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ABSTRACT
We present effective numerical inverse Laplace transforma-
tion (ILT) method which belongs to the Abate–Whitt frame-
work and exhibits some of the best properties among all
the procedures of the framework. E.g., the proposed ILT
method does not generate overshoot and undershoot (up-
ward/downward jump exceeding the jump of the original
function), numerically stable and gradually improving.

Keywords: numerical inverse Laplace transformation,
Abate–Whitt framework, concentrated matrix exponential
distribution.

1. INTRODUCTION
There are plenty of numerical inverse Laplace transfor-

mation methods published in the literature (for a relatively
recent survey we refer to [6]). Among these methods one
of the most widely applied and well characterized subset is
Abate–Whitt framework defined in [1]. This framework im-
plicitly defines function families in which various optimiza-
tions can be performed in order to obtain efficient inverse
Laplace transformation methods.

We propose a procedure which is based on the most gen-
eral function family of the Abate–Whitt framework (referred
to as Class III in [1]) where we adopt a restriction that the
inverse Laplace transformation should be non-overshooting.

It turns out that matrix exponential (ME) distribu-
tion applied in the Abate–Whitt framework ensures non-
overshooting inverse Laplace transformation. In [5] low or-
der inverse Laplace transformation is applied, using concen-
trated ME (CME) distributions, which were available at that
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time [2, 4]. Recent improvements in the computation of
CME distributions [3] allow us to extend the numerical ILT
method also to high orders. In this work we present the first
numerical experiences about the ILT method based on high
order CME distributions.

2. INVERSE LAPLACE TRANSFOR-
MATION AND THE ABATE–WHITT
FRAMEWORK

For a real or complex valued function h(t) the Laplace
transform is defined as

h∗(s) =

∫ ∞
t=0

e−sth(t)dt. (1)

and the inverse transform problem is to find an approximate
value of h at point T (i.e., h(T )) based on h∗(s).

Remark 1. We assume that
∫∞
t=0

e−sth(t)dt is finite for
Re(s) > 0 thus h∗(s) is well-defined by (1) for Re(s) > 0.

Remark 2. We assume that h(t) is real in this work. As
a result, h∗(s̄) = h̄∗(s) and h∗(s̄) + h∗(s) = 2Re(h∗(s)).

Among the wide range of inverse Laplace transforma-
tion methods, we restrict our attention to the Abate–Whitt
framework which we summarize below.

2.1 The Abate–Whitt framework
The idea is to approximate h by a finite linear combination

of the transform values, via

h(T ) ≈ hn(T ) :=

n∑
k=1

ηk
T
h∗
(
βk
T

)
, T > 0, (2)

where the nodes βk and weights ηk are complex numbers,
which depend on n, but not on the transform h∗ or the
time argument T . This framework was introduced and in-
vestigated by Abate and Whitt in [1]. When h(t) in (1) is
real valued it can be approximated by the real part of the
weighted transform values:

Re(h(T )) ≈ Re(hn(T )) =

n∑
k=1

Re

(
ηk
T
h∗
(
βk
T

))
.



In the special case when there is a complex conjugate pair
among the nodes and weights (that is, ηi = η̄j and βi = β̄j)
then

ηi
T
h∗
(
βi
T

)
+
ηj
T
h∗
(
βj
T

)
= 2Re

[
ηi
T
h∗
(
βi
T

)]
.

For numerical comparisons, we consider two classic algo-
rithms of the Abate–Whitt framework: the Gaver–Stehfest
method and the Euler method, which are investigated also
in [1]. These two methods approximate h(T ) by hn(T ),
where hn(T ) has the form (2) with weights ηk and nodes
βk, k = 1, 2, . . . n as follows.

Gaver–Stehfest method (for even n)

βk = k ln(2), for 1 ≤ k ≤ n,

ηk = (−1)n/2+k ln(2)

min(k,n/2)∑
j=b(k+1)/2c

jn/2+1

(n/2)!

(
n/2

j

)(
2j

j

)(
j

k − j

)
,

for 1 ≤ k ≤ n,

where bxc is the greatest integer less than or equal to x.

Euler method (for odd n)

βk =
(n− 1) ln(10)

6
+ πi(k − 1), 1 ≤ k ≤ n

ηk = 10(n−1)/6(−1)k−1ξk, 1 ≤ k ≤ n

where

ξ1 =
1

2

ξk = 1, 2 ≤ k ≤ (n+ 1)/2

ξn =
1

2(n−1)/2

ξn−k = ξn−k+1 + 2−(n−1)/2

(
(n− 1)/2

k

)
for 1 ≤ k < (n− 1)/2.

Remark 3. The set of real valued functions
∑
k ηke

−βkt

with potentially complex valued coefficients has the following
real representations.

Class I If both ηk and βk are real then
∑
k ηke

−βkt is a real
representation.

Class II If ηk is real and βk is complex then

Re

(∑
k

ηke
−βkt

)
=
∑
k

ηke
−bkt cos(ωkt)

is its real representation, where βk = bk + iωk.

Class III If both ηk and βk are complex then

Re

(∑
k

ηke
−βkt

)
=
∑
k

ake
−bkt cos(ωkt+ φk)

is its real representation, where βk = bk + iωk and
ak, φk are real and obtained from the real and imagi-
nary parts of ηk [4].

The Gaver–Stehfest method falls into Class I, the Euler
method falls into Class II, the proposed ME distribution
based method (described in detail in Section 3.2) falls into
Class III.

