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Abstract

This paper presents matrix-exponential (ME) distributions, whose
squared coefficient of variation (SCV) is very low. Currently there is no
symbolic construction available to obtain the most concentrated ME
distributions, and the numerical optimization-based approaches to con-
struct them have many pitfalls. We present a numerical optimization-
based procedure which avoids numerical issues.

Keywords: Non-negative matrix-exponential functions, Matrix-
exponential distributions, Numerical optimization, Coefficient of varia-
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1 Introduction

Highly concentrated matrix-exponential functions play an important role
in many research fields, for example, they turned out to be essential for
numerical inverse Laplace transform methods as well [10].

∗This work is partially supported by the OTKA K-123914 and the TUDFO/51757/2019-
ITM grants.
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The least varying phase type (PH) distribution of order N is known to
be the Erlang distribution [3] with SCV=1/N (defined as µ0µ2

µ21
− 1, where

µi, i ∈ {0, 1, 2}, are the moments of the distribution). Much less is known
about the least varying ME distribution for order N . It is known that for order
2 the class of ME distributions is identical to the class of PH distributions,
and it is also known that there exists an order 3 ME distribution with
SCV=0.200902 < 1/3, but it is still only a conjecture that this is the least
varying order 3 ME distribution. Concentrated ME distributions are provided
in [6] up to order 17 and in [9] up to order 47. These preliminary results
indicate that, as N increases, the minimal SCV of order N ME distributions
tends to be less than 2/N2 for odd N , and for even N , the minimal SCV
is close to the minimal SCV of order N − 1 ME distributions. In this
paper, we propose numerical procedures by which much higher odd order
concentrated ME distributions can be computed, and based on that, we refine
the dependence of the minimal SCV on the order.

The rest of the paper is organized as follows. In Section 2, we provide
the basic definition of the considered set of functions and the SCV. Section 3
presents an algorithm for efficient SCV computation of exponential cosine-
square functions, while Section 4 introduces the numerical optimization
procedure to obtain ME functions with low SCV. A heuristic approach with
only 3 parameters is proposed in Section 5 and Section 6 concludes the paper.

2 Concentrated ME distributions

In this paper, we focus on real functions and distribution on R+.

Definition 1. Order N ME functions (referred to as ME(N)) are given by

f(t) = αeAt(−A)1, t ≥ 0, (1)

where α is a real row vector of size N , A is a real matrix of size N ×N and
1 is the column vector of ones of size N , α is such that α1 > 0 and f(t) ≥ 0
for t ≥ 0.

According to (1), vector α and matrix A define the ME function. We
refer to the pair (α,A) as a matrix representation in the sequel. The matrix
representation is not unique. Applying a similarity transformation with a
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non-singular matrix T, for which T1 = 1 holds, we obtain vector β = αT−1

and matrix B = TAT−1, that define the same ME function, since

βeBt(−B)1 = αT−1eTAT−1t(−TAT−1)1

= αT−1TeAtT−1T(−A)T−11 = αeAt(−A)1 = f(t). (2)

Definition 2. The SCV of the real function f(t) is defined as

SCV (f(t)) =
µ0µ2

µ2
1

− 1, (3)

where µi =
∫∞
t=0

tif(t)dt for i ∈ {0, 1, 2}.

According to Definition 2, the SCV is insensitive to multiplication and
scaling, because

∫∞
t=0

tic1f(c2t)dt = c1
ci+1
2

µi and

SCV (c1f(c2t)) =

c1
c2
µ0

c1
c32
µ2

( c1
c22
µ1)2

− 1 =
µ0µ2

µ2
1

− 1 = SCV (f(t)). (4)

Definition 3. [4, 5] The probability density function of an order N ME
distribution is a ME(N) function with the following properties: f(t) ≥ 0 for
t ≥ 0 and

∫∞
t=0

f(t)dt = 1.

If f(t) is a density function of an ME distribution, then µi denotes the
ith moment and SCV (f(t)) the squared coefficient of variation (SCV) of the
ME distribution. An ME distribution with density function f(t) is said to be
concentrated if SCV (f(t)) is low.

Although ME functions have been used for many decades, there are still
many questions open regarding their properties. Such an important question
is how to decide efficiently if a ME function is non-negative for all t > 0. In
general, f(t) ≥ 0 does not hold for given (α,A) matrix representation for
all t > 0, unless it has been constructed to be non-negative. In this paper,
we are going to restrict our attention to such a special construction, the
exponential-cosine square functions.

