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ABSTRACT
This paper presents matrix-exponential (ME) distributions,
whose squared coefficient of variation (SCV) is very low.
Currently there is no symbolic construction available to
obtain the most concentrated ME distributions, and the
numerical optimization-based approaches to construct them
have many pitfalls too. We present a numerical optimization-
based procedure which avoids numerical issues.

Keywords: Non-negative matrix-exponential functions,
Matrix-exponential distributions, Numerical optimization,
Coefficient of variation

1. INTRODUCTION
Highly concentrated matrix exponential functions play an

important role in many research fields, for example, they
turned out to be essential for numerical inverse Laplace
transform methods as well [6].

The least varying phase type (PH) distribution of order N
is known to be the Erlang distribution [1] with SCV=1/N
(defined as µ0µ2

µ2
1
− 1, where µi, i = 0, 1, 2, are the moments

of the distribution). The least varying ME distribution for
order N much less known. It is known that for order 2
the class of ME distributions is identical to the class of PH
distributions, and it is also known that there exists order 3
ME distribution with SCV=0.200902 < 1/3, but it is still
only a conjecture that this is the least varying order 3 ME
distribution. Concentrated ME distributions are provided
in [2] up to order 17 and in [5] up to order 47. These
preliminary results indicate that the minimal SCV of order
N ME distributions tends to be less than 2/N2. In this work,
we propose numerical procedures by which much higher order
concentrated ME distributions can be computed and based
on that we refine the dependence of the minimal SCV on the
order.
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2. CONCENTRATED ME DISTRIBU-
TIONS

Definition 1. Order N ME functions (referred to as
ME(N)) are given by

f(t) = αeAt(−A)1, (1)

where α is a real row vector of size N , A is a real matrix
of size N ×N and 1 is the column vector of ones of size N ,
and α is such that α1 > 0.

If f(t) ≥ 0, ∀t ≥ 0 and α1 = 1 then f(t) is the probability
density function of a ME distribution.

According to (1), vector α and matrix A define the matrix
exponential function. We refer to the pair (α,A) as matrix
representation in the sequel.

An ME distribution is said to be concentrated when its
squared coefficient of variation

SCV (f(t)) =
µ0µ2

µ2
1

− 1, (2)

is low. In (2), µi denotes the ith moment, defined by
µi =

∫∞
t=0

tif(t)dt for i = 0, 1, 2. SCV is insensitive to mul-
tiplication and scaling, i.e. SCV (f(t)) = SCV (c1f(c2t)).

Although matrix-exponential functions have been used for
many decades, there are still many questions open regarding
their properties. Such an important question is how to decide
efficiently if a matrix-exponential function is non-negative
∀t > 0. In general, f(t) ≥ 0, ∀t > 0 does not necessarily hold
for given (α,A) parameters, unless it has been constructed
to be always non-negative. In this paper, we are going to
restrict our attention to such a special construction, the
exponential-cosine square functions.

For the least varying ME(N) distributions only conjectures
are available for N ≥ 3 [2]. According to the current conjec-
ture for odd N , the most concentrated ME(N) distribution
belongs to a special subset of ME(N) given by the definition
below.

Definition 2. The set of exponential cosine-square func-
tions of order n has the form

f+(t) = e−t
n∏
i=1

cos2
(
ωt− φi

2

)
. (3)

An exponential cosine-square function is defined by n+ 1
parameters: ω and φi for i = 1, . . . , n. An exponential cosine-
square function is a matrix exponential function. Although



the representation in (3), which we refer to as the cosine-
square representation, is not a matrix representation, [5, Ap-
pendix A] presents the associated matrix representation of
size N = 2n+ 1. Consequently, the set of exponential cosine-
square functions of order n is a special subset of ME(N)
(where N = 2n+ 1) which, by construction, is non-negative.
The SCV of an exponential cosine-square function is a compli-
cated function of the parameters, whose minimum does not
exhibit a closed analytic form. That is why we have resorted
to the following numerical problem. For a given odd order
N = 2n+ 1, we are looking for efficient numerical methods
for finding the ω and φi (i = 1, . . . , n) parameters which
result in a low SCV. For efficient numerical minimization of
the SCV for N > 47 (i.e., n > 23) we need

i) an accurate computation of the SCV based on the
parameters with low computational cost and

ii) an efficient optimization procedure with low computa-
tional cost.