For Re(βk) > 0, we can reformulate the inverse Laplace
transformation methods of the Abate–Whitt framework as

hn(T ) =
1

T

n∑
k=1

ηkh
∗
(
βk
T

)
=

1

T

n∑
k=1

ηk

∫ ∞
0

e−
βk
T
th(t)dt

=

∫ ∞
0

h(t)fnT (t)dt, (3)

where the numerical approximation of the Laplace inverse at
point T is obtained as the integral of the original function,
h(t), with

fnT (t) =
1

T

n∑
k=1

ηke
− βk
T
t. (4)

If fnT (t) was the Dirac impulse function at point T then the
Laplace inversion would be perfect, but depending on the
order of the approximation (n), the applied inverse transfor-
mation method (weights ηk, nodes βk) and the time point
(T ), function fnT (t) only approximates the Dirac impulse
function with a given accuracy.

Remark 4. fnT (t) is a scaled version of

fn1 (t) =

n∑
k=1

ηke
−βkt (5)

because, according to (4),

fnT (t) =
1

T
fn1

(
t

T

)
. (6)

3. MATRIX EXPONENTIAL DISTRIBU-
TIONS

The class of matrix exponential distributions of order N ,
denoted ME(N), contains random variables with pdf of the
form

fX(t) = −αAeAt1, t ≥ 0, (7)

where α is a row vector of length N , A is a matrix of size
N ×N and 1 is a column vector of ones of size N . As fX(t)
is a pdf, fX(t) is non-negative for t ≥ 0.

Assuming that A is diagonalizable, with spectral decom-
position A =

∑n
i=1 uiλivi, the pdf can be written as

fX(t) =

n∑
i=1

−αAuivi1︸ ︷︷ ︸
ci

eλit =

n∑
i=1

cie
λit, (8)

where λ1, . . . , λn are eigenvalues of A. Comparing (8) and
(5) indicates that ME distributions with diagonalizable ma-
trix A can be used in the place of fn1 (t).

Remark 5. Due to the non-negativity of fX(t), the in-
tegral in (3) results in an inverse Laplace transformation
without overshoot.



3.1 Concentrated ME distributions
Concentrated ME(N) distributions with low coefficient of

variation has been calculated in [4] up to N = 47 and in [3]
for up to N = 2001, using the following form (for odd N):

fME(t) = c e−λt
(N−1)/2∏
i=0

cos2(ωt− φi) (9)

with real values of c, λ, ω and φ1, . . . , φ(N−1)/2 obtained from
numerical optimization.

3.2 ME distribution-based inverse Laplace
transformation

In order to apply the CME distributions for inverse
Laplace transformation (9) needs to be rewritten in a form
consistent with (5):

fME(t) = c e−λt
(N−1)/2∏
i=0

cos2(ωt− φi) =

N∑
i=1

ηie
−βit

where n = (N + 1)/2, η1, β1 are real, and the values
β2, . . . , βn have positive imaginary parts. For the details
of this transformation, see the Appendix of [4].

4. NUMERICAL COMPARISON WITH
THE ME BASED METHOD

In order to investigate the properties of the considered
inverse Laplace transformation methods (Euler, Gaver–
Stehfest (Gaver in short), Concentrated ME based (CME)),
we performed a set of numerical inverse Laplace transfor-
mations for the 6 functions of Table 1 using our Matlab im-
plementation, where we applied standard double precision
floating point The arithmetic for CME and 100 digit preci-
sion arithmetic with the Matlab Symbolic Math Toolbox for
Euler and Gaver. Numerical properties of the 6 test func-
tions are rather similar; we demonstrate them using mainly
the test function btc mod 2.

h(t) e−t sin t 1(t > 1)

h∗(s) 1
1+s

1
s2+1

1
s
e−s

h(t) 1(t > 1)e1−t btc btc mod 2

h∗(s) e−s

1+s
1
s

1
es−1

1
s

1
es+1

Table 1: Set of test functions

Figures 1 and 2 investigate the dependency of the Gaver
and the Euler methods on the order. The Gaver method
fails to follow the alternating feature of the original function
for low order (n = 10). It produces a smooth curve with
some overshoot for medium order (n = 50), and reaches its
limit of numerical stability, despite using 100 digit precision,
at n = 64. The Euler method for low order (n = 11) follows
the alternating feature of the original function for longer; it
produces a smooth curve with more dominant overshoot for
medium order (n = 51), and reaches its limit of numerical
stability, despite using 100 digit precision, at n = 101.

In comparison, the inverse Laplace transformation ob-
tained by the CME method is depicted in Figure 3. The
CME method does not produce overshoot at any order. Sim-
ilar to the Euler method, the CME method follows the alter-
nating feature of the original function for low order (n = 10).
It produces a smooth curve for low, medium (n = 50) and
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Figure 1: h(t) = btc mod2 with Gaver method

high (n = 500) orders using double precision arithmetic.
The accuracy of the inverse Laplace transformation contin-
uously increases with the order.

Figures 4 and 5 compare the methods for h(t) = btc with
low and medium orders, while Figures 6 and 7 compare
the methods for h(t) = btc mod 2 with the same orders.
In each case, the benefit of the non-overshooting inverse
Laplace transformation is dominant. Especially, the figures
with medium orders indicate the uncertainties coming from
overshooting inverse Laplace transformation using the more
alternating Euler method.

The sharpest increase of the Euler and the CME meth-
ods are similar for the same orders. Approximating dis-
continuity, the Euler method provides a bit sharper in-
crease/decrease than the CME method at a given order,
but at the cost of significant overshoots before and after the
discontinuity.
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Concentrated Matrix Exponential Distributions, pages
18–31. Springer International Publishing, Cham, 2016.
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Figure 2: h(t) = btc mod 2 with Euler method
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Figure 3: h(t) = btc mod 2 with CME method
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Figure 4: h(t) = btc with low orders
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Figure 5: h(t) = btc with medium orders
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Figure 6: h(t) = btc mod 2 with low orders
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Figure 7: h(t) = btc mod 2 with medium orders