For the least varying ME(N) distributions only conjectures are available
for N ≥ 3 [6]. According to the current conjecture, for odd N , the density
function of the most concentrated ME(N) distribution belongs to a special
class characterized by f(t) = c1f

+(c2t), where c1 and c2 are positive constants
and f+(t) is an exponential cosine-square function defined below.
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Definition 4. The set of exponential cosine-square functions of order n has
the form

f+(t) = e−t
n∏
i=1

cos2
(
ωt− φi

2

)
, t ≥ 0, (5)

where ω ≥ 0 and 0 ≤ φi < π for i ∈ {1, . . . , n}.
Since the SCV is insensitive to multiplication and scaling, in the rest

of the paper we focus on SCV (f+(t)) with f+(t) as defined in (5) (that is,
without normalization and scaling).

An exponential cosine-square function is defined by n+ 1 parameters: ω
and φi for i ∈ {1, . . . , n}. f+(t) is a ME(2n + 1) function. Although the
representation in (5), which we refer to as the cosine-square representation, is
not a matrix representation, [9, Appendix A] presents the associated matrix
representation of size N = 2n + 1. Consequently, the set of exponential
cosine-square functions of order n define a special subset of ME(2n+ 1) since
f+(t), by construction, is non-negative. The SCV of f+(t) is a complicated
function of the parameters, whose minimum does not exhibit a closed analytic
form. That is why we have resorted to the following numerical problem. For
a given odd order N = 2n+ 1, we are looking for efficient numerical methods
for finding the ω and φi (i ∈ {1, . . . , n}) parameters which result in a low
SCV (f+(t)). For efficient numerical minimization of the SCV for N > 47
(i.e., n > 23) we need

i) an accurate computation of the SCV based on the parameters with low
computational cost and

ii) an efficient optimization procedure with low computational cost.

In this paper we present a method that addresses i) in Section 3, and one
that addresses ii) in Section 4.

3 Efficient computation of the squared coeffi-

cient of variation

To evaluate the objective function of the optimization problem, namely the
SCV, we need efficient methods to compute µ0, µ1 and µ2. Deriving the µi
parameters based on (5) is difficult for large N . Hence we propose to compute
them based on a different representation.
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3.1 The hyper-trigonometric representation

The following theorem defines the hyper-trigonometric form of the exponential
cosine-square functions and provides a recursive procedure to obtain its
parameters from ω and φi, i ∈ {1, . . . , n}.

Theorem 1. An order N = 2n+ 1 exponential cosine-square function can be
transformed to a hyper-trigonometric representation of form

f+(t) = c(n) · e−t + e−t
n∑
k=1

a
(n)
k cos(kωt) + e−t

n∑
k=1

b
(n)
k sin(kωt), (6)

where t, ω ≥ 0, c(n) = 1
2
a
(n)
0 and the coefficients a

(n)
k , b

(n)
k are calculated

recursively:

• for n = 1:

a
(1)
0 = 1, b

(1)
0 = 0, a

(1)
1 =

1

2
cosφ1, b

(1)
1 =

1

2
sinφ1, (7)

• for k = 0, n ≥ 1:

a
(n)
0 =

1

2
a
(n−1)
0 +

1

2
a
(n−1)
1 cosφn +

1

2
b
(n−1)
1 sinφn, (8)

b
(n)
0 = 0, (9)

• for 1 ≤ k ≤ n, n ≥ 2

a
(n)
k =

1

2
a
(n−1)
k +

1

2

a
(n−1)
k−1 + a

(n−1)
k+1

2
cosφn +

1

2

b
(n−1)
k+1 − b

(n−1)
k−1

2
sinφn,

(10)

b
(n)
k =

1

2
b
(n−1)
k +

1

2

b
(n−1)
k−1 + b

(n−1)
k+1

2
cosφn +

1

2

a
(n−1)
k−1 − a

(n−1)
k+1

2
sinφn

(11)

where a
(n)
k = b

(n)
k = 0 for k > n.

