$

and the equality holds when Y is Erlang(λ, m) and $\lambda \to 0$.

Proof.

Recursively applying the previous lemma for moments 1, \ldots, n gives the upper bound.

For $n = 1$, $E(W) \leq mT/(m + 1)$ indicates that no FPH distribution with can have a mean close to the upper bound T.
For $n = 2$

\[SCV_{W} = \frac{\mathbb{E}(W^2)}{\mathbb{E}(W)^2} - 1 \leq \frac{(m + 1)T}{(m + 2)\mathbb{E}(W)} - 1. \]

Upper bounds of SCV for W distributions with $T = 1$
Lemma

For \(n = 1, 2, \ldots \), the \(n+1 \)-st moment of \(\mathcal{W} \) is bounded by

\[
\frac{m + n + \lambda T}{\lambda} \mathbb{E}(\mathcal{W}^n) - \frac{(m + n - 1) T}{\lambda} \mathbb{E}(\mathcal{W}^{n-1})
\]

\[
\leq \mathbb{E}(\mathcal{W}^{n+1}) \leq \frac{m + n}{\lambda} \mathbb{E}(\mathcal{W}^n) - \frac{T^{n+1} f(T)}{E_0(T)} < \frac{m + n}{\lambda} \mathbb{E}(\mathcal{W}^n)
\]

Proof.

The lower bound is obtained by multiplying

\[
\frac{d}{dt} (t f(t)) \leq (m - \lambda t) f(t)
\]

with \((T - t) t^{n-1} \) and integrating from 0 to \(T \),

the lower bound is obtained by multiplying

\[
\frac{d}{dt} (t f(t)) \leq (m - \lambda t) f(t)
\]

with \(t^n \) and integrating from 0 to \(T \).
Corollary

\[\text{SCV}_{\mathcal{W}} = \frac{E(\mathcal{W}^2)}{E(\mathcal{W})^2} - 1 \] is bounded by

\[\frac{m + 1 + \lambda T}{\lambda E(\mathcal{W})} - \frac{mT}{\lambda (E(\mathcal{W}))^2} - 1 \leq \text{SCV}_{\mathcal{W}} < \frac{m + 1}{\lambda E(\mathcal{W})} - 1. \]

Proof.

For \(n = 1 \) the previous lemma gives

\[\frac{m + 1 + \lambda T}{\lambda} E(\mathcal{W}) - \frac{mT}{\lambda} \leq E(\mathcal{W}^2) < \frac{m + 1}{\lambda} E(\mathcal{W}) \]

from which the corollary comes by dividing with \((E(\mathcal{W}))^2\) and subtracting 1.
The feasible range of the mean values and SCVs of \mathcal{W} with $b = 0$ and $B = 2$
Summary

- Steepest increase property is also a tool to obtain moments bounds.
 It gives
 - λ dependent upper bounds for ordinary PH distributions,
 - λ dependent lower bounds and λ independent upper bounds for finite PH distributions.

Plans

- Analysis of queueing models with finite PH distributions.