In this paper we present a method that addresses i) in
Section 3, and one that addresses ii) in Section 4.

3. EFFICIENT COMPUTATION OF THE
SQUARED COEFFICIENT OF VARIA-
TION

To evaluate the objective function of the optimization,
namely the SCV, we need efficient methods to compute µ0,
µ1 and µ2. Deriving the µi parameters based on (3) is
difficult (for large N). Hence we propose to compute them
based on a different representation.

3.1 The hyper-trigonometric representation
The following theorem defines the hyper-trigonometric

form of the exponential cosine-square functions and provides
a recursive procedure to obtain its parameters from ω, φi, i =
1, . . . , n.

Theorem 1. An order N = 2n + 1 exponential cosine-
square function can be transformed to a hyper-trigonometric
representation of form

f+(t) = c(n) · e−t + e−t
n∑
k=1

a
(n)
k cos(kωt) (4)

+ e−t
n∑
k=1

b
(n)
k sin(kωt),

where c(n) = 1
2
a
(n)
0 and the coefficients a

(n)
k , b

(n)
k are calcu-

lated recursively:

• for n = 1:

a
(1)
0 = 1, b

(1)
0 = 0, a

(1)
1 =

1

2
cosφ1, b

(1)
1 =

1

2
sinφ1,

(5)

• for k > n, n ≥ 1:

a
(n)
k = b

(n)
k = 0,

• for k = 0, n ≥ 1:

a
(n)
0 =

1

2
a
(n−1)
0 +

1

2
a
(n−1)
1 cosφn +

1

2
b
(n−1)
1 sinφn,

(6)

b
(n)
0 = 0, (7)

• for 1 ≤ k ≤ n, n ≥ 2

a
(n)
k =

1

2
a
(n−1)
k +

1

2

a
(n−1)
k−1 + a

(n−1)
k+1

2
cosφn

+
1

2

b
(n−1)
k+1 − b(n−1)

k−1

2
sinφn, (8)

b
(n)
k =

1

2
b
(n−1)
k +

1

2

b
(n−1)
k−1 + b

(n−1)
k+1

2
cosφn

+
1

2

a
(n−1)
k−1 − a(n−1)

k+1

2
sinφn. (9)

The hyper-trigonometric representation makes it possible
to express the Laplace transform (LT) and the moments µi
in a simple and compact way.

Corollary 1. The LT and the µi, i = 0, 1, 2 moments of
the exponential cosine-square function are given by

f∗(s) =
c(n)

1 + s
+

n∑
k=1

a
(n)
k (1 + s) + b

(n)
k kω

(1 + s)2 + (kω)2
, (10)

and

µ0 = c(n) +

n∑
k=1

a
(n)
k + b

(n)
k kω

1 + (kω)2
, (11)

µ1 = c(n) +

n∑
k=1

a
(n)
k + 2b

(n)
k kω − a(n)k (kω)2

(1 + (kω)2)2
,

µ2 = 2c(n) +

n∑
k=1

2a
(n)
k + 6b

(n)
k kω − 6a

(n)
k (kω)2 − 2b

(n)
k (kω)3

(1 + (kω)2)3
.

3.2 Numerical computation of the moments
Theorem 1 together with Corollary 1 provides a very ef-

ficient explicit method to compute the SCV based on the
parameters ω, φi, i = 1, . . . , n.