Proof. The theorem is proved by induction. For the order N = 2n+ 1 cosine-
square function we introduce the notation f (n)(t) =

∏n
i=1 cos2

(
ωt−φi

2

)
. For
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n = 1,

f (1)(t) = cos2
(
ωt− φ1

2

)
=

1

2
(1 + cos (ωt− φ1))

=
1

2
(1 + cos(ωt) cos(φ1) + sin(ωt) sin(φ1)) ,

and the theorem holds. Assuming that the theorem holds for n− 1, we are
going to show that it holds for n as well. We have that

f (n)(t) = f (n−1)(t) cos2
(
ωt− φn

2

)
= f (n−1)(t)

(
1

2
+

1

2
cos(ωt− φn)

)
= f (n−1)(t)/2 + f (n−1)(t) cos(ωt) cos(φn)/2 + f (n−1)(t) sin(ωt) sin(φn)/2

= c(n−1)/2 +
n−1∑
k=1

a
(n−1)
k cos(kωt)/2 +

n−1∑
k=1

b
(n−1)
k sin(kωt)/2

+ c(n−1) cos(ωt) cos(φn)/2 + c(n−1) sin(ωt) sin(φn)/2

+
n−1∑
k=1

a
(n−1)
k cos(kωt) cos(ωt) cos(φn)/2

+
n−1∑
k=1

a
(n−1)
k cos(kωt) sin(ωt) sin(φn)/2

+
n−1∑
k=1

b
(n−1)
k sin(kωt) cos(ωt) cos(φn)/2

+
n−1∑
k=1

b
(n−1)
k sin(kωt) sin(ωt) sin(φn)/2.

Using the identities

cos(kωt) cos(ωt) = cos((k + 1)ωt)/2 + cos((k − 1)ωt)/2,

sin(kωt) sin(ωt) = − cos((k + 1)ωt)/2 + cos((k − 1)ωt)/2,

cos(kωt) sin(ωt) = sin((k + 1)ωt)/2− sin((k − 1)ωt)/2,

sin(kωt) cos(ωt) = sin((k + 1)ωt)/2 + sin((k − 1)ωt)/2,

and collecting the coefficients corresponding to cos(kωt) and sin(kωt) provides
(10) and (11). Terms from cos((k − 1)ωt) at k = 1 contribute to c(n), leading

to c(n) = 1
2
a
(n)
0 . The relations for the boundaries can be obtained in a similar

manner.
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The hyper-trigonometric representation makes it possible to express the
Laplace transform (LT) and the µi moments for i ∈ {0, 1, 2} in a simple and
compact way.

Corollary 1. The LT and the µi, i ∈ {0, 1, 2}, moments of the exponential
cosine-square function, for s ∈ C, are given by

f ∗(s) =

∫ ∞
0

e−stf+(t) dt =
c(n)

1 + s
+

n∑
k=1

a
(n)
k (1 + s) + b

(n)
k kω

(1 + s)2 + (kω)2
, (12)

and

µ0 = c(n) +
n∑
k=1

a
(n)
k + b

(n)
k kω

1 + (kω)2
, (13)

µ1 = c(n) +
n∑
k=1

a
(n)
k + 2b

(n)
k kω − a(n)k (kω)2

(1 + (kω)2)2
,

µ2 = 2c(n) +
n∑
k=1

2a
(n)
k + 6b

(n)
k kω − 6a

(n)
k (kω)2 − 2b

(n)
k (kω)3

(1 + (kω)2)3
.

Proof. Since (6) is linear, it can be Laplace transformed term-by-term using
the relations

LT (e−t) =
1

s+ 1
,

LT (e−t cos(ωt)) =
s+ 1

(s+ 1)2 + ω2
,

LT (e−t sin(ωt)) =
ω

(s+ 1)2 + ω2
.

Based on f ∗(s), the µi moments can be computed using the LT moment
relation

µi = (−1)i
di

dsi
f ∗(s)

∣∣∣∣
s=0

.

In order to compute the matrix representation of the exponential cosine-
square function, we introduce two more representations, and the associated
transformations.
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3.2 The spectral representation

The hyper-trigonometric representation makes it easy to obtain the spectral
form of f+(t) as

f+(t) = c(n)e−t +
1

2

n∑
k=1

(
a
(n)
k + ib

(n)
k

)
e−(1+ikω)t +

(
a
(n)
k − ib

(n)
k

)
e−(1−ikω)t,

(14)

where i denotes the imaginary unit. We refer to (14) as the spectral represen-
tation because these exponential coefficients are the eigenvalues of matrix A
in the matrix representation.

3.3 The matrix representation

Corollary 2. The f+(t) = e−t
∏n

i=1 cos2
(
ωt−φi

2

)
function has a size N =

2n+ 1 matrix representation f+(t) = αeAt(−A)1, where the row vector α is
composed by the elements

α1 = c(n), (15)

α2k =
1

2

a
(n)
k (1 + kω)− b(n)k (1− kω)

1 + (kω)2
, (16)

α2k+1 =
1

2

a
(n)
k (1− kω) + b

(n)
k (1 + kω)

1 + (kω)2
, (17)

and the matrix A is given by

A =


−1

∆1

. . .

∆n

 , (18)

where ∆k =

[
−1 −kω
kω −1

]
, for k ∈ {1, . . . , n}.

Proof. According to (18),

eAt =


e−t

e∆1t

. . .

e∆nt

 (19)
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where

e∆kt = e

−1 −kω
kω −1

 t

=

[
e−t cos(kωt) −e−t sin(kωt)
e−t sin(kωt) e−t cos(kωt)

]
. (20)

Based on (19) and (20), we can write

αeAt(−A)1 = c(n)e−t +
n∑
k=1

[
α2k α2k+1

]
e∆kt

[
1 + kω
1− kω

]
= c(n)e−t +

n∑
k=1

[
α2k α2k+1

] [e−t cos(kωt) −e−t sin(kωt)
e−t sin(kωt) e−t cos(kωt)

] [
1 + kω
1− kω

]
= c(n)e−t +

n∑
k=1

e−t
(
a
(n)
k cos(kωt) + b

(n)
k sin(kωt)

)
, (21)

which is identical with (6).

3.4 Numerical computation of the moments

Theorem 1 together with Corollary 1 provides a very efficient explicit method
to compute the SCV based on the parameters ω, φi, i ∈ {1, . . . , n}.

There is one numerical issue that has to be taken care of when applying
this numerical procedure with floating point arithmetic for large values of
n. To evaluate the SCV, coefficients a

(n)
k , b

(n)
k , c(n) need to be obtained from

the ω and φi, i ∈ {1, . . . , n} parameters. The recursion defined in Theorem 1
involves multiplications between bounded numbers (sine and cosine always fall
into [−1,+1]), which is beneficial from the numerical stability point of view,
but subtractions are unfortunately also present, leading to a loss of precision.
To overcome this loss of precision, we introduce increased precision floating
point arithmetic both in our Mathematica and C++ implementations1 [1, 2].
Mathematica can quantify the precision loss, enabling us to investigate this
issue experimentally. According to Figure 1, the number of accurate decimal
digits lost when evaluating the SCV from the ω, φi parameters (computed
by the Precision function of Mathematica), denoted by Ln, is nearly linear
and can be approximated by

Ln ≈ 1.487 + 0.647n. (22)

1In C++ we used the mpfr library for multi-precision computations
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Figure 1: The precision loss while computing the SCV

In the forthcoming numerical experiments we have set the floating point
precision to Ln + 16 decimal digits to obtain an accuracy of results up to 16
decimal digits, and this precision setting eliminated all numerical issues.

It is important to note that the high precision is needed only to calculate
the a

(n)
k , b

(n)
k , c(n) coefficients and the SCV itself. Representing parameters

ω, φi, i ∈ {1, . . . , n} themselves does not need extra precision, and the resulting
exponential cosine-square function f+(t) can be evaluated with machine
precision as well (in the range of our interest, n ≤ 1000).

A basic pseudo-code of the computation of the SCV with the indications
where high precision is needed is provided by Algorithm 1.