There is one numerical issue that has to be taken care of
when applying this numerical procedure with floating point
arithmetic for large values of n. To evaluate the SCV, co-

efficients a
(n)
k , b

(n)
k , c(n) need to be obtained from the ω and

φi, i = 1, . . . , n parameters. The recursion defined in The-
orem 1 involves multiplications between bounded numbers
(sine and cosine always fall into [−1,+1]), which is beneficial
from the numerical stability point of view, but subtractions
are unfortunately also present, leading to loss of precision.
To overcome this loss of precision, we introduced increased
precision floating point arithmetic both in our Mathematica
and C++ implementations1. Mathematica can quantify the
precision loss, enabling us to investigate this issue experimen-
tally. According to Figure 1, the number of accurate decimal
digits lost when evaluating the SCV from the ω, φi parame-
ters (computed by the Precision function of Mathematica),
denoted by Ln, is nearly linear and can be approximated by

Ln ≈ 1.487 + 0.647n. (12)

1In C++ we used to mpfr library for multi-precision compu-
tations
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Figure 1: The precision loss while computing the
SCV

In the forthcoming numerical experiments we have set the
floating point precision to Ln+16 decimal digits to obtain an
accuracy of results up to 16 decimal digits, and this precision
setting eliminated all numerical issues.

It is important to note that the high precision is needed

only to calculate the a
(n)
k , b

(n)
k , c(n) coefficients and the SCV

itself. Representing parameters ω, φi themselves does not
need extra precision, and the resulting exponential cosine-
square function f(t) can be evaluated with machine precision
as well (in the range of our interest, n ≤ 1000).

A basic pseudo-code of the computation of the SCV with
the indications where high precision is needed is provided by
Algorithm 1.

Algorithm 1 Pseudo-code for the computation of the SCV

1: procedure ComputeSCV(n, ω, φi, i = 1, . . . , n)
2: Compute the required precision, Ln, from (12)
3: Convert ω, φi, i = 1, . . . , n to Ln + 16 digits precision

4: Calculate a
(n)
k , b

(n)
k , c(n), k = 1, . . . , n, recursively by

Theorem 1 (high precision)
5: Calculate moments µ0, µ1, µ2 according to (11) (high

precision)
6: Calculate SCV = µ0µ2

µ2
1
− 1 (high precision)

7: Convert SCV to machine precision
8: return SCV
9: end procedure

4. MINIMIZING THE SQUARED COEFFI-
CIENT OF VARIATION

Given the size of the representation N = 2n + 1, the
f+(t) function providing the minimal SCV is obtained by
minimizing (2) subject to ω and φi, i = 1, . . . , n. The form of
the SCV does not allow a symbolic solution, and its numerical
optimization is challenging too. The surface to optimize has
many local optima, hence simple gradient descent procedures
failed to find the global optimum and are sensitive to the
initial guess.

4.1 Optimizing the parameters
In the numerical optimization of the parameters, we had

success with evolutionary optimization methods, in particu-
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Figure 2: The minimal SCV of the exponential
cosine-square functions as the function of n in log-log
scale

lar with evolution strategies. The results introduced in [5]
were obtained by one of the simplest evolution strategies,
the Rechenberg method [7]. In [5], it was the high com-
putational demand of the numerical integration needed to
obtain the SCV and its reduced accuracy that prevented the
optimization for N > 47 (n > 23).

However, computing the SCV based on the hyper-
trigonometric representation using the results of Section
3.1 allows us to evaluate the moments orders of magnitudes
faster and more accurately, enabling the optimization for
higher n values. With the Rechenberg method ([7], also
referred to as (1+1)-ES in the literature) it is possible to
obtain low SCV values relatively quickly for orders as high
as n = 125, but these values are suboptimal in the majority
of cases.