Algorithm 1 Pseudo-code for the computation of the SCV

1: procedure ComputeSCV(n, ω, φi, i ∈ {1, . . . , n})
2: Compute the required precision, Ln, from (22)
3: Convert ω, φi, i ∈ {1, . . . , n} to Ln + 16 digits precision

4: Calculate a
(n)
k , b

(n)
k , k ∈ {1, . . . , n}, c(n) by Theorem 1 (high preci-

sion)
5: Calculate moments µ0, µ1, µ2 according to (13) (machine precision)
6: Calculate SCV = µ0µ2

µ21
− 1 (machine precision)

7: return SCV
8: end procedure
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4 Minimizing the squared coefficient of vari-

ation

Given the size of the representation N = 2n+ 1, the f+(t) function providing
the minimal SCV is obtained by minimizing (3) subject to ω and φi, i ∈
{1, . . . , n}. The form of the SCV does not allow a symbolic solution, and
its numerical optimization is challenging too. The surface to optimize has
many local optima, hence simple gradient descent procedures failed to find
the global optimum and are sensitive to the initial guess.

4.1 Optimizing the parameters

In the numerical optimization of the parameters, we had success with evolu-
tionary optimization methods, in particular with evolution strategies. The
results introduced in [9] were obtained by one of the simplest evolution
strategies, the Rechenberg method [11]. In [9], it was the high computational
demand of the numerical integration needed to obtain the SCV and its reduced
accuracy that prevented the optimization for N > 47 (n > 23).

However, computing the SCV based on the hyper-trigonometric repre-
sentation using the results of Section 3.1 allows us to evaluate the moments
orders of magnitudes faster and more accurately, enabling the optimization
for higher n values. With the Rechenberg method ([11], also referred to as
(1+1)-ES in the literature) it is possible to obtain low SCV values relatively
quickly for orders as high as n = 125, but these values are suboptimal in the
majority of cases.

With more advanced evolution strategies the optimal SCV can be ap-
proached better. Our implementation [1] supports the covariance matrix
adoption evolution strategy (CMA-ES [7]), and one of its variants, the
BIPOP-CMA-ES with restarts [8]. Starting from a random initial guess,
we got very low SCV values much quicker with the CMA-ES than with the
(1+1)-ES with similar suboptimal minimum values (cf. Figure 10). The limit
of applicability of CMA-ES is about n = 180. The best solution (lowest SCV
for the given order), however, was always provided by the BIPOP-CMA-ES
method, although it was by far the slowest among the three methods we stud-
ied. In fact, we believe that BIPOP-CMA-ES returned the global optimum
for n ∈ {1, . . . , 74}, and we investigate the properties of those solutions in the
next sections. For n > 74, we can still compute low SCV functions with the
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Figure 2: The minimal SCV of the exponential cosine-square functions as the
function of n in log-log scale

BIPOP-CMA-ES method, but its computation time gets to be prohibitive,
and we are less confident about the global minimality of the results.

For our particular problem, the running time, T , and the quality of the
minimum, Q (how low the SCV is), obtained by the different optimization
methods can be summarized as follows

TCMA-ES < T(1+1)-ES << TBIPOP-CMA-ES,

QCMA-ES ∼ Q(1+1)-ES < QBIPOP-CMA-ES.

4.2 Properties of the minimal SCV solutions

The minimal SCV values obtained by the BIPOP-CMA-ES optimization,
which we conjecture to be optimal for n ∈ {1, . . . , 74}, are depicted in Figure
2. Apart from the minimal SCV values of the exponential cosine-square
functions, Figure 2 also plots 1/(2n + 1) and 2/(2n + 1)2, for comparison.
The SCV = 1/N = 1/(2n + 1) is known to be the minimal SCV value for
PH distributions of order N [3], which form a subset in the set of order N
ME distributions [4]. The 2/N2 = 2/(2n + 1)2 curve is reported to be the
approximate decay rate in [9], up to n = 23 (N = 47).

Figure 2 indicates that the SCV decreases much faster than 1/N and a
bit faster than 2/N2. Indeed, 2/N2 is a good approximation up to n = 23,
but the decay seems to decrease below 2/N2 for n > 23.
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Figure 3: The function S(n) = SCVn · n2.14 with logarithmic y axis

We suspect that the decrease is asymptotically polynomial (at n→∞),
that we checked by plotting the SCV n2.14 function in Figure 3. While the
exponent is determined empirically and might be slightly off, it is visible that
the convergence is faster than 1/n2 for the examined range (n < 1000).

4.3 The parameters providing the minimal SCV

In this section, we investigate the parameters corresponding to the minimal
SCV and provide an intuitive explanation for the observed behaviour. Figure
4 depicts the optimal ω parameter as a function of n. It shows a slow decrease
with some inhomogeneity around n = 14, 28, 43, 60. Figure 4 suggests that ω
tends to 0 as n → 0, and the inhomogeneity is related to the behaviour of
the φk parameters, as it is detailed below.

The visual appearance of the optimal φk parameters in Figure 5 reveals
many more interesting properties. First, since the period of the cosine-square
function is π, the φk parameters in (5) are 2π periodic. That is, adding
an integer times 2π to any of the φk parameters does not change the f+(t)
function. In Figure 5 we transformed all φk parameters to the (−π, π) range
and depicted φk + π instead of φk because φk + π indicates the location
where the cosine-square term with φk is zero in the (0, 2π) cycle, which is the
(0, 2π/ω) interval of f+(t). The nth row in Figure 5 depicts n points, which
are the optimal φk + π values for k = 1, . . . , n. In these n points of the (0, 2π)
cycle f+(t) equals zero. In between these zeros f+(t) has humps.
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Figure 4: The ω parameter providing the minimal SCV in lin-lin and log-log
scales

Figure 6 and Figure 7 demonstrate the effect of φk on f+(t) for ω = 1,
n = 3, φi + π = {0.1, 1, 2} for i ∈ {1, 2, 3}. In the (0, 2π) interval, both, f+(t)
and

∏n
i=1 cos2

(
t−φi
2

)
, have zeros at 0.1, 1 and 2. Figure 6 depicts f+(t) with

the exponential attenuation, while Figure 7 depicts
∏n

i=1 cos2
(
t−φi
2

)
without

the exponential attenuation. In Figure 7 the sizes of the humps depend on the
distance of the neighbouring zeros. The hump between 0.1 and 1 is smaller
than the one between 1 and 2, which indicates that the closer the neighbouring
zeros are the smaller the humps are. In Figure 6, the exponential attenuation
also affects the sizes of the humps. With the exponential attenuation the
hump between 0.1 and 1 is larger than the one between 1 and 2. Additionally,
the SCV is more sensitive to the humps further from the main peak, which
motivates the fact that the φk + π parameters are more concentrated around
0 to make the function as flat as possible near t = 0, where the exponential
attenuation is rather weak. In Figure 6, right of the main peak, f+(t) is
suppressed by the exponential attenuation, while left of the peak the zeros of
the cosine square terms keep the function low (c.f. Figure 7).

In Figure 5, for n < 14, the zeros are located between 0 and 5, which
means that in this range of n f+(t) is kept close to zero by the cosine-square
functions in the interval (0, 5). It has a peak between 5 and 2π, and the next
cycles are suppressed by the exponential attenuation.

For n ≥ 14, there is a gap in the sequence of φk parameters, indicating
the location of a spike of f+(t). It means that the exponential attenuation
is not strong enough for suppressing f+(t) right after the spike, and the
minimal SCV is obtained when some cosine-square terms are used to enforce
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the suppression beyond the spike.
The number of cosine-square terms used to suppress f+(t) beyond the

spike changes at n ∈ {14, 28, 43, 60}. These changes result in the small
inhomogeneity in the ω values at n ∈ {14, 28, 43, 60} in Figure 4.

According to our intuitive understanding ω tends to 0 as n→∞, because
the cosine squared terms are more efficient in suppressing f+(t) than the
exponential attenuation, and for large n, the cosine squared terms create a
sharp spike inside the 0, 2π cycle (which is the (0, 2π/ω) interval), such that
the zeros are located on both sides of the spike. The cosine squared terms
are 2π/ω periodic and consequently, there is a spike also in the (2π/ω, 4π/ω)
interval which is suppressed by exponential attenuation. The exponential
attenuation in a 2π/ω long interval is e2π/ω. In order to efficiently suppress
the spike in the (2π/ω, 4π/ω) interval, ω has to be small.

5 Heuristic optimization with 3 parameters

According to the previously discussed approach the number of parameters
to optimize increases with n. This drawback limits the applicability of the
general optimization procedures to about n ≤ 74 in the case of BIPOP-CMA-
ES and about n ≤ 180 in the case of the basic CMA-ES. Using these n values
the optimization procedure takes several days to terminate on an average PC
clocked at 3.4 GHz.

While the f+(t) function obtained this way for n = 180 has an extremely
low SCV (≈ 10−5) already, some applications might benefit from ME dis-
tributions with even lower SCV. To overcome this limitation we developed
a suboptimal heuristic procedure, that aims to obtain low SCV for a given
large order n.