With more advanced evolution strategies the optimal SCV
can be approached better. Our implementation supports the
covariance matrix adoption evolution strategy (CMA-ES [3]),
and one of its variants, the BIPOP-CMA-ES with restarts [4].
Starting from a random initial guess, we got very low SCV
values much quicker with the CMA-ES than with the (1+1)-
ES with similar suboptimal minimum values (cf. Fig. 4).
The limit of applicability of CMA-ES is about n = 180. The
best solution (lowest SCV for the given order), however, was
always provided by the BIPOP-CMA-ES method, although
it is by far the slowest among the three methods we studied.
In fact, we believe that BIPOP-CMA-ES returned the global
optimum for n = 1, . . . , 74, and we investigate the properties
of those solutions in the next sections. For n > 74, we can
still compute low SCV functions with the BIPOP-CMA-ES
method, but its computation time gets to be prohibitive,
and we are less confident about the global minimality of the
results.

For our particular problem, the running time, T , and the
quality of the minimum, Q (how low the SCV is), obtained
by the different optimization methods can be summarized as
follows

TCMA-ES < T(1+1)-ES << TBIPOP-CMA-ES,

QCMA-ES ∼ Q(1+1)-ES < QBIPOP-CMA-ES.

4.2 Properties of the minimal SCV solutions
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Figure 3: The spike and the zeros of f+(t)

The minimal SCV values obtained by the BIPOP-CMA-ES
optimization, which we consider as being optimal for n =
1, . . . , 74, are depicted in Figure 2. Apart from the minimal
SCV values of the exponential cosine-square functions, Figure
2 also plots 1/N and 2/N2, for comparison. The SCV = 1/N
is known to be the minimal SCV value of phase-type (PH)
distributions of order N [1], which form a subset in the set of
ME distributions by assuming positive off-diagonal elements
for A and nonnegative elements for α. The 2/N2 curve
is reported to be the approximate decay rate in [5], up to
n = 23 (N = 47).

Figure 2 indicates that the SCV decreases much faster
than 1/N and a bit faster than 2/N2. Indeed, 2/N2 is a
good approximation up to n = 23, but the decay seems to
decrease below 2/N2 for n > 23.

5. HEURISTIC OPTIMIZATION WITH 3
PARAMETERS

According to the previously discussed approach the number
of parameters to optimize increases with n. This drawback
limits the applicability of the general optimization procedures
to about n ≤ 74 in case of BIPOP-CMA-ES and about
n ≤ 180 in case of the basic CMA-ES. By these n values the
optimization procedure takes several days to terminate on
our average PC clocked at 3.4 GHz.

While the f+(t) function obtained this way for n = 180
have an extremely low (≈ 10−5) SCV already, some applica-
tions might benefit from ME distributions with even lower
SCV. To overcome this limitation we developed a suboptimal
heuristic procedure, that aims to obtain low SCV for a given
large order n.

Our heuristic procedure has to optimize only three param-
eters, independent of the order n. The procedure is based on
the assumption that the location of the spike in the (0, 2π)
cycle of the cosine-squared function plays the most important
role in the SCV, and the exact values of the φk parameters
are less important, the only important feature is that the
cosine-squared terms characterized by the φk parameters
should suppress f+(t) uniformly in the (0, 2π) cycle – apart
from the spike (cf. Figure 3).

Based on this assumption we set the φk parameters of the
cosine-squared terms equidistantly. This way the position
of the spike (p) and its width (w) inside the (0, 2π) interval
completely define the φk values for a given order n.

The distance of the φk parameters (d) and the number of
φk parameters before the spike (i) can be computed from p
and w by

d =
2π − w
n

, i =

⌊
p− w/2

d
+

1

2

⌋
, (13)
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Figure 4: The minimal and the heuristic SCV as a
function of order n in log-log scale

and for k = 1, . . . , n the φk parameters are

φk + π =

{
(k − 1/2)d if k ≤ i,
(k − 1/2)d+ w if k > i.

(14)

Figure 4 depicts the SCV obtained by the heuristic pro-
cedure for large n values, compared with the outputs of the
highly accurate BIPOP-CMA-ES and the faster CMA-ES
optimization procedures. Figure 4 suggests that the heuris-
tic optimizations remains very close to the minimum also
for larger n values and the SCV obtained by the heuristic
optimization maintains its polynomial decay between n−2.1

and n−2.2.
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