Our heuristic procedure has to optimize only three parameters, indepen-
dent of the order n. The procedure is based on the assumption that the
location of the spike in the (0, 2π) cycle of the cosine-squared function plays
the most important role in the SCV, and the exact values of the φk parameters
are less important, the only important feature is that the cosine-squared terms
characterized by the φk parameters should suppress f+(t) uniformly in the
(0, 2π) cycle – apart from the spike (cf. Figure 8). In case of ME distributions,
the spike is the dominant mode of the density function.

Based on this assumption we set the φk parameters of the cosine-squared
terms equidistantly. This way the position of the spike (denoted by p) and
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its width (w) inside the (0, 2π) interval completely define the φk values for a
given order n.

The distance of the φk parameters (d) and the number of φk parameters
before the spike (i) can be computed from p and w by

d =
2π − w
n

, i =

⌊
p− w/2

d
+

1

2

⌋
, (23)

and for k ∈ {1, . . . , n} the φk parameters are

φk =

{
(k − 1/2)d− π if k ≤ i,
(k − 1/2)d+ w − π if k > i.

(24)

The obtained heuristic procedure has only 3 parameters to optimize: ω,
p and w (see Algorithm 2). The SCV values computed by this heuristic
optimization procedure are depicted in Figure 9 for n ∈ {10, . . . , 74}. The
figure indicates that for small n (n < 15) the procedure is inaccurate, but it
is not a problem because the minimal SCV can be computed quickly in these
cases. For larger n (n ≥ 15) the SCV provided by the heuristic procedure is
less than twice the minimal SCV in the given range. Assuming that this ratio
to the optimal SCV remains valid also for n > 74 the heuristic procedure
which is applicable up to n = 1000, is an efficient tool to compute highly
concentrated ME distributions for large order n values.
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Algorithm 2 The objective function of the heuristic method

1: procedure ComputeSCV-heuristic(ω, p, w)
2: Obtain the distance of zeros, d, and threshold i by (23)
3: Obtain φi for i ∈ {1, . . . , n} by (24)
4: Compute SCV by Algorithm 1
5: return SCV
6: end procedure

Figure 10 depicts the SCV obtained by the heuristic procedure for large n
values, compared with the outputs of the highly accurate BIPOP-CMA-ES
and the faster CMA-ES optimization procedures. Figure 10 suggests that
the heuristic optimization remains very close to the minimum also for larger
n values and the SCV obtained by the heuristic optimization maintains its
polynomial decay between n−2.1 and n−2.2.

5.1 Implementation notes

The reader can validate the results of the paper based on the parameters we
computed for a representative set of n values between 1 and 1000 and made
available at [2]. The file itccme.json contains (among other parameters)

the a
(n)
k , b

(n)
k , c(n) parameters for the computed set of n values from which
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f+(t) can be plotted using (14) (to check the non-negativity of f+(t)), and
the SCV can be computed using (13) in any general mathematical program-
ming environments. Some related functions processing the parameters in
itccme.json are also available at [2] in various programming environments.
Additionally, the implementation of the optimization procedure at [1] allows
the reader to reproduce the parameters of the CME distributions presented
in itccme.json.

The parameter setting of the code in [1] resulted from the trends of
the parameters depicted in Figure 4 and 5, which can also be projected
to unexplored orders with some confidence. Our numerical experiments
suggest that there are several local optima with similar SCV in the range of
initial guesses and outside that range the obtained SCV is several orders of
magnitude larger. That is, the optimization is sensitive to the initial guess,
but with a proper initial guess it is insensitive to implementation details like
the stopping criteria.

6 Conclusion

The paper presents a method to generate ME distributions with very low SCV.
The hyper-trigonometric representation of the subset of ME distributions
with exponential cosine-squared density function enables the efficient, explicit
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computation of the squared coefficient of variation. By selecting the appro-
priate numerical precision and a suitable numerical optimization method,
we managed to create ME functions up to order n = 1000 with very low
SCV (< 10−6 for n = 1000). Such non-negative, low-SCV matrix exponential
functions are important ingredients in several numerical procedures, including
the numerical inverse Laplace transform and representing deterministic delay
in stochastic models.